1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_parse1.cpp.incl"
  27 
  28 // Static array so we can figure out which bytecodes stop us from compiling
  29 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  30 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  31 
  32 int nodes_created              = 0;
  33 int methods_parsed             = 0;
  34 int methods_seen               = 0;
  35 int blocks_parsed              = 0;
  36 int blocks_seen                = 0;
  37 
  38 int explicit_null_checks_inserted = 0;
  39 int explicit_null_checks_elided   = 0;
  40 int all_null_checks_found         = 0, implicit_null_checks              = 0;
  41 int implicit_null_throws          = 0;
  42 
  43 int reclaim_idx  = 0;
  44 int reclaim_in   = 0;
  45 int reclaim_node = 0;
  46 
  47 #ifndef PRODUCT
  48 bool Parse::BytecodeParseHistogram::_initialized = false;
  49 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  50 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  51 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  52 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  53 #endif
  54 
  55 //------------------------------print_statistics-------------------------------
  56 #ifndef PRODUCT
  57 void Parse::print_statistics() {
  58   tty->print_cr("--- Compiler Statistics ---");
  59   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
  60   tty->print("  Nodes created: %d", nodes_created);
  61   tty->cr();
  62   if (methods_seen != methods_parsed)
  63     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  64   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
  65 
  66   if( explicit_null_checks_inserted )
  67     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
  68   if( all_null_checks_found )
  69     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
  70                   (100*implicit_null_checks)/all_null_checks_found);
  71   if( implicit_null_throws )
  72     tty->print_cr("%d implicit null exceptions at runtime",
  73                   implicit_null_throws);
  74 
  75   if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
  76     BytecodeParseHistogram::print();
  77   }
  78 }
  79 #endif
  80 
  81 //------------------------------ON STACK REPLACEMENT---------------------------
  82 
  83 // Construct a node which can be used to get incoming state for
  84 // on stack replacement.
  85 Node *Parse::fetch_interpreter_state(int index,
  86                                      BasicType bt,
  87                                      Node *local_addrs,
  88                                      Node *local_addrs_base) {
  89   Node *mem = memory(Compile::AliasIdxRaw);
  90   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
  91 
  92   // Very similar to LoadNode::make, except we handle un-aligned longs and
  93   // doubles on Sparc.  Intel can handle them just fine directly.
  94   Node *l;
  95   switch( bt ) {                // Signature is flattened
  96   case T_INT:     l = new (C, 3) LoadINode( 0, mem, adr, TypeRawPtr::BOTTOM ); break;
  97   case T_FLOAT:   l = new (C, 3) LoadFNode( 0, mem, adr, TypeRawPtr::BOTTOM ); break;
  98   case T_ADDRESS: l = new (C, 3) LoadPNode( 0, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM  ); break;
  99   case T_OBJECT:  l = new (C, 3) LoadPNode( 0, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM ); break;
 100   case T_LONG:
 101   case T_DOUBLE: {
 102     // Since arguments are in reverse order, the argument address 'adr'
 103     // refers to the back half of the long/double.  Recompute adr.
 104     adr = basic_plus_adr( local_addrs_base, local_addrs, -(index+1)*wordSize );
 105     if( Matcher::misaligned_doubles_ok ) {
 106       l = (bt == T_DOUBLE)
 107         ? (Node*)new (C, 3) LoadDNode( 0, mem, adr, TypeRawPtr::BOTTOM )
 108         : (Node*)new (C, 3) LoadLNode( 0, mem, adr, TypeRawPtr::BOTTOM );
 109     } else {
 110       l = (bt == T_DOUBLE)
 111         ? (Node*)new (C, 3) LoadD_unalignedNode( 0, mem, adr, TypeRawPtr::BOTTOM )
 112         : (Node*)new (C, 3) LoadL_unalignedNode( 0, mem, adr, TypeRawPtr::BOTTOM );
 113     }
 114     break;
 115   }
 116   default: ShouldNotReachHere();
 117   }
 118   return _gvn.transform(l);
 119 }
 120 
 121 // Helper routine to prevent the interpreter from handing
 122 // unexpected typestate to an OSR method.
 123 // The Node l is a value newly dug out of the interpreter frame.
 124 // The type is the type predicted by ciTypeFlow.  Note that it is
 125 // not a general type, but can only come from Type::get_typeflow_type.
 126 // The safepoint is a map which will feed an uncommon trap.
 127 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 128                                     SafePointNode* &bad_type_exit) {
 129 
 130   const TypeOopPtr* tp = type->isa_oopptr();
 131 
 132   // TypeFlow may assert null-ness if a type appears unloaded.
 133   if (type == TypePtr::NULL_PTR ||
 134       (tp != NULL && !tp->klass()->is_loaded())) {
 135     // Value must be null, not a real oop.
 136     Node* chk = _gvn.transform( new (C, 3) CmpPNode(l, null()) );
 137     Node* tst = _gvn.transform( new (C, 2) BoolNode(chk, BoolTest::eq) );
 138     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 139     set_control(_gvn.transform( new (C, 1) IfTrueNode(iff) ));
 140     Node* bad_type = _gvn.transform( new (C, 1) IfFalseNode(iff) );
 141     bad_type_exit->control()->add_req(bad_type);
 142     l = null();
 143   }
 144 
 145   // Typeflow can also cut off paths from the CFG, based on
 146   // types which appear unloaded, or call sites which appear unlinked.
 147   // When paths are cut off, values at later merge points can rise
 148   // toward more specific classes.  Make sure these specific classes
 149   // are still in effect.
 150   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
 151     // TypeFlow asserted a specific object type.  Value must have that type.
 152     Node* bad_type_ctrl = NULL;
 153     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
 154     bad_type_exit->control()->add_req(bad_type_ctrl);
 155   }
 156 
 157   BasicType bt_l = _gvn.type(l)->basic_type();
 158   BasicType bt_t = type->basic_type();
 159   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 160   return l;
 161 }
 162 
 163 // Helper routine which sets up elements of the initial parser map when
 164 // performing a parse for on stack replacement.  Add values into map.
 165 // The only parameter contains the address of a interpreter arguments.
 166 void Parse::load_interpreter_state(Node* osr_buf) {
 167   int index;
 168   int max_locals = jvms()->loc_size();
 169   int max_stack  = jvms()->stk_size();
 170 
 171 
 172   // Mismatch between method and jvms can occur since map briefly held
 173   // an OSR entry state (which takes up one RawPtr word).
 174   assert(max_locals == method()->max_locals(), "sanity");
 175   assert(max_stack  >= method()->max_stack(),  "sanity");
 176   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 177   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 178 
 179   // Find the start block.
 180   Block* osr_block = start_block();
 181   assert(osr_block->start() == osr_bci(), "sanity");
 182 
 183   // Set initial BCI.
 184   set_parse_bci(osr_block->start());
 185 
 186   // Set initial stack depth.
 187   set_sp(osr_block->start_sp());
 188 
 189   // Check bailouts.  We currently do not perform on stack replacement
 190   // of loops in catch blocks or loops which branch with a non-empty stack.
 191   if (sp() != 0) {
 192     C->record_method_not_compilable("OSR starts with non-empty stack");
 193     return;
 194   }
 195   // Do not OSR inside finally clauses:
 196   if (osr_block->has_trap_at(osr_block->start())) {
 197     C->record_method_not_compilable("OSR starts with an immediate trap");
 198     return;
 199   }
 200 
 201   // Commute monitors from interpreter frame to compiler frame.
 202   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 203   int mcnt = osr_block->flow()->monitor_count();
 204   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 205   for (index = 0; index < mcnt; index++) {
 206     // Make a BoxLockNode for the monitor.
 207     Node *box = _gvn.transform(new (C, 1) BoxLockNode(next_monitor()));
 208 
 209 
 210     // Displaced headers and locked objects are interleaved in the
 211     // temp OSR buffer.  We only copy the locked objects out here.
 212     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 213     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 214     // Try and copy the displaced header to the BoxNode
 215     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 216 
 217 
 218     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw);
 219 
 220     // Build a bogus FastLockNode (no code will be generated) and push the
 221     // monitor into our debug info.
 222     const FastLockNode *flock = _gvn.transform(new (C, 3) FastLockNode( 0, lock_object, box ))->as_FastLock();
 223     map()->push_monitor(flock);
 224 
 225     // If the lock is our method synchronization lock, tuck it away in
 226     // _sync_lock for return and rethrow exit paths.
 227     if (index == 0 && method()->is_synchronized()) {
 228       _synch_lock = flock;
 229     }
 230   }
 231 
 232   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 233   if (!live_locals.is_valid()) {
 234     // Degenerate or breakpointed method.
 235     C->record_method_not_compilable("OSR in empty or breakpointed method");
 236     return;
 237   }
 238 
 239   // Extract the needed locals from the interpreter frame.
 240   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 241 
 242   // find all the locals that the interpreter thinks contain live oops
 243   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 244   for (index = 0; index < max_locals; index++) {
 245 
 246     if (!live_locals.at(index)) {
 247       continue;
 248     }
 249 
 250     const Type *type = osr_block->local_type_at(index);
 251 
 252     if (type->isa_oopptr() != NULL) {
 253 
 254       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 255       // else we might load a stale oop if the MethodLiveness disagrees with the
 256       // result of the interpreter. If the interpreter says it is dead we agree
 257       // by making the value go to top.
 258       //
 259 
 260       if (!live_oops.at(index)) {
 261         if (C->log() != NULL) {
 262           C->log()->elem("OSR_mismatch local_index='%d'",index);
 263         }
 264         set_local(index, null());
 265         // and ignore it for the loads
 266         continue;
 267       }
 268     }
 269 
 270     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 271     if (type == Type::TOP || type == Type::HALF) {
 272       continue;
 273     }
 274     // If the type falls to bottom, then this must be a local that
 275     // is mixing ints and oops or some such.  Forcing it to top
 276     // makes it go dead.
 277     if (type == Type::BOTTOM) {
 278       continue;
 279     }
 280     // Construct code to access the appropriate local.
 281     Node *value = fetch_interpreter_state(index, type->basic_type(), locals_addr, osr_buf);
 282     set_local(index, value);
 283   }
 284 
 285   // Extract the needed stack entries from the interpreter frame.
 286   for (index = 0; index < sp(); index++) {
 287     const Type *type = osr_block->stack_type_at(index);
 288     if (type != Type::TOP) {
 289       // Currently the compiler bails out when attempting to on stack replace
 290       // at a bci with a non-empty stack.  We should not reach here.
 291       ShouldNotReachHere();
 292     }
 293   }
 294 
 295   // End the OSR migration
 296   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 297                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 298                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 299                     osr_buf);
 300 
 301   // Now that the interpreter state is loaded, make sure it will match
 302   // at execution time what the compiler is expecting now:
 303   SafePointNode* bad_type_exit = clone_map();
 304   bad_type_exit->set_control(new (C, 1) RegionNode(1));
 305 
 306   for (index = 0; index < max_locals; index++) {
 307     if (stopped())  break;
 308     Node* l = local(index);
 309     if (l->is_top())  continue;  // nothing here
 310     const Type *type = osr_block->local_type_at(index);
 311     if (type->isa_oopptr() != NULL) {
 312       if (!live_oops.at(index)) {
 313         // skip type check for dead oops
 314         continue;
 315       }
 316     }
 317     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 318   }
 319 
 320   for (index = 0; index < sp(); index++) {
 321     if (stopped())  break;
 322     Node* l = stack(index);
 323     if (l->is_top())  continue;  // nothing here
 324     const Type *type = osr_block->stack_type_at(index);
 325     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 326   }
 327 
 328   if (bad_type_exit->control()->req() > 1) {
 329     // Build an uncommon trap here, if any inputs can be unexpected.
 330     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 331     record_for_igvn(bad_type_exit->control());
 332     SafePointNode* types_are_good = map();
 333     set_map(bad_type_exit);
 334     // The unexpected type happens because a new edge is active
 335     // in the CFG, which typeflow had previously ignored.
 336     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 337     // This x will be typed as Integer if notReached is not yet linked.
 338     uncommon_trap(Deoptimization::Reason_unreached,
 339                   Deoptimization::Action_reinterpret);
 340     set_map(types_are_good);
 341   }
 342 }
 343 
 344 //------------------------------Parse------------------------------------------
 345 // Main parser constructor.
 346 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
 347   : _exits(caller)
 348 {
 349   // Init some variables
 350   _caller = caller;
 351   _method = parse_method;
 352   _expected_uses = expected_uses;
 353   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 354   _wrote_final = false;
 355   _entry_bci = InvocationEntryBci;
 356   _tf = NULL;
 357   _block = NULL;
 358   debug_only(_block_count = -1);
 359   debug_only(_blocks = (Block*)-1);
 360 #ifndef PRODUCT
 361   if (PrintCompilation || PrintOpto) {
 362     // Make sure I have an inline tree, so I can print messages about it.
 363     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 364     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method, true);
 365   }
 366   _max_switch_depth = 0;
 367   _est_switch_depth = 0;
 368 #endif
 369 
 370   _tf = TypeFunc::make(method());
 371   _iter.reset_to_method(method());
 372   _flow = method()->get_flow_analysis();
 373   if (_flow->failing()) {
 374     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
 375   }
 376 
 377 #ifndef PRODUCT
 378   if (_flow->has_irreducible_entry()) {
 379     C->set_parsed_irreducible_loop(true);
 380   }
 381 #endif
 382 
 383   if (_expected_uses <= 0) {
 384     _prof_factor = 1;
 385   } else {
 386     float prof_total = parse_method->interpreter_invocation_count();
 387     if (prof_total <= _expected_uses) {
 388       _prof_factor = 1;
 389     } else {
 390       _prof_factor = _expected_uses / prof_total;
 391     }
 392   }
 393 
 394   CompileLog* log = C->log();
 395   if (log != NULL) {
 396     log->begin_head("parse method='%d' uses='%g'",
 397                     log->identify(parse_method), expected_uses);
 398     if (depth() == 1 && C->is_osr_compilation()) {
 399       log->print(" osr_bci='%d'", C->entry_bci());
 400     }
 401     log->stamp();
 402     log->end_head();
 403   }
 404 
 405   // Accumulate deoptimization counts.
 406   // (The range_check and store_check counts are checked elsewhere.)
 407   ciMethodData* md = method()->method_data();
 408   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 409     uint md_count = md->trap_count(reason);
 410     if (md_count != 0) {
 411       if (md_count == md->trap_count_limit())
 412         md_count += md->overflow_trap_count();
 413       uint total_count = C->trap_count(reason);
 414       uint old_count   = total_count;
 415       total_count += md_count;
 416       // Saturate the add if it overflows.
 417       if (total_count < old_count || total_count < md_count)
 418         total_count = (uint)-1;
 419       C->set_trap_count(reason, total_count);
 420       if (log != NULL)
 421         log->elem("observe trap='%s' count='%d' total='%d'",
 422                   Deoptimization::trap_reason_name(reason),
 423                   md_count, total_count);
 424     }
 425   }
 426   // Accumulate total sum of decompilations, also.
 427   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 428 
 429   _count_invocations = C->do_count_invocations();
 430   _method_data_update = C->do_method_data_update();
 431 
 432   if (log != NULL && method()->has_exception_handlers()) {
 433     log->elem("observe that='has_exception_handlers'");
 434   }
 435 
 436   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
 437   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 438 
 439   // Always register dependence if JVMTI is enabled, because
 440   // either breakpoint setting or hotswapping of methods may
 441   // cause deoptimization.
 442   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 443     C->dependencies()->assert_evol_method(method());
 444   }
 445 
 446   methods_seen++;
 447 
 448   // Do some special top-level things.
 449   if (depth() == 1 && C->is_osr_compilation()) {
 450     _entry_bci = C->entry_bci();
 451     _flow = method()->get_osr_flow_analysis(osr_bci());
 452     if (_flow->failing()) {
 453       C->record_method_not_compilable(_flow->failure_reason());
 454 #ifndef PRODUCT
 455       if (PrintOpto && (Verbose || WizardMode)) {
 456         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 457         if (Verbose) {
 458           method()->print_oop();
 459           method()->print_codes();
 460           _flow->print();
 461         }
 462       }
 463 #endif
 464     }
 465     _tf = C->tf();     // the OSR entry type is different
 466   }
 467 
 468 #ifdef ASSERT
 469   if (depth() == 1) {
 470     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 471     if (C->tf() != tf()) {
 472       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
 473       assert(C->env()->system_dictionary_modification_counter_changed(),
 474              "Must invalidate if TypeFuncs differ");
 475     }
 476   } else {
 477     assert(!this->is_osr_parse(), "no recursive OSR");
 478   }
 479 #endif
 480 
 481   methods_parsed++;
 482 #ifndef PRODUCT
 483   // add method size here to guarantee that inlined methods are added too
 484   if (TimeCompiler)
 485     _total_bytes_compiled += method()->code_size();
 486 
 487   show_parse_info();
 488 #endif
 489 
 490   if (failing()) {
 491     if (log)  log->done("parse");
 492     return;
 493   }
 494 
 495   gvn().set_type(root(), root()->bottom_type());
 496   gvn().transform(top());
 497 
 498   // Import the results of the ciTypeFlow.
 499   init_blocks();
 500 
 501   // Merge point for all normal exits
 502   build_exits();
 503 
 504   // Setup the initial JVM state map.
 505   SafePointNode* entry_map = create_entry_map();
 506 
 507   // Check for bailouts during map initialization
 508   if (failing() || entry_map == NULL) {
 509     if (log)  log->done("parse");
 510     return;
 511   }
 512 
 513   Node_Notes* caller_nn = C->default_node_notes();
 514   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 515   if (DebugInlinedCalls || depth() == 1) {
 516     C->set_default_node_notes(make_node_notes(caller_nn));
 517   }
 518 
 519   if (is_osr_parse()) {
 520     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 521     entry_map->set_req(TypeFunc::Parms+0, top());
 522     set_map(entry_map);
 523     load_interpreter_state(osr_buf);
 524   } else {
 525     set_map(entry_map);
 526     do_method_entry();
 527   }
 528 
 529   // Check for bailouts during method entry.
 530   if (failing()) {
 531     if (log)  log->done("parse");
 532     C->set_default_node_notes(caller_nn);
 533     return;
 534   }
 535 
 536   entry_map = map();  // capture any changes performed by method setup code
 537   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 538 
 539   // We begin parsing as if we have just encountered a jump to the
 540   // method entry.
 541   Block* entry_block = start_block();
 542   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 543   set_map_clone(entry_map);
 544   merge_common(entry_block, entry_block->next_path_num());
 545 
 546 #ifndef PRODUCT
 547   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 548   set_parse_histogram( parse_histogram_obj );
 549 #endif
 550 
 551   // Parse all the basic blocks.
 552   do_all_blocks();
 553 
 554   C->set_default_node_notes(caller_nn);
 555 
 556   // Check for bailouts during conversion to graph
 557   if (failing()) {
 558     if (log)  log->done("parse");
 559     return;
 560   }
 561 
 562   // Fix up all exiting control flow.
 563   set_map(entry_map);
 564   do_exits();
 565 
 566   if (log)  log->done("parse nodes='%d' memory='%d'",
 567                       C->unique(), C->node_arena()->used());
 568 }
 569 
 570 //---------------------------do_all_blocks-------------------------------------
 571 void Parse::do_all_blocks() {
 572   bool has_irreducible = flow()->has_irreducible_entry();
 573 
 574   // Walk over all blocks in Reverse Post-Order.
 575   while (true) {
 576     bool progress = false;
 577     for (int rpo = 0; rpo < block_count(); rpo++) {
 578       Block* block = rpo_at(rpo);
 579 
 580       if (block->is_parsed()) continue;
 581 
 582       if (!block->is_merged()) {
 583         // Dead block, no state reaches this block
 584         continue;
 585       }
 586 
 587       // Prepare to parse this block.
 588       load_state_from(block);
 589 
 590       if (stopped()) {
 591         // Block is dead.
 592         continue;
 593       }
 594 
 595       blocks_parsed++;
 596 
 597       progress = true;
 598       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
 599         // Not all preds have been parsed.  We must build phis everywhere.
 600         // (Note that dead locals do not get phis built, ever.)
 601         ensure_phis_everywhere();
 602 
 603         // Leave behind an undisturbed copy of the map, for future merges.
 604         set_map(clone_map());
 605       }
 606 
 607       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 608         // In the absence of irreducible loops, the Region and Phis
 609         // associated with a merge that doesn't involve a backedge can
 610         // be simplified now since the RPO parsing order guarantees
 611         // that any path which was supposed to reach here has already
 612         // been parsed or must be dead.
 613         Node* c = control();
 614         Node* result = _gvn.transform_no_reclaim(control());
 615         if (c != result && TraceOptoParse) {
 616           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 617         }
 618         if (result != top()) {
 619           record_for_igvn(result);
 620         }
 621       }
 622 
 623       // Parse the block.
 624       do_one_block();
 625 
 626       // Check for bailouts.
 627       if (failing())  return;
 628     }
 629 
 630     // with irreducible loops multiple passes might be necessary to parse everything
 631     if (!has_irreducible || !progress) {
 632       break;
 633     }
 634   }
 635 
 636   blocks_seen += block_count();
 637 
 638 #ifndef PRODUCT
 639   // Make sure there are no half-processed blocks remaining.
 640   // Every remaining unprocessed block is dead and may be ignored now.
 641   for (int rpo = 0; rpo < block_count(); rpo++) {
 642     Block* block = rpo_at(rpo);
 643     if (!block->is_parsed()) {
 644       if (TraceOptoParse) {
 645         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 646       }
 647       assert(!block->is_merged(), "no half-processed blocks");
 648     }
 649   }
 650 #endif
 651 }
 652 
 653 //-------------------------------build_exits----------------------------------
 654 // Build normal and exceptional exit merge points.
 655 void Parse::build_exits() {
 656   // make a clone of caller to prevent sharing of side-effects
 657   _exits.set_map(_exits.clone_map());
 658   _exits.clean_stack(_exits.sp());
 659   _exits.sync_jvms();
 660 
 661   RegionNode* region = new (C, 1) RegionNode(1);
 662   record_for_igvn(region);
 663   gvn().set_type_bottom(region);
 664   _exits.set_control(region);
 665 
 666   // Note:  iophi and memphi are not transformed until do_exits.
 667   Node* iophi  = new (C, region->req()) PhiNode(region, Type::ABIO);
 668   Node* memphi = new (C, region->req()) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 669   _exits.set_i_o(iophi);
 670   _exits.set_all_memory(memphi);
 671 
 672   // Add a return value to the exit state.  (Do not push it yet.)
 673   if (tf()->range()->cnt() > TypeFunc::Parms) {
 674     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 675     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 676     // becomes loaded during the subsequent parsing, the loaded and unloaded
 677     // types will not join when we transform and push in do_exits().
 678     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 679     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
 680       ret_type = TypeOopPtr::BOTTOM;
 681     }
 682     int         ret_size = type2size[ret_type->basic_type()];
 683     Node*       ret_phi  = new (C, region->req()) PhiNode(region, ret_type);
 684     _exits.ensure_stack(ret_size);
 685     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 686     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 687     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 688     // Note:  ret_phi is not yet pushed, until do_exits.
 689   }
 690 }
 691 
 692 
 693 //----------------------------build_start_state-------------------------------
 694 // Construct a state which contains only the incoming arguments from an
 695 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
 696 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 697   int        arg_size = tf->domain()->cnt();
 698   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 699   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 700   SafePointNode* map  = new (this, max_size) SafePointNode(max_size, NULL);
 701   record_for_igvn(map);
 702   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 703   Node_Notes* old_nn = default_node_notes();
 704   if (old_nn != NULL && has_method()) {
 705     Node_Notes* entry_nn = old_nn->clone(this);
 706     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 707     entry_jvms->set_offsets(0);
 708     entry_jvms->set_bci(entry_bci());
 709     entry_nn->set_jvms(entry_jvms);
 710     set_default_node_notes(entry_nn);
 711   }
 712   uint i;
 713   for (i = 0; i < (uint)arg_size; i++) {
 714     Node* parm = initial_gvn()->transform(new (this, 1) ParmNode(start, i));
 715     map->init_req(i, parm);
 716     // Record all these guys for later GVN.
 717     record_for_igvn(parm);
 718   }
 719   for (; i < map->req(); i++) {
 720     map->init_req(i, top());
 721   }
 722   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 723   set_default_node_notes(old_nn);
 724   map->set_jvms(jvms);
 725   jvms->set_map(map);
 726   return jvms;
 727 }
 728 
 729 //-----------------------------make_node_notes---------------------------------
 730 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 731   if (caller_nn == NULL)  return NULL;
 732   Node_Notes* nn = caller_nn->clone(C);
 733   JVMState* caller_jvms = nn->jvms();
 734   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 735   jvms->set_offsets(0);
 736   jvms->set_bci(_entry_bci);
 737   nn->set_jvms(jvms);
 738   return nn;
 739 }
 740 
 741 
 742 //--------------------------return_values--------------------------------------
 743 void Compile::return_values(JVMState* jvms) {
 744   GraphKit kit(jvms);
 745   Node* ret = new (this, TypeFunc::Parms) ReturnNode(TypeFunc::Parms,
 746                              kit.control(),
 747                              kit.i_o(),
 748                              kit.reset_memory(),
 749                              kit.frameptr(),
 750                              kit.returnadr());
 751   // Add zero or 1 return values
 752   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 753   if (ret_size > 0) {
 754     kit.inc_sp(-ret_size);  // pop the return value(s)
 755     kit.sync_jvms();
 756     ret->add_req(kit.argument(0));
 757     // Note:  The second dummy edge is not needed by a ReturnNode.
 758   }
 759   // bind it to root
 760   root()->add_req(ret);
 761   record_for_igvn(ret);
 762   initial_gvn()->transform_no_reclaim(ret);
 763 }
 764 
 765 //------------------------rethrow_exceptions-----------------------------------
 766 // Bind all exception states in the list into a single RethrowNode.
 767 void Compile::rethrow_exceptions(JVMState* jvms) {
 768   GraphKit kit(jvms);
 769   if (!kit.has_exceptions())  return;  // nothing to generate
 770   // Load my combined exception state into the kit, with all phis transformed:
 771   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 772   Node* ex_oop = kit.use_exception_state(ex_map);
 773   RethrowNode* exit = new (this, TypeFunc::Parms + 1) RethrowNode(kit.control(),
 774                                       kit.i_o(), kit.reset_memory(),
 775                                       kit.frameptr(), kit.returnadr(),
 776                                       // like a return but with exception input
 777                                       ex_oop);
 778   // bind to root
 779   root()->add_req(exit);
 780   record_for_igvn(exit);
 781   initial_gvn()->transform_no_reclaim(exit);
 782 }
 783 
 784 bool Parse::can_rerun_bytecode() {
 785   switch (bc()) {
 786   case Bytecodes::_ldc:
 787   case Bytecodes::_ldc_w:
 788   case Bytecodes::_ldc2_w:
 789   case Bytecodes::_getfield:
 790   case Bytecodes::_putfield:
 791   case Bytecodes::_getstatic:
 792   case Bytecodes::_putstatic:
 793   case Bytecodes::_arraylength:
 794   case Bytecodes::_baload:
 795   case Bytecodes::_caload:
 796   case Bytecodes::_iaload:
 797   case Bytecodes::_saload:
 798   case Bytecodes::_faload:
 799   case Bytecodes::_aaload:
 800   case Bytecodes::_laload:
 801   case Bytecodes::_daload:
 802   case Bytecodes::_bastore:
 803   case Bytecodes::_castore:
 804   case Bytecodes::_iastore:
 805   case Bytecodes::_sastore:
 806   case Bytecodes::_fastore:
 807   case Bytecodes::_aastore:
 808   case Bytecodes::_lastore:
 809   case Bytecodes::_dastore:
 810   case Bytecodes::_irem:
 811   case Bytecodes::_idiv:
 812   case Bytecodes::_lrem:
 813   case Bytecodes::_ldiv:
 814   case Bytecodes::_frem:
 815   case Bytecodes::_fdiv:
 816   case Bytecodes::_drem:
 817   case Bytecodes::_ddiv:
 818   case Bytecodes::_checkcast:
 819   case Bytecodes::_instanceof:
 820   case Bytecodes::_athrow:
 821   case Bytecodes::_anewarray:
 822   case Bytecodes::_newarray:
 823   case Bytecodes::_multianewarray:
 824   case Bytecodes::_new:
 825   case Bytecodes::_monitorenter:  // can re-run initial null check, only
 826   case Bytecodes::_return:
 827     return true;
 828     break;
 829 
 830   case Bytecodes::_invokestatic:
 831   case Bytecodes::_invokedynamic:
 832   case Bytecodes::_invokespecial:
 833   case Bytecodes::_invokevirtual:
 834   case Bytecodes::_invokeinterface:
 835     return false;
 836     break;
 837 
 838   default:
 839     assert(false, "unexpected bytecode produced an exception");
 840     return true;
 841   }
 842 }
 843 
 844 //---------------------------do_exceptions-------------------------------------
 845 // Process exceptions arising from the current bytecode.
 846 // Send caught exceptions to the proper handler within this method.
 847 // Unhandled exceptions feed into _exit.
 848 void Parse::do_exceptions() {
 849   if (!has_exceptions())  return;
 850 
 851   if (failing()) {
 852     // Pop them all off and throw them away.
 853     while (pop_exception_state() != NULL) ;
 854     return;
 855   }
 856 
 857   // Make sure we can classify this bytecode if we need to.
 858   debug_only(can_rerun_bytecode());
 859 
 860   PreserveJVMState pjvms(this, false);
 861 
 862   SafePointNode* ex_map;
 863   while ((ex_map = pop_exception_state()) != NULL) {
 864     if (!method()->has_exception_handlers()) {
 865       // Common case:  Transfer control outward.
 866       // Doing it this early allows the exceptions to common up
 867       // even between adjacent method calls.
 868       throw_to_exit(ex_map);
 869     } else {
 870       // Have to look at the exception first.
 871       assert(stopped(), "catch_inline_exceptions trashes the map");
 872       catch_inline_exceptions(ex_map);
 873       stop_and_kill_map();      // we used up this exception state; kill it
 874     }
 875   }
 876 
 877   // We now return to our regularly scheduled program:
 878 }
 879 
 880 //---------------------------throw_to_exit-------------------------------------
 881 // Merge the given map into an exception exit from this method.
 882 // The exception exit will handle any unlocking of receiver.
 883 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 884 void Parse::throw_to_exit(SafePointNode* ex_map) {
 885   // Pop the JVMS to (a copy of) the caller.
 886   GraphKit caller;
 887   caller.set_map_clone(_caller->map());
 888   caller.set_bci(_caller->bci());
 889   caller.set_sp(_caller->sp());
 890   // Copy out the standard machine state:
 891   for (uint i = 0; i < TypeFunc::Parms; i++) {
 892     caller.map()->set_req(i, ex_map->in(i));
 893   }
 894   // ...and the exception:
 895   Node*          ex_oop        = saved_ex_oop(ex_map);
 896   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 897   // Finally, collect the new exception state in my exits:
 898   _exits.add_exception_state(caller_ex_map);
 899 }
 900 
 901 //------------------------------do_exits---------------------------------------
 902 void Parse::do_exits() {
 903   set_parse_bci(InvocationEntryBci);
 904 
 905   // Now peephole on the return bits
 906   Node* region = _exits.control();
 907   _exits.set_control(gvn().transform(region));
 908 
 909   Node* iophi = _exits.i_o();
 910   _exits.set_i_o(gvn().transform(iophi));
 911 
 912   if (wrote_final()) {
 913     // This method (which must be a constructor by the rules of Java)
 914     // wrote a final.  The effects of all initializations must be
 915     // committed to memory before any code after the constructor
 916     // publishes the reference to the newly constructor object.
 917     // Rather than wait for the publication, we simply block the
 918     // writes here.  Rather than put a barrier on only those writes
 919     // which are required to complete, we force all writes to complete.
 920     //
 921     // "All bets are off" unless the first publication occurs after a
 922     // normal return from the constructor.  We do not attempt to detect
 923     // such unusual early publications.  But no barrier is needed on
 924     // exceptional returns, since they cannot publish normally.
 925     //
 926     _exits.insert_mem_bar(Op_MemBarRelease);
 927 #ifndef PRODUCT
 928     if (PrintOpto && (Verbose || WizardMode)) {
 929       method()->print_name();
 930       tty->print_cr(" writes finals and needs a memory barrier");
 931     }
 932 #endif
 933   }
 934 
 935   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
 936     // transform each slice of the original memphi:
 937     mms.set_memory(_gvn.transform(mms.memory()));
 938   }
 939 
 940   if (tf()->range()->cnt() > TypeFunc::Parms) {
 941     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 942     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
 943     assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined");
 944     _exits.push_node(ret_type->basic_type(), ret_phi);
 945   }
 946 
 947   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
 948 
 949   // Unlock along the exceptional paths.
 950   // This is done late so that we can common up equivalent exceptions
 951   // (e.g., null checks) arising from multiple points within this method.
 952   // See GraphKit::add_exception_state, which performs the commoning.
 953   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
 954 
 955   // record exit from a method if compiled while Dtrace is turned on.
 956   if (do_synch || C->env()->dtrace_method_probes()) {
 957     // First move the exception list out of _exits:
 958     GraphKit kit(_exits.transfer_exceptions_into_jvms());
 959     SafePointNode* normal_map = kit.map();  // keep this guy safe
 960     // Now re-collect the exceptions into _exits:
 961     SafePointNode* ex_map;
 962     while ((ex_map = kit.pop_exception_state()) != NULL) {
 963       Node* ex_oop = kit.use_exception_state(ex_map);
 964       // Force the exiting JVM state to have this method at InvocationEntryBci.
 965       // The exiting JVM state is otherwise a copy of the calling JVMS.
 966       JVMState* caller = kit.jvms();
 967       JVMState* ex_jvms = caller->clone_shallow(C);
 968       ex_jvms->set_map(kit.clone_map());
 969       ex_jvms->map()->set_jvms(ex_jvms);
 970       ex_jvms->set_bci(   InvocationEntryBci);
 971       kit.set_jvms(ex_jvms);
 972       if (do_synch) {
 973         // Add on the synchronized-method box/object combo
 974         kit.map()->push_monitor(_synch_lock);
 975         // Unlock!
 976         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
 977       }
 978       if (C->env()->dtrace_method_probes()) {
 979         kit.make_dtrace_method_exit(method());
 980       }
 981       // Done with exception-path processing.
 982       ex_map = kit.make_exception_state(ex_oop);
 983       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
 984       // Pop the last vestige of this method:
 985       ex_map->set_jvms(caller->clone_shallow(C));
 986       ex_map->jvms()->set_map(ex_map);
 987       _exits.push_exception_state(ex_map);
 988     }
 989     assert(_exits.map() == normal_map, "keep the same return state");
 990   }
 991 
 992   {
 993     // Capture very early exceptions (receiver null checks) from caller JVMS
 994     GraphKit caller(_caller);
 995     SafePointNode* ex_map;
 996     while ((ex_map = caller.pop_exception_state()) != NULL) {
 997       _exits.add_exception_state(ex_map);
 998     }
 999   }
1000 }
1001 
1002 //-----------------------------create_entry_map-------------------------------
1003 // Initialize our parser map to contain the types at method entry.
1004 // For OSR, the map contains a single RawPtr parameter.
1005 // Initial monitor locking for sync. methods is performed by do_method_entry.
1006 SafePointNode* Parse::create_entry_map() {
1007   // Check for really stupid bail-out cases.
1008   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1009   if (len >= 32760) {
1010     C->record_method_not_compilable_all_tiers("too many local variables");
1011     return NULL;
1012   }
1013 
1014   // If this is an inlined method, we may have to do a receiver null check.
1015   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1016     GraphKit kit(_caller);
1017     kit.null_check_receiver(method());
1018     _caller = kit.transfer_exceptions_into_jvms();
1019     if (kit.stopped()) {
1020       _exits.add_exception_states_from(_caller);
1021       _exits.set_jvms(_caller);
1022       return NULL;
1023     }
1024   }
1025 
1026   assert(method() != NULL, "parser must have a method");
1027 
1028   // Create an initial safepoint to hold JVM state during parsing
1029   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1030   set_map(new (C, len) SafePointNode(len, jvms));
1031   jvms->set_map(map());
1032   record_for_igvn(map());
1033   assert(jvms->endoff() == len, "correct jvms sizing");
1034 
1035   SafePointNode* inmap = _caller->map();
1036   assert(inmap != NULL, "must have inmap");
1037 
1038   uint i;
1039 
1040   // Pass thru the predefined input parameters.
1041   for (i = 0; i < TypeFunc::Parms; i++) {
1042     map()->init_req(i, inmap->in(i));
1043   }
1044 
1045   if (depth() == 1) {
1046     assert(map()->memory()->Opcode() == Op_Parm, "");
1047     // Insert the memory aliasing node
1048     set_all_memory(reset_memory());
1049   }
1050   assert(merged_memory(), "");
1051 
1052   // Now add the locals which are initially bound to arguments:
1053   uint arg_size = tf()->domain()->cnt();
1054   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1055   for (i = TypeFunc::Parms; i < arg_size; i++) {
1056     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1057   }
1058 
1059   // Clear out the rest of the map (locals and stack)
1060   for (i = arg_size; i < len; i++) {
1061     map()->init_req(i, top());
1062   }
1063 
1064   SafePointNode* entry_map = stop();
1065   return entry_map;
1066 }
1067 
1068 //-----------------------------do_method_entry--------------------------------
1069 // Emit any code needed in the pseudo-block before BCI zero.
1070 // The main thing to do is lock the receiver of a synchronized method.
1071 void Parse::do_method_entry() {
1072   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1073   set_sp(0);                      // Java Stack Pointer
1074 
1075   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1076 
1077   if (C->env()->dtrace_method_probes()) {
1078     make_dtrace_method_entry(method());
1079   }
1080 
1081   // If the method is synchronized, we need to construct a lock node, attach
1082   // it to the Start node, and pin it there.
1083   if (method()->is_synchronized()) {
1084     // Insert a FastLockNode right after the Start which takes as arguments
1085     // the current thread pointer, the "this" pointer & the address of the
1086     // stack slot pair used for the lock.  The "this" pointer is a projection
1087     // off the start node, but the locking spot has to be constructed by
1088     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1089     // becomes the second argument to the FastLockNode call.  The
1090     // FastLockNode becomes the new control parent to pin it to the start.
1091 
1092     // Setup Object Pointer
1093     Node *lock_obj = NULL;
1094     if(method()->is_static()) {
1095       ciInstance* mirror = _method->holder()->java_mirror();
1096       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1097       lock_obj = makecon(t_lock);
1098     } else {                  // Else pass the "this" pointer,
1099       lock_obj = local(0);    // which is Parm0 from StartNode
1100     }
1101     // Clear out dead values from the debug info.
1102     kill_dead_locals();
1103     // Build the FastLockNode
1104     _synch_lock = shared_lock(lock_obj);
1105   }
1106 
1107   if (depth() == 1) {
1108     increment_and_test_invocation_counter(Tier2CompileThreshold);
1109   }
1110 }
1111 
1112 //------------------------------init_blocks------------------------------------
1113 // Initialize our parser map to contain the types/monitors at method entry.
1114 void Parse::init_blocks() {
1115   // Create the blocks.
1116   _block_count = flow()->block_count();
1117   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1118   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
1119 
1120   int rpo;
1121 
1122   // Initialize the structs.
1123   for (rpo = 0; rpo < block_count(); rpo++) {
1124     Block* block = rpo_at(rpo);
1125     block->init_node(this, rpo);
1126   }
1127 
1128   // Collect predecessor and successor information.
1129   for (rpo = 0; rpo < block_count(); rpo++) {
1130     Block* block = rpo_at(rpo);
1131     block->init_graph(this);
1132   }
1133 }
1134 
1135 //-------------------------------init_node-------------------------------------
1136 void Parse::Block::init_node(Parse* outer, int rpo) {
1137   _flow = outer->flow()->rpo_at(rpo);
1138   _pred_count = 0;
1139   _preds_parsed = 0;
1140   _count = 0;
1141   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1142   assert(!(is_merged() || is_parsed() || is_handler()), "sanity");
1143   assert(_live_locals.size() == 0, "sanity");
1144 
1145   // entry point has additional predecessor
1146   if (flow()->is_start())  _pred_count++;
1147   assert(flow()->is_start() == (this == outer->start_block()), "");
1148 }
1149 
1150 //-------------------------------init_graph------------------------------------
1151 void Parse::Block::init_graph(Parse* outer) {
1152   // Create the successor list for this parser block.
1153   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1154   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1155   int ns = tfs->length();
1156   int ne = tfe->length();
1157   _num_successors = ns;
1158   _all_successors = ns+ne;
1159   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1160   int p = 0;
1161   for (int i = 0; i < ns+ne; i++) {
1162     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1163     Block* block2 = outer->rpo_at(tf2->rpo());
1164     _successors[i] = block2;
1165 
1166     // Accumulate pred info for the other block, too.
1167     if (i < ns) {
1168       block2->_pred_count++;
1169     } else {
1170       block2->_is_handler = true;
1171     }
1172 
1173     #ifdef ASSERT
1174     // A block's successors must be distinguishable by BCI.
1175     // That is, no bytecode is allowed to branch to two different
1176     // clones of the same code location.
1177     for (int j = 0; j < i; j++) {
1178       Block* block1 = _successors[j];
1179       if (block1 == block2)  continue;  // duplicates are OK
1180       assert(block1->start() != block2->start(), "successors have unique bcis");
1181     }
1182     #endif
1183   }
1184 
1185   // Note: We never call next_path_num along exception paths, so they
1186   // never get processed as "ready".  Also, the input phis of exception
1187   // handlers get specially processed, so that
1188 }
1189 
1190 //---------------------------successor_for_bci---------------------------------
1191 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1192   for (int i = 0; i < all_successors(); i++) {
1193     Block* block2 = successor_at(i);
1194     if (block2->start() == bci)  return block2;
1195   }
1196   // We can actually reach here if ciTypeFlow traps out a block
1197   // due to an unloaded class, and concurrently with compilation the
1198   // class is then loaded, so that a later phase of the parser is
1199   // able to see more of the bytecode CFG.  Or, the flow pass and
1200   // the parser can have a minor difference of opinion about executability
1201   // of bytecodes.  For example, "obj.field = null" is executable even
1202   // if the field's type is an unloaded class; the flow pass used to
1203   // make a trap for such code.
1204   return NULL;
1205 }
1206 
1207 
1208 //-----------------------------stack_type_at-----------------------------------
1209 const Type* Parse::Block::stack_type_at(int i) const {
1210   return get_type(flow()->stack_type_at(i));
1211 }
1212 
1213 
1214 //-----------------------------local_type_at-----------------------------------
1215 const Type* Parse::Block::local_type_at(int i) const {
1216   // Make dead locals fall to bottom.
1217   if (_live_locals.size() == 0) {
1218     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1219     // This bitmap can be zero length if we saw a breakpoint.
1220     // In such cases, pretend they are all live.
1221     ((Block*)this)->_live_locals = live_locals;
1222   }
1223   if (_live_locals.size() > 0 && !_live_locals.at(i))
1224     return Type::BOTTOM;
1225 
1226   return get_type(flow()->local_type_at(i));
1227 }
1228 
1229 
1230 #ifndef PRODUCT
1231 
1232 //----------------------------name_for_bc--------------------------------------
1233 // helper method for BytecodeParseHistogram
1234 static const char* name_for_bc(int i) {
1235   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1236 }
1237 
1238 //----------------------------BytecodeParseHistogram------------------------------------
1239 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1240   _parser   = p;
1241   _compiler = c;
1242   if( ! _initialized ) { _initialized = true; reset(); }
1243 }
1244 
1245 //----------------------------current_count------------------------------------
1246 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1247   switch( bph_type ) {
1248   case BPH_transforms: { return _parser->gvn().made_progress(); }
1249   case BPH_values:     { return _parser->gvn().made_new_values(); }
1250   default: { ShouldNotReachHere(); return 0; }
1251   }
1252 }
1253 
1254 //----------------------------initialized--------------------------------------
1255 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1256 
1257 //----------------------------reset--------------------------------------------
1258 void Parse::BytecodeParseHistogram::reset() {
1259   int i = Bytecodes::number_of_codes;
1260   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1261 }
1262 
1263 //----------------------------set_initial_state--------------------------------
1264 // Record info when starting to parse one bytecode
1265 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1266   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1267     _initial_bytecode    = bc;
1268     _initial_node_count  = _compiler->unique();
1269     _initial_transforms  = current_count(BPH_transforms);
1270     _initial_values      = current_count(BPH_values);
1271   }
1272 }
1273 
1274 //----------------------------record_change--------------------------------
1275 // Record results of parsing one bytecode
1276 void Parse::BytecodeParseHistogram::record_change() {
1277   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1278     ++_bytecodes_parsed[_initial_bytecode];
1279     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1280     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1281     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1282   }
1283 }
1284 
1285 
1286 //----------------------------print--------------------------------------------
1287 void Parse::BytecodeParseHistogram::print(float cutoff) {
1288   ResourceMark rm;
1289   // print profile
1290   int total  = 0;
1291   int i      = 0;
1292   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1293   int abs_sum = 0;
1294   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1295   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1296   if( total == 0 ) { return; }
1297   tty->cr();
1298   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1299   tty->print_cr("relative:  percentage contribution to compiled nodes");
1300   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1301   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1302   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1303   tty->print_cr("values  :  Average number of node values improved per bytecode");
1304   tty->print_cr("name    :  Bytecode name");
1305   tty->cr();
1306   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1307   tty->print_cr("----------------------------------------------------------------------");
1308   while (--i > 0) {
1309     int       abs = _bytecodes_parsed[i];
1310     float     rel = abs * 100.0F / total;
1311     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1312     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1313     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1314     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1315     if (cutoff <= rel) {
1316       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1317       abs_sum += abs;
1318     }
1319   }
1320   tty->print_cr("----------------------------------------------------------------------");
1321   float rel_sum = abs_sum * 100.0F / total;
1322   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1323   tty->print_cr("----------------------------------------------------------------------");
1324   tty->cr();
1325 }
1326 #endif
1327 
1328 //----------------------------load_state_from----------------------------------
1329 // Load block/map/sp.  But not do not touch iter/bci.
1330 void Parse::load_state_from(Block* block) {
1331   set_block(block);
1332   // load the block's JVM state:
1333   set_map(block->start_map());
1334   set_sp( block->start_sp());
1335 }
1336 
1337 
1338 //-----------------------------record_state------------------------------------
1339 void Parse::Block::record_state(Parse* p) {
1340   assert(!is_merged(), "can only record state once, on 1st inflow");
1341   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1342   set_start_map(p->stop());
1343 }
1344 
1345 
1346 //------------------------------do_one_block-----------------------------------
1347 void Parse::do_one_block() {
1348   if (TraceOptoParse) {
1349     Block *b = block();
1350     int ns = b->num_successors();
1351     int nt = b->all_successors();
1352 
1353     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1354                   block()->rpo(), block()->start(), block()->limit());
1355     for (int i = 0; i < nt; i++) {
1356       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1357     }
1358     if (b->is_loop_head()) tty->print("  lphd");
1359     tty->print_cr("");
1360   }
1361 
1362   assert(block()->is_merged(), "must be merged before being parsed");
1363   block()->mark_parsed();
1364   ++_blocks_parsed;
1365 
1366   // Set iterator to start of block.
1367   iter().reset_to_bci(block()->start());
1368 
1369   CompileLog* log = C->log();
1370 
1371   // Parse bytecodes
1372   while (!stopped() && !failing()) {
1373     iter().next();
1374 
1375     // Learn the current bci from the iterator:
1376     set_parse_bci(iter().cur_bci());
1377 
1378     if (bci() == block()->limit()) {
1379       // Do not walk into the next block until directed by do_all_blocks.
1380       merge(bci());
1381       break;
1382     }
1383     assert(bci() < block()->limit(), "bci still in block");
1384 
1385     if (log != NULL) {
1386       // Output an optional context marker, to help place actions
1387       // that occur during parsing of this BC.  If there is no log
1388       // output until the next context string, this context string
1389       // will be silently ignored.
1390       log->context()->reset();
1391       log->context()->print_cr("<bc code='%d' bci='%d'/>", (int)bc(), bci());
1392     }
1393 
1394     if (block()->has_trap_at(bci())) {
1395       // We must respect the flow pass's traps, because it will refuse
1396       // to produce successors for trapping blocks.
1397       int trap_index = block()->flow()->trap_index();
1398       assert(trap_index != 0, "trap index must be valid");
1399       uncommon_trap(trap_index);
1400       break;
1401     }
1402 
1403     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1404 
1405 #ifdef ASSERT
1406     int pre_bc_sp = sp();
1407     int inputs, depth;
1408     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1409     assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC");
1410 #endif //ASSERT
1411 
1412     do_one_bytecode();
1413 
1414     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, "correct depth prediction");
1415 
1416     do_exceptions();
1417 
1418     NOT_PRODUCT( parse_histogram()->record_change(); );
1419 
1420     if (log != NULL)  log->context()->reset();  // done w/ this one
1421 
1422     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1423     // successor which is typically made ready by visiting this bytecode.
1424     // If the successor has several predecessors, then it is a merge
1425     // point, starts a new basic block, and is handled like other basic blocks.
1426   }
1427 }
1428 
1429 
1430 //------------------------------merge------------------------------------------
1431 void Parse::set_parse_bci(int bci) {
1432   set_bci(bci);
1433   Node_Notes* nn = C->default_node_notes();
1434   if (nn == NULL)  return;
1435 
1436   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1437   if (!DebugInlinedCalls && depth() > 1) {
1438     return;
1439   }
1440 
1441   // Update the JVMS annotation, if present.
1442   JVMState* jvms = nn->jvms();
1443   if (jvms != NULL && jvms->bci() != bci) {
1444     // Update the JVMS.
1445     jvms = jvms->clone_shallow(C);
1446     jvms->set_bci(bci);
1447     nn->set_jvms(jvms);
1448   }
1449 }
1450 
1451 //------------------------------merge------------------------------------------
1452 // Merge the current mapping into the basic block starting at bci
1453 void Parse::merge(int target_bci) {
1454   Block* target = successor_for_bci(target_bci);
1455   if (target == NULL) { handle_missing_successor(target_bci); return; }
1456   assert(!target->is_ready(), "our arrival must be expected");
1457   int pnum = target->next_path_num();
1458   merge_common(target, pnum);
1459 }
1460 
1461 //-------------------------merge_new_path--------------------------------------
1462 // Merge the current mapping into the basic block, using a new path
1463 void Parse::merge_new_path(int target_bci) {
1464   Block* target = successor_for_bci(target_bci);
1465   if (target == NULL) { handle_missing_successor(target_bci); return; }
1466   assert(!target->is_ready(), "new path into frozen graph");
1467   int pnum = target->add_new_path();
1468   merge_common(target, pnum);
1469 }
1470 
1471 //-------------------------merge_exception-------------------------------------
1472 // Merge the current mapping into the basic block starting at bci
1473 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1474 void Parse::merge_exception(int target_bci) {
1475   assert(sp() == 1, "must have only the throw exception on the stack");
1476   Block* target = successor_for_bci(target_bci);
1477   if (target == NULL) { handle_missing_successor(target_bci); return; }
1478   assert(target->is_handler(), "exceptions are handled by special blocks");
1479   int pnum = target->add_new_path();
1480   merge_common(target, pnum);
1481 }
1482 
1483 //--------------------handle_missing_successor---------------------------------
1484 void Parse::handle_missing_successor(int target_bci) {
1485 #ifndef PRODUCT
1486   Block* b = block();
1487   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1488   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1489 #endif
1490   ShouldNotReachHere();
1491 }
1492 
1493 //--------------------------merge_common---------------------------------------
1494 void Parse::merge_common(Parse::Block* target, int pnum) {
1495   if (TraceOptoParse) {
1496     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1497   }
1498 
1499   // Zap extra stack slots to top
1500   assert(sp() == target->start_sp(), "");
1501   clean_stack(sp());
1502 
1503   if (!target->is_merged()) {   // No prior mapping at this bci
1504     if (TraceOptoParse) { tty->print(" with empty state");  }
1505 
1506     // If this path is dead, do not bother capturing it as a merge.
1507     // It is "as if" we had 1 fewer predecessors from the beginning.
1508     if (stopped()) {
1509       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1510       return;
1511     }
1512 
1513     // Record that a new block has been merged.
1514     ++_blocks_merged;
1515 
1516     // Make a region if we know there are multiple or unpredictable inputs.
1517     // (Also, if this is a plain fall-through, we might see another region,
1518     // which must not be allowed into this block's map.)
1519     if (pnum > PhiNode::Input         // Known multiple inputs.
1520         || target->is_handler()       // These have unpredictable inputs.
1521         || target->is_loop_head()     // Known multiple inputs
1522         || control()->is_Region()) {  // We must hide this guy.
1523       // Add a Region to start the new basic block.  Phis will be added
1524       // later lazily.
1525       int edges = target->pred_count();
1526       if (edges < pnum)  edges = pnum;  // might be a new path!
1527       Node *r = new (C, edges+1) RegionNode(edges+1);
1528       gvn().set_type(r, Type::CONTROL);
1529       record_for_igvn(r);
1530       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1531       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1532       r->init_req(pnum, control());
1533       set_control(r);
1534     }
1535 
1536     // Convert the existing Parser mapping into a mapping at this bci.
1537     store_state_to(target);
1538     assert(target->is_merged(), "do not come here twice");
1539 
1540   } else {                      // Prior mapping at this bci
1541     if (TraceOptoParse) {  tty->print(" with previous state"); }
1542 
1543     // We must not manufacture more phis if the target is already parsed.
1544     bool nophi = target->is_parsed();
1545 
1546     SafePointNode* newin = map();// Hang on to incoming mapping
1547     Block* save_block = block(); // Hang on to incoming block;
1548     load_state_from(target);    // Get prior mapping
1549 
1550     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1551     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1552     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1553     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1554 
1555     // Iterate over my current mapping and the old mapping.
1556     // Where different, insert Phi functions.
1557     // Use any existing Phi functions.
1558     assert(control()->is_Region(), "must be merging to a region");
1559     RegionNode* r = control()->as_Region();
1560 
1561     // Compute where to merge into
1562     // Merge incoming control path
1563     r->init_req(pnum, newin->control());
1564 
1565     if (pnum == 1) {            // Last merge for this Region?
1566       if (!block()->flow()->is_irreducible_entry()) {
1567         Node* result = _gvn.transform_no_reclaim(r);
1568         if (r != result && TraceOptoParse) {
1569           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1570         }
1571       }
1572       record_for_igvn(r);
1573     }
1574 
1575     // Update all the non-control inputs to map:
1576     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1577     bool check_elide_phi = target->is_SEL_backedge(save_block);
1578     for (uint j = 1; j < newin->req(); j++) {
1579       Node* m = map()->in(j);   // Current state of target.
1580       Node* n = newin->in(j);   // Incoming change to target state.
1581       PhiNode* phi;
1582       if (m->is_Phi() && m->as_Phi()->region() == r)
1583         phi = m->as_Phi();
1584       else
1585         phi = NULL;
1586       if (m != n) {             // Different; must merge
1587         switch (j) {
1588         // Frame pointer and Return Address never changes
1589         case TypeFunc::FramePtr:// Drop m, use the original value
1590         case TypeFunc::ReturnAdr:
1591           break;
1592         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1593           assert(phi == NULL, "the merge contains phis, not vice versa");
1594           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1595           continue;
1596         default:                // All normal stuff
1597           if (phi == NULL) {
1598             if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1599               phi = ensure_phi(j, nophi);
1600             }
1601           }
1602           break;
1603         }
1604       }
1605       // At this point, n might be top if:
1606       //  - there is no phi (because TypeFlow detected a conflict), or
1607       //  - the corresponding control edges is top (a dead incoming path)
1608       // It is a bug if we create a phi which sees a garbage value on a live path.
1609 
1610       if (phi != NULL) {
1611         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1612         assert(phi->region() == r, "");
1613         phi->set_req(pnum, n);  // Then add 'n' to the merge
1614         if (pnum == PhiNode::Input) {
1615           // Last merge for this Phi.
1616           // So far, Phis have had a reasonable type from ciTypeFlow.
1617           // Now _gvn will join that with the meet of current inputs.
1618           // BOTTOM is never permissible here, 'cause pessimistically
1619           // Phis of pointers cannot lose the basic pointer type.
1620           debug_only(const Type* bt1 = phi->bottom_type());
1621           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1622           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1623           debug_only(const Type* bt2 = phi->bottom_type());
1624           assert(bt2->higher_equal(bt1), "must be consistent with type-flow");
1625           record_for_igvn(phi);
1626         }
1627       }
1628     } // End of for all values to be merged
1629 
1630     if (pnum == PhiNode::Input &&
1631         !r->in(0)) {         // The occasional useless Region
1632       assert(control() == r, "");
1633       set_control(r->nonnull_req());
1634     }
1635 
1636     // newin has been subsumed into the lazy merge, and is now dead.
1637     set_block(save_block);
1638 
1639     stop();                     // done with this guy, for now
1640   }
1641 
1642   if (TraceOptoParse) {
1643     tty->print_cr(" on path %d", pnum);
1644   }
1645 
1646   // Done with this parser state.
1647   assert(stopped(), "");
1648 }
1649 
1650 
1651 //--------------------------merge_memory_edges---------------------------------
1652 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1653   // (nophi means we must not create phis, because we already parsed here)
1654   assert(n != NULL, "");
1655   // Merge the inputs to the MergeMems
1656   MergeMemNode* m = merged_memory();
1657 
1658   assert(control()->is_Region(), "must be merging to a region");
1659   RegionNode* r = control()->as_Region();
1660 
1661   PhiNode* base = NULL;
1662   MergeMemNode* remerge = NULL;
1663   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1664     Node *p = mms.force_memory();
1665     Node *q = mms.memory2();
1666     if (mms.is_empty() && nophi) {
1667       // Trouble:  No new splits allowed after a loop body is parsed.
1668       // Instead, wire the new split into a MergeMem on the backedge.
1669       // The optimizer will sort it out, slicing the phi.
1670       if (remerge == NULL) {
1671         assert(base != NULL, "");
1672         assert(base->in(0) != NULL, "should not be xformed away");
1673         remerge = MergeMemNode::make(C, base->in(pnum));
1674         gvn().set_type(remerge, Type::MEMORY);
1675         base->set_req(pnum, remerge);
1676       }
1677       remerge->set_memory_at(mms.alias_idx(), q);
1678       continue;
1679     }
1680     assert(!q->is_MergeMem(), "");
1681     PhiNode* phi;
1682     if (p != q) {
1683       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1684     } else {
1685       if (p->is_Phi() && p->as_Phi()->region() == r)
1686         phi = p->as_Phi();
1687       else
1688         phi = NULL;
1689     }
1690     // Insert q into local phi
1691     if (phi != NULL) {
1692       assert(phi->region() == r, "");
1693       p = phi;
1694       phi->set_req(pnum, q);
1695       if (mms.at_base_memory()) {
1696         base = phi;  // delay transforming it
1697       } else if (pnum == 1) {
1698         record_for_igvn(phi);
1699         p = _gvn.transform_no_reclaim(phi);
1700       }
1701       mms.set_memory(p);// store back through the iterator
1702     }
1703   }
1704   // Transform base last, in case we must fiddle with remerging.
1705   if (base != NULL && pnum == 1) {
1706     record_for_igvn(base);
1707     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1708   }
1709 }
1710 
1711 
1712 //------------------------ensure_phis_everywhere-------------------------------
1713 void Parse::ensure_phis_everywhere() {
1714   ensure_phi(TypeFunc::I_O);
1715 
1716   // Ensure a phi on all currently known memories.
1717   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1718     ensure_memory_phi(mms.alias_idx());
1719     debug_only(mms.set_memory());  // keep the iterator happy
1720   }
1721 
1722   // Note:  This is our only chance to create phis for memory slices.
1723   // If we miss a slice that crops up later, it will have to be
1724   // merged into the base-memory phi that we are building here.
1725   // Later, the optimizer will comb out the knot, and build separate
1726   // phi-loops for each memory slice that matters.
1727 
1728   // Monitors must nest nicely and not get confused amongst themselves.
1729   // Phi-ify everything up to the monitors, though.
1730   uint monoff = map()->jvms()->monoff();
1731   uint nof_monitors = map()->jvms()->nof_monitors();
1732 
1733   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1734   bool check_elide_phi = block()->is_SEL_head();
1735   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1736     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1737       ensure_phi(i);
1738     }
1739   }
1740 
1741   // Even monitors need Phis, though they are well-structured.
1742   // This is true for OSR methods, and also for the rare cases where
1743   // a monitor object is the subject of a replace_in_map operation.
1744   // See bugs 4426707 and 5043395.
1745   for (uint m = 0; m < nof_monitors; m++) {
1746     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1747   }
1748 }
1749 
1750 
1751 //-----------------------------add_new_path------------------------------------
1752 // Add a previously unaccounted predecessor to this block.
1753 int Parse::Block::add_new_path() {
1754   // If there is no map, return the lowest unused path number.
1755   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1756 
1757   SafePointNode* map = start_map();
1758   if (!map->control()->is_Region())
1759     return pred_count()+1;  // there may be a region some day
1760   RegionNode* r = map->control()->as_Region();
1761 
1762   // Add new path to the region.
1763   uint pnum = r->req();
1764   r->add_req(NULL);
1765 
1766   for (uint i = 1; i < map->req(); i++) {
1767     Node* n = map->in(i);
1768     if (i == TypeFunc::Memory) {
1769       // Ensure a phi on all currently known memories.
1770       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1771         Node* phi = mms.memory();
1772         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1773           assert(phi->req() == pnum, "must be same size as region");
1774           phi->add_req(NULL);
1775         }
1776       }
1777     } else {
1778       if (n->is_Phi() && n->as_Phi()->region() == r) {
1779         assert(n->req() == pnum, "must be same size as region");
1780         n->add_req(NULL);
1781       }
1782     }
1783   }
1784 
1785   return pnum;
1786 }
1787 
1788 //------------------------------ensure_phi-------------------------------------
1789 // Turn the idx'th entry of the current map into a Phi
1790 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1791   SafePointNode* map = this->map();
1792   Node* region = map->control();
1793   assert(region->is_Region(), "");
1794 
1795   Node* o = map->in(idx);
1796   assert(o != NULL, "");
1797 
1798   if (o == top())  return NULL; // TOP always merges into TOP
1799 
1800   if (o->is_Phi() && o->as_Phi()->region() == region) {
1801     return o->as_Phi();
1802   }
1803 
1804   // Now use a Phi here for merging
1805   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1806   const JVMState* jvms = map->jvms();
1807   const Type* t;
1808   if (jvms->is_loc(idx)) {
1809     t = block()->local_type_at(idx - jvms->locoff());
1810   } else if (jvms->is_stk(idx)) {
1811     t = block()->stack_type_at(idx - jvms->stkoff());
1812   } else if (jvms->is_mon(idx)) {
1813     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1814     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1815   } else if ((uint)idx < TypeFunc::Parms) {
1816     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1817   } else {
1818     assert(false, "no type information for this phi");
1819   }
1820 
1821   // If the type falls to bottom, then this must be a local that
1822   // is mixing ints and oops or some such.  Forcing it to top
1823   // makes it go dead.
1824   if (t == Type::BOTTOM) {
1825     map->set_req(idx, top());
1826     return NULL;
1827   }
1828 
1829   // Do not create phis for top either.
1830   // A top on a non-null control flow must be an unused even after the.phi.
1831   if (t == Type::TOP || t == Type::HALF) {
1832     map->set_req(idx, top());
1833     return NULL;
1834   }
1835 
1836   PhiNode* phi = PhiNode::make(region, o, t);
1837   gvn().set_type(phi, t);
1838   if (C->do_escape_analysis()) record_for_igvn(phi);
1839   map->set_req(idx, phi);
1840   return phi;
1841 }
1842 
1843 //--------------------------ensure_memory_phi----------------------------------
1844 // Turn the idx'th slice of the current memory into a Phi
1845 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1846   MergeMemNode* mem = merged_memory();
1847   Node* region = control();
1848   assert(region->is_Region(), "");
1849 
1850   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
1851   assert(o != NULL && o != top(), "");
1852 
1853   PhiNode* phi;
1854   if (o->is_Phi() && o->as_Phi()->region() == region) {
1855     phi = o->as_Phi();
1856     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
1857       // clone the shared base memory phi to make a new memory split
1858       assert(!nocreate, "Cannot build a phi for a block already parsed.");
1859       const Type* t = phi->bottom_type();
1860       const TypePtr* adr_type = C->get_adr_type(idx);
1861       phi = phi->slice_memory(adr_type);
1862       gvn().set_type(phi, t);
1863     }
1864     return phi;
1865   }
1866 
1867   // Now use a Phi here for merging
1868   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1869   const Type* t = o->bottom_type();
1870   const TypePtr* adr_type = C->get_adr_type(idx);
1871   phi = PhiNode::make(region, o, t, adr_type);
1872   gvn().set_type(phi, t);
1873   if (idx == Compile::AliasIdxBot)
1874     mem->set_base_memory(phi);
1875   else
1876     mem->set_memory_at(idx, phi);
1877   return phi;
1878 }
1879 
1880 //------------------------------call_register_finalizer-----------------------
1881 // Check the klass of the receiver and call register_finalizer if the
1882 // class need finalization.
1883 void Parse::call_register_finalizer() {
1884   Node* receiver = local(0);
1885   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
1886          "must have non-null instance type");
1887 
1888   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
1889   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
1890     // The type isn't known exactly so see if CHA tells us anything.
1891     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1892     if (!Dependencies::has_finalizable_subclass(ik)) {
1893       // No finalizable subclasses so skip the dynamic check.
1894       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
1895       return;
1896     }
1897   }
1898 
1899   // Insert a dynamic test for whether the instance needs
1900   // finalization.  In general this will fold up since the concrete
1901   // class is often visible so the access flags are constant.
1902   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
1903   Node* klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS) );
1904 
1905   Node* access_flags_addr = basic_plus_adr(klass, klass, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
1906   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT);
1907 
1908   Node* mask  = _gvn.transform(new (C, 3) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
1909   Node* check = _gvn.transform(new (C, 3) CmpINode(mask, intcon(0)));
1910   Node* test  = _gvn.transform(new (C, 2) BoolNode(check, BoolTest::ne));
1911 
1912   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
1913 
1914   RegionNode* result_rgn = new (C, 3) RegionNode(3);
1915   record_for_igvn(result_rgn);
1916 
1917   Node *skip_register = _gvn.transform(new (C, 1) IfFalseNode(iff));
1918   result_rgn->init_req(1, skip_register);
1919 
1920   Node *needs_register = _gvn.transform(new (C, 1) IfTrueNode(iff));
1921   set_control(needs_register);
1922   if (stopped()) {
1923     // There is no slow path.
1924     result_rgn->init_req(2, top());
1925   } else {
1926     Node *call = make_runtime_call(RC_NO_LEAF,
1927                                    OptoRuntime::register_finalizer_Type(),
1928                                    OptoRuntime::register_finalizer_Java(),
1929                                    NULL, TypePtr::BOTTOM,
1930                                    receiver);
1931     make_slow_call_ex(call, env()->Throwable_klass(), true);
1932 
1933     Node* fast_io  = call->in(TypeFunc::I_O);
1934     Node* fast_mem = call->in(TypeFunc::Memory);
1935     // These two phis are pre-filled with copies of of the fast IO and Memory
1936     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
1937     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
1938 
1939     result_rgn->init_req(2, control());
1940     io_phi    ->init_req(2, i_o());
1941     mem_phi   ->init_req(2, reset_memory());
1942 
1943     set_all_memory( _gvn.transform(mem_phi) );
1944     set_i_o(        _gvn.transform(io_phi) );
1945   }
1946 
1947   set_control( _gvn.transform(result_rgn) );
1948 }
1949 
1950 //------------------------------return_current---------------------------------
1951 // Append current _map to _exit_return
1952 void Parse::return_current(Node* value) {
1953   if (RegisterFinalizersAtInit &&
1954       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
1955     call_register_finalizer();
1956   }
1957 
1958   // Do not set_parse_bci, so that return goo is credited to the return insn.
1959   set_bci(InvocationEntryBci);
1960   if (method()->is_synchronized() && GenerateSynchronizationCode) {
1961     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1962   }
1963   if (C->env()->dtrace_method_probes()) {
1964     make_dtrace_method_exit(method());
1965   }
1966   SafePointNode* exit_return = _exits.map();
1967   exit_return->in( TypeFunc::Control  )->add_req( control() );
1968   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
1969   Node *mem = exit_return->in( TypeFunc::Memory   );
1970   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
1971     if (mms.is_empty()) {
1972       // get a copy of the base memory, and patch just this one input
1973       const TypePtr* adr_type = mms.adr_type(C);
1974       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
1975       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
1976       gvn().set_type_bottom(phi);
1977       phi->del_req(phi->req()-1);  // prepare to re-patch
1978       mms.set_memory(phi);
1979     }
1980     mms.memory()->add_req(mms.memory2());
1981   }
1982 
1983   // frame pointer is always same, already captured
1984   if (value != NULL) {
1985     // If returning oops to an interface-return, there is a silent free
1986     // cast from oop to interface allowed by the Verifier.  Make it explicit
1987     // here.
1988     Node* phi = _exits.argument(0);
1989     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
1990     if( tr && tr->klass()->is_loaded() &&
1991         tr->klass()->is_interface() ) {
1992       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
1993       if (tp && tp->klass()->is_loaded() &&
1994           !tp->klass()->is_interface()) {
1995         // sharpen the type eagerly; this eases certain assert checking
1996         if (tp->higher_equal(TypeInstPtr::NOTNULL))
1997           tr = tr->join(TypeInstPtr::NOTNULL)->is_instptr();
1998         value = _gvn.transform(new (C, 2) CheckCastPPNode(0,value,tr));
1999       }
2000     }
2001     phi->add_req(value);
2002   }
2003 
2004   stop_and_kill_map();          // This CFG path dies here
2005 }
2006 
2007 
2008 //------------------------------add_safepoint----------------------------------
2009 void Parse::add_safepoint() {
2010   // See if we can avoid this safepoint.  No need for a SafePoint immediately
2011   // after a Call (except Leaf Call) or another SafePoint.
2012   Node *proj = control();
2013   bool add_poll_param = SafePointNode::needs_polling_address_input();
2014   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2015   if( proj->is_Proj() ) {
2016     Node *n0 = proj->in(0);
2017     if( n0->is_Catch() ) {
2018       n0 = n0->in(0)->in(0);
2019       assert( n0->is_Call(), "expect a call here" );
2020     }
2021     if( n0->is_Call() ) {
2022       if( n0->as_Call()->guaranteed_safepoint() )
2023         return;
2024     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2025       return;
2026     }
2027   }
2028 
2029   // Clear out dead values from the debug info.
2030   kill_dead_locals();
2031 
2032   // Clone the JVM State
2033   SafePointNode *sfpnt = new (C, parms) SafePointNode(parms, NULL);
2034 
2035   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2036   // SafePoint we need our GC state to be safe; i.e. we need all our current
2037   // write barriers (card marks) to not float down after the SafePoint so we
2038   // must read raw memory.  Likewise we need all oop stores to match the card
2039   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2040   // state on a deopt).
2041 
2042   // We do not need to WRITE the memory state after a SafePoint.  The control
2043   // edge will keep card-marks and oop-stores from floating up from below a
2044   // SafePoint and our true dependency added here will keep them from floating
2045   // down below a SafePoint.
2046 
2047   // Clone the current memory state
2048   Node* mem = MergeMemNode::make(C, map()->memory());
2049 
2050   mem = _gvn.transform(mem);
2051 
2052   // Pass control through the safepoint
2053   sfpnt->init_req(TypeFunc::Control  , control());
2054   // Fix edges normally used by a call
2055   sfpnt->init_req(TypeFunc::I_O      , top() );
2056   sfpnt->init_req(TypeFunc::Memory   , mem   );
2057   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2058   sfpnt->init_req(TypeFunc::FramePtr , top() );
2059 
2060   // Create a node for the polling address
2061   if( add_poll_param ) {
2062     Node *polladr = ConPNode::make(C, (address)os::get_polling_page());
2063     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2064   }
2065 
2066   // Fix up the JVM State edges
2067   add_safepoint_edges(sfpnt);
2068   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2069   set_control(transformed_sfpnt);
2070 
2071   // Provide an edge from root to safepoint.  This makes the safepoint
2072   // appear useful until the parse has completed.
2073   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2074     assert(C->root() != NULL, "Expect parse is still valid");
2075     C->root()->add_prec(transformed_sfpnt);
2076   }
2077 }
2078 
2079 #ifndef PRODUCT
2080 //------------------------show_parse_info--------------------------------------
2081 void Parse::show_parse_info() {
2082   InlineTree* ilt = NULL;
2083   if (C->ilt() != NULL) {
2084     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2085     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2086   }
2087   if (PrintCompilation && Verbose) {
2088     if (depth() == 1) {
2089       if( ilt->count_inlines() ) {
2090         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2091                      ilt->count_inline_bcs());
2092         tty->cr();
2093       }
2094     } else {
2095       if (method()->is_synchronized())         tty->print("s");
2096       if (method()->has_exception_handlers())  tty->print("!");
2097       // Check this is not the final compiled version
2098       if (C->trap_can_recompile()) {
2099         tty->print("-");
2100       } else {
2101         tty->print(" ");
2102       }
2103       method()->print_short_name();
2104       if (is_osr_parse()) {
2105         tty->print(" @ %d", osr_bci());
2106       }
2107       tty->print(" (%d bytes)",method()->code_size());
2108       if (ilt->count_inlines()) {
2109         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2110                    ilt->count_inline_bcs());
2111       }
2112       tty->cr();
2113     }
2114   }
2115   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2116     // Print that we succeeded; suppress this message on the first osr parse.
2117 
2118     if (method()->is_synchronized())         tty->print("s");
2119     if (method()->has_exception_handlers())  tty->print("!");
2120     // Check this is not the final compiled version
2121     if (C->trap_can_recompile() && depth() == 1) {
2122       tty->print("-");
2123     } else {
2124       tty->print(" ");
2125     }
2126     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2127     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2128     method()->print_short_name();
2129     if (is_osr_parse()) {
2130       tty->print(" @ %d", osr_bci());
2131     }
2132     if (ilt->caller_bci() != -1) {
2133       tty->print(" @ %d", ilt->caller_bci());
2134     }
2135     tty->print(" (%d bytes)",method()->code_size());
2136     if (ilt->count_inlines()) {
2137       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2138                  ilt->count_inline_bcs());
2139     }
2140     tty->cr();
2141   }
2142 }
2143 
2144 
2145 //------------------------------dump-------------------------------------------
2146 // Dump information associated with the bytecodes of current _method
2147 void Parse::dump() {
2148   if( method() != NULL ) {
2149     // Iterate over bytecodes
2150     ciBytecodeStream iter(method());
2151     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2152       dump_bci( iter.cur_bci() );
2153       tty->cr();
2154     }
2155   }
2156 }
2157 
2158 // Dump information associated with a byte code index, 'bci'
2159 void Parse::dump_bci(int bci) {
2160   // Output info on merge-points, cloning, and within _jsr..._ret
2161   // NYI
2162   tty->print(" bci:%d", bci);
2163 }
2164 
2165 #endif