1 /*
   2  * Copyright 2000-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 class BlockBegin;
  26 class BlockList;
  27 class LIR_Assembler;
  28 class CodeEmitInfo;
  29 class CodeStub;
  30 class CodeStubList;
  31 class ArrayCopyStub;
  32 class LIR_Op;
  33 class ciType;
  34 class ValueType;
  35 class LIR_OpVisitState;
  36 class FpuStackSim;
  37 
  38 //---------------------------------------------------------------------
  39 //                 LIR Operands
  40 //  LIR_OprDesc
  41 //    LIR_OprPtr
  42 //      LIR_Const
  43 //      LIR_Address
  44 //---------------------------------------------------------------------
  45 class LIR_OprDesc;
  46 class LIR_OprPtr;
  47 class LIR_Const;
  48 class LIR_Address;
  49 class LIR_OprVisitor;
  50 
  51 
  52 typedef LIR_OprDesc* LIR_Opr;
  53 typedef int          RegNr;
  54 
  55 define_array(LIR_OprArray, LIR_Opr)
  56 define_stack(LIR_OprList, LIR_OprArray)
  57 
  58 define_array(LIR_OprRefArray, LIR_Opr*)
  59 define_stack(LIR_OprRefList, LIR_OprRefArray)
  60 
  61 define_array(CodeEmitInfoArray, CodeEmitInfo*)
  62 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
  63 
  64 define_array(LIR_OpArray, LIR_Op*)
  65 define_stack(LIR_OpList, LIR_OpArray)
  66 
  67 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  68 class LIR_OprPtr: public CompilationResourceObj {
  69  public:
  70   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  71   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  72 
  73   virtual LIR_Const*  as_constant()              { return NULL; }
  74   virtual LIR_Address* as_address()              { return NULL; }
  75   virtual BasicType type() const                 = 0;
  76   virtual void print_value_on(outputStream* out) const = 0;
  77 };
  78 
  79 
  80 
  81 // LIR constants
  82 class LIR_Const: public LIR_OprPtr {
  83  private:
  84   JavaValue _value;
  85 
  86   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  87   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  88 
  89  public:
  90   LIR_Const(jint i)                              { _value.set_type(T_INT);     _value.set_jint(i); }
  91   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
  92   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
  93   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
  94   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
  95   LIR_Const(void* p) {
  96 #ifdef _LP64
  97     assert(sizeof(jlong) >= sizeof(p), "too small");;
  98     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
  99 #else
 100     assert(sizeof(jint) >= sizeof(p), "too small");;
 101     _value.set_type(T_INT);     _value.set_jint((jint)p);
 102 #endif
 103   }
 104 
 105   virtual BasicType type()       const { return _value.get_type(); }
 106   virtual LIR_Const* as_constant()     { return this; }
 107 
 108   jint      as_jint()    const         { type_check(T_INT   ); return _value.get_jint(); }
 109   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 110   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 111   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 112   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 113   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 114   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 115 
 116 #ifdef _LP64
 117   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 118 #else
 119   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 120 #endif
 121 
 122 
 123   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT); return _value.get_jint(); }
 124   jint      as_jint_lo_bits() const    {
 125     if (type() == T_DOUBLE) {
 126       return low(jlong_cast(_value.get_jdouble()));
 127     } else {
 128       return as_jint_lo();
 129     }
 130   }
 131   jint      as_jint_hi_bits() const    {
 132     if (type() == T_DOUBLE) {
 133       return high(jlong_cast(_value.get_jdouble()));
 134     } else {
 135       return as_jint_hi();
 136     }
 137   }
 138   jlong      as_jlong_bits() const    {
 139     if (type() == T_DOUBLE) {
 140       return jlong_cast(_value.get_jdouble());
 141     } else {
 142       return as_jlong();
 143     }
 144   }
 145 
 146   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 147 
 148 
 149   bool is_zero_float() {
 150     jfloat f = as_jfloat();
 151     jfloat ok = 0.0f;
 152     return jint_cast(f) == jint_cast(ok);
 153   }
 154 
 155   bool is_one_float() {
 156     jfloat f = as_jfloat();
 157     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 158   }
 159 
 160   bool is_zero_double() {
 161     jdouble d = as_jdouble();
 162     jdouble ok = 0.0;
 163     return jlong_cast(d) == jlong_cast(ok);
 164   }
 165 
 166   bool is_one_double() {
 167     jdouble d = as_jdouble();
 168     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 169   }
 170 };
 171 
 172 
 173 //---------------------LIR Operand descriptor------------------------------------
 174 //
 175 // The class LIR_OprDesc represents a LIR instruction operand;
 176 // it can be a register (ALU/FPU), stack location or a constant;
 177 // Constants and addresses are represented as resource area allocated
 178 // structures (see above).
 179 // Registers and stack locations are inlined into the this pointer
 180 // (see value function).
 181 
 182 class LIR_OprDesc: public CompilationResourceObj {
 183  public:
 184   // value structure:
 185   //     data       opr-type opr-kind
 186   // +--------------+-------+-------+
 187   // [max...........|7 6 5 4|3 2 1 0]
 188   //                             ^
 189   //                    is_pointer bit
 190   //
 191   // lowest bit cleared, means it is a structure pointer
 192   // we need  4 bits to represent types
 193 
 194  private:
 195   friend class LIR_OprFact;
 196 
 197   // Conversion
 198   intptr_t value() const                         { return (intptr_t) this; }
 199 
 200   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 201     return (value() & mask) == masked_value;
 202   }
 203 
 204   enum OprKind {
 205       pointer_value      = 0
 206     , stack_value        = 1
 207     , cpu_register       = 3
 208     , fpu_register       = 5
 209     , illegal_value      = 7
 210   };
 211 
 212   enum OprBits {
 213       pointer_bits   = 1
 214     , kind_bits      = 3
 215     , type_bits      = 4
 216     , size_bits      = 2
 217     , destroys_bits  = 1
 218     , virtual_bits   = 1
 219     , is_xmm_bits    = 1
 220     , last_use_bits  = 1
 221     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 222     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
 223                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
 224     , data_bits      = BitsPerInt - non_data_bits
 225     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 226   };
 227 
 228   enum OprShift {
 229       kind_shift     = 0
 230     , type_shift     = kind_shift     + kind_bits
 231     , size_shift     = type_shift     + type_bits
 232     , destroys_shift = size_shift     + size_bits
 233     , last_use_shift = destroys_shift + destroys_bits
 234     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 235     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 236     , is_xmm_shift   = virtual_shift + virtual_bits
 237     , data_shift     = is_xmm_shift + is_xmm_bits
 238     , reg1_shift = data_shift
 239     , reg2_shift = data_shift + reg_bits
 240 
 241   };
 242 
 243   enum OprSize {
 244       single_size = 0 << size_shift
 245     , double_size = 1 << size_shift
 246   };
 247 
 248   enum OprMask {
 249       kind_mask      = right_n_bits(kind_bits)
 250     , type_mask      = right_n_bits(type_bits) << type_shift
 251     , size_mask      = right_n_bits(size_bits) << size_shift
 252     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 253     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 254     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 255     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 256     , pointer_mask   = right_n_bits(pointer_bits)
 257     , lower_reg_mask = right_n_bits(reg_bits)
 258     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 259   };
 260 
 261   uintptr_t data() const                         { return value() >> data_shift; }
 262   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 263   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 264   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 265   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 266 
 267   static char type_char(BasicType t);
 268 
 269  public:
 270   enum {
 271     vreg_base = ConcreteRegisterImpl::number_of_registers,
 272     vreg_max = (1 << data_bits) - 1
 273   };
 274 
 275   static inline LIR_Opr illegalOpr();
 276 
 277   enum OprType {
 278       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 279     , int_type      = 1 << type_shift
 280     , long_type     = 2 << type_shift
 281     , object_type   = 3 << type_shift
 282     , pointer_type  = 4 << type_shift
 283     , float_type    = 5 << type_shift
 284     , double_type   = 6 << type_shift
 285   };
 286   friend OprType as_OprType(BasicType t);
 287   friend BasicType as_BasicType(OprType t);
 288 
 289   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 290   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 291 
 292   static OprSize size_for(BasicType t) {
 293     switch (t) {
 294       case T_LONG:
 295       case T_DOUBLE:
 296         return double_size;
 297         break;
 298 
 299       case T_FLOAT:
 300       case T_BOOLEAN:
 301       case T_CHAR:
 302       case T_BYTE:
 303       case T_SHORT:
 304       case T_INT:
 305       case T_OBJECT:
 306       case T_ARRAY:
 307         return single_size;
 308         break;
 309 
 310       default:
 311         ShouldNotReachHere();
 312         return single_size;
 313       }
 314   }
 315 
 316 
 317   void validate_type() const PRODUCT_RETURN;
 318 
 319   BasicType type() const {
 320     if (is_pointer()) {
 321       return pointer()->type();
 322     }
 323     return as_BasicType(type_field());
 324   }
 325 
 326 
 327   ValueType* value_type() const                  { return as_ValueType(type()); }
 328 
 329   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 330 
 331   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 332   // checks whether types are same
 333   bool is_same_type(LIR_Opr opr) const     {
 334     assert(type_field() != unknown_type &&
 335            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 336     return type_field() == opr->type_field();
 337   }
 338   bool is_same_register(LIR_Opr opr) {
 339     return (is_register() && opr->is_register() &&
 340             kind_field() == opr->kind_field() &&
 341             (value() & no_type_mask) == (opr->value() & no_type_mask));
 342   }
 343 
 344   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 345   bool is_illegal() const      { return kind_field() == illegal_value; }
 346   bool is_valid() const        { return kind_field() != illegal_value; }
 347 
 348   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 349   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 350 
 351   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 352   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 353 
 354   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 355   bool is_oop() const;
 356 
 357   // semantic for fpu- and xmm-registers:
 358   // * is_float and is_double return true for xmm_registers
 359   //   (so is_single_fpu and is_single_xmm are true)
 360   // * So you must always check for is_???_xmm prior to is_???_fpu to
 361   //   distinguish between fpu- and xmm-registers
 362 
 363   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 364   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 365   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 366 
 367   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 368   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 369   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 370   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 371   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 372 
 373   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 374   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 375   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 376   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 377   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 378 
 379   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 380   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 381   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 382 
 383   // fast accessor functions for special bits that do not work for pointers
 384   // (in this functions, the check for is_pointer() is omitted)
 385   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 386   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 387   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 388   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 389   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 390 
 391   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 392   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 393   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 394   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 395 
 396 
 397   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 398   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 399   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 400   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 401   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 402   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 403   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 404   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 405   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 406   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 407   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 408   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 409 
 410   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 411   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 412   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 413 
 414   Register as_register()    const;
 415   Register as_register_lo() const;
 416   Register as_register_hi() const;
 417 
 418   Register as_pointer_register() {
 419 #ifdef _LP64
 420     if (is_double_cpu()) {
 421       assert(as_register_lo() == as_register_hi(), "should be a single register");
 422       return as_register_lo();
 423     }
 424 #endif
 425     return as_register();
 426   }
 427 
 428 #ifdef X86
 429   XMMRegister as_xmm_float_reg() const;
 430   XMMRegister as_xmm_double_reg() const;
 431   // for compatibility with RInfo
 432   int fpu () const                                  { return lo_reg_half(); }
 433 #endif // X86
 434 
 435 #ifdef SPARC
 436   FloatRegister as_float_reg   () const;
 437   FloatRegister as_double_reg  () const;
 438 #endif
 439 
 440   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 441   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 442   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 443   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 444   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 445 
 446   void print() const PRODUCT_RETURN;
 447   void print(outputStream* out) const PRODUCT_RETURN;
 448 };
 449 
 450 
 451 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 452   switch (type) {
 453   case T_INT:      return LIR_OprDesc::int_type;
 454   case T_LONG:     return LIR_OprDesc::long_type;
 455   case T_FLOAT:    return LIR_OprDesc::float_type;
 456   case T_DOUBLE:   return LIR_OprDesc::double_type;
 457   case T_OBJECT:
 458   case T_ARRAY:    return LIR_OprDesc::object_type;
 459   case T_ILLEGAL:  // fall through
 460   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 461   }
 462 }
 463 
 464 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 465   switch (t) {
 466   case LIR_OprDesc::int_type:     return T_INT;
 467   case LIR_OprDesc::long_type:    return T_LONG;
 468   case LIR_OprDesc::float_type:   return T_FLOAT;
 469   case LIR_OprDesc::double_type:  return T_DOUBLE;
 470   case LIR_OprDesc::object_type:  return T_OBJECT;
 471   case LIR_OprDesc::unknown_type: // fall through
 472   default: ShouldNotReachHere();  return T_ILLEGAL;
 473   }
 474 }
 475 
 476 
 477 // LIR_Address
 478 class LIR_Address: public LIR_OprPtr {
 479  friend class LIR_OpVisitState;
 480 
 481  public:
 482   // NOTE: currently these must be the log2 of the scale factor (and
 483   // must also be equivalent to the ScaleFactor enum in
 484   // assembler_i486.hpp)
 485   enum Scale {
 486     times_1  =  0,
 487     times_2  =  1,
 488     times_4  =  2,
 489     times_8  =  3
 490   };
 491 
 492  private:
 493   LIR_Opr   _base;
 494   LIR_Opr   _index;
 495   Scale     _scale;
 496   intx      _disp;
 497   BasicType _type;
 498 
 499  public:
 500   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 501        _base(base)
 502      , _index(index)
 503      , _scale(times_1)
 504      , _type(type)
 505      , _disp(0) { verify(); }
 506 
 507   LIR_Address(LIR_Opr base, int disp, BasicType type):
 508        _base(base)
 509      , _index(LIR_OprDesc::illegalOpr())
 510      , _scale(times_1)
 511      , _type(type)
 512      , _disp(disp) { verify(); }
 513 
 514 #ifdef X86
 515   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, int disp, BasicType type):
 516        _base(base)
 517      , _index(index)
 518      , _scale(scale)
 519      , _type(type)
 520      , _disp(disp) { verify(); }
 521 #endif // X86
 522 
 523   LIR_Opr base()  const                          { return _base;  }
 524   LIR_Opr index() const                          { return _index; }
 525   Scale   scale() const                          { return _scale; }
 526   intx    disp()  const                          { return _disp;  }
 527 
 528   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 529 
 530   virtual LIR_Address* as_address()              { return this;   }
 531   virtual BasicType type() const                 { return _type; }
 532   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 533 
 534   void verify() const PRODUCT_RETURN;
 535 
 536   static Scale scale(BasicType type);
 537 };
 538 
 539 
 540 // operand factory
 541 class LIR_OprFact: public AllStatic {
 542  public:
 543 
 544   static LIR_Opr illegalOpr;
 545 
 546   static LIR_Opr single_cpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::int_type    | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
 547   static LIR_Opr single_cpu_oop(int reg)        { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::object_type | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
 548   static LIR_Opr double_cpu(int reg1, int reg2) {
 549     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 550     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 551                                (reg2 << LIR_OprDesc::reg2_shift) |
 552                                LIR_OprDesc::long_type            |
 553                                LIR_OprDesc::cpu_register         |
 554                                LIR_OprDesc::double_size);
 555   }
 556 
 557   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 558                                                                              LIR_OprDesc::float_type           |
 559                                                                              LIR_OprDesc::fpu_register         |
 560                                                                              LIR_OprDesc::single_size); }
 561 
 562 #ifdef SPARC
 563   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 564                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
 565                                                                              LIR_OprDesc::double_type          |
 566                                                                              LIR_OprDesc::fpu_register         |
 567                                                                              LIR_OprDesc::double_size); }
 568 #endif
 569 #ifdef X86
 570   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 571                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 572                                                                              LIR_OprDesc::double_type          |
 573                                                                              LIR_OprDesc::fpu_register         |
 574                                                                              LIR_OprDesc::double_size); }
 575 
 576   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 577                                                                              LIR_OprDesc::float_type           |
 578                                                                              LIR_OprDesc::fpu_register         |
 579                                                                              LIR_OprDesc::single_size          |
 580                                                                              LIR_OprDesc::is_xmm_mask); }
 581   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 582                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 583                                                                              LIR_OprDesc::double_type          |
 584                                                                              LIR_OprDesc::fpu_register         |
 585                                                                              LIR_OprDesc::double_size          |
 586                                                                              LIR_OprDesc::is_xmm_mask); }
 587 #endif // X86
 588 
 589 
 590   static LIR_Opr virtual_register(int index, BasicType type) {
 591     LIR_Opr res;
 592     switch (type) {
 593       case T_OBJECT: // fall through
 594       case T_ARRAY:
 595         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 596                                             LIR_OprDesc::object_type  |
 597                                             LIR_OprDesc::cpu_register |
 598                                             LIR_OprDesc::single_size  |
 599                                             LIR_OprDesc::virtual_mask);
 600         break;
 601 
 602       case T_INT:
 603         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 604                                   LIR_OprDesc::int_type              |
 605                                   LIR_OprDesc::cpu_register          |
 606                                   LIR_OprDesc::single_size           |
 607                                   LIR_OprDesc::virtual_mask);
 608         break;
 609 
 610       case T_LONG:
 611         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 612                                   LIR_OprDesc::long_type             |
 613                                   LIR_OprDesc::cpu_register          |
 614                                   LIR_OprDesc::double_size           |
 615                                   LIR_OprDesc::virtual_mask);
 616         break;
 617 
 618       case T_FLOAT:
 619         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 620                                   LIR_OprDesc::float_type           |
 621                                   LIR_OprDesc::fpu_register         |
 622                                   LIR_OprDesc::single_size          |
 623                                   LIR_OprDesc::virtual_mask);
 624         break;
 625 
 626       case
 627         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 628                                             LIR_OprDesc::double_type           |
 629                                             LIR_OprDesc::fpu_register          |
 630                                             LIR_OprDesc::double_size           |
 631                                             LIR_OprDesc::virtual_mask);
 632         break;
 633 
 634       default:       ShouldNotReachHere(); res = illegalOpr;
 635     }
 636 
 637 #ifdef ASSERT
 638     res->validate_type();
 639     assert(res->vreg_number() == index, "conversion check");
 640     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 641     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 642 
 643     // old-style calculation; check if old and new method are equal
 644     LIR_OprDesc::OprType t = as_OprType(type);
 645     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 646                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 647                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 648     assert(res == old_res, "old and new method not equal");
 649 #endif
 650 
 651     return res;
 652   }
 653 
 654   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 655   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 656   // index 2.
 657   static LIR_Opr stack(int index, BasicType type) {
 658     LIR_Opr res;
 659     switch (type) {
 660       case T_OBJECT: // fall through
 661       case T_ARRAY:
 662         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 663                                   LIR_OprDesc::object_type           |
 664                                   LIR_OprDesc::stack_value           |
 665                                   LIR_OprDesc::single_size);
 666         break;
 667 
 668       case T_INT:
 669         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 670                                   LIR_OprDesc::int_type              |
 671                                   LIR_OprDesc::stack_value           |
 672                                   LIR_OprDesc::single_size);
 673         break;
 674 
 675       case T_LONG:
 676         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 677                                   LIR_OprDesc::long_type             |
 678                                   LIR_OprDesc::stack_value           |
 679                                   LIR_OprDesc::double_size);
 680         break;
 681 
 682       case T_FLOAT:
 683         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 684                                   LIR_OprDesc::float_type            |
 685                                   LIR_OprDesc::stack_value           |
 686                                   LIR_OprDesc::single_size);
 687         break;
 688       case T_DOUBLE:
 689         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 690                                   LIR_OprDesc::double_type           |
 691                                   LIR_OprDesc::stack_value           |
 692                                   LIR_OprDesc::double_size);
 693         break;
 694 
 695       default:       ShouldNotReachHere(); res = illegalOpr;
 696     }
 697 
 698 #ifdef ASSERT
 699     assert(index >= 0, "index must be positive");
 700     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 701 
 702     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 703                                           LIR_OprDesc::stack_value           |
 704                                           as_OprType(type)                   |
 705                                           LIR_OprDesc::size_for(type));
 706     assert(res == old_res, "old and new method not equal");
 707 #endif
 708 
 709     return res;
 710   }
 711 
 712   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 713   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 714   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 715   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 716   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 717   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 718   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 719   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 720   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 721 
 722   static LIR_Opr value_type(ValueType* type);
 723   static LIR_Opr dummy_value_type(ValueType* type);
 724 };
 725 
 726 
 727 //-------------------------------------------------------------------------------
 728 //                   LIR Instructions
 729 //-------------------------------------------------------------------------------
 730 //
 731 // Note:
 732 //  - every instruction has a result operand
 733 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 734 //  - every instruction has a LIR_OpCode operand
 735 //  - LIR_OpN, means an instruction that has N input operands
 736 //
 737 // class hierarchy:
 738 //
 739 class  LIR_Op;
 740 class    LIR_Op0;
 741 class      LIR_OpLabel;
 742 class    LIR_Op1;
 743 class      LIR_OpBranch;
 744 class      LIR_OpConvert;
 745 class      LIR_OpAllocObj;
 746 class      LIR_OpRoundFP;
 747 class    LIR_Op2;
 748 class    LIR_OpDelay;
 749 class    LIR_Op3;
 750 class      LIR_OpAllocArray;
 751 class    LIR_OpCall;
 752 class      LIR_OpJavaCall;
 753 class      LIR_OpRTCall;
 754 class    LIR_OpArrayCopy;
 755 class    LIR_OpLock;
 756 class    LIR_OpTypeCheck;
 757 class    LIR_OpCompareAndSwap;
 758 class    LIR_OpProfileCall;
 759 
 760 
 761 // LIR operation codes
 762 enum LIR_Code {
 763     lir_none
 764   , begin_op0
 765       , lir_word_align
 766       , lir_label
 767       , lir_nop
 768       , lir_backwardbranch_target
 769       , lir_std_entry
 770       , lir_osr_entry
 771       , lir_build_frame
 772       , lir_fpop_raw
 773       , lir_24bit_FPU
 774       , lir_reset_FPU
 775       , lir_breakpoint
 776       , lir_rtcall
 777       , lir_membar
 778       , lir_membar_acquire
 779       , lir_membar_release
 780       , lir_get_thread
 781   , end_op0
 782   , begin_op1
 783       , lir_fxch
 784       , lir_fld
 785       , lir_ffree
 786       , lir_push
 787       , lir_pop
 788       , lir_null_check
 789       , lir_return
 790       , lir_leal
 791       , lir_neg
 792       , lir_branch
 793       , lir_cond_float_branch
 794       , lir_move
 795       , lir_prefetchr
 796       , lir_prefetchw
 797       , lir_convert
 798       , lir_alloc_object
 799       , lir_monaddr
 800       , lir_roundfp
 801       , lir_safepoint
 802   , end_op1
 803   , begin_op2
 804       , lir_cmp
 805       , lir_cmp_l2i
 806       , lir_ucmp_fd2i
 807       , lir_cmp_fd2i
 808       , lir_cmove
 809       , lir_add
 810       , lir_sub
 811       , lir_mul
 812       , lir_mul_strictfp
 813       , lir_div
 814       , lir_div_strictfp
 815       , lir_rem
 816       , lir_sqrt
 817       , lir_abs
 818       , lir_sin
 819       , lir_cos
 820       , lir_tan
 821       , lir_log
 822       , lir_log10
 823       , lir_logic_and
 824       , lir_logic_or
 825       , lir_logic_xor
 826       , lir_shl
 827       , lir_shr
 828       , lir_ushr
 829       , lir_alloc_array
 830       , lir_throw
 831       , lir_unwind
 832       , lir_compare_to
 833   , end_op2
 834   , begin_op3
 835       , lir_idiv
 836       , lir_irem
 837   , end_op3
 838   , begin_opJavaCall
 839       , lir_static_call
 840       , lir_optvirtual_call
 841       , lir_icvirtual_call
 842       , lir_virtual_call
 843   , end_opJavaCall
 844   , begin_opArrayCopy
 845       , lir_arraycopy
 846   , end_opArrayCopy
 847   , begin_opLock
 848     , lir_lock
 849     , lir_unlock
 850   , end_opLock
 851   , begin_delay_slot
 852     , lir_delay_slot
 853   , end_delay_slot
 854   , begin_opTypeCheck
 855     , lir_instanceof
 856     , lir_checkcast
 857     , lir_store_check
 858   , end_opTypeCheck
 859   , begin_opCompareAndSwap
 860     , lir_cas_long
 861     , lir_cas_obj
 862     , lir_cas_int
 863   , end_opCompareAndSwap
 864   , begin_opMDOProfile
 865     , lir_profile_call
 866   , end_opMDOProfile
 867 };
 868 
 869 
 870 enum LIR_Condition {
 871     lir_cond_equal
 872   , lir_cond_notEqual
 873   , lir_cond_less
 874   , lir_cond_lessEqual
 875   , lir_cond_greaterEqual
 876   , lir_cond_greater
 877   , lir_cond_belowEqual
 878   , lir_cond_aboveEqual
 879   , lir_cond_always
 880   , lir_cond_unknown = -1
 881 };
 882 
 883 
 884 enum LIR_PatchCode {
 885   lir_patch_none,
 886   lir_patch_low,
 887   lir_patch_high,
 888   lir_patch_normal
 889 };
 890 
 891 
 892 enum LIR_MoveKind {
 893   lir_move_normal,
 894   lir_move_volatile,
 895   lir_move_unaligned,
 896   lir_move_max_flag
 897 };
 898 
 899 
 900 // --------------------------------------------------
 901 // LIR_Op
 902 // --------------------------------------------------
 903 class LIR_Op: public CompilationResourceObj {
 904  friend class LIR_OpVisitState;
 905 
 906 #ifdef ASSERT
 907  private:
 908   const char *  _file;
 909   int           _line;
 910 #endif
 911 
 912  protected:
 913   LIR_Opr       _result;
 914   unsigned short _code;
 915   unsigned short _flags;
 916   CodeEmitInfo* _info;
 917   int           _id;     // value id for register allocation
 918   int           _fpu_pop_count;
 919   Instruction*  _source; // for debugging
 920 
 921   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
 922 
 923  protected:
 924   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
 925 
 926  public:
 927   LIR_Op()
 928     : _result(LIR_OprFact::illegalOpr)
 929     , _code(lir_none)
 930     , _flags(0)
 931     , _info(NULL)
 932 #ifdef ASSERT
 933     , _file(NULL)
 934     , _line(0)
 935 #endif
 936     , _fpu_pop_count(0)
 937     , _source(NULL)
 938     , _id(-1)                             {}
 939 
 940   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
 941     : _result(result)
 942     , _code(code)
 943     , _flags(0)
 944     , _info(info)
 945 #ifdef ASSERT
 946     , _file(NULL)
 947     , _line(0)
 948 #endif
 949     , _fpu_pop_count(0)
 950     , _source(NULL)
 951     , _id(-1)                             {}
 952 
 953   CodeEmitInfo* info() const                  { return _info;   }
 954   LIR_Code code()      const                  { return (LIR_Code)_code;   }
 955   LIR_Opr result_opr() const                  { return _result; }
 956   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
 957 
 958 #ifdef ASSERT
 959   void set_file_and_line(const char * file, int line) {
 960     _file = file;
 961     _line = line;
 962   }
 963 #endif
 964 
 965   virtual const char * name() const PRODUCT_RETURN0;
 966 
 967   int id()             const                  { return _id;     }
 968   void set_id(int id)                         { _id = id; }
 969 
 970   // FPU stack simulation helpers -- only used on Intel
 971   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
 972   int  fpu_pop_count() const                  { return _fpu_pop_count; }
 973   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
 974 
 975   Instruction* source() const                 { return _source; }
 976   void set_source(Instruction* ins)           { _source = ins; }
 977 
 978   virtual void emit_code(LIR_Assembler* masm) = 0;
 979   virtual void print_instr(outputStream* out) const   = 0;
 980   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
 981 
 982   virtual LIR_OpCall* as_OpCall() { return NULL; }
 983   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
 984   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
 985   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
 986   virtual LIR_OpLock* as_OpLock() { return NULL; }
 987   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
 988   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
 989   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
 990   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
 991   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
 992   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
 993   virtual LIR_Op0* as_Op0() { return NULL; }
 994   virtual LIR_Op1* as_Op1() { return NULL; }
 995   virtual LIR_Op2* as_Op2() { return NULL; }
 996   virtual LIR_Op3* as_Op3() { return NULL; }
 997   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
 998   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
 999   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1000   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1001 
1002   virtual void verify() const {}
1003 };
1004 
1005 // for calls
1006 class LIR_OpCall: public LIR_Op {
1007  friend class LIR_OpVisitState;
1008 
1009  protected:
1010   address      _addr;
1011   LIR_OprList* _arguments;
1012  protected:
1013   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1014              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1015     : LIR_Op(code, result, info)
1016     , _arguments(arguments)
1017     , _addr(addr) {}
1018 
1019  public:
1020   address addr() const                           { return _addr; }
1021   const LIR_OprList* arguments() const           { return _arguments; }
1022   virtual LIR_OpCall* as_OpCall()                { return this; }
1023 };
1024 
1025 
1026 // --------------------------------------------------
1027 // LIR_OpJavaCall
1028 // --------------------------------------------------
1029 class LIR_OpJavaCall: public LIR_OpCall {
1030  friend class LIR_OpVisitState;
1031 
1032  private:
1033   ciMethod*       _method;
1034   LIR_Opr         _receiver;
1035 
1036  public:
1037   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1038                  LIR_Opr receiver, LIR_Opr result,
1039                  address addr, LIR_OprList* arguments,
1040                  CodeEmitInfo* info)
1041   : LIR_OpCall(code, addr, result, arguments, info)
1042   , _receiver(receiver)
1043   , _method(method)          { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1044 
1045   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1046                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1047                  LIR_OprList* arguments, CodeEmitInfo* info)
1048   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1049   , _receiver(receiver)
1050   , _method(method)          { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1051 
1052   LIR_Opr receiver() const                       { return _receiver; }
1053   ciMethod* method() const                       { return _method;   }
1054 
1055   intptr_t vtable_offset() const {
1056     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1057     return (intptr_t) addr();
1058   }
1059 
1060   virtual void emit_code(LIR_Assembler* masm);
1061   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1062   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1063 };
1064 
1065 // --------------------------------------------------
1066 // LIR_OpLabel
1067 // --------------------------------------------------
1068 // Location where a branch can continue
1069 class LIR_OpLabel: public LIR_Op {
1070  friend class LIR_OpVisitState;
1071 
1072  private:
1073   Label* _label;
1074  public:
1075   LIR_OpLabel(Label* lbl)
1076    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1077    , _label(lbl)                                 {}
1078   Label* label() const                           { return _label; }
1079 
1080   virtual void emit_code(LIR_Assembler* masm);
1081   virtual LIR_OpLabel* as_OpLabel() { return this; }
1082   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1083 };
1084 
1085 // LIR_OpArrayCopy
1086 class LIR_OpArrayCopy: public LIR_Op {
1087  friend class LIR_OpVisitState;
1088 
1089  private:
1090   ArrayCopyStub*  _stub;
1091   LIR_Opr   _src;
1092   LIR_Opr   _src_pos;
1093   LIR_Opr   _dst;
1094   LIR_Opr   _dst_pos;
1095   LIR_Opr   _length;
1096   LIR_Opr   _tmp;
1097   ciArrayKlass* _expected_type;
1098   int       _flags;
1099 
1100 public:
1101   enum Flags {
1102     src_null_check         = 1 << 0,
1103     dst_null_check         = 1 << 1,
1104     src_pos_positive_check = 1 << 2,
1105     dst_pos_positive_check = 1 << 3,
1106     length_positive_check  = 1 << 4,
1107     src_range_check        = 1 << 5,
1108     dst_range_check        = 1 << 6,
1109     type_check             = 1 << 7,
1110     all_flags              = (1 << 8) - 1
1111   };
1112 
1113   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1114                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1115 
1116   LIR_Opr src() const                            { return _src; }
1117   LIR_Opr src_pos() const                        { return _src_pos; }
1118   LIR_Opr dst() const                            { return _dst; }
1119   LIR_Opr dst_pos() const                        { return _dst_pos; }
1120   LIR_Opr length() const                         { return _length; }
1121   LIR_Opr tmp() const                            { return _tmp; }
1122   int flags() const                              { return _flags; }
1123   ciArrayKlass* expected_type() const            { return _expected_type; }
1124   ArrayCopyStub* stub() const                    { return _stub; }
1125 
1126   virtual void emit_code(LIR_Assembler* masm);
1127   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1128   void print_instr(outputStream* out) const PRODUCT_RETURN;
1129 };
1130 
1131 
1132 // --------------------------------------------------
1133 // LIR_Op0
1134 // --------------------------------------------------
1135 class LIR_Op0: public LIR_Op {
1136  friend class LIR_OpVisitState;
1137 
1138  public:
1139   LIR_Op0(LIR_Code code)
1140    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1141   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1142    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1143 
1144   virtual void emit_code(LIR_Assembler* masm);
1145   virtual LIR_Op0* as_Op0() { return this; }
1146   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1147 };
1148 
1149 
1150 // --------------------------------------------------
1151 // LIR_Op1
1152 // --------------------------------------------------
1153 
1154 class LIR_Op1: public LIR_Op {
1155  friend class LIR_OpVisitState;
1156 
1157  protected:
1158   LIR_Opr         _opr;   // input operand
1159   BasicType       _type;  // Operand types
1160   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1161 
1162   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1163 
1164   void set_kind(LIR_MoveKind kind) {
1165     assert(code() == lir_move, "must be");
1166     _flags = kind;
1167   }
1168 
1169  public:
1170   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1171     : LIR_Op(code, result, info)
1172     , _opr(opr)
1173     , _patch(patch)
1174     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1175 
1176   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1177     : LIR_Op(code, result, info)
1178     , _opr(opr)
1179     , _patch(patch)
1180     , _type(type)                      {
1181     assert(code == lir_move, "must be");
1182     set_kind(kind);
1183   }
1184 
1185   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1186     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1187     , _opr(opr)
1188     , _patch(lir_patch_none)
1189     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1190 
1191   LIR_Opr in_opr()           const               { return _opr;   }
1192   LIR_PatchCode patch_code() const               { return _patch; }
1193   BasicType type()           const               { return _type;  }
1194 
1195   LIR_MoveKind move_kind() const {
1196     assert(code() == lir_move, "must be");
1197     return (LIR_MoveKind)_flags;
1198   }
1199 
1200   virtual void emit_code(LIR_Assembler* masm);
1201   virtual LIR_Op1* as_Op1() { return this; }
1202   virtual const char * name() const PRODUCT_RETURN0;
1203 
1204   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1205 
1206   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1207   virtual void verify() const;
1208 };
1209 
1210 
1211 // for runtime calls
1212 class LIR_OpRTCall: public LIR_OpCall {
1213  friend class LIR_OpVisitState;
1214 
1215  private:
1216   LIR_Opr _tmp;
1217  public:
1218   LIR_OpRTCall(address addr, LIR_Opr tmp,
1219                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1220     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1221     , _tmp(tmp) {}
1222 
1223   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1224   virtual void emit_code(LIR_Assembler* masm);
1225   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1226 
1227   LIR_Opr tmp() const                            { return _tmp; }
1228 
1229   virtual void verify() const;
1230 };
1231 
1232 
1233 class LIR_OpBranch: public LIR_Op {
1234  friend class LIR_OpVisitState;
1235 
1236  private:
1237   LIR_Condition _cond;
1238   BasicType     _type;
1239   Label*        _label;
1240   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1241   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1242   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1243 
1244  public:
1245   LIR_OpBranch(LIR_Condition cond, Label* lbl)
1246     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1247     , _cond(cond)
1248     , _label(lbl)
1249     , _block(NULL)
1250     , _ublock(NULL)
1251     , _stub(NULL) { }
1252 
1253   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1254   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1255 
1256   // for unordered comparisons
1257   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1258 
1259   LIR_Condition cond()        const              { return _cond;        }
1260   BasicType     type()        const              { return _type;        }
1261   Label*        label()       const              { return _label;       }
1262   BlockBegin*   block()       const              { return _block;       }
1263   BlockBegin*   ublock()      const              { return _ublock;      }
1264   CodeStub*     stub()        const              { return _stub;       }
1265 
1266   void          change_block(BlockBegin* b);
1267   void          change_ublock(BlockBegin* b);
1268   void          negate_cond();
1269 
1270   virtual void emit_code(LIR_Assembler* masm);
1271   virtual LIR_OpBranch* as_OpBranch() { return this; }
1272   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1273 };
1274 
1275 
1276 class ConversionStub;
1277 
1278 class LIR_OpConvert: public LIR_Op1 {
1279  friend class LIR_OpVisitState;
1280 
1281  private:
1282    Bytecodes::Code _bytecode;
1283    ConversionStub* _stub;
1284 
1285  public:
1286    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1287      : LIR_Op1(lir_convert, opr, result)
1288      , _stub(stub)
1289      , _bytecode(code)                           {}
1290 
1291   Bytecodes::Code bytecode() const               { return _bytecode; }
1292   ConversionStub* stub() const                   { return _stub; }
1293 
1294   virtual void emit_code(LIR_Assembler* masm);
1295   virtual LIR_OpConvert* as_OpConvert() { return this; }
1296   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1297 
1298   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1299 };
1300 
1301 
1302 // LIR_OpAllocObj
1303 class LIR_OpAllocObj : public LIR_Op1 {
1304  friend class LIR_OpVisitState;
1305 
1306  private:
1307   LIR_Opr _tmp1;
1308   LIR_Opr _tmp2;
1309   LIR_Opr _tmp3;
1310   LIR_Opr _tmp4;
1311   int     _hdr_size;
1312   int     _obj_size;
1313   CodeStub* _stub;
1314   bool    _init_check;
1315 
1316  public:
1317   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1318                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1319                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1320     : LIR_Op1(lir_alloc_object, klass, result)
1321     , _tmp1(t1)
1322     , _tmp2(t2)
1323     , _tmp3(t3)
1324     , _tmp4(t4)
1325     , _hdr_size(hdr_size)
1326     , _obj_size(obj_size)
1327     , _init_check(init_check)
1328     , _stub(stub)                                { }
1329 
1330   LIR_Opr klass()        const                   { return in_opr();     }
1331   LIR_Opr obj()          const                   { return result_opr(); }
1332   LIR_Opr tmp1()         const                   { return _tmp1;        }
1333   LIR_Opr tmp2()         const                   { return _tmp2;        }
1334   LIR_Opr tmp3()         const                   { return _tmp3;        }
1335   LIR_Opr tmp4()         const                   { return _tmp4;        }
1336   int     header_size()  const                   { return _hdr_size;    }
1337   int     object_size()  const                   { return _obj_size;    }
1338   bool    init_check()   const                   { return _init_check;  }
1339   CodeStub* stub()       const                   { return _stub;        }
1340 
1341   virtual void emit_code(LIR_Assembler* masm);
1342   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1343   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1344 };
1345 
1346 
1347 // LIR_OpRoundFP
1348 class LIR_OpRoundFP : public LIR_Op1 {
1349  friend class LIR_OpVisitState;
1350 
1351  private:
1352   LIR_Opr _tmp;
1353 
1354  public:
1355   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1356     : LIR_Op1(lir_roundfp, reg, result)
1357     , _tmp(stack_loc_temp) {}
1358 
1359   LIR_Opr tmp() const                            { return _tmp; }
1360   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1361   void print_instr(outputStream* out) const PRODUCT_RETURN;
1362 };
1363 
1364 // LIR_OpTypeCheck
1365 class LIR_OpTypeCheck: public LIR_Op {
1366  friend class LIR_OpVisitState;
1367 
1368  private:
1369   LIR_Opr       _object;
1370   LIR_Opr       _array;
1371   ciKlass*      _klass;
1372   LIR_Opr       _tmp1;
1373   LIR_Opr       _tmp2;
1374   LIR_Opr       _tmp3;
1375   bool          _fast_check;
1376   CodeEmitInfo* _info_for_patch;
1377   CodeEmitInfo* _info_for_exception;
1378   CodeStub*     _stub;
1379   // Helpers for Tier1UpdateMethodData
1380   ciMethod*     _profiled_method;
1381   int           _profiled_bci;
1382 
1383 public:
1384   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1385                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1386                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1387                   ciMethod* profiled_method, int profiled_bci);
1388   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1389                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception,
1390                   ciMethod* profiled_method, int profiled_bci);
1391 
1392   LIR_Opr object() const                         { return _object;         }
1393   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1394   LIR_Opr tmp1() const                           { return _tmp1;           }
1395   LIR_Opr tmp2() const                           { return _tmp2;           }
1396   LIR_Opr tmp3() const                           { return _tmp3;           }
1397   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1398   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1399   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1400   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1401   CodeStub* stub() const                         { return _stub;           }
1402 
1403   // methodDataOop profiling
1404   ciMethod* profiled_method()                    { return _profiled_method; }
1405   int       profiled_bci()                       { return _profiled_bci; }
1406 
1407   virtual void emit_code(LIR_Assembler* masm);
1408   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1409   void print_instr(outputStream* out) const PRODUCT_RETURN;
1410 };
1411 
1412 // LIR_Op2
1413 class LIR_Op2: public LIR_Op {
1414  friend class LIR_OpVisitState;
1415 
1416   int  _fpu_stack_size; // for sin/cos implementation on Intel
1417 
1418  protected:
1419   LIR_Opr   _opr1;
1420   LIR_Opr   _opr2;
1421   BasicType _type;
1422   LIR_Opr   _tmp;
1423   LIR_Condition _condition;
1424 
1425   void verify() const;
1426 
1427  public:
1428   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1429     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1430     , _opr1(opr1)
1431     , _opr2(opr2)
1432     , _type(T_ILLEGAL)
1433     , _condition(condition)
1434     , _fpu_stack_size(0)
1435     , _tmp(LIR_OprFact::illegalOpr) {
1436     assert(code == lir_cmp, "code check");
1437   }
1438 
1439   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result)
1440     : LIR_Op(code, result, NULL)
1441     , _opr1(opr1)
1442     , _opr2(opr2)
1443     , _type(T_ILLEGAL)
1444     , _condition(condition)
1445     , _fpu_stack_size(0)
1446     , _tmp(LIR_OprFact::illegalOpr) {
1447     assert(code == lir_cmove, "code check");
1448   }
1449 
1450   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1451           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1452     : LIR_Op(code, result, info)
1453     , _opr1(opr1)
1454     , _opr2(opr2)
1455     , _type(type)
1456     , _condition(lir_cond_unknown)
1457     , _fpu_stack_size(0)
1458     , _tmp(LIR_OprFact::illegalOpr) {
1459     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1460   }
1461 
1462   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp)
1463     : LIR_Op(code, result, NULL)
1464     , _opr1(opr1)
1465     , _opr2(opr2)
1466     , _type(T_ILLEGAL)
1467     , _condition(lir_cond_unknown)
1468     , _fpu_stack_size(0)
1469     , _tmp(tmp) {
1470     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1471   }
1472 
1473   LIR_Opr in_opr1() const                        { return _opr1; }
1474   LIR_Opr in_opr2() const                        { return _opr2; }
1475   BasicType type()  const                        { return _type; }
1476   LIR_Opr tmp_opr() const                        { return _tmp; }
1477   LIR_Condition condition() const  {
1478     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); return _condition;
1479   }
1480 
1481   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1482   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1483 
1484   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1485   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1486 
1487   virtual void emit_code(LIR_Assembler* masm);
1488   virtual LIR_Op2* as_Op2() { return this; }
1489   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1490 };
1491 
1492 class LIR_OpAllocArray : public LIR_Op {
1493  friend class LIR_OpVisitState;
1494 
1495  private:
1496   LIR_Opr   _klass;
1497   LIR_Opr   _len;
1498   LIR_Opr   _tmp1;
1499   LIR_Opr   _tmp2;
1500   LIR_Opr   _tmp3;
1501   LIR_Opr   _tmp4;
1502   BasicType _type;
1503   CodeStub* _stub;
1504 
1505  public:
1506   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1507     : LIR_Op(lir_alloc_array, result, NULL)
1508     , _klass(klass)
1509     , _len(len)
1510     , _tmp1(t1)
1511     , _tmp2(t2)
1512     , _tmp3(t3)
1513     , _tmp4(t4)
1514     , _type(type)
1515     , _stub(stub) {}
1516 
1517   LIR_Opr   klass()   const                      { return _klass;       }
1518   LIR_Opr   len()     const                      { return _len;         }
1519   LIR_Opr   obj()     const                      { return result_opr(); }
1520   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1521   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1522   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1523   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1524   BasicType type()    const                      { return _type;        }
1525   CodeStub* stub()    const                      { return _stub;        }
1526 
1527   virtual void emit_code(LIR_Assembler* masm);
1528   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1529   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1530 };
1531 
1532 
1533 class LIR_Op3: public LIR_Op {
1534  friend class LIR_OpVisitState;
1535 
1536  private:
1537   LIR_Opr _opr1;
1538   LIR_Opr _opr2;
1539   LIR_Opr _opr3;
1540  public:
1541   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1542     : LIR_Op(code, result, info)
1543     , _opr1(opr1)
1544     , _opr2(opr2)
1545     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1546   LIR_Opr in_opr1() const                        { return _opr1; }
1547   LIR_Opr in_opr2() const                        { return _opr2; }
1548   LIR_Opr in_opr3() const                        { return _opr3; }
1549 
1550   virtual void emit_code(LIR_Assembler* masm);
1551   virtual LIR_Op3* as_Op3() { return this; }
1552   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1553 };
1554 
1555 
1556 //--------------------------------
1557 class LabelObj: public CompilationResourceObj {
1558  private:
1559   Label _label;
1560  public:
1561   LabelObj()                                     {}
1562   Label* label()                                 { return &_label; }
1563 };
1564 
1565 
1566 class LIR_OpLock: public LIR_Op {
1567  friend class LIR_OpVisitState;
1568 
1569  private:
1570   LIR_Opr _hdr;
1571   LIR_Opr _obj;
1572   LIR_Opr _lock;
1573   LIR_Opr _scratch;
1574   CodeStub* _stub;
1575  public:
1576   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1577     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1578     , _hdr(hdr)
1579     , _obj(obj)
1580     , _lock(lock)
1581     , _scratch(scratch)
1582     , _stub(stub)                      {}
1583 
1584   LIR_Opr hdr_opr() const                        { return _hdr; }
1585   LIR_Opr obj_opr() const                        { return _obj; }
1586   LIR_Opr lock_opr() const                       { return _lock; }
1587   LIR_Opr scratch_opr() const                    { return _scratch; }
1588   CodeStub* stub() const                         { return _stub; }
1589 
1590   virtual void emit_code(LIR_Assembler* masm);
1591   virtual LIR_OpLock* as_OpLock() { return this; }
1592   void print_instr(outputStream* out) const PRODUCT_RETURN;
1593 };
1594 
1595 
1596 class LIR_OpDelay: public LIR_Op {
1597  friend class LIR_OpVisitState;
1598 
1599  private:
1600   LIR_Op* _op;
1601 
1602  public:
1603   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1604     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1605     _op(op) {
1606     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1607   }
1608   virtual void emit_code(LIR_Assembler* masm);
1609   virtual LIR_OpDelay* as_OpDelay() { return this; }
1610   void print_instr(outputStream* out) const PRODUCT_RETURN;
1611   LIR_Op* delay_op() const { return _op; }
1612   CodeEmitInfo* call_info() const { return info(); }
1613 };
1614 
1615 
1616 // LIR_OpCompareAndSwap
1617 class LIR_OpCompareAndSwap : public LIR_Op {
1618  friend class LIR_OpVisitState;
1619 
1620  private:
1621   LIR_Opr _addr;
1622   LIR_Opr _cmp_value;
1623   LIR_Opr _new_value;
1624   LIR_Opr _tmp1;
1625   LIR_Opr _tmp2;
1626 
1627  public:
1628   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2)
1629     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1630     , _addr(addr)
1631     , _cmp_value(cmp_value)
1632     , _new_value(new_value)
1633     , _tmp1(t1)
1634     , _tmp2(t2)                                  { }
1635 
1636   LIR_Opr addr()        const                    { return _addr;  }
1637   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1638   LIR_Opr new_value()   const                    { return _new_value; }
1639   LIR_Opr tmp1()        const                    { return _tmp1;      }
1640   LIR_Opr tmp2()        const                    { return _tmp2;      }
1641 
1642   virtual void emit_code(LIR_Assembler* masm);
1643   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1644   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1645 };
1646 
1647 // LIR_OpProfileCall
1648 class LIR_OpProfileCall : public LIR_Op {
1649  friend class LIR_OpVisitState;
1650 
1651  private:
1652   ciMethod* _profiled_method;
1653   int _profiled_bci;
1654   LIR_Opr _mdo;
1655   LIR_Opr _recv;
1656   LIR_Opr _tmp1;
1657   ciKlass* _known_holder;
1658 
1659  public:
1660   // Destroys recv
1661   LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1662     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1663     , _profiled_method(profiled_method)
1664     , _profiled_bci(profiled_bci)
1665     , _mdo(mdo)
1666     , _recv(recv)
1667     , _tmp1(t1)
1668     , _known_holder(known_holder)                { }
1669 
1670   ciMethod* profiled_method() const              { return _profiled_method;  }
1671   int       profiled_bci()    const              { return _profiled_bci;     }
1672   LIR_Opr   mdo()             const              { return _mdo;              }
1673   LIR_Opr   recv()            const              { return _recv;             }
1674   LIR_Opr   tmp1()            const              { return _tmp1;             }
1675   ciKlass*  known_holder()    const              { return _known_holder;     }
1676 
1677   virtual void emit_code(LIR_Assembler* masm);
1678   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1679   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1680 };
1681 
1682 
1683 class LIR_InsertionBuffer;
1684 
1685 //--------------------------------LIR_List---------------------------------------------------
1686 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
1687 // The LIR instructions are appended by the LIR_List class itself;
1688 //
1689 // Notes:
1690 // - all offsets are(should be) in bytes
1691 // - local positions are specified with an offset, with offset 0 being local 0
1692 
1693 class LIR_List: public CompilationResourceObj {
1694  private:
1695   LIR_OpList  _operations;
1696 
1697   Compilation*  _compilation;
1698 #ifndef PRODUCT
1699   BlockBegin*   _block;
1700 #endif
1701 #ifdef ASSERT
1702   const char *  _file;
1703   int           _line;
1704 #endif
1705 
1706   void append(LIR_Op* op) {
1707     if (op->source() == NULL)
1708       op->set_source(_compilation->current_instruction());
1709 #ifndef PRODUCT
1710     if (PrintIRWithLIR) {
1711       _compilation->maybe_print_current_instruction();
1712       op->print(); tty->cr();
1713     }
1714 #endif // PRODUCT
1715 
1716     _operations.append(op);
1717 
1718 #ifdef ASSERT
1719     op->verify();
1720     op->set_file_and_line(_file, _line);
1721     _file = NULL;
1722     _line = 0;
1723 #endif
1724   }
1725 
1726  public:
1727   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
1728 
1729 #ifdef ASSERT
1730   void set_file_and_line(const char * file, int line);
1731 #endif
1732 
1733   //---------- accessors ---------------
1734   LIR_OpList* instructions_list()                { return &_operations; }
1735   int         length() const                     { return _operations.length(); }
1736   LIR_Op*     at(int i) const                    { return _operations.at(i); }
1737 
1738   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
1739 
1740   // insert LIR_Ops in buffer to right places in LIR_List
1741   void append(LIR_InsertionBuffer* buffer);
1742 
1743   //---------- mutators ---------------
1744   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
1745   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
1746 
1747   //---------- printing -------------
1748   void print_instructions() PRODUCT_RETURN;
1749 
1750 
1751   //---------- instructions -------------
1752   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1753                         address dest, LIR_OprList* arguments,
1754                         CodeEmitInfo* info) {
1755     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
1756   }
1757   void call_static(ciMethod* method, LIR_Opr result,
1758                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
1759     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
1760   }
1761   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1762                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
1763     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
1764   }
1765   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1766                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
1767     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
1768   }
1769 
1770   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
1771   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
1772   void membar()                                  { append(new LIR_Op0(lir_membar)); }
1773   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
1774   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
1775 
1776   void nop()                                     { append(new LIR_Op0(lir_nop)); }
1777   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
1778 
1779   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
1780   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
1781 
1782   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
1783 
1784   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
1785   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
1786 
1787   // result is a stack location for old backend and vreg for UseLinearScan
1788   // stack_loc_temp is an illegal register for old backend
1789   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
1790   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
1791   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
1792   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
1793   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
1794   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
1795   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
1796 
1797   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
1798 
1799   void oop2reg  (jobject o, LIR_Opr reg)         { append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
1800   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
1801 
1802   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
1803 
1804   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
1805 
1806   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
1807 
1808   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
1809   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
1810   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
1811 
1812   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
1813   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); }
1814   void unwind_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { append(new LIR_Op2(lir_unwind, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); }
1815 
1816   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1817     append(new LIR_Op2(lir_compare_to,  left, right, dst));
1818   }
1819 
1820   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
1821   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
1822 
1823   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
1824     append(new LIR_Op2(lir_cmp, condition, left, right, info));
1825   }
1826   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
1827     cmp(condition, left, LIR_OprFact::intConst(right), info);
1828   }
1829 
1830   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
1831   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
1832 
1833   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst) {
1834     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst));
1835   }
1836 
1837   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
1838   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
1839   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
1840 
1841   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
1842   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
1843   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, tmp, to)); }
1844   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, tmp, to)); }
1845   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
1846   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
1847   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
1848 
1849   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
1850   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
1851   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
1852   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
1853   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
1854   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
1855   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
1856 
1857   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
1858   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
1859 
1860   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
1861 
1862   void prefetch(LIR_Address* addr, bool is_store);
1863 
1864   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
1865   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
1866   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
1867   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
1868   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
1869 
1870   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
1871   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
1872   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
1873   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
1874 
1875   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
1876   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
1877 
1878   // jump is an unconditional branch
1879   void jump(BlockBegin* block) {
1880     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
1881   }
1882   void jump(CodeStub* stub) {
1883     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
1884   }
1885   void branch(LIR_Condition cond, Label* lbl)        { append(new LIR_OpBranch(cond, lbl)); }
1886   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
1887     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
1888     append(new LIR_OpBranch(cond, type, block));
1889   }
1890   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
1891     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
1892     append(new LIR_OpBranch(cond, type, stub));
1893   }
1894   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
1895     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
1896     append(new LIR_OpBranch(cond, type, block, unordered));
1897   }
1898 
1899   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
1900   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
1901   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
1902 
1903   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
1904   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
1905   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
1906 
1907   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
1908   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
1909 
1910   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
1911     append(new LIR_OpRTCall(routine, tmp, result, arguments));
1912   }
1913 
1914   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
1915                     LIR_OprList* arguments, CodeEmitInfo* info) {
1916     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
1917   }
1918 
1919   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
1920   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, CodeStub* stub);
1921   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
1922 
1923   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
1924   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
1925   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
1926 
1927   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
1928 
1929   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
1930 
1931   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1932                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1933                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1934                   ciMethod* profiled_method, int profiled_bci);
1935   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch);
1936   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1937 
1938   // methodDataOop profiling
1939   void profile_call(ciMethod* method, int bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { append(new LIR_OpProfileCall(lir_profile_call, method, bci, mdo, recv, t1, cha_klass)); }
1940 };
1941 
1942 void print_LIR(BlockList* blocks);
1943 
1944 class LIR_InsertionBuffer : public CompilationResourceObj {
1945  private:
1946   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
1947 
1948   // list of insertion points. index and count are stored alternately:
1949   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
1950   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
1951   intStack    _index_and_count;
1952 
1953   // the LIR_Ops to be inserted
1954   LIR_OpList  _ops;
1955 
1956   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
1957   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
1958   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
1959 
1960 #ifdef ASSERT
1961   void verify();
1962 #endif
1963  public:
1964   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
1965 
1966   // must be called before using the insertion buffer
1967   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
1968   bool initialized() const  { return _lir != NULL; }
1969   // called automatically when the buffer is appended to the LIR_List
1970   void finish()             { _lir = NULL; }
1971 
1972   // accessors
1973   LIR_List*  lir_list() const             { return _lir; }
1974   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
1975   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
1976   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
1977 
1978   int number_of_ops() const               { return _ops.length(); }
1979   LIR_Op* op_at(int i) const              { return _ops.at(i); }
1980 
1981   // append an instruction to the buffer
1982   void append(int index, LIR_Op* op);
1983 
1984   // instruction
1985   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
1986 };
1987 
1988 
1989 //
1990 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
1991 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
1992 // information about the input, output and temporaries used by the
1993 // op to be recorded.  It also records whether the op has call semantics
1994 // and also records all the CodeEmitInfos used by this op.
1995 //
1996 
1997 
1998 class LIR_OpVisitState: public StackObj {
1999  public:
2000   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2001 
2002   enum {
2003     maxNumberOfOperands = 14,
2004     maxNumberOfInfos = 4
2005   };
2006 
2007  private:
2008   LIR_Op*          _op;
2009 
2010   // optimization: the operands and infos are not stored in a variable-length
2011   //               list, but in a fixed-size array to save time of size checks and resizing
2012   int              _oprs_len[numModes];
2013   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2014   int _info_len;
2015   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2016 
2017   bool             _has_call;
2018   bool             _has_slow_case;
2019 
2020 
2021   // only include register operands
2022   // addresses are decomposed to the base and index registers
2023   // constants and stack operands are ignored
2024   void append(LIR_Opr& opr, OprMode mode) {
2025     assert(opr->is_valid(), "should not call this otherwise");
2026     assert(mode >= 0 && mode < numModes, "bad mode");
2027 
2028     if (opr->is_register()) {
2029        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2030       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2031 
2032     } else if (opr->is_pointer()) {
2033       LIR_Address* address = opr->as_address_ptr();
2034       if (address != NULL) {
2035         // special handling for addresses: add base and index register of the address
2036         // both are always input operands!
2037         if (address->_base->is_valid()) {
2038           assert(address->_base->is_register(), "must be");
2039           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
2040           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_base;
2041         }
2042         if (address->_index->is_valid()) {
2043           assert(address->_index->is_register(), "must be");
2044           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
2045           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_index;
2046         }
2047 
2048       } else {
2049         assert(opr->is_constant(), "constant operands are not processed");
2050       }
2051     } else {
2052       assert(opr->is_stack(), "stack operands are not processed");
2053     }
2054   }
2055 
2056   void append(CodeEmitInfo* info) {
2057     assert(info != NULL, "should not call this otherwise");
2058     assert(_info_len < maxNumberOfInfos, "array overflow");
2059     _info_new[_info_len++] = info;
2060   }
2061 
2062  public:
2063   LIR_OpVisitState()         { reset(); }
2064 
2065   LIR_Op* op() const         { return _op; }
2066   void set_op(LIR_Op* op)    { reset(); _op = op; }
2067 
2068   bool has_call() const      { return _has_call; }
2069   bool has_slow_case() const { return _has_slow_case; }
2070 
2071   void reset() {
2072     _op = NULL;
2073     _has_call = false;
2074     _has_slow_case = false;
2075 
2076     _oprs_len[inputMode] = 0;
2077     _oprs_len[tempMode] = 0;
2078     _oprs_len[outputMode] = 0;
2079     _info_len = 0;
2080   }
2081 
2082 
2083   int opr_count(OprMode mode) const {
2084     assert(mode >= 0 && mode < numModes, "bad mode");
2085     return _oprs_len[mode];
2086   }
2087 
2088   LIR_Opr opr_at(OprMode mode, int index) const {
2089     assert(mode >= 0 && mode < numModes, "bad mode");
2090     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2091     return *_oprs_new[mode][index];
2092   }
2093 
2094   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2095     assert(mode >= 0 && mode < numModes, "bad mode");
2096     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2097     *_oprs_new[mode][index] = opr;
2098   }
2099 
2100   int info_count() const {
2101     return _info_len;
2102   }
2103 
2104   CodeEmitInfo* info_at(int index) const {
2105     assert(index < _info_len, "index out of bounds");
2106     return _info_new[index];
2107   }
2108 
2109   XHandlers* all_xhandler();
2110 
2111   // collects all register operands of the instruction
2112   void visit(LIR_Op* op);
2113 
2114 #if ASSERT
2115   // check that an operation has no operands
2116   bool no_operands(LIR_Op* op);
2117 #endif
2118 
2119   // LIR_Op visitor functions use these to fill in the state
2120   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2121   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2122   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2123   void do_info(CodeEmitInfo* info)        { append(info); }
2124 
2125   void do_stub(CodeStub* stub);
2126   void do_call()                          { _has_call = true; }
2127   void do_slow_case()                     { _has_slow_case = true; }
2128   void do_slow_case(CodeEmitInfo* info) {
2129     _has_slow_case = true;
2130     append(info);
2131   }
2132 };
2133 
2134 
2135 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };