1 /*
   2  * Copyright 1997-2005 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 #include "incls/_precompiled.incl"
  30 #include "incls/_domgraph.cpp.incl"
  31 
  32 //------------------------------Tarjan-----------------------------------------
  33 // A data structure that holds all the information needed to find dominators.
  34 struct Tarjan {
  35   Block *_block;                // Basic block for this info
  36 
  37   uint _semi;                   // Semi-dominators
  38   uint _size;                   // Used for faster LINK and EVAL
  39   Tarjan *_parent;              // Parent in DFS
  40   Tarjan *_label;               // Used for LINK and EVAL
  41   Tarjan *_ancestor;            // Used for LINK and EVAL
  42   Tarjan *_child;               // Used for faster LINK and EVAL
  43   Tarjan *_dom;                 // Parent in dominator tree (immediate dom)
  44   Tarjan *_bucket;              // Set of vertices with given semidominator
  45 
  46   Tarjan *_dom_child;           // Child in dominator tree
  47   Tarjan *_dom_next;            // Next in dominator tree
  48 
  49   // Fast union-find work
  50   void COMPRESS();
  51   Tarjan *EVAL(void);
  52   void LINK( Tarjan *w, Tarjan *tarjan0 );
  53 
  54   void setdepth( uint size );
  55 
  56 };
  57 
  58 //------------------------------Dominator--------------------------------------
  59 // Compute the dominator tree of the CFG.  The CFG must already have been
  60 // constructed.  This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
  61 void PhaseCFG::Dominators( ) {
  62   // Pre-grow the blocks array, prior to the ResourceMark kicking in
  63   _blocks.map(_num_blocks,0);
  64 
  65   ResourceMark rm;
  66   // Setup mappings from my Graph to Tarjan's stuff and back
  67   // Note: Tarjan uses 1-based arrays
  68   Tarjan *tarjan = NEW_RESOURCE_ARRAY(Tarjan,_num_blocks+1);
  69 
  70   // Tarjan's algorithm, almost verbatim:
  71   // Step 1:
  72   _rpo_ctr = _num_blocks;
  73   uint dfsnum = DFS( tarjan );
  74   if( dfsnum-1 != _num_blocks ) {// Check for unreachable loops!
  75     // If the returned dfsnum does not match the number of blocks, then we
  76     // must have some unreachable loops.  These can be made at any time by
  77     // IterGVN.  They are cleaned up by CCP or the loop opts, but the last
  78     // IterGVN can always make more that are not cleaned up.  Highly unlikely
  79     // except in ZKM.jar, where endless irreducible loops cause the loop opts
  80     // to not get run.
  81     //
  82     // Having found unreachable loops, we have made a bad RPO _block layout.
  83     // We can re-run the above DFS pass with the correct number of blocks,
  84     // and hack the Tarjan algorithm below to be robust in the presence of
  85     // such dead loops (as was done for the NTarjan code farther below).
  86     // Since this situation is so unlikely, instead I've decided to bail out.
  87     // CNC 7/24/2001
  88     C->record_method_not_compilable("unreachable loop");
  89     return;
  90   }
  91   _blocks._cnt = _num_blocks;
  92 
  93   // Tarjan is using 1-based arrays, so these are some initialize flags
  94   tarjan[0]._size = tarjan[0]._semi = 0;
  95   tarjan[0]._label = &tarjan[0];
  96 
  97   uint i;
  98   for( i=_num_blocks; i>=2; i-- ) { // For all vertices in DFS order
  99     Tarjan *w = &tarjan[i];     // Get vertex from DFS
 100 
 101     // Step 2:
 102     Node *whead = w->_block->head();
 103     for( uint j=1; j < whead->req(); j++ ) {
 104       Block *b = _bbs[whead->in(j)->_idx];
 105       Tarjan *vx = &tarjan[b->_pre_order];
 106       Tarjan *u = vx->EVAL();
 107       if( u->_semi < w->_semi )
 108         w->_semi = u->_semi;
 109     }
 110 
 111     // w is added to a bucket here, and only here.
 112     // Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
 113     // Thus bucket can be a linked list.
 114     // Thus we do not need a small integer name for each Block.
 115     w->_bucket = tarjan[w->_semi]._bucket;
 116     tarjan[w->_semi]._bucket = w;
 117 
 118     w->_parent->LINK( w, &tarjan[0] );
 119 
 120     // Step 3:
 121     for( Tarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
 122       Tarjan *u = vx->EVAL();
 123       vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
 124     }
 125   }
 126 
 127   // Step 4:
 128   for( i=2; i <= _num_blocks; i++ ) {
 129     Tarjan *w = &tarjan[i];
 130     if( w->_dom != &tarjan[w->_semi] )
 131       w->_dom = w->_dom->_dom;
 132     w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
 133   }
 134   // No immediate dominator for the root
 135   Tarjan *w = &tarjan[_broot->_pre_order];
 136   w->_dom = NULL;
 137   w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
 138 
 139   // Convert the dominator tree array into my kind of graph
 140   for( i=1; i<=_num_blocks;i++){// For all Tarjan vertices
 141     Tarjan *t = &tarjan[i];     // Handy access
 142     Tarjan *tdom = t->_dom;     // Handy access to immediate dominator
 143     if( tdom )  {               // Root has no immediate dominator
 144       t->_block->_idom = tdom->_block; // Set immediate dominator
 145       t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
 146       tdom->_dom_child = t;     // Make me a child of my parent
 147     } else
 148       t->_block->_idom = NULL;  // Root
 149   }
 150   w->setdepth( _num_blocks+1 ); // Set depth in dominator tree
 151 
 152 }
 153 
 154 //----------------------------Block_Stack--------------------------------------
 155 class Block_Stack {
 156   private:
 157     struct Block_Descr {
 158       Block  *block;     // Block
 159       int    index;      // Index of block's successor pushed on stack
 160       int    freq_idx;   // Index of block's most frequent successor
 161     };
 162     Block_Descr *_stack_top;
 163     Block_Descr *_stack_max;
 164     Block_Descr *_stack;
 165     Tarjan *_tarjan;
 166     uint most_frequent_successor( Block *b );
 167   public:
 168     Block_Stack(Tarjan *tarjan, int size) : _tarjan(tarjan) {
 169       _stack = NEW_RESOURCE_ARRAY(Block_Descr, size);
 170       _stack_max = _stack + size;
 171       _stack_top = _stack - 1; // stack is empty
 172     }
 173     void push(uint pre_order, Block *b) {
 174       Tarjan *t = &_tarjan[pre_order]; // Fast local access
 175       b->_pre_order = pre_order;    // Flag as visited
 176       t->_block = b;                // Save actual block
 177       t->_semi = pre_order;         // Block to DFS map
 178       t->_label = t;                // DFS to vertex map
 179       t->_ancestor = NULL;          // Fast LINK & EVAL setup
 180       t->_child = &_tarjan[0];      // Sentenial
 181       t->_size = 1;
 182       t->_bucket = NULL;
 183       if (pre_order == 1)
 184         t->_parent = NULL;          // first block doesn't have parent
 185       else {
 186         // Save parent (current top block on stack) in DFS
 187         t->_parent = &_tarjan[_stack_top->block->_pre_order];
 188       }
 189       // Now put this block on stack
 190       ++_stack_top;
 191       assert(_stack_top < _stack_max, ""); // assert if stack have to grow
 192       _stack_top->block  = b;
 193       _stack_top->index  = -1;
 194       // Find the index into b->succs[] array of the most frequent successor.
 195       _stack_top->freq_idx = most_frequent_successor(b); // freq_idx >= 0
 196     }
 197     Block* pop() { Block* b = _stack_top->block; _stack_top--; return b; }
 198     bool is_nonempty() { return (_stack_top >= _stack); }
 199     bool last_successor() { return (_stack_top->index == _stack_top->freq_idx); }
 200     Block* next_successor()  {
 201       int i = _stack_top->index;
 202       i++;
 203       if (i == _stack_top->freq_idx) i++;
 204       if (i >= (int)(_stack_top->block->_num_succs)) {
 205         i = _stack_top->freq_idx;   // process most frequent successor last
 206       }
 207       _stack_top->index = i;
 208       return _stack_top->block->_succs[ i ];
 209     }
 210 };
 211 
 212 //-------------------------most_frequent_successor-----------------------------
 213 // Find the index into the b->succs[] array of the most frequent successor.
 214 uint Block_Stack::most_frequent_successor( Block *b ) {
 215   uint freq_idx = 0;
 216   int eidx = b->end_idx();
 217   Node *n = b->_nodes[eidx];
 218   int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
 219   switch( op ) {
 220   case Op_CountedLoopEnd:
 221   case Op_If: {               // Split frequency amongst children
 222     float prob = n->as_MachIf()->_prob;
 223     // Is succ[0] the TRUE branch or the FALSE branch?
 224     if( b->_nodes[eidx+1]->Opcode() == Op_IfFalse )
 225       prob = 1.0f - prob;
 226     freq_idx = prob < PROB_FAIR;      // freq=1 for succ[0] < 0.5 prob
 227     break;
 228   }
 229   case Op_Catch:                // Split frequency amongst children
 230     for( freq_idx = 0; freq_idx < b->_num_succs; freq_idx++ )
 231       if( b->_nodes[eidx+1+freq_idx]->as_CatchProj()->_con == CatchProjNode::fall_through_index )
 232         break;
 233     // Handle case of no fall-thru (e.g., check-cast MUST throw an exception)
 234     if( freq_idx == b->_num_succs ) freq_idx = 0;
 235     break;
 236     // Currently there is no support for finding out the most
 237     // frequent successor for jumps, so lets just make it the first one
 238   case Op_Jump:
 239   case Op_Root:
 240   case Op_Goto:
 241   case Op_NeverBranch:
 242     freq_idx = 0;               // fall thru
 243     break;
 244   case Op_TailCall:
 245   case Op_TailJump:
 246   case Op_Return:
 247   case Op_Halt:
 248   case Op_Rethrow:
 249     break;
 250   default:
 251     ShouldNotReachHere();
 252   }
 253   return freq_idx;
 254 }
 255 
 256 //------------------------------DFS--------------------------------------------
 257 // Perform DFS search.  Setup 'vertex' as DFS to vertex mapping.  Setup
 258 // 'semi' as vertex to DFS mapping.  Set 'parent' to DFS parent.
 259 uint PhaseCFG::DFS( Tarjan *tarjan ) {
 260   Block *b = _broot;
 261   uint pre_order = 1;
 262   // Allocate stack of size _num_blocks+1 to avoid frequent realloc
 263   Block_Stack bstack(tarjan, _num_blocks+1);
 264 
 265   // Push on stack the state for the first block
 266   bstack.push(pre_order, b);
 267   ++pre_order;
 268 
 269   while (bstack.is_nonempty()) {
 270     if (!bstack.last_successor()) {
 271       // Walk over all successors in pre-order (DFS).
 272       Block *s = bstack.next_successor();
 273       if (s->_pre_order == 0) { // Check for no-pre-order, not-visited
 274         // Push on stack the state of successor
 275         bstack.push(pre_order, s);
 276         ++pre_order;
 277       }
 278     }
 279     else {
 280       // Build a reverse post-order in the CFG _blocks array
 281       Block *stack_top = bstack.pop();
 282       stack_top->_rpo = --_rpo_ctr;
 283       _blocks.map(stack_top->_rpo, stack_top);
 284     }
 285   }
 286   return pre_order;
 287 }
 288 
 289 //------------------------------COMPRESS---------------------------------------
 290 void Tarjan::COMPRESS()
 291 {
 292   assert( _ancestor != 0, "" );
 293   if( _ancestor->_ancestor != 0 ) {
 294     _ancestor->COMPRESS( );
 295     if( _ancestor->_label->_semi < _label->_semi )
 296       _label = _ancestor->_label;
 297     _ancestor = _ancestor->_ancestor;
 298   }
 299 }
 300 
 301 //------------------------------EVAL-------------------------------------------
 302 Tarjan *Tarjan::EVAL() {
 303   if( !_ancestor ) return _label;
 304   COMPRESS();
 305   return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
 306 }
 307 
 308 //------------------------------LINK-------------------------------------------
 309 void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) {
 310   Tarjan *s = w;
 311   while( w->_label->_semi < s->_child->_label->_semi ) {
 312     if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
 313       s->_child->_ancestor = s;
 314       s->_child = s->_child->_child;
 315     } else {
 316       s->_child->_size = s->_size;
 317       s = s->_ancestor = s->_child;
 318     }
 319   }
 320   s->_label = w->_label;
 321   _size += w->_size;
 322   if( _size < (w->_size << 1) ) {
 323     Tarjan *tmp = s; s = _child; _child = tmp;
 324   }
 325   while( s != tarjan0 ) {
 326     s->_ancestor = this;
 327     s = s->_child;
 328   }
 329 }
 330 
 331 //------------------------------setdepth---------------------------------------
 332 void Tarjan::setdepth( uint stack_size ) {
 333   Tarjan **top  = NEW_RESOURCE_ARRAY(Tarjan*, stack_size);
 334   Tarjan **next = top;
 335   Tarjan **last;
 336   uint depth = 0;
 337   *top = this;
 338   ++top;
 339   do {
 340     // next level
 341     ++depth;
 342     last = top;
 343     do {
 344       // Set current depth for all tarjans on this level
 345       Tarjan *t = *next;     // next tarjan from stack
 346       ++next;
 347       do {
 348         t->_block->_dom_depth = depth; // Set depth in dominator tree
 349         Tarjan *dom_child = t->_dom_child;
 350         t = t->_dom_next;    // next tarjan
 351         if (dom_child != NULL) {
 352           *top = dom_child;  // save child on stack
 353           ++top;
 354         }
 355       } while (t != NULL);
 356     } while (next < last);
 357   } while (last < top);
 358 }
 359 
 360 //*********************** DOMINATORS ON THE SEA OF NODES***********************
 361 //------------------------------NTarjan----------------------------------------
 362 // A data structure that holds all the information needed to find dominators.
 363 struct NTarjan {
 364   Node *_control;               // Control node associated with this info
 365 
 366   uint _semi;                   // Semi-dominators
 367   uint _size;                   // Used for faster LINK and EVAL
 368   NTarjan *_parent;             // Parent in DFS
 369   NTarjan *_label;              // Used for LINK and EVAL
 370   NTarjan *_ancestor;           // Used for LINK and EVAL
 371   NTarjan *_child;              // Used for faster LINK and EVAL
 372   NTarjan *_dom;                // Parent in dominator tree (immediate dom)
 373   NTarjan *_bucket;             // Set of vertices with given semidominator
 374 
 375   NTarjan *_dom_child;          // Child in dominator tree
 376   NTarjan *_dom_next;           // Next in dominator tree
 377 
 378   // Perform DFS search.
 379   // Setup 'vertex' as DFS to vertex mapping.
 380   // Setup 'semi' as vertex to DFS mapping.
 381   // Set 'parent' to DFS parent.
 382   static int DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder );
 383   void setdepth( uint size, uint *dom_depth );
 384 
 385   // Fast union-find work
 386   void COMPRESS();
 387   NTarjan *EVAL(void);
 388   void LINK( NTarjan *w, NTarjan *ntarjan0 );
 389 #ifndef PRODUCT
 390   void dump(int offset) const;
 391 #endif
 392 };
 393 
 394 //------------------------------Dominator--------------------------------------
 395 // Compute the dominator tree of the sea of nodes.  This version walks all CFG
 396 // nodes (using the is_CFG() call) and places them in a dominator tree.  Thus,
 397 // it needs a count of the CFG nodes for the mapping table. This is the
 398 // Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
 399 void PhaseIdealLoop::Dominators() {
 400   ResourceMark rm;
 401   // Setup mappings from my Graph to Tarjan's stuff and back
 402   // Note: Tarjan uses 1-based arrays
 403   NTarjan *ntarjan = NEW_RESOURCE_ARRAY(NTarjan,C->unique()+1);
 404   // Initialize _control field for fast reference
 405   int i;
 406   for( i= C->unique()-1; i>=0; i-- )
 407     ntarjan[i]._control = NULL;
 408 
 409   // Store the DFS order for the main loop
 410   uint *dfsorder = NEW_RESOURCE_ARRAY(uint,C->unique()+1);
 411   memset(dfsorder, max_uint, (C->unique()+1) * sizeof(uint));
 412 
 413   // Tarjan's algorithm, almost verbatim:
 414   // Step 1:
 415   VectorSet visited(Thread::current()->resource_area());
 416   int dfsnum = NTarjan::DFS( ntarjan, visited, this, dfsorder);
 417 
 418   // Tarjan is using 1-based arrays, so these are some initialize flags
 419   ntarjan[0]._size = ntarjan[0]._semi = 0;
 420   ntarjan[0]._label = &ntarjan[0];
 421 
 422   for( i = dfsnum-1; i>1; i-- ) {        // For all nodes in reverse DFS order
 423     NTarjan *w = &ntarjan[i];            // Get Node from DFS
 424     assert(w->_control != NULL,"bad DFS walk");
 425 
 426     // Step 2:
 427     Node *whead = w->_control;
 428     for( uint j=0; j < whead->req(); j++ ) { // For each predecessor
 429       if( whead->in(j) == NULL || !whead->in(j)->is_CFG() )
 430         continue;                            // Only process control nodes
 431       uint b = dfsorder[whead->in(j)->_idx];
 432       if(b == max_uint) continue;
 433       NTarjan *vx = &ntarjan[b];
 434       NTarjan *u = vx->EVAL();
 435       if( u->_semi < w->_semi )
 436         w->_semi = u->_semi;
 437     }
 438 
 439     // w is added to a bucket here, and only here.
 440     // Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
 441     // Thus bucket can be a linked list.
 442     w->_bucket = ntarjan[w->_semi]._bucket;
 443     ntarjan[w->_semi]._bucket = w;
 444 
 445     w->_parent->LINK( w, &ntarjan[0] );
 446 
 447     // Step 3:
 448     for( NTarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
 449       NTarjan *u = vx->EVAL();
 450       vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
 451     }
 452 
 453     // Cleanup any unreachable loops now.  Unreachable loops are loops that
 454     // flow into the main graph (and hence into ROOT) but are not reachable
 455     // from above.  Such code is dead, but requires a global pass to detect
 456     // it; this global pass was the 'build_loop_tree' pass run just prior.
 457     if( !_verify_only && whead->is_Region() ) {
 458       for( uint i = 1; i < whead->req(); i++ ) {
 459         if (!has_node(whead->in(i))) {
 460           // Kill dead input path
 461           assert( !visited.test(whead->in(i)->_idx),
 462                   "input with no loop must be dead" );
 463           _igvn.hash_delete(whead);
 464           whead->del_req(i);
 465           _igvn._worklist.push(whead);
 466           for (DUIterator_Fast jmax, j = whead->fast_outs(jmax); j < jmax; j++) {
 467             Node* p = whead->fast_out(j);
 468             if( p->is_Phi() ) {
 469               _igvn.hash_delete(p);
 470               p->del_req(i);
 471               _igvn._worklist.push(p);
 472             }
 473           }
 474           i--;                  // Rerun same iteration
 475         } // End of if dead input path
 476       } // End of for all input paths
 477     } // End if if whead is a Region
 478   } // End of for all Nodes in reverse DFS order
 479 
 480   // Step 4:
 481   for( i=2; i < dfsnum; i++ ) { // DFS order
 482     NTarjan *w = &ntarjan[i];
 483     assert(w->_control != NULL,"Bad DFS walk");
 484     if( w->_dom != &ntarjan[w->_semi] )
 485       w->_dom = w->_dom->_dom;
 486     w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
 487   }
 488   // No immediate dominator for the root
 489   NTarjan *w = &ntarjan[dfsorder[C->root()->_idx]];
 490   w->_dom = NULL;
 491   w->_parent = NULL;
 492   w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
 493 
 494   // Convert the dominator tree array into my kind of graph
 495   for( i=1; i<dfsnum; i++ ) {          // For all Tarjan vertices
 496     NTarjan *t = &ntarjan[i];          // Handy access
 497     assert(t->_control != NULL,"Bad DFS walk");
 498     NTarjan *tdom = t->_dom;           // Handy access to immediate dominator
 499     if( tdom )  {                      // Root has no immediate dominator
 500       _idom[t->_control->_idx] = tdom->_control; // Set immediate dominator
 501       t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
 502       tdom->_dom_child = t;            // Make me a child of my parent
 503     } else
 504       _idom[C->root()->_idx] = NULL; // Root
 505   }
 506   w->setdepth( C->unique()+1, _dom_depth ); // Set depth in dominator tree
 507   // Pick up the 'top' node as well
 508   _idom     [C->top()->_idx] = C->root();
 509   _dom_depth[C->top()->_idx] = 1;
 510 
 511   // Debug Print of Dominator tree
 512   if( PrintDominators ) {
 513 #ifndef PRODUCT
 514     w->dump(0);
 515 #endif
 516   }
 517 }
 518 
 519 //------------------------------DFS--------------------------------------------
 520 // Perform DFS search.  Setup 'vertex' as DFS to vertex mapping.  Setup
 521 // 'semi' as vertex to DFS mapping.  Set 'parent' to DFS parent.
 522 int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) {
 523   // Allocate stack of size C->unique()/8 to avoid frequent realloc
 524   GrowableArray <Node *> dfstack(pil->C->unique() >> 3);
 525   Node *b = pil->C->root();
 526   int dfsnum = 1;
 527   dfsorder[b->_idx] = dfsnum; // Cache parent's dfsnum for a later use
 528   dfstack.push(b);
 529 
 530   while (dfstack.is_nonempty()) {
 531     b = dfstack.pop();
 532     if( !visited.test_set(b->_idx) ) { // Test node and flag it as visited
 533       NTarjan *w = &ntarjan[dfsnum];
 534       // Only fully process control nodes
 535       w->_control = b;                 // Save actual node
 536       // Use parent's cached dfsnum to identify "Parent in DFS"
 537       w->_parent = &ntarjan[dfsorder[b->_idx]];
 538       dfsorder[b->_idx] = dfsnum;      // Save DFS order info
 539       w->_semi = dfsnum;               // Node to DFS map
 540       w->_label = w;                   // DFS to vertex map
 541       w->_ancestor = NULL;             // Fast LINK & EVAL setup
 542       w->_child = &ntarjan[0];         // Sentinal
 543       w->_size = 1;
 544       w->_bucket = NULL;
 545 
 546       // Need DEF-USE info for this pass
 547       for ( int i = b->outcnt(); i-- > 0; ) { // Put on stack backwards
 548         Node* s = b->raw_out(i);       // Get a use
 549         // CFG nodes only and not dead stuff
 550         if( s->is_CFG() && pil->has_node(s) && !visited.test(s->_idx) ) {
 551           dfsorder[s->_idx] = dfsnum;  // Cache parent's dfsnum for a later use
 552           dfstack.push(s);
 553         }
 554       }
 555       dfsnum++;  // update after parent's dfsnum has been cached.
 556     }
 557   }
 558 
 559   return dfsnum;
 560 }
 561 
 562 //------------------------------COMPRESS---------------------------------------
 563 void NTarjan::COMPRESS()
 564 {
 565   assert( _ancestor != 0, "" );
 566   if( _ancestor->_ancestor != 0 ) {
 567     _ancestor->COMPRESS( );
 568     if( _ancestor->_label->_semi < _label->_semi )
 569       _label = _ancestor->_label;
 570     _ancestor = _ancestor->_ancestor;
 571   }
 572 }
 573 
 574 //------------------------------EVAL-------------------------------------------
 575 NTarjan *NTarjan::EVAL() {
 576   if( !_ancestor ) return _label;
 577   COMPRESS();
 578   return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
 579 }
 580 
 581 //------------------------------LINK-------------------------------------------
 582 void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) {
 583   NTarjan *s = w;
 584   while( w->_label->_semi < s->_child->_label->_semi ) {
 585     if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
 586       s->_child->_ancestor = s;
 587       s->_child = s->_child->_child;
 588     } else {
 589       s->_child->_size = s->_size;
 590       s = s->_ancestor = s->_child;
 591     }
 592   }
 593   s->_label = w->_label;
 594   _size += w->_size;
 595   if( _size < (w->_size << 1) ) {
 596     NTarjan *tmp = s; s = _child; _child = tmp;
 597   }
 598   while( s != ntarjan0 ) {
 599     s->_ancestor = this;
 600     s = s->_child;
 601   }
 602 }
 603 
 604 //------------------------------setdepth---------------------------------------
 605 void NTarjan::setdepth( uint stack_size, uint *dom_depth ) {
 606   NTarjan **top  = NEW_RESOURCE_ARRAY(NTarjan*, stack_size);
 607   NTarjan **next = top;
 608   NTarjan **last;
 609   uint depth = 0;
 610   *top = this;
 611   ++top;
 612   do {
 613     // next level
 614     ++depth;
 615     last = top;
 616     do {
 617       // Set current depth for all tarjans on this level
 618       NTarjan *t = *next;    // next tarjan from stack
 619       ++next;
 620       do {
 621         dom_depth[t->_control->_idx] = depth; // Set depth in dominator tree
 622         NTarjan *dom_child = t->_dom_child;
 623         t = t->_dom_next;    // next tarjan
 624         if (dom_child != NULL) {
 625           *top = dom_child;  // save child on stack
 626           ++top;
 627         }
 628       } while (t != NULL);
 629     } while (next < last);
 630   } while (last < top);
 631 }
 632 
 633 //------------------------------dump-------------------------------------------
 634 #ifndef PRODUCT
 635 void NTarjan::dump(int offset) const {
 636   // Dump the data from this node
 637   int i;
 638   for(i = offset; i >0; i--)  // Use indenting for tree structure
 639     tty->print("  ");
 640   tty->print("Dominator Node: ");
 641   _control->dump();               // Control node for this dom node
 642   tty->print("\n");
 643   for(i = offset; i >0; i--)      // Use indenting for tree structure
 644     tty->print("  ");
 645   tty->print("semi:%d, size:%d\n",_semi, _size);
 646   for(i = offset; i >0; i--)      // Use indenting for tree structure
 647     tty->print("  ");
 648   tty->print("DFS Parent: ");
 649   if(_parent != NULL)
 650     _parent->_control->dump();    // Parent in DFS
 651   tty->print("\n");
 652   for(i = offset; i >0; i--)      // Use indenting for tree structure
 653     tty->print("  ");
 654   tty->print("Dom Parent: ");
 655   if(_dom != NULL)
 656     _dom->_control->dump();       // Parent in Dominator Tree
 657   tty->print("\n");
 658 
 659   // Recurse over remaining tree
 660   if( _dom_child ) _dom_child->dump(offset+2);   // Children in dominator tree
 661   if( _dom_next  ) _dom_next ->dump(offset  );   // Siblings in dominator tree
 662 
 663 }
 664 #endif