1 /*
   2  * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 class CmpNode;
  26 class CountedLoopEndNode;
  27 class CountedLoopNode;
  28 class IdealLoopTree;
  29 class LoopNode;
  30 class Node;
  31 class PhaseIdealLoop;
  32 class VectorSet;
  33 struct small_cache;
  34 
  35 //
  36 //                  I D E A L I Z E D   L O O P S
  37 //
  38 // Idealized loops are the set of loops I perform more interesting
  39 // transformations on, beyond simple hoisting.
  40 
  41 //------------------------------LoopNode---------------------------------------
  42 // Simple loop header.  Fall in path on left, loop-back path on right.
  43 class LoopNode : public RegionNode {
  44   // Size is bigger to hold the flags.  However, the flags do not change
  45   // the semantics so it does not appear in the hash & cmp functions.
  46   virtual uint size_of() const { return sizeof(*this); }
  47 protected:
  48   short _loop_flags;
  49   // Names for flag bitfields
  50   enum { pre_post_main=0, inner_loop=8, partial_peel_loop=16, partial_peel_failed=32  };
  51   char _unswitch_count;
  52   enum { _unswitch_max=3 };
  53 
  54 public:
  55   // Names for edge indices
  56   enum { Self=0, EntryControl, LoopBackControl };
  57 
  58   int is_inner_loop() const { return _loop_flags & inner_loop; }
  59   void set_inner_loop() { _loop_flags |= inner_loop; }
  60 
  61   int is_partial_peel_loop() const { return _loop_flags & partial_peel_loop; }
  62   void set_partial_peel_loop() { _loop_flags |= partial_peel_loop; }
  63   int partial_peel_has_failed() const { return _loop_flags & partial_peel_failed; }
  64   void mark_partial_peel_failed() { _loop_flags |= partial_peel_failed; }
  65 
  66   int unswitch_max() { return _unswitch_max; }
  67   int unswitch_count() { return _unswitch_count; }
  68   void set_unswitch_count(int val) {
  69     assert (val <= unswitch_max(), "too many unswitches");
  70     _unswitch_count = val;
  71   }
  72 
  73   LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
  74     init_class_id(Class_Loop);
  75     init_req(EntryControl, entry);
  76     init_req(LoopBackControl, backedge);
  77   }
  78 
  79   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  80   virtual int Opcode() const;
  81   bool can_be_counted_loop(PhaseTransform* phase) const {
  82     return req() == 3 && in(0) != NULL &&
  83       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
  84       in(2) != NULL && phase->type(in(2)) != Type::TOP;
  85   }
  86 #ifndef PRODUCT
  87   virtual void dump_spec(outputStream *st) const;
  88 #endif
  89 };
  90 
  91 //------------------------------Counted Loops----------------------------------
  92 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
  93 // path (and maybe some other exit paths).  The trip-counter exit is always
  94 // last in the loop.  The trip-counter does not have to stride by a constant,
  95 // but it does have to stride by a loop-invariant amount; the exit value is
  96 // also loop invariant.
  97 
  98 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
  99 // CountedLoopNode has the incoming loop control and the loop-back-control
 100 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 101 // CountedLoopEndNode has an incoming control (possibly not the
 102 // CountedLoopNode if there is control flow in the loop), the post-increment
 103 // trip-counter value, and the limit.  The trip-counter value is always of
 104 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 105 // by a Phi connected to the CountedLoopNode.  The stride is loop invariant.
 106 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 107 // CountedLoopEndNode also takes in the loop-invariant limit value.
 108 
 109 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 110 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 111 // via the old-trip-counter from the Op node.
 112 
 113 //------------------------------CountedLoopNode--------------------------------
 114 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 115 // inputs the incoming loop-start control and the loop-back control, so they
 116 // act like RegionNodes.  They also take in the initial trip counter, the
 117 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 118 // produce a loop-body control and the trip counter value.  Since
 119 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 120 
 121 class CountedLoopNode : public LoopNode {
 122   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 123   // the semantics so it does not appear in the hash & cmp functions.
 124   virtual uint size_of() const { return sizeof(*this); }
 125 
 126   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 127   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 128   node_idx_t _main_idx;
 129 
 130   // Known trip count calculated by policy_maximally_unroll
 131   int   _trip_count;
 132 
 133   // Expected trip count from profile data
 134   float _profile_trip_cnt;
 135 
 136   // Log2 of original loop bodies in unrolled loop
 137   int _unrolled_count_log2;
 138 
 139   // Node count prior to last unrolling - used to decide if
 140   // unroll,optimize,unroll,optimize,... is making progress
 141   int _node_count_before_unroll;
 142 
 143 public:
 144   CountedLoopNode( Node *entry, Node *backedge )
 145     : LoopNode(entry, backedge), _trip_count(max_jint),
 146       _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
 147       _node_count_before_unroll(0) {
 148     init_class_id(Class_CountedLoop);
 149     // Initialize _trip_count to the largest possible value.
 150     // Will be reset (lower) if the loop's trip count is known.
 151   }
 152 
 153   virtual int Opcode() const;
 154   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 155 
 156   Node *init_control() const { return in(EntryControl); }
 157   Node *back_control() const { return in(LoopBackControl); }
 158   CountedLoopEndNode *loopexit() const;
 159   Node *init_trip() const;
 160   Node *stride() const;
 161   int   stride_con() const;
 162   bool  stride_is_con() const;
 163   Node *limit() const;
 164   Node *incr() const;
 165   Node *phi() const;
 166 
 167   // Match increment with optional truncation
 168   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
 169 
 170   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 171   // can run short a few iterations and may start a few iterations in.
 172   // It will be RCE'd and unrolled and aligned.
 173 
 174   // A following 'post' loop will run any remaining iterations.  Used
 175   // during Range Check Elimination, the 'post' loop will do any final
 176   // iterations with full checks.  Also used by Loop Unrolling, where
 177   // the 'post' loop will do any epilog iterations needed.  Basically,
 178   // a 'post' loop can not profitably be further unrolled or RCE'd.
 179 
 180   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 181   // it may do under-flow checks for RCE and may do alignment iterations
 182   // so the following main loop 'knows' that it is striding down cache
 183   // lines.
 184 
 185   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 186   // Aligned, may be missing it's pre-loop.
 187   enum { Normal=0, Pre=1, Main=2, Post=3, PrePostFlagsMask=3, Main_Has_No_Pre_Loop=4 };
 188   int is_normal_loop() const { return (_loop_flags&PrePostFlagsMask) == Normal; }
 189   int is_pre_loop   () const { return (_loop_flags&PrePostFlagsMask) == Pre;    }
 190   int is_main_loop  () const { return (_loop_flags&PrePostFlagsMask) == Main;   }
 191   int is_post_loop  () const { return (_loop_flags&PrePostFlagsMask) == Post;   }
 192   int is_main_no_pre_loop() const { return _loop_flags & Main_Has_No_Pre_Loop; }
 193   void set_main_no_pre_loop() { _loop_flags |= Main_Has_No_Pre_Loop; }
 194 
 195   int main_idx() const { return _main_idx; }
 196 
 197 
 198   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 199   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 200   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 201   void set_normal_loop(                    ) { _loop_flags &= ~PrePostFlagsMask; }
 202 
 203   void set_trip_count(int tc) { _trip_count = tc; }
 204   int trip_count()            { return _trip_count; }
 205 
 206   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 207   float profile_trip_cnt()             { return _profile_trip_cnt; }
 208 
 209   void double_unrolled_count() { _unrolled_count_log2++; }
 210   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 211 
 212   void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; }
 213   int  node_count_before_unroll()           { return _node_count_before_unroll; }
 214 
 215 #ifndef PRODUCT
 216   virtual void dump_spec(outputStream *st) const;
 217 #endif
 218 };
 219 
 220 //------------------------------CountedLoopEndNode-----------------------------
 221 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 222 // IfNodes.
 223 class CountedLoopEndNode : public IfNode {
 224 public:
 225   enum { TestControl, TestValue };
 226 
 227   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
 228     : IfNode( control, test, prob, cnt) {
 229     init_class_id(Class_CountedLoopEnd);
 230   }
 231   virtual int Opcode() const;
 232 
 233   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
 234   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 235   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 236   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 237   Node *phi() const                 { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 238   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 239   int stride_con() const;
 240   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
 241   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 242   CountedLoopNode *loopnode() const {
 243     Node *ln = phi()->in(0);
 244     assert( ln->Opcode() == Op_CountedLoop, "malformed loop" );
 245     return (CountedLoopNode*)ln; }
 246 
 247 #ifndef PRODUCT
 248   virtual void dump_spec(outputStream *st) const;
 249 #endif
 250 };
 251 
 252 
 253 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
 254   Node *bc = back_control();
 255   if( bc == NULL ) return NULL;
 256   Node *le = bc->in(0);
 257   if( le->Opcode() != Op_CountedLoopEnd )
 258     return NULL;
 259   return (CountedLoopEndNode*)le;
 260 }
 261 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
 262 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
 263 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
 264 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
 265 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
 266 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
 267 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
 268 
 269 
 270 // -----------------------------IdealLoopTree----------------------------------
 271 class IdealLoopTree : public ResourceObj {
 272 public:
 273   IdealLoopTree *_parent;       // Parent in loop tree
 274   IdealLoopTree *_next;         // Next sibling in loop tree
 275   IdealLoopTree *_child;        // First child in loop tree
 276 
 277   // The head-tail backedge defines the loop.
 278   // If tail is NULL then this loop has multiple backedges as part of the
 279   // same loop.  During cleanup I'll peel off the multiple backedges; merge
 280   // them at the loop bottom and flow 1 real backedge into the loop.
 281   Node *_head;                  // Head of loop
 282   Node *_tail;                  // Tail of loop
 283   inline Node *tail();          // Handle lazy update of _tail field
 284   PhaseIdealLoop* _phase;
 285 
 286   Node_List _body;              // Loop body for inner loops
 287 
 288   uint8 _nest;                  // Nesting depth
 289   uint8 _irreducible:1,         // True if irreducible
 290         _has_call:1,            // True if has call safepoint
 291         _has_sfpt:1,            // True if has non-call safepoint
 292         _rce_candidate:1;       // True if candidate for range check elimination
 293 
 294   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 295   bool  _allow_optimizations;   // Allow loop optimizations
 296 
 297   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 298     : _parent(0), _next(0), _child(0),
 299       _head(head), _tail(tail),
 300       _phase(phase),
 301       _required_safept(NULL),
 302       _allow_optimizations(true),
 303       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0)
 304   { }
 305 
 306   // Is 'l' a member of 'this'?
 307   int is_member( const IdealLoopTree *l ) const; // Test for nested membership
 308 
 309   // Set loop nesting depth.  Accumulate has_call bits.
 310   int set_nest( uint depth );
 311 
 312   // Split out multiple fall-in edges from the loop header.  Move them to a
 313   // private RegionNode before the loop.  This becomes the loop landing pad.
 314   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 315 
 316   // Split out the outermost loop from this shared header.
 317   void split_outer_loop( PhaseIdealLoop *phase );
 318 
 319   // Merge all the backedges from the shared header into a private Region.
 320   // Feed that region as the one backedge to this loop.
 321   void merge_many_backedges( PhaseIdealLoop *phase );
 322 
 323   // Split shared headers and insert loop landing pads.
 324   // Insert a LoopNode to replace the RegionNode.
 325   // Returns TRUE if loop tree is structurally changed.
 326   bool beautify_loops( PhaseIdealLoop *phase );
 327 
 328   // Perform iteration-splitting on inner loops.  Split iterations to
 329   // avoid range checks or one-shot null checks.  Returns false if the
 330   // current round of loop opts should stop.
 331   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 332 
 333   // Driver for various flavors of iteration splitting.  Returns false
 334   // if the current round of loop opts should stop.
 335   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 336 
 337   // Given dominators, try to find loops with calls that must always be
 338   // executed (call dominates loop tail).  These loops do not need non-call
 339   // safepoints (ncsfpt).
 340   void check_safepts(VectorSet &visited, Node_List &stack);
 341 
 342   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 343   // encountered.
 344   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 345 
 346   // Convert to counted loops where possible
 347   void counted_loop( PhaseIdealLoop *phase );
 348 
 349   // Check for Node being a loop-breaking test
 350   Node *is_loop_exit(Node *iff) const;
 351 
 352   // Returns true if ctrl is executed on every complete iteration
 353   bool dominates_backedge(Node* ctrl);
 354 
 355   // Remove simplistic dead code from loop body
 356   void DCE_loop_body();
 357 
 358   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 359   // Replace with a 1-in-10 exit guess.
 360   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 361 
 362   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 363   // Useful for unrolling loops with NO array accesses.
 364   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 365 
 366   // Return TRUE or FALSE if the loop should be unswitched -- clone
 367   // loop with an invariant test
 368   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 369 
 370   // Micro-benchmark spamming.  Remove empty loops.
 371   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
 372 
 373   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 374   // make some loop-invariant test (usually a null-check) happen before the
 375   // loop.
 376   bool policy_peeling( PhaseIdealLoop *phase ) const;
 377 
 378   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 379   // known trip count in the counted loop node.
 380   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
 381 
 382   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 383   // the loop is a CountedLoop and the body is small enough.
 384   bool policy_unroll( PhaseIdealLoop *phase ) const;
 385 
 386   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 387   // Gather a list of IF tests that are dominated by iteration splitting;
 388   // also gather the end of the first split and the start of the 2nd split.
 389   bool policy_range_check( PhaseIdealLoop *phase ) const;
 390 
 391   // Return TRUE or FALSE if the loop should be cache-line aligned.
 392   // Gather the expression that does the alignment.  Note that only
 393   // one array base can be aligned in a loop (unless the VM guarantees
 394   // mutual alignment).  Note that if we vectorize short memory ops
 395   // into longer memory ops, we may want to increase alignment.
 396   bool policy_align( PhaseIdealLoop *phase ) const;
 397 
 398   // Compute loop trip count from profile data
 399   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 400 
 401   // Reassociate invariant expressions.
 402   void reassociate_invariants(PhaseIdealLoop *phase);
 403   // Reassociate invariant add and subtract expressions.
 404   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
 405   // Return nonzero index of invariant operand if invariant and variant
 406   // are combined with an Add or Sub. Helper for reassociate_invariants.
 407   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
 408 
 409   // Return true if n is invariant
 410   bool is_invariant(Node* n) const;
 411 
 412   // Put loop body on igvn work list
 413   void record_for_igvn();
 414 
 415   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
 416   bool is_inner()   { return is_loop() && _child == NULL; }
 417   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
 418 
 419 #ifndef PRODUCT
 420   void dump_head( ) const;      // Dump loop head only
 421   void dump() const;            // Dump this loop recursively
 422   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
 423 #endif
 424 
 425 };
 426 
 427 // -----------------------------PhaseIdealLoop---------------------------------
 428 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
 429 // loop tree.  Drives the loop-based transformations on the ideal graph.
 430 class PhaseIdealLoop : public PhaseTransform {
 431   friend class IdealLoopTree;
 432   friend class SuperWord;
 433   // Pre-computed def-use info
 434   PhaseIterGVN &_igvn;
 435 
 436   // Head of loop tree
 437   IdealLoopTree *_ltree_root;
 438 
 439   // Array of pre-order numbers, plus post-visited bit.
 440   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 441   // ODD for post-visited.  Other bits are the pre-order number.
 442   uint *_preorders;
 443   uint _max_preorder;
 444 
 445   const PhaseIdealLoop* _verify_me;
 446   bool _verify_only;
 447 
 448   // Allocate _preorders[] array
 449   void allocate_preorders() {
 450     _max_preorder = C->unique()+8;
 451     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 452     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 453   }
 454 
 455   // Allocate _preorders[] array
 456   void reallocate_preorders() {
 457     if ( _max_preorder < C->unique() ) {
 458       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 459       _max_preorder = C->unique();
 460     }
 461     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 462   }
 463 
 464   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 465   // adds new nodes.
 466   void check_grow_preorders( ) {
 467     if ( _max_preorder < C->unique() ) {
 468       uint newsize = _max_preorder<<1;  // double size of array
 469       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 470       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 471       _max_preorder = newsize;
 472     }
 473   }
 474   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 475   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 476   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 477   void set_preorder_visited( Node *n, int pre_order ) {
 478     assert( !is_visited( n ), "already set" );
 479     _preorders[n->_idx] = (pre_order<<1);
 480   };
 481   // Return pre-order number.
 482   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 483 
 484   // Check for being post-visited.
 485   // Should be previsited already (checked with assert(is_visited(n))).
 486   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 487 
 488   // Mark as post visited
 489   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 490 
 491   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 492   // Returns true if "n" is a data node, false if it's a control node.
 493   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
 494 
 495   // clear out dead code after build_loop_late
 496   Node_List _deadlist;
 497 
 498   // Support for faster execution of get_late_ctrl()/dom_lca()
 499   // when a node has many uses and dominator depth is deep.
 500   Node_Array _dom_lca_tags;
 501   void   init_dom_lca_tags();
 502   void   clear_dom_lca_tags();
 503 
 504   // Helper for debugging bad dominance relationships
 505   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 506 
 507   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 508 
 509   // Inline wrapper for frequent cases:
 510   // 1) only one use
 511   // 2) a use is the same as the current LCA passed as 'n1'
 512   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 513     assert( n->is_CFG(), "" );
 514     // Fast-path NULL lca
 515     if( lca != NULL && lca != n ) {
 516       assert( lca->is_CFG(), "" );
 517       // find LCA of all uses
 518       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 519     }
 520     return find_non_split_ctrl(n);
 521   }
 522   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 523 
 524   // true if CFG node d dominates CFG node n
 525   bool is_dominator(Node *d, Node *n);
 526 
 527   // Helper function for directing control inputs away from CFG split
 528   // points.
 529   Node *find_non_split_ctrl( Node *ctrl ) const {
 530     if (ctrl != NULL) {
 531       if (ctrl->is_MultiBranch()) {
 532         ctrl = ctrl->in(0);
 533       }
 534       assert(ctrl->is_CFG(), "CFG");
 535     }
 536     return ctrl;
 537   }
 538 
 539 public:
 540   bool has_node( Node* n ) const { return _nodes[n->_idx] != NULL; }
 541   // check if transform created new nodes that need _ctrl recorded
 542   Node *get_late_ctrl( Node *n, Node *early );
 543   Node *get_early_ctrl( Node *n );
 544   void set_early_ctrl( Node *n );
 545   void set_subtree_ctrl( Node *root );
 546   void set_ctrl( Node *n, Node *ctrl ) {
 547     assert( !has_node(n) || has_ctrl(n), "" );
 548     assert( ctrl->in(0), "cannot set dead control node" );
 549     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 550     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
 551   }
 552   // Set control and update loop membership
 553   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 554     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 555     IdealLoopTree* new_loop = get_loop(ctrl);
 556     if (old_loop != new_loop) {
 557       if (old_loop->_child == NULL) old_loop->_body.yank(n);
 558       if (new_loop->_child == NULL) new_loop->_body.push(n);
 559     }
 560     set_ctrl(n, ctrl);
 561   }
 562   // Control nodes can be replaced or subsumed.  During this pass they
 563   // get their replacement Node in slot 1.  Instead of updating the block
 564   // location of all Nodes in the subsumed block, we lazily do it.  As we
 565   // pull such a subsumed block out of the array, we write back the final
 566   // correct block.
 567   Node *get_ctrl( Node *i ) {
 568     assert(has_node(i), "");
 569     Node *n = get_ctrl_no_update(i);
 570     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
 571     assert(has_node(i) && has_ctrl(i), "");
 572     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
 573     return n;
 574   }
 575 
 576 private:
 577   Node *get_ctrl_no_update( Node *i ) const {
 578     assert( has_ctrl(i), "" );
 579     Node *n = (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
 580     if (!n->in(0)) {
 581       // Skip dead CFG nodes
 582       do {
 583         n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 584       } while (!n->in(0));
 585       n = find_non_split_ctrl(n);
 586     }
 587     return n;
 588   }
 589 
 590   // Check for loop being set
 591   // "n" must be a control node. Returns true if "n" is known to be in a loop.
 592   bool has_loop( Node *n ) const {
 593     assert(!has_node(n) || !has_ctrl(n), "");
 594     return has_node(n);
 595   }
 596   // Set loop
 597   void set_loop( Node *n, IdealLoopTree *loop ) {
 598     _nodes.map(n->_idx, (Node*)loop);
 599   }
 600   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
 601   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
 602   // from old_node to new_node to support the lazy update.  Reference
 603   // replaces loop reference, since that is not neede for dead node.
 604 public:
 605   void lazy_update( Node *old_node, Node *new_node ) {
 606     assert( old_node != new_node, "no cycles please" );
 607     //old_node->set_req( 1, new_node /*NO DU INFO*/ );
 608     // Nodes always have DU info now, so re-use the side array slot
 609     // for this node to provide the forwarding pointer.
 610     _nodes.map( old_node->_idx, (Node*)((intptr_t)new_node + 1) );
 611   }
 612   void lazy_replace( Node *old_node, Node *new_node ) {
 613     _igvn.hash_delete(old_node);
 614     _igvn.subsume_node( old_node, new_node );
 615     lazy_update( old_node, new_node );
 616   }
 617   void lazy_replace_proj( Node *old_node, Node *new_node ) {
 618     assert( old_node->req() == 1, "use this for Projs" );
 619     _igvn.hash_delete(old_node); // Must hash-delete before hacking edges
 620     old_node->add_req( NULL );
 621     lazy_replace( old_node, new_node );
 622   }
 623 
 624 private:
 625 
 626   // Place 'n' in some loop nest, where 'n' is a CFG node
 627   void build_loop_tree();
 628   int build_loop_tree_impl( Node *n, int pre_order );
 629   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
 630   // loop tree, not the root.
 631   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
 632 
 633   // Place Data nodes in some loop nest
 634   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 635   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 636   void build_loop_late_post ( Node* n );
 637 
 638   // Array of immediate dominance info for each CFG node indexed by node idx
 639 private:
 640   uint _idom_size;
 641   Node **_idom;                 // Array of immediate dominators
 642   uint *_dom_depth;           // Used for fast LCA test
 643   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
 644 
 645   Node* idom_no_update(Node* d) const {
 646     assert(d->_idx < _idom_size, "oob");
 647     Node* n = _idom[d->_idx];
 648     assert(n != NULL,"Bad immediate dominator info.");
 649     while (n->in(0) == NULL) {  // Skip dead CFG nodes
 650       //n = n->in(1);
 651       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 652       assert(n != NULL,"Bad immediate dominator info.");
 653     }
 654     return n;
 655   }
 656   Node *idom(Node* d) const {
 657     uint didx = d->_idx;
 658     Node *n = idom_no_update(d);
 659     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
 660     return n;
 661   }
 662   uint dom_depth(Node* d) const {
 663     assert(d->_idx < _idom_size, "");
 664     return _dom_depth[d->_idx];
 665   }
 666   void set_idom(Node* d, Node* n, uint dom_depth);
 667   // Locally compute IDOM using dom_lca call
 668   Node *compute_idom( Node *region ) const;
 669   // Recompute dom_depth
 670   void recompute_dom_depth();
 671 
 672   // Is safept not required by an outer loop?
 673   bool is_deleteable_safept(Node* sfpt);
 674 
 675   // Perform verification that the graph is valid.
 676   PhaseIdealLoop( PhaseIterGVN &igvn) :
 677     PhaseTransform(Ideal_Loop),
 678     _igvn(igvn),
 679     _dom_lca_tags(C->comp_arena()),
 680     _verify_me(NULL),
 681     _verify_only(true) {
 682     build_and_optimize(false);
 683   }
 684 
 685   // build the loop tree and perform any requested optimizations
 686   void build_and_optimize(bool do_split_if);
 687 
 688 public:
 689   // Dominators for the sea of nodes
 690   void Dominators();
 691   Node *dom_lca( Node *n1, Node *n2 ) const {
 692     return find_non_split_ctrl(dom_lca_internal(n1, n2));
 693   }
 694   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
 695 
 696   // Compute the Ideal Node to Loop mapping
 697   PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs) :
 698     PhaseTransform(Ideal_Loop),
 699     _igvn(igvn),
 700     _dom_lca_tags(C->comp_arena()),
 701     _verify_me(NULL),
 702     _verify_only(false) {
 703     build_and_optimize(do_split_ifs);
 704   }
 705 
 706   // Verify that verify_me made the same decisions as a fresh run.
 707   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
 708     PhaseTransform(Ideal_Loop),
 709     _igvn(igvn),
 710     _dom_lca_tags(C->comp_arena()),
 711     _verify_me(verify_me),
 712     _verify_only(false) {
 713     build_and_optimize(false);
 714   }
 715 
 716   // Build and verify the loop tree without modifying the graph.  This
 717   // is useful to verify that all inputs properly dominate their uses.
 718   static void verify(PhaseIterGVN& igvn) {
 719 #ifdef ASSERT
 720     PhaseIdealLoop v(igvn);
 721 #endif
 722   }
 723 
 724   // True if the method has at least 1 irreducible loop
 725   bool _has_irreducible_loops;
 726 
 727   // Per-Node transform
 728   virtual Node *transform( Node *a_node ) { return 0; }
 729 
 730   Node *is_counted_loop( Node *x, IdealLoopTree *loop );
 731 
 732   // Return a post-walked LoopNode
 733   IdealLoopTree *get_loop( Node *n ) const {
 734     // Dead nodes have no loop, so return the top level loop instead
 735     if (!has_node(n))  return _ltree_root;
 736     assert(!has_ctrl(n), "");
 737     return (IdealLoopTree*)_nodes[n->_idx];
 738   }
 739 
 740   // Is 'n' a (nested) member of 'loop'?
 741   int is_member( const IdealLoopTree *loop, Node *n ) const {
 742     return loop->is_member(get_loop(n)); }
 743 
 744   // This is the basic building block of the loop optimizations.  It clones an
 745   // entire loop body.  It makes an old_new loop body mapping; with this
 746   // mapping you can find the new-loop equivalent to an old-loop node.  All
 747   // new-loop nodes are exactly equal to their old-loop counterparts, all
 748   // edges are the same.  All exits from the old-loop now have a RegionNode
 749   // that merges the equivalent new-loop path.  This is true even for the
 750   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
 751   // now come from (one or more) Phis that merge their new-loop equivalents.
 752   // Parameter side_by_side_idom:
 753   //   When side_by_size_idom is NULL, the dominator tree is constructed for
 754   //      the clone loop to dominate the original.  Used in construction of
 755   //      pre-main-post loop sequence.
 756   //   When nonnull, the clone and original are side-by-side, both are
 757   //      dominated by the passed in side_by_side_idom node.  Used in
 758   //      construction of unswitched loops.
 759   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
 760                    Node* side_by_side_idom = NULL);
 761 
 762   // If we got the effect of peeling, either by actually peeling or by
 763   // making a pre-loop which must execute at least once, we can remove
 764   // all loop-invariant dominated tests in the main body.
 765   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
 766 
 767   // Generate code to do a loop peel for the given loop (and body).
 768   // old_new is a temp array.
 769   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
 770 
 771   // Add pre and post loops around the given loop.  These loops are used
 772   // during RCE, unrolling and aligning loops.
 773   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
 774   // If Node n lives in the back_ctrl block, we clone a private version of n
 775   // in preheader_ctrl block and return that, otherwise return n.
 776   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n );
 777 
 778   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
 779   // unroll to do double iterations.  The next round of major loop transforms
 780   // will repeat till the doubled loop body does all remaining iterations in 1
 781   // pass.
 782   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
 783 
 784   // Unroll the loop body one step - make each trip do 2 iterations.
 785   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
 786 
 787   // Return true if exp is a constant times an induction var
 788   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
 789 
 790   // Return true if exp is a scaled induction var plus (or minus) constant
 791   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
 792 
 793   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
 794   void do_range_check( IdealLoopTree *loop, Node_List &old_new );
 795 
 796   // Create a slow version of the loop by cloning the loop
 797   // and inserting an if to select fast-slow versions.
 798   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
 799                                         Node_List &old_new);
 800 
 801   // Clone loop with an invariant test (that does not exit) and
 802   // insert a clone of the test that selects which version to
 803   // execute.
 804   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
 805 
 806   // Find candidate "if" for unswitching
 807   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
 808 
 809   // Range Check Elimination uses this function!
 810   // Constrain the main loop iterations so the affine function:
 811   //    scale_con * I + offset  <  limit
 812   // always holds true.  That is, either increase the number of iterations in
 813   // the pre-loop or the post-loop until the condition holds true in the main
 814   // loop.  Scale_con, offset and limit are all loop invariant.
 815   void add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
 816 
 817   // Partially peel loop up through last_peel node.
 818   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
 819 
 820   // Create a scheduled list of nodes control dependent on ctrl set.
 821   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
 822   // Has a use in the vector set
 823   bool has_use_in_set( Node* n, VectorSet& vset );
 824   // Has use internal to the vector set (ie. not in a phi at the loop head)
 825   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
 826   // clone "n" for uses that are outside of loop
 827   void clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
 828   // clone "n" for special uses that are in the not_peeled region
 829   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
 830                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
 831   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
 832   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
 833 #ifdef ASSERT
 834   // Validate the loop partition sets: peel and not_peel
 835   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
 836   // Ensure that uses outside of loop are of the right form
 837   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
 838                                  uint orig_exit_idx, uint clone_exit_idx);
 839   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
 840 #endif
 841 
 842   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
 843   int stride_of_possible_iv( Node* iff );
 844   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
 845   // Return the (unique) control output node that's in the loop (if it exists.)
 846   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
 847   // Insert a signed compare loop exit cloned from an unsigned compare.
 848   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
 849   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
 850   // Utility to register node "n" with PhaseIdealLoop
 851   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
 852   // Utility to create an if-projection
 853   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
 854   // Force the iff control output to be the live_proj
 855   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
 856   // Insert a region before an if projection
 857   RegionNode* insert_region_before_proj(ProjNode* proj);
 858   // Insert a new if before an if projection
 859   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
 860 
 861   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
 862   // "Nearly" because all Nodes have been cloned from the original in the loop,
 863   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
 864   // through the Phi recursively, and return a Bool.
 865   BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
 866   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
 867 
 868 
 869   // Rework addressing expressions to get the most loop-invariant stuff
 870   // moved out.  We'd like to do all associative operators, but it's especially
 871   // important (common) to do address expressions.
 872   Node *remix_address_expressions( Node *n );
 873 
 874   // Attempt to use a conditional move instead of a phi/branch
 875   Node *conditional_move( Node *n );
 876 
 877   // Reorganize offset computations to lower register pressure.
 878   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
 879   // (which are then alive with the post-incremented trip counter
 880   // forcing an extra register move)
 881   void reorg_offsets( IdealLoopTree *loop );
 882 
 883   // Check for aggressive application of 'split-if' optimization,
 884   // using basic block level info.
 885   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
 886   Node *split_if_with_blocks_pre ( Node *n );
 887   void  split_if_with_blocks_post( Node *n );
 888   Node *has_local_phi_input( Node *n );
 889   // Mark an IfNode as being dominated by a prior test,
 890   // without actually altering the CFG (and hence IDOM info).
 891   void dominated_by( Node *prevdom, Node *iff );
 892 
 893   // Split Node 'n' through merge point
 894   Node *split_thru_region( Node *n, Node *region );
 895   // Split Node 'n' through merge point if there is enough win.
 896   Node *split_thru_phi( Node *n, Node *region, int policy );
 897   // Found an If getting its condition-code input from a Phi in the
 898   // same block.  Split thru the Region.
 899   void do_split_if( Node *iff );
 900 
 901 private:
 902   // Return a type based on condition control flow
 903   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
 904   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
 905  // Helpers for filtered type
 906   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
 907 
 908   // Helper functions
 909   void register_new_node( Node *n, Node *blk );
 910   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
 911   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
 912   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
 913   bool split_up( Node *n, Node *blk1, Node *blk2 );
 914   void sink_use( Node *use, Node *post_loop );
 915   Node *place_near_use( Node *useblock ) const;
 916 
 917   bool _created_loop_node;
 918 public:
 919   void set_created_loop_node() { _created_loop_node = true; }
 920   bool created_loop_node()     { return _created_loop_node; }
 921 
 922 #ifndef PRODUCT
 923   void dump( ) const;
 924   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
 925   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
 926   void verify() const;          // Major slow  :-)
 927   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
 928   IdealLoopTree *get_loop_idx(Node* n) const {
 929     // Dead nodes have no loop, so return the top level loop instead
 930     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
 931   }
 932   // Print some stats
 933   static void print_statistics();
 934   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
 935   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
 936 #endif
 937 };
 938 
 939 inline Node* IdealLoopTree::tail() {
 940 // Handle lazy update of _tail field
 941   Node *n = _tail;
 942   //while( !n->in(0) )  // Skip dead CFG nodes
 943     //n = n->in(1);
 944   if (n->in(0) == NULL)
 945     n = _phase->get_ctrl(n);
 946   _tail = n;
 947   return n;
 948 }
 949 
 950 
 951 // Iterate over the loop tree using a preorder, left-to-right traversal.
 952 //
 953 // Example that visits all counted loops from within PhaseIdealLoop
 954 //
 955 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
 956 //   IdealLoopTree* lpt = iter.current();
 957 //   if (!lpt->is_counted()) continue;
 958 //   ...
 959 class LoopTreeIterator : public StackObj {
 960 private:
 961   IdealLoopTree* _root;
 962   IdealLoopTree* _curnt;
 963 
 964 public:
 965   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
 966 
 967   bool done() { return _curnt == NULL; }       // Finished iterating?
 968 
 969   void next();                                 // Advance to next loop tree
 970 
 971   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
 972 };