1 /*
   2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_parse1.cpp.incl"
  27 
  28 // Static array so we can figure out which bytecodes stop us from compiling
  29 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  30 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  31 
  32 int nodes_created              = 0;
  33 int methods_parsed             = 0;
  34 int methods_seen               = 0;
  35 int blocks_parsed              = 0;
  36 int blocks_seen                = 0;
  37 
  38 int explicit_null_checks_inserted = 0;
  39 int explicit_null_checks_elided   = 0;
  40 int all_null_checks_found         = 0, implicit_null_checks              = 0;
  41 int implicit_null_throws          = 0;
  42 
  43 int reclaim_idx  = 0;
  44 int reclaim_in   = 0;
  45 int reclaim_node = 0;
  46 
  47 #ifndef PRODUCT
  48 bool Parse::BytecodeParseHistogram::_initialized = false;
  49 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  50 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  51 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  52 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  53 #endif
  54 
  55 //------------------------------print_statistics-------------------------------
  56 #ifndef PRODUCT
  57 void Parse::print_statistics() {
  58   tty->print_cr("--- Compiler Statistics ---");
  59   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
  60   tty->print("  Nodes created: %d", nodes_created);
  61   tty->cr();
  62   if (methods_seen != methods_parsed)
  63     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  64   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
  65 
  66   if( explicit_null_checks_inserted )
  67     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
  68   if( all_null_checks_found )
  69     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
  70                   (100*implicit_null_checks)/all_null_checks_found);
  71   if( implicit_null_throws )
  72     tty->print_cr("%d implicit null exceptions at runtime",
  73                   implicit_null_throws);
  74 
  75   if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
  76     BytecodeParseHistogram::print();
  77   }
  78 }
  79 #endif
  80 
  81 //------------------------------ON STACK REPLACEMENT---------------------------
  82 
  83 // Construct a node which can be used to get incoming state for
  84 // on stack replacement.
  85 Node *Parse::fetch_interpreter_state(int index,
  86                                      BasicType bt,
  87                                      Node *local_addrs,
  88                                      Node *local_addrs_base) {
  89   Node *mem = memory(Compile::AliasIdxRaw);
  90   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
  91 
  92   // Very similar to LoadNode::make, except we handle un-aligned longs and
  93   // doubles on Sparc.  Intel can handle them just fine directly.
  94   Node *l;
  95   switch( bt ) {                // Signature is flattened
  96   case T_INT:     l = new (C, 3) LoadINode( 0, mem, adr, TypeRawPtr::BOTTOM ); break;
  97   case T_FLOAT:   l = new (C, 3) LoadFNode( 0, mem, adr, TypeRawPtr::BOTTOM ); break;
  98   case T_ADDRESS: l = new (C, 3) LoadPNode( 0, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM  ); break;
  99   case T_OBJECT:  l = new (C, 3) LoadPNode( 0, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM ); break;
 100   case T_LONG:
 101   case T_DOUBLE: {
 102     // Since arguments are in reverse order, the argument address 'adr'
 103     // refers to the back half of the long/double.  Recompute adr.
 104     adr = basic_plus_adr( local_addrs_base, local_addrs, -(index+1)*wordSize );
 105     if( Matcher::misaligned_doubles_ok ) {
 106       l = (bt == T_DOUBLE)
 107         ? (Node*)new (C, 3) LoadDNode( 0, mem, adr, TypeRawPtr::BOTTOM )
 108         : (Node*)new (C, 3) LoadLNode( 0, mem, adr, TypeRawPtr::BOTTOM );
 109     } else {
 110       l = (bt == T_DOUBLE)
 111         ? (Node*)new (C, 3) LoadD_unalignedNode( 0, mem, adr, TypeRawPtr::BOTTOM )
 112         : (Node*)new (C, 3) LoadL_unalignedNode( 0, mem, adr, TypeRawPtr::BOTTOM );
 113     }
 114     break;
 115   }
 116   default: ShouldNotReachHere();
 117   }
 118   return _gvn.transform(l);
 119 }
 120 
 121 // Helper routine to prevent the interpreter from handing
 122 // unexpected typestate to an OSR method.
 123 // The Node l is a value newly dug out of the interpreter frame.
 124 // The type is the type predicted by ciTypeFlow.  Note that it is
 125 // not a general type, but can only come from Type::get_typeflow_type.
 126 // The safepoint is a map which will feed an uncommon trap.
 127 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 128                                     SafePointNode* &bad_type_exit) {
 129 
 130   const TypeOopPtr* tp = type->isa_oopptr();
 131 
 132   // TypeFlow may assert null-ness if a type appears unloaded.
 133   if (type == TypePtr::NULL_PTR ||
 134       (tp != NULL && !tp->klass()->is_loaded())) {
 135     // Value must be null, not a real oop.
 136     Node* chk = _gvn.transform( new (C, 3) CmpPNode(l, null()) );
 137     Node* tst = _gvn.transform( new (C, 2) BoolNode(chk, BoolTest::eq) );
 138     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 139     set_control(_gvn.transform( new (C, 1) IfTrueNode(iff) ));
 140     Node* bad_type = _gvn.transform( new (C, 1) IfFalseNode(iff) );
 141     bad_type_exit->control()->add_req(bad_type);
 142     l = null();
 143   }
 144 
 145   // Typeflow can also cut off paths from the CFG, based on
 146   // types which appear unloaded, or call sites which appear unlinked.
 147   // When paths are cut off, values at later merge points can rise
 148   // toward more specific classes.  Make sure these specific classes
 149   // are still in effect.
 150   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
 151     // TypeFlow asserted a specific object type.  Value must have that type.
 152     Node* bad_type_ctrl = NULL;
 153     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
 154     bad_type_exit->control()->add_req(bad_type_ctrl);
 155   }
 156 
 157   BasicType bt_l = _gvn.type(l)->basic_type();
 158   BasicType bt_t = type->basic_type();
 159   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 160   return l;
 161 }
 162 
 163 // Helper routine which sets up elements of the initial parser map when
 164 // performing a parse for on stack replacement.  Add values into map.
 165 // The only parameter contains the address of a interpreter arguments.
 166 void Parse::load_interpreter_state(Node* osr_buf) {
 167   int index;
 168   int max_locals = jvms()->loc_size();
 169   int max_stack  = jvms()->stk_size();
 170 
 171 
 172   // Mismatch between method and jvms can occur since map briefly held
 173   // an OSR entry state (which takes up one RawPtr word).
 174   assert(max_locals == method()->max_locals(), "sanity");
 175   assert(max_stack  >= method()->max_stack(),  "sanity");
 176   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 177   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 178 
 179   // Find the start block.
 180   Block* osr_block = start_block();
 181   assert(osr_block->start() == osr_bci(), "sanity");
 182 
 183   // Set initial BCI.
 184   set_parse_bci(osr_block->start());
 185 
 186   // Set initial stack depth.
 187   set_sp(osr_block->start_sp());
 188 
 189   // Check bailouts.  We currently do not perform on stack replacement
 190   // of loops in catch blocks or loops which branch with a non-empty stack.
 191   if (sp() != 0) {
 192     C->record_method_not_compilable("OSR starts with non-empty stack");
 193     return;
 194   }
 195   // Do not OSR inside finally clauses:
 196   if (osr_block->has_trap_at(osr_block->start())) {
 197     C->record_method_not_compilable("OSR starts with an immediate trap");
 198     return;
 199   }
 200 
 201   // Commute monitors from interpreter frame to compiler frame.
 202   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 203   int mcnt = osr_block->flow()->monitor_count();
 204   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 205   for (index = 0; index < mcnt; index++) {
 206     // Make a BoxLockNode for the monitor.
 207     Node *box = _gvn.transform(new (C, 1) BoxLockNode(next_monitor()));
 208 
 209 
 210     // Displaced headers and locked objects are interleaved in the
 211     // temp OSR buffer.  We only copy the locked objects out here.
 212     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 213     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 214     // Try and copy the displaced header to the BoxNode
 215     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 216 
 217 
 218     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw);
 219 
 220     // Build a bogus FastLockNode (no code will be generated) and push the
 221     // monitor into our debug info.
 222     const FastLockNode *flock = _gvn.transform(new (C, 3) FastLockNode( 0, lock_object, box ))->as_FastLock();
 223     map()->push_monitor(flock);
 224 
 225     // If the lock is our method synchronization lock, tuck it away in
 226     // _sync_lock for return and rethrow exit paths.
 227     if (index == 0 && method()->is_synchronized()) {
 228       _synch_lock = flock;
 229     }
 230   }
 231 
 232   // Use the raw liveness computation to make sure that unexpected
 233   // values don't propagate into the OSR frame.
 234   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 235   if (!live_locals.is_valid()) {
 236     // Degenerate or breakpointed method.
 237     C->record_method_not_compilable("OSR in empty or breakpointed method");
 238     return;
 239   }
 240 
 241   // Extract the needed locals from the interpreter frame.
 242   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 243 
 244   // find all the locals that the interpreter thinks contain live oops
 245   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 246   for (index = 0; index < max_locals; index++) {
 247 
 248     if (!live_locals.at(index)) {
 249       continue;
 250     }
 251 
 252     const Type *type = osr_block->local_type_at(index);
 253 
 254     if (type->isa_oopptr() != NULL) {
 255 
 256       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 257       // else we might load a stale oop if the MethodLiveness disagrees with the
 258       // result of the interpreter. If the interpreter says it is dead we agree
 259       // by making the value go to top.
 260       //
 261 
 262       if (!live_oops.at(index)) {
 263         if (C->log() != NULL) {
 264           C->log()->elem("OSR_mismatch local_index='%d'",index);
 265         }
 266         set_local(index, null());
 267         // and ignore it for the loads
 268         continue;
 269       }
 270     }
 271 
 272     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 273     if (type == Type::TOP || type == Type::HALF) {
 274       continue;
 275     }
 276     // If the type falls to bottom, then this must be a local that
 277     // is mixing ints and oops or some such.  Forcing it to top
 278     // makes it go dead.
 279     if (type == Type::BOTTOM) {
 280       continue;
 281     }
 282     // Construct code to access the appropriate local.
 283     Node *value = fetch_interpreter_state(index, type->basic_type(), locals_addr, osr_buf);
 284     set_local(index, value);
 285   }
 286 
 287   // Extract the needed stack entries from the interpreter frame.
 288   for (index = 0; index < sp(); index++) {
 289     const Type *type = osr_block->stack_type_at(index);
 290     if (type != Type::TOP) {
 291       // Currently the compiler bails out when attempting to on stack replace
 292       // at a bci with a non-empty stack.  We should not reach here.
 293       ShouldNotReachHere();
 294     }
 295   }
 296 
 297   // End the OSR migration
 298   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 299                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 300                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 301                     osr_buf);
 302 
 303   // Now that the interpreter state is loaded, make sure it will match
 304   // at execution time what the compiler is expecting now:
 305   SafePointNode* bad_type_exit = clone_map();
 306   bad_type_exit->set_control(new (C, 1) RegionNode(1));
 307 
 308   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 309   for (index = 0; index < max_locals; index++) {
 310     if (stopped())  break;
 311     Node* l = local(index);
 312     if (l->is_top())  continue;  // nothing here
 313     const Type *type = osr_block->local_type_at(index);
 314     if (type->isa_oopptr() != NULL) {
 315       if (!live_oops.at(index)) {
 316         // skip type check for dead oops
 317         continue;
 318       }
 319     }
 320     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 321       // In our current system it's illegal for jsr addresses to be
 322       // live into an OSR entry point because the compiler performs
 323       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 324       // case and aborts the compile if addresses are live into an OSR
 325       // entry point.  Because of that we can assume that any address
 326       // locals at the OSR entry point are dead.  Method liveness
 327       // isn't precise enought to figure out that they are dead in all
 328       // cases so simply skip checking address locals all
 329       // together. Any type check is guaranteed to fail since the
 330       // interpreter type is the result of a load which might have any
 331       // value and the expected type is a constant.
 332       continue;
 333     }
 334     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 335   }
 336 
 337   for (index = 0; index < sp(); index++) {
 338     if (stopped())  break;
 339     Node* l = stack(index);
 340     if (l->is_top())  continue;  // nothing here
 341     const Type *type = osr_block->stack_type_at(index);
 342     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 343   }
 344 
 345   if (bad_type_exit->control()->req() > 1) {
 346     // Build an uncommon trap here, if any inputs can be unexpected.
 347     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 348     record_for_igvn(bad_type_exit->control());
 349     SafePointNode* types_are_good = map();
 350     set_map(bad_type_exit);
 351     // The unexpected type happens because a new edge is active
 352     // in the CFG, which typeflow had previously ignored.
 353     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 354     // This x will be typed as Integer if notReached is not yet linked.
 355     uncommon_trap(Deoptimization::Reason_unreached,
 356                   Deoptimization::Action_reinterpret);
 357     set_map(types_are_good);
 358   }
 359 }
 360 
 361 //------------------------------Parse------------------------------------------
 362 // Main parser constructor.
 363 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
 364   : _exits(caller)
 365 {
 366   // Init some variables
 367   _caller = caller;
 368   _method = parse_method;
 369   _expected_uses = expected_uses;
 370   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 371   _wrote_final = false;
 372   _entry_bci = InvocationEntryBci;
 373   _tf = NULL;
 374   _block = NULL;
 375   debug_only(_block_count = -1);
 376   debug_only(_blocks = (Block*)-1);
 377 #ifndef PRODUCT
 378   if (PrintCompilation || PrintOpto) {
 379     // Make sure I have an inline tree, so I can print messages about it.
 380     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 381     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method, true);
 382   }
 383   _max_switch_depth = 0;
 384   _est_switch_depth = 0;
 385 #endif
 386 
 387   _tf = TypeFunc::make(method());
 388   _iter.reset_to_method(method());
 389   _flow = method()->get_flow_analysis();
 390   if (_flow->failing()) {
 391     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
 392   }
 393 
 394 #ifndef PRODUCT
 395   if (_flow->has_irreducible_entry()) {
 396     C->set_parsed_irreducible_loop(true);
 397   }
 398 #endif
 399 
 400   if (_expected_uses <= 0) {
 401     _prof_factor = 1;
 402   } else {
 403     float prof_total = parse_method->interpreter_invocation_count();
 404     if (prof_total <= _expected_uses) {
 405       _prof_factor = 1;
 406     } else {
 407       _prof_factor = _expected_uses / prof_total;
 408     }
 409   }
 410 
 411   CompileLog* log = C->log();
 412   if (log != NULL) {
 413     log->begin_head("parse method='%d' uses='%g'",
 414                     log->identify(parse_method), expected_uses);
 415     if (depth() == 1 && C->is_osr_compilation()) {
 416       log->print(" osr_bci='%d'", C->entry_bci());
 417     }
 418     log->stamp();
 419     log->end_head();
 420   }
 421 
 422   // Accumulate deoptimization counts.
 423   // (The range_check and store_check counts are checked elsewhere.)
 424   ciMethodData* md = method()->method_data();
 425   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 426     uint md_count = md->trap_count(reason);
 427     if (md_count != 0) {
 428       if (md_count == md->trap_count_limit())
 429         md_count += md->overflow_trap_count();
 430       uint total_count = C->trap_count(reason);
 431       uint old_count   = total_count;
 432       total_count += md_count;
 433       // Saturate the add if it overflows.
 434       if (total_count < old_count || total_count < md_count)
 435         total_count = (uint)-1;
 436       C->set_trap_count(reason, total_count);
 437       if (log != NULL)
 438         log->elem("observe trap='%s' count='%d' total='%d'",
 439                   Deoptimization::trap_reason_name(reason),
 440                   md_count, total_count);
 441     }
 442   }
 443   // Accumulate total sum of decompilations, also.
 444   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 445 
 446   _count_invocations = C->do_count_invocations();
 447   _method_data_update = C->do_method_data_update();
 448 
 449   if (log != NULL && method()->has_exception_handlers()) {
 450     log->elem("observe that='has_exception_handlers'");
 451   }
 452 
 453   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
 454   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 455 
 456   // Always register dependence if JVMTI is enabled, because
 457   // either breakpoint setting or hotswapping of methods may
 458   // cause deoptimization.
 459   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 460     C->dependencies()->assert_evol_method(method());
 461   }
 462 
 463   methods_seen++;
 464 
 465   // Do some special top-level things.
 466   if (depth() == 1 && C->is_osr_compilation()) {
 467     _entry_bci = C->entry_bci();
 468     _flow = method()->get_osr_flow_analysis(osr_bci());
 469     if (_flow->failing()) {
 470       C->record_method_not_compilable(_flow->failure_reason());
 471 #ifndef PRODUCT
 472       if (PrintOpto && (Verbose || WizardMode)) {
 473         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 474         if (Verbose) {
 475           method()->print_oop();
 476           method()->print_codes();
 477           _flow->print();
 478         }
 479       }
 480 #endif
 481     }
 482     _tf = C->tf();     // the OSR entry type is different
 483   }
 484 
 485 #ifdef ASSERT
 486   if (depth() == 1) {
 487     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 488     if (C->tf() != tf()) {
 489       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
 490       assert(C->env()->system_dictionary_modification_counter_changed(),
 491              "Must invalidate if TypeFuncs differ");
 492     }
 493   } else {
 494     assert(!this->is_osr_parse(), "no recursive OSR");
 495   }
 496 #endif
 497 
 498   methods_parsed++;
 499 #ifndef PRODUCT
 500   // add method size here to guarantee that inlined methods are added too
 501   if (TimeCompiler)
 502     _total_bytes_compiled += method()->code_size();
 503 
 504   show_parse_info();
 505 #endif
 506 
 507   if (failing()) {
 508     if (log)  log->done("parse");
 509     return;
 510   }
 511 
 512   gvn().set_type(root(), root()->bottom_type());
 513   gvn().transform(top());
 514 
 515   // Import the results of the ciTypeFlow.
 516   init_blocks();
 517 
 518   // Merge point for all normal exits
 519   build_exits();
 520 
 521   // Setup the initial JVM state map.
 522   SafePointNode* entry_map = create_entry_map();
 523 
 524   // Check for bailouts during map initialization
 525   if (failing() || entry_map == NULL) {
 526     if (log)  log->done("parse");
 527     return;
 528   }
 529 
 530   Node_Notes* caller_nn = C->default_node_notes();
 531   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 532   if (DebugInlinedCalls || depth() == 1) {
 533     C->set_default_node_notes(make_node_notes(caller_nn));
 534   }
 535 
 536   if (is_osr_parse()) {
 537     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 538     entry_map->set_req(TypeFunc::Parms+0, top());
 539     set_map(entry_map);
 540     load_interpreter_state(osr_buf);
 541   } else {
 542     set_map(entry_map);
 543     do_method_entry();
 544   }
 545 
 546   // Check for bailouts during method entry.
 547   if (failing()) {
 548     if (log)  log->done("parse");
 549     C->set_default_node_notes(caller_nn);
 550     return;
 551   }
 552 
 553   entry_map = map();  // capture any changes performed by method setup code
 554   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 555 
 556   // We begin parsing as if we have just encountered a jump to the
 557   // method entry.
 558   Block* entry_block = start_block();
 559   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 560   set_map_clone(entry_map);
 561   merge_common(entry_block, entry_block->next_path_num());
 562 
 563 #ifndef PRODUCT
 564   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 565   set_parse_histogram( parse_histogram_obj );
 566 #endif
 567 
 568   // Parse all the basic blocks.
 569   do_all_blocks();
 570 
 571   C->set_default_node_notes(caller_nn);
 572 
 573   // Check for bailouts during conversion to graph
 574   if (failing()) {
 575     if (log)  log->done("parse");
 576     return;
 577   }
 578 
 579   // Fix up all exiting control flow.
 580   set_map(entry_map);
 581   do_exits();
 582 
 583   if (log)  log->done("parse nodes='%d' memory='%d'",
 584                       C->unique(), C->node_arena()->used());
 585 }
 586 
 587 //---------------------------do_all_blocks-------------------------------------
 588 void Parse::do_all_blocks() {
 589   bool has_irreducible = flow()->has_irreducible_entry();
 590 
 591   // Walk over all blocks in Reverse Post-Order.
 592   while (true) {
 593     bool progress = false;
 594     for (int rpo = 0; rpo < block_count(); rpo++) {
 595       Block* block = rpo_at(rpo);
 596 
 597       if (block->is_parsed()) continue;
 598 
 599       if (!block->is_merged()) {
 600         // Dead block, no state reaches this block
 601         continue;
 602       }
 603 
 604       // Prepare to parse this block.
 605       load_state_from(block);
 606 
 607       if (stopped()) {
 608         // Block is dead.
 609         continue;
 610       }
 611 
 612       blocks_parsed++;
 613 
 614       progress = true;
 615       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
 616         // Not all preds have been parsed.  We must build phis everywhere.
 617         // (Note that dead locals do not get phis built, ever.)
 618         ensure_phis_everywhere();
 619 
 620         // Leave behind an undisturbed copy of the map, for future merges.
 621         set_map(clone_map());
 622       }
 623 
 624       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 625         // In the absence of irreducible loops, the Region and Phis
 626         // associated with a merge that doesn't involve a backedge can
 627         // be simplified now since the RPO parsing order guarantees
 628         // that any path which was supposed to reach here has already
 629         // been parsed or must be dead.
 630         Node* c = control();
 631         Node* result = _gvn.transform_no_reclaim(control());
 632         if (c != result && TraceOptoParse) {
 633           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 634         }
 635         if (result != top()) {
 636           record_for_igvn(result);
 637         }
 638       }
 639 
 640       // Parse the block.
 641       do_one_block();
 642 
 643       // Check for bailouts.
 644       if (failing())  return;
 645     }
 646 
 647     // with irreducible loops multiple passes might be necessary to parse everything
 648     if (!has_irreducible || !progress) {
 649       break;
 650     }
 651   }
 652 
 653   blocks_seen += block_count();
 654 
 655 #ifndef PRODUCT
 656   // Make sure there are no half-processed blocks remaining.
 657   // Every remaining unprocessed block is dead and may be ignored now.
 658   for (int rpo = 0; rpo < block_count(); rpo++) {
 659     Block* block = rpo_at(rpo);
 660     if (!block->is_parsed()) {
 661       if (TraceOptoParse) {
 662         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 663       }
 664       assert(!block->is_merged(), "no half-processed blocks");
 665     }
 666   }
 667 #endif
 668 }
 669 
 670 //-------------------------------build_exits----------------------------------
 671 // Build normal and exceptional exit merge points.
 672 void Parse::build_exits() {
 673   // make a clone of caller to prevent sharing of side-effects
 674   _exits.set_map(_exits.clone_map());
 675   _exits.clean_stack(_exits.sp());
 676   _exits.sync_jvms();
 677 
 678   RegionNode* region = new (C, 1) RegionNode(1);
 679   record_for_igvn(region);
 680   gvn().set_type_bottom(region);
 681   _exits.set_control(region);
 682 
 683   // Note:  iophi and memphi are not transformed until do_exits.
 684   Node* iophi  = new (C, region->req()) PhiNode(region, Type::ABIO);
 685   Node* memphi = new (C, region->req()) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 686   _exits.set_i_o(iophi);
 687   _exits.set_all_memory(memphi);
 688 
 689   // Add a return value to the exit state.  (Do not push it yet.)
 690   if (tf()->range()->cnt() > TypeFunc::Parms) {
 691     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 692     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 693     // becomes loaded during the subsequent parsing, the loaded and unloaded
 694     // types will not join when we transform and push in do_exits().
 695     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 696     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
 697       ret_type = TypeOopPtr::BOTTOM;
 698     }
 699     int         ret_size = type2size[ret_type->basic_type()];
 700     Node*       ret_phi  = new (C, region->req()) PhiNode(region, ret_type);
 701     _exits.ensure_stack(ret_size);
 702     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 703     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 704     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 705     // Note:  ret_phi is not yet pushed, until do_exits.
 706   }
 707 }
 708 
 709 
 710 //----------------------------build_start_state-------------------------------
 711 // Construct a state which contains only the incoming arguments from an
 712 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
 713 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 714   int        arg_size = tf->domain()->cnt();
 715   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 716   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 717   SafePointNode* map  = new (this, max_size) SafePointNode(max_size, NULL);
 718   record_for_igvn(map);
 719   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 720   Node_Notes* old_nn = default_node_notes();
 721   if (old_nn != NULL && has_method()) {
 722     Node_Notes* entry_nn = old_nn->clone(this);
 723     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 724     entry_jvms->set_offsets(0);
 725     entry_jvms->set_bci(entry_bci());
 726     entry_nn->set_jvms(entry_jvms);
 727     set_default_node_notes(entry_nn);
 728   }
 729   uint i;
 730   for (i = 0; i < (uint)arg_size; i++) {
 731     Node* parm = initial_gvn()->transform(new (this, 1) ParmNode(start, i));
 732     map->init_req(i, parm);
 733     // Record all these guys for later GVN.
 734     record_for_igvn(parm);
 735   }
 736   for (; i < map->req(); i++) {
 737     map->init_req(i, top());
 738   }
 739   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 740   set_default_node_notes(old_nn);
 741   map->set_jvms(jvms);
 742   jvms->set_map(map);
 743   return jvms;
 744 }
 745 
 746 //-----------------------------make_node_notes---------------------------------
 747 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 748   if (caller_nn == NULL)  return NULL;
 749   Node_Notes* nn = caller_nn->clone(C);
 750   JVMState* caller_jvms = nn->jvms();
 751   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 752   jvms->set_offsets(0);
 753   jvms->set_bci(_entry_bci);
 754   nn->set_jvms(jvms);
 755   return nn;
 756 }
 757 
 758 
 759 //--------------------------return_values--------------------------------------
 760 void Compile::return_values(JVMState* jvms) {
 761   GraphKit kit(jvms);
 762   Node* ret = new (this, TypeFunc::Parms) ReturnNode(TypeFunc::Parms,
 763                              kit.control(),
 764                              kit.i_o(),
 765                              kit.reset_memory(),
 766                              kit.frameptr(),
 767                              kit.returnadr());
 768   // Add zero or 1 return values
 769   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 770   if (ret_size > 0) {
 771     kit.inc_sp(-ret_size);  // pop the return value(s)
 772     kit.sync_jvms();
 773     ret->add_req(kit.argument(0));
 774     // Note:  The second dummy edge is not needed by a ReturnNode.
 775   }
 776   // bind it to root
 777   root()->add_req(ret);
 778   record_for_igvn(ret);
 779   initial_gvn()->transform_no_reclaim(ret);
 780 }
 781 
 782 //------------------------rethrow_exceptions-----------------------------------
 783 // Bind all exception states in the list into a single RethrowNode.
 784 void Compile::rethrow_exceptions(JVMState* jvms) {
 785   GraphKit kit(jvms);
 786   if (!kit.has_exceptions())  return;  // nothing to generate
 787   // Load my combined exception state into the kit, with all phis transformed:
 788   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 789   Node* ex_oop = kit.use_exception_state(ex_map);
 790   RethrowNode* exit = new (this, TypeFunc::Parms + 1) RethrowNode(kit.control(),
 791                                       kit.i_o(), kit.reset_memory(),
 792                                       kit.frameptr(), kit.returnadr(),
 793                                       // like a return but with exception input
 794                                       ex_oop);
 795   // bind to root
 796   root()->add_req(exit);
 797   record_for_igvn(exit);
 798   initial_gvn()->transform_no_reclaim(exit);
 799 }
 800 
 801 bool Parse::can_rerun_bytecode() {
 802   switch (bc()) {
 803   case Bytecodes::_ldc:
 804   case Bytecodes::_ldc_w:
 805   case Bytecodes::_ldc2_w:
 806   case Bytecodes::_getfield:
 807   case Bytecodes::_putfield:
 808   case Bytecodes::_getstatic:
 809   case Bytecodes::_putstatic:
 810   case Bytecodes::_arraylength:
 811   case Bytecodes::_baload:
 812   case Bytecodes::_caload:
 813   case Bytecodes::_iaload:
 814   case Bytecodes::_saload:
 815   case Bytecodes::_faload:
 816   case Bytecodes::_aaload:
 817   case Bytecodes::_laload:
 818   case Bytecodes::_daload:
 819   case Bytecodes::_bastore:
 820   case Bytecodes::_castore:
 821   case Bytecodes::_iastore:
 822   case Bytecodes::_sastore:
 823   case Bytecodes::_fastore:
 824   case Bytecodes::_aastore:
 825   case Bytecodes::_lastore:
 826   case Bytecodes::_dastore:
 827   case Bytecodes::_irem:
 828   case Bytecodes::_idiv:
 829   case Bytecodes::_lrem:
 830   case Bytecodes::_ldiv:
 831   case Bytecodes::_frem:
 832   case Bytecodes::_fdiv:
 833   case Bytecodes::_drem:
 834   case Bytecodes::_ddiv:
 835   case Bytecodes::_checkcast:
 836   case Bytecodes::_instanceof:
 837   case Bytecodes::_anewarray:
 838   case Bytecodes::_newarray:
 839   case Bytecodes::_multianewarray:
 840   case Bytecodes::_new:
 841   case Bytecodes::_monitorenter:  // can re-run initial null check, only
 842   case Bytecodes::_return:
 843     return true;
 844     break;
 845 
 846   // Don't rerun athrow since it's part of the exception path.
 847   case Bytecodes::_athrow:
 848   case Bytecodes::_invokestatic:
 849   case Bytecodes::_invokedynamic:
 850   case Bytecodes::_invokespecial:
 851   case Bytecodes::_invokevirtual:
 852   case Bytecodes::_invokeinterface:
 853     return false;
 854     break;
 855 
 856   default:
 857     assert(false, "unexpected bytecode produced an exception");
 858     return true;
 859   }
 860 }
 861 
 862 //---------------------------do_exceptions-------------------------------------
 863 // Process exceptions arising from the current bytecode.
 864 // Send caught exceptions to the proper handler within this method.
 865 // Unhandled exceptions feed into _exit.
 866 void Parse::do_exceptions() {
 867   if (!has_exceptions())  return;
 868 
 869   if (failing()) {
 870     // Pop them all off and throw them away.
 871     while (pop_exception_state() != NULL) ;
 872     return;
 873   }
 874 
 875   // Make sure we can classify this bytecode if we need to.
 876   debug_only(can_rerun_bytecode());
 877 
 878   PreserveJVMState pjvms(this, false);
 879 
 880   SafePointNode* ex_map;
 881   while ((ex_map = pop_exception_state()) != NULL) {
 882     if (!method()->has_exception_handlers()) {
 883       // Common case:  Transfer control outward.
 884       // Doing it this early allows the exceptions to common up
 885       // even between adjacent method calls.
 886       throw_to_exit(ex_map);
 887     } else {
 888       // Have to look at the exception first.
 889       assert(stopped(), "catch_inline_exceptions trashes the map");
 890       catch_inline_exceptions(ex_map);
 891       stop_and_kill_map();      // we used up this exception state; kill it
 892     }
 893   }
 894 
 895   // We now return to our regularly scheduled program:
 896 }
 897 
 898 //---------------------------throw_to_exit-------------------------------------
 899 // Merge the given map into an exception exit from this method.
 900 // The exception exit will handle any unlocking of receiver.
 901 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 902 void Parse::throw_to_exit(SafePointNode* ex_map) {
 903   // Pop the JVMS to (a copy of) the caller.
 904   GraphKit caller;
 905   caller.set_map_clone(_caller->map());
 906   caller.set_bci(_caller->bci());
 907   caller.set_sp(_caller->sp());
 908   // Copy out the standard machine state:
 909   for (uint i = 0; i < TypeFunc::Parms; i++) {
 910     caller.map()->set_req(i, ex_map->in(i));
 911   }
 912   // ...and the exception:
 913   Node*          ex_oop        = saved_ex_oop(ex_map);
 914   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 915   // Finally, collect the new exception state in my exits:
 916   _exits.add_exception_state(caller_ex_map);
 917 }
 918 
 919 //------------------------------do_exits---------------------------------------
 920 void Parse::do_exits() {
 921   set_parse_bci(InvocationEntryBci);
 922 
 923   // Now peephole on the return bits
 924   Node* region = _exits.control();
 925   _exits.set_control(gvn().transform(region));
 926 
 927   Node* iophi = _exits.i_o();
 928   _exits.set_i_o(gvn().transform(iophi));
 929 
 930   if (wrote_final()) {
 931     // This method (which must be a constructor by the rules of Java)
 932     // wrote a final.  The effects of all initializations must be
 933     // committed to memory before any code after the constructor
 934     // publishes the reference to the newly constructor object.
 935     // Rather than wait for the publication, we simply block the
 936     // writes here.  Rather than put a barrier on only those writes
 937     // which are required to complete, we force all writes to complete.
 938     //
 939     // "All bets are off" unless the first publication occurs after a
 940     // normal return from the constructor.  We do not attempt to detect
 941     // such unusual early publications.  But no barrier is needed on
 942     // exceptional returns, since they cannot publish normally.
 943     //
 944     _exits.insert_mem_bar(Op_MemBarRelease);
 945 #ifndef PRODUCT
 946     if (PrintOpto && (Verbose || WizardMode)) {
 947       method()->print_name();
 948       tty->print_cr(" writes finals and needs a memory barrier");
 949     }
 950 #endif
 951   }
 952 
 953   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
 954     // transform each slice of the original memphi:
 955     mms.set_memory(_gvn.transform(mms.memory()));
 956   }
 957 
 958   if (tf()->range()->cnt() > TypeFunc::Parms) {
 959     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 960     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
 961     assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined");
 962     _exits.push_node(ret_type->basic_type(), ret_phi);
 963   }
 964 
 965   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
 966 
 967   // Unlock along the exceptional paths.
 968   // This is done late so that we can common up equivalent exceptions
 969   // (e.g., null checks) arising from multiple points within this method.
 970   // See GraphKit::add_exception_state, which performs the commoning.
 971   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
 972 
 973   // record exit from a method if compiled while Dtrace is turned on.
 974   if (do_synch || C->env()->dtrace_method_probes()) {
 975     // First move the exception list out of _exits:
 976     GraphKit kit(_exits.transfer_exceptions_into_jvms());
 977     SafePointNode* normal_map = kit.map();  // keep this guy safe
 978     // Now re-collect the exceptions into _exits:
 979     SafePointNode* ex_map;
 980     while ((ex_map = kit.pop_exception_state()) != NULL) {
 981       Node* ex_oop = kit.use_exception_state(ex_map);
 982       // Force the exiting JVM state to have this method at InvocationEntryBci.
 983       // The exiting JVM state is otherwise a copy of the calling JVMS.
 984       JVMState* caller = kit.jvms();
 985       JVMState* ex_jvms = caller->clone_shallow(C);
 986       ex_jvms->set_map(kit.clone_map());
 987       ex_jvms->map()->set_jvms(ex_jvms);
 988       ex_jvms->set_bci(   InvocationEntryBci);
 989       kit.set_jvms(ex_jvms);
 990       if (do_synch) {
 991         // Add on the synchronized-method box/object combo
 992         kit.map()->push_monitor(_synch_lock);
 993         // Unlock!
 994         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
 995       }
 996       if (C->env()->dtrace_method_probes()) {
 997         kit.make_dtrace_method_exit(method());
 998       }
 999       // Done with exception-path processing.
1000       ex_map = kit.make_exception_state(ex_oop);
1001       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1002       // Pop the last vestige of this method:
1003       ex_map->set_jvms(caller->clone_shallow(C));
1004       ex_map->jvms()->set_map(ex_map);
1005       _exits.push_exception_state(ex_map);
1006     }
1007     assert(_exits.map() == normal_map, "keep the same return state");
1008   }
1009 
1010   {
1011     // Capture very early exceptions (receiver null checks) from caller JVMS
1012     GraphKit caller(_caller);
1013     SafePointNode* ex_map;
1014     while ((ex_map = caller.pop_exception_state()) != NULL) {
1015       _exits.add_exception_state(ex_map);
1016     }
1017   }
1018 }
1019 
1020 //-----------------------------create_entry_map-------------------------------
1021 // Initialize our parser map to contain the types at method entry.
1022 // For OSR, the map contains a single RawPtr parameter.
1023 // Initial monitor locking for sync. methods is performed by do_method_entry.
1024 SafePointNode* Parse::create_entry_map() {
1025   // Check for really stupid bail-out cases.
1026   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1027   if (len >= 32760) {
1028     C->record_method_not_compilable_all_tiers("too many local variables");
1029     return NULL;
1030   }
1031 
1032   // If this is an inlined method, we may have to do a receiver null check.
1033   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1034     GraphKit kit(_caller);
1035     kit.null_check_receiver(method());
1036     _caller = kit.transfer_exceptions_into_jvms();
1037     if (kit.stopped()) {
1038       _exits.add_exception_states_from(_caller);
1039       _exits.set_jvms(_caller);
1040       return NULL;
1041     }
1042   }
1043 
1044   assert(method() != NULL, "parser must have a method");
1045 
1046   // Create an initial safepoint to hold JVM state during parsing
1047   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1048   set_map(new (C, len) SafePointNode(len, jvms));
1049   jvms->set_map(map());
1050   record_for_igvn(map());
1051   assert(jvms->endoff() == len, "correct jvms sizing");
1052 
1053   SafePointNode* inmap = _caller->map();
1054   assert(inmap != NULL, "must have inmap");
1055 
1056   uint i;
1057 
1058   // Pass thru the predefined input parameters.
1059   for (i = 0; i < TypeFunc::Parms; i++) {
1060     map()->init_req(i, inmap->in(i));
1061   }
1062 
1063   if (depth() == 1) {
1064     assert(map()->memory()->Opcode() == Op_Parm, "");
1065     // Insert the memory aliasing node
1066     set_all_memory(reset_memory());
1067   }
1068   assert(merged_memory(), "");
1069 
1070   // Now add the locals which are initially bound to arguments:
1071   uint arg_size = tf()->domain()->cnt();
1072   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1073   for (i = TypeFunc::Parms; i < arg_size; i++) {
1074     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1075   }
1076 
1077   // Clear out the rest of the map (locals and stack)
1078   for (i = arg_size; i < len; i++) {
1079     map()->init_req(i, top());
1080   }
1081 
1082   SafePointNode* entry_map = stop();
1083   return entry_map;
1084 }
1085 
1086 //-----------------------------do_method_entry--------------------------------
1087 // Emit any code needed in the pseudo-block before BCI zero.
1088 // The main thing to do is lock the receiver of a synchronized method.
1089 void Parse::do_method_entry() {
1090   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1091   set_sp(0);                      // Java Stack Pointer
1092 
1093   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1094 
1095   if (C->env()->dtrace_method_probes()) {
1096     make_dtrace_method_entry(method());
1097   }
1098 
1099   // If the method is synchronized, we need to construct a lock node, attach
1100   // it to the Start node, and pin it there.
1101   if (method()->is_synchronized()) {
1102     // Insert a FastLockNode right after the Start which takes as arguments
1103     // the current thread pointer, the "this" pointer & the address of the
1104     // stack slot pair used for the lock.  The "this" pointer is a projection
1105     // off the start node, but the locking spot has to be constructed by
1106     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1107     // becomes the second argument to the FastLockNode call.  The
1108     // FastLockNode becomes the new control parent to pin it to the start.
1109 
1110     // Setup Object Pointer
1111     Node *lock_obj = NULL;
1112     if(method()->is_static()) {
1113       ciInstance* mirror = _method->holder()->java_mirror();
1114       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1115       lock_obj = makecon(t_lock);
1116     } else {                  // Else pass the "this" pointer,
1117       lock_obj = local(0);    // which is Parm0 from StartNode
1118     }
1119     // Clear out dead values from the debug info.
1120     kill_dead_locals();
1121     // Build the FastLockNode
1122     _synch_lock = shared_lock(lock_obj);
1123   }
1124 
1125   if (depth() == 1) {
1126     increment_and_test_invocation_counter(Tier2CompileThreshold);
1127   }
1128 }
1129 
1130 //------------------------------init_blocks------------------------------------
1131 // Initialize our parser map to contain the types/monitors at method entry.
1132 void Parse::init_blocks() {
1133   // Create the blocks.
1134   _block_count = flow()->block_count();
1135   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1136   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
1137 
1138   int rpo;
1139 
1140   // Initialize the structs.
1141   for (rpo = 0; rpo < block_count(); rpo++) {
1142     Block* block = rpo_at(rpo);
1143     block->init_node(this, rpo);
1144   }
1145 
1146   // Collect predecessor and successor information.
1147   for (rpo = 0; rpo < block_count(); rpo++) {
1148     Block* block = rpo_at(rpo);
1149     block->init_graph(this);
1150   }
1151 }
1152 
1153 //-------------------------------init_node-------------------------------------
1154 void Parse::Block::init_node(Parse* outer, int rpo) {
1155   _flow = outer->flow()->rpo_at(rpo);
1156   _pred_count = 0;
1157   _preds_parsed = 0;
1158   _count = 0;
1159   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1160   assert(!(is_merged() || is_parsed() || is_handler()), "sanity");
1161   assert(_live_locals.size() == 0, "sanity");
1162 
1163   // entry point has additional predecessor
1164   if (flow()->is_start())  _pred_count++;
1165   assert(flow()->is_start() == (this == outer->start_block()), "");
1166 }
1167 
1168 //-------------------------------init_graph------------------------------------
1169 void Parse::Block::init_graph(Parse* outer) {
1170   // Create the successor list for this parser block.
1171   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1172   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1173   int ns = tfs->length();
1174   int ne = tfe->length();
1175   _num_successors = ns;
1176   _all_successors = ns+ne;
1177   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1178   int p = 0;
1179   for (int i = 0; i < ns+ne; i++) {
1180     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1181     Block* block2 = outer->rpo_at(tf2->rpo());
1182     _successors[i] = block2;
1183 
1184     // Accumulate pred info for the other block, too.
1185     if (i < ns) {
1186       block2->_pred_count++;
1187     } else {
1188       block2->_is_handler = true;
1189     }
1190 
1191     #ifdef ASSERT
1192     // A block's successors must be distinguishable by BCI.
1193     // That is, no bytecode is allowed to branch to two different
1194     // clones of the same code location.
1195     for (int j = 0; j < i; j++) {
1196       Block* block1 = _successors[j];
1197       if (block1 == block2)  continue;  // duplicates are OK
1198       assert(block1->start() != block2->start(), "successors have unique bcis");
1199     }
1200     #endif
1201   }
1202 
1203   // Note: We never call next_path_num along exception paths, so they
1204   // never get processed as "ready".  Also, the input phis of exception
1205   // handlers get specially processed, so that
1206 }
1207 
1208 //---------------------------successor_for_bci---------------------------------
1209 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1210   for (int i = 0; i < all_successors(); i++) {
1211     Block* block2 = successor_at(i);
1212     if (block2->start() == bci)  return block2;
1213   }
1214   // We can actually reach here if ciTypeFlow traps out a block
1215   // due to an unloaded class, and concurrently with compilation the
1216   // class is then loaded, so that a later phase of the parser is
1217   // able to see more of the bytecode CFG.  Or, the flow pass and
1218   // the parser can have a minor difference of opinion about executability
1219   // of bytecodes.  For example, "obj.field = null" is executable even
1220   // if the field's type is an unloaded class; the flow pass used to
1221   // make a trap for such code.
1222   return NULL;
1223 }
1224 
1225 
1226 //-----------------------------stack_type_at-----------------------------------
1227 const Type* Parse::Block::stack_type_at(int i) const {
1228   return get_type(flow()->stack_type_at(i));
1229 }
1230 
1231 
1232 //-----------------------------local_type_at-----------------------------------
1233 const Type* Parse::Block::local_type_at(int i) const {
1234   // Make dead locals fall to bottom.
1235   if (_live_locals.size() == 0) {
1236     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1237     // This bitmap can be zero length if we saw a breakpoint.
1238     // In such cases, pretend they are all live.
1239     ((Block*)this)->_live_locals = live_locals;
1240   }
1241   if (_live_locals.size() > 0 && !_live_locals.at(i))
1242     return Type::BOTTOM;
1243 
1244   return get_type(flow()->local_type_at(i));
1245 }
1246 
1247 
1248 #ifndef PRODUCT
1249 
1250 //----------------------------name_for_bc--------------------------------------
1251 // helper method for BytecodeParseHistogram
1252 static const char* name_for_bc(int i) {
1253   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1254 }
1255 
1256 //----------------------------BytecodeParseHistogram------------------------------------
1257 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1258   _parser   = p;
1259   _compiler = c;
1260   if( ! _initialized ) { _initialized = true; reset(); }
1261 }
1262 
1263 //----------------------------current_count------------------------------------
1264 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1265   switch( bph_type ) {
1266   case BPH_transforms: { return _parser->gvn().made_progress(); }
1267   case BPH_values:     { return _parser->gvn().made_new_values(); }
1268   default: { ShouldNotReachHere(); return 0; }
1269   }
1270 }
1271 
1272 //----------------------------initialized--------------------------------------
1273 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1274 
1275 //----------------------------reset--------------------------------------------
1276 void Parse::BytecodeParseHistogram::reset() {
1277   int i = Bytecodes::number_of_codes;
1278   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1279 }
1280 
1281 //----------------------------set_initial_state--------------------------------
1282 // Record info when starting to parse one bytecode
1283 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1284   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1285     _initial_bytecode    = bc;
1286     _initial_node_count  = _compiler->unique();
1287     _initial_transforms  = current_count(BPH_transforms);
1288     _initial_values      = current_count(BPH_values);
1289   }
1290 }
1291 
1292 //----------------------------record_change--------------------------------
1293 // Record results of parsing one bytecode
1294 void Parse::BytecodeParseHistogram::record_change() {
1295   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1296     ++_bytecodes_parsed[_initial_bytecode];
1297     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1298     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1299     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1300   }
1301 }
1302 
1303 
1304 //----------------------------print--------------------------------------------
1305 void Parse::BytecodeParseHistogram::print(float cutoff) {
1306   ResourceMark rm;
1307   // print profile
1308   int total  = 0;
1309   int i      = 0;
1310   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1311   int abs_sum = 0;
1312   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1313   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1314   if( total == 0 ) { return; }
1315   tty->cr();
1316   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1317   tty->print_cr("relative:  percentage contribution to compiled nodes");
1318   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1319   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1320   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1321   tty->print_cr("values  :  Average number of node values improved per bytecode");
1322   tty->print_cr("name    :  Bytecode name");
1323   tty->cr();
1324   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1325   tty->print_cr("----------------------------------------------------------------------");
1326   while (--i > 0) {
1327     int       abs = _bytecodes_parsed[i];
1328     float     rel = abs * 100.0F / total;
1329     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1330     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1331     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1332     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1333     if (cutoff <= rel) {
1334       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1335       abs_sum += abs;
1336     }
1337   }
1338   tty->print_cr("----------------------------------------------------------------------");
1339   float rel_sum = abs_sum * 100.0F / total;
1340   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1341   tty->print_cr("----------------------------------------------------------------------");
1342   tty->cr();
1343 }
1344 #endif
1345 
1346 //----------------------------load_state_from----------------------------------
1347 // Load block/map/sp.  But not do not touch iter/bci.
1348 void Parse::load_state_from(Block* block) {
1349   set_block(block);
1350   // load the block's JVM state:
1351   set_map(block->start_map());
1352   set_sp( block->start_sp());
1353 }
1354 
1355 
1356 //-----------------------------record_state------------------------------------
1357 void Parse::Block::record_state(Parse* p) {
1358   assert(!is_merged(), "can only record state once, on 1st inflow");
1359   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1360   set_start_map(p->stop());
1361 }
1362 
1363 
1364 //------------------------------do_one_block-----------------------------------
1365 void Parse::do_one_block() {
1366   if (TraceOptoParse) {
1367     Block *b = block();
1368     int ns = b->num_successors();
1369     int nt = b->all_successors();
1370 
1371     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1372                   block()->rpo(), block()->start(), block()->limit());
1373     for (int i = 0; i < nt; i++) {
1374       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1375     }
1376     if (b->is_loop_head()) tty->print("  lphd");
1377     tty->print_cr("");
1378   }
1379 
1380   assert(block()->is_merged(), "must be merged before being parsed");
1381   block()->mark_parsed();
1382   ++_blocks_parsed;
1383 
1384   // Set iterator to start of block.
1385   iter().reset_to_bci(block()->start());
1386 
1387   CompileLog* log = C->log();
1388 
1389   // Parse bytecodes
1390   while (!stopped() && !failing()) {
1391     iter().next();
1392 
1393     // Learn the current bci from the iterator:
1394     set_parse_bci(iter().cur_bci());
1395 
1396     if (bci() == block()->limit()) {
1397       // insert a predicate if it falls through to a loop head block
1398       if (should_add_predicate(bci())){
1399         add_predicate();
1400       }
1401       // Do not walk into the next block until directed by do_all_blocks.
1402       merge(bci());
1403       break;
1404     }
1405     assert(bci() < block()->limit(), "bci still in block");
1406 
1407     if (log != NULL) {
1408       // Output an optional context marker, to help place actions
1409       // that occur during parsing of this BC.  If there is no log
1410       // output until the next context string, this context string
1411       // will be silently ignored.
1412       log->context()->reset();
1413       log->context()->print_cr("<bc code='%d' bci='%d'/>", (int)bc(), bci());
1414     }
1415 
1416     if (block()->has_trap_at(bci())) {
1417       // We must respect the flow pass's traps, because it will refuse
1418       // to produce successors for trapping blocks.
1419       int trap_index = block()->flow()->trap_index();
1420       assert(trap_index != 0, "trap index must be valid");
1421       uncommon_trap(trap_index);
1422       break;
1423     }
1424 
1425     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1426 
1427 #ifdef ASSERT
1428     int pre_bc_sp = sp();
1429     int inputs, depth;
1430     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1431     assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC");
1432 #endif //ASSERT
1433 
1434     do_one_bytecode();
1435 
1436     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, "correct depth prediction");
1437 
1438     do_exceptions();
1439 
1440     NOT_PRODUCT( parse_histogram()->record_change(); );
1441 
1442     if (log != NULL)  log->context()->reset();  // done w/ this one
1443 
1444     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1445     // successor which is typically made ready by visiting this bytecode.
1446     // If the successor has several predecessors, then it is a merge
1447     // point, starts a new basic block, and is handled like other basic blocks.
1448   }
1449 }
1450 
1451 
1452 //------------------------------merge------------------------------------------
1453 void Parse::set_parse_bci(int bci) {
1454   set_bci(bci);
1455   Node_Notes* nn = C->default_node_notes();
1456   if (nn == NULL)  return;
1457 
1458   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1459   if (!DebugInlinedCalls && depth() > 1) {
1460     return;
1461   }
1462 
1463   // Update the JVMS annotation, if present.
1464   JVMState* jvms = nn->jvms();
1465   if (jvms != NULL && jvms->bci() != bci) {
1466     // Update the JVMS.
1467     jvms = jvms->clone_shallow(C);
1468     jvms->set_bci(bci);
1469     nn->set_jvms(jvms);
1470   }
1471 }
1472 
1473 //------------------------------merge------------------------------------------
1474 // Merge the current mapping into the basic block starting at bci
1475 void Parse::merge(int target_bci) {
1476   Block* target = successor_for_bci(target_bci);
1477   if (target == NULL) { handle_missing_successor(target_bci); return; }
1478   assert(!target->is_ready(), "our arrival must be expected");
1479   int pnum = target->next_path_num();
1480   merge_common(target, pnum);
1481 }
1482 
1483 //-------------------------merge_new_path--------------------------------------
1484 // Merge the current mapping into the basic block, using a new path
1485 void Parse::merge_new_path(int target_bci) {
1486   Block* target = successor_for_bci(target_bci);
1487   if (target == NULL) { handle_missing_successor(target_bci); return; }
1488   assert(!target->is_ready(), "new path into frozen graph");
1489   int pnum = target->add_new_path();
1490   merge_common(target, pnum);
1491 }
1492 
1493 //-------------------------merge_exception-------------------------------------
1494 // Merge the current mapping into the basic block starting at bci
1495 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1496 void Parse::merge_exception(int target_bci) {
1497   assert(sp() == 1, "must have only the throw exception on the stack");
1498   Block* target = successor_for_bci(target_bci);
1499   if (target == NULL) { handle_missing_successor(target_bci); return; }
1500   assert(target->is_handler(), "exceptions are handled by special blocks");
1501   int pnum = target->add_new_path();
1502   merge_common(target, pnum);
1503 }
1504 
1505 //--------------------handle_missing_successor---------------------------------
1506 void Parse::handle_missing_successor(int target_bci) {
1507 #ifndef PRODUCT
1508   Block* b = block();
1509   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1510   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1511 #endif
1512   ShouldNotReachHere();
1513 }
1514 
1515 //--------------------------merge_common---------------------------------------
1516 void Parse::merge_common(Parse::Block* target, int pnum) {
1517   if (TraceOptoParse) {
1518     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1519   }
1520 
1521   // Zap extra stack slots to top
1522   assert(sp() == target->start_sp(), "");
1523   clean_stack(sp());
1524 
1525   if (!target->is_merged()) {   // No prior mapping at this bci
1526     if (TraceOptoParse) { tty->print(" with empty state");  }
1527 
1528     // If this path is dead, do not bother capturing it as a merge.
1529     // It is "as if" we had 1 fewer predecessors from the beginning.
1530     if (stopped()) {
1531       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1532       return;
1533     }
1534 
1535     // Record that a new block has been merged.
1536     ++_blocks_merged;
1537 
1538     // Make a region if we know there are multiple or unpredictable inputs.
1539     // (Also, if this is a plain fall-through, we might see another region,
1540     // which must not be allowed into this block's map.)
1541     if (pnum > PhiNode::Input         // Known multiple inputs.
1542         || target->is_handler()       // These have unpredictable inputs.
1543         || target->is_loop_head()     // Known multiple inputs
1544         || control()->is_Region()) {  // We must hide this guy.
1545       // Add a Region to start the new basic block.  Phis will be added
1546       // later lazily.
1547       int edges = target->pred_count();
1548       if (edges < pnum)  edges = pnum;  // might be a new path!
1549       Node *r = new (C, edges+1) RegionNode(edges+1);
1550       gvn().set_type(r, Type::CONTROL);
1551       record_for_igvn(r);
1552       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1553       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1554       r->init_req(pnum, control());
1555       set_control(r);
1556     }
1557 
1558     // Convert the existing Parser mapping into a mapping at this bci.
1559     store_state_to(target);
1560     assert(target->is_merged(), "do not come here twice");
1561 
1562   } else {                      // Prior mapping at this bci
1563     if (TraceOptoParse) {  tty->print(" with previous state"); }
1564 
1565     // We must not manufacture more phis if the target is already parsed.
1566     bool nophi = target->is_parsed();
1567 
1568     SafePointNode* newin = map();// Hang on to incoming mapping
1569     Block* save_block = block(); // Hang on to incoming block;
1570     load_state_from(target);    // Get prior mapping
1571 
1572     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1573     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1574     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1575     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1576 
1577     // Iterate over my current mapping and the old mapping.
1578     // Where different, insert Phi functions.
1579     // Use any existing Phi functions.
1580     assert(control()->is_Region(), "must be merging to a region");
1581     RegionNode* r = control()->as_Region();
1582 
1583     // Compute where to merge into
1584     // Merge incoming control path
1585     r->init_req(pnum, newin->control());
1586 
1587     if (pnum == 1) {            // Last merge for this Region?
1588       if (!block()->flow()->is_irreducible_entry()) {
1589         Node* result = _gvn.transform_no_reclaim(r);
1590         if (r != result && TraceOptoParse) {
1591           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1592         }
1593       }
1594       record_for_igvn(r);
1595     }
1596 
1597     // Update all the non-control inputs to map:
1598     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1599     bool check_elide_phi = target->is_SEL_backedge(save_block);
1600     for (uint j = 1; j < newin->req(); j++) {
1601       Node* m = map()->in(j);   // Current state of target.
1602       Node* n = newin->in(j);   // Incoming change to target state.
1603       PhiNode* phi;
1604       if (m->is_Phi() && m->as_Phi()->region() == r)
1605         phi = m->as_Phi();
1606       else
1607         phi = NULL;
1608       if (m != n) {             // Different; must merge
1609         switch (j) {
1610         // Frame pointer and Return Address never changes
1611         case TypeFunc::FramePtr:// Drop m, use the original value
1612         case TypeFunc::ReturnAdr:
1613           break;
1614         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1615           assert(phi == NULL, "the merge contains phis, not vice versa");
1616           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1617           continue;
1618         default:                // All normal stuff
1619           if (phi == NULL) {
1620             if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1621               phi = ensure_phi(j, nophi);
1622             }
1623           }
1624           break;
1625         }
1626       }
1627       // At this point, n might be top if:
1628       //  - there is no phi (because TypeFlow detected a conflict), or
1629       //  - the corresponding control edges is top (a dead incoming path)
1630       // It is a bug if we create a phi which sees a garbage value on a live path.
1631 
1632       if (phi != NULL) {
1633         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1634         assert(phi->region() == r, "");
1635         phi->set_req(pnum, n);  // Then add 'n' to the merge
1636         if (pnum == PhiNode::Input) {
1637           // Last merge for this Phi.
1638           // So far, Phis have had a reasonable type from ciTypeFlow.
1639           // Now _gvn will join that with the meet of current inputs.
1640           // BOTTOM is never permissible here, 'cause pessimistically
1641           // Phis of pointers cannot lose the basic pointer type.
1642           debug_only(const Type* bt1 = phi->bottom_type());
1643           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1644           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1645           debug_only(const Type* bt2 = phi->bottom_type());
1646           assert(bt2->higher_equal(bt1), "must be consistent with type-flow");
1647           record_for_igvn(phi);
1648         }
1649       }
1650     } // End of for all values to be merged
1651 
1652     if (pnum == PhiNode::Input &&
1653         !r->in(0)) {         // The occasional useless Region
1654       assert(control() == r, "");
1655       set_control(r->nonnull_req());
1656     }
1657 
1658     // newin has been subsumed into the lazy merge, and is now dead.
1659     set_block(save_block);
1660 
1661     stop();                     // done with this guy, for now
1662   }
1663 
1664   if (TraceOptoParse) {
1665     tty->print_cr(" on path %d", pnum);
1666   }
1667 
1668   // Done with this parser state.
1669   assert(stopped(), "");
1670 }
1671 
1672 
1673 //--------------------------merge_memory_edges---------------------------------
1674 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1675   // (nophi means we must not create phis, because we already parsed here)
1676   assert(n != NULL, "");
1677   // Merge the inputs to the MergeMems
1678   MergeMemNode* m = merged_memory();
1679 
1680   assert(control()->is_Region(), "must be merging to a region");
1681   RegionNode* r = control()->as_Region();
1682 
1683   PhiNode* base = NULL;
1684   MergeMemNode* remerge = NULL;
1685   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1686     Node *p = mms.force_memory();
1687     Node *q = mms.memory2();
1688     if (mms.is_empty() && nophi) {
1689       // Trouble:  No new splits allowed after a loop body is parsed.
1690       // Instead, wire the new split into a MergeMem on the backedge.
1691       // The optimizer will sort it out, slicing the phi.
1692       if (remerge == NULL) {
1693         assert(base != NULL, "");
1694         assert(base->in(0) != NULL, "should not be xformed away");
1695         remerge = MergeMemNode::make(C, base->in(pnum));
1696         gvn().set_type(remerge, Type::MEMORY);
1697         base->set_req(pnum, remerge);
1698       }
1699       remerge->set_memory_at(mms.alias_idx(), q);
1700       continue;
1701     }
1702     assert(!q->is_MergeMem(), "");
1703     PhiNode* phi;
1704     if (p != q) {
1705       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1706     } else {
1707       if (p->is_Phi() && p->as_Phi()->region() == r)
1708         phi = p->as_Phi();
1709       else
1710         phi = NULL;
1711     }
1712     // Insert q into local phi
1713     if (phi != NULL) {
1714       assert(phi->region() == r, "");
1715       p = phi;
1716       phi->set_req(pnum, q);
1717       if (mms.at_base_memory()) {
1718         base = phi;  // delay transforming it
1719       } else if (pnum == 1) {
1720         record_for_igvn(phi);
1721         p = _gvn.transform_no_reclaim(phi);
1722       }
1723       mms.set_memory(p);// store back through the iterator
1724     }
1725   }
1726   // Transform base last, in case we must fiddle with remerging.
1727   if (base != NULL && pnum == 1) {
1728     record_for_igvn(base);
1729     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1730   }
1731 }
1732 
1733 
1734 //------------------------ensure_phis_everywhere-------------------------------
1735 void Parse::ensure_phis_everywhere() {
1736   ensure_phi(TypeFunc::I_O);
1737 
1738   // Ensure a phi on all currently known memories.
1739   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1740     ensure_memory_phi(mms.alias_idx());
1741     debug_only(mms.set_memory());  // keep the iterator happy
1742   }
1743 
1744   // Note:  This is our only chance to create phis for memory slices.
1745   // If we miss a slice that crops up later, it will have to be
1746   // merged into the base-memory phi that we are building here.
1747   // Later, the optimizer will comb out the knot, and build separate
1748   // phi-loops for each memory slice that matters.
1749 
1750   // Monitors must nest nicely and not get confused amongst themselves.
1751   // Phi-ify everything up to the monitors, though.
1752   uint monoff = map()->jvms()->monoff();
1753   uint nof_monitors = map()->jvms()->nof_monitors();
1754 
1755   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1756   bool check_elide_phi = block()->is_SEL_head();
1757   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1758     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1759       ensure_phi(i);
1760     }
1761   }
1762 
1763   // Even monitors need Phis, though they are well-structured.
1764   // This is true for OSR methods, and also for the rare cases where
1765   // a monitor object is the subject of a replace_in_map operation.
1766   // See bugs 4426707 and 5043395.
1767   for (uint m = 0; m < nof_monitors; m++) {
1768     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1769   }
1770 }
1771 
1772 
1773 //-----------------------------add_new_path------------------------------------
1774 // Add a previously unaccounted predecessor to this block.
1775 int Parse::Block::add_new_path() {
1776   // If there is no map, return the lowest unused path number.
1777   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1778 
1779   SafePointNode* map = start_map();
1780   if (!map->control()->is_Region())
1781     return pred_count()+1;  // there may be a region some day
1782   RegionNode* r = map->control()->as_Region();
1783 
1784   // Add new path to the region.
1785   uint pnum = r->req();
1786   r->add_req(NULL);
1787 
1788   for (uint i = 1; i < map->req(); i++) {
1789     Node* n = map->in(i);
1790     if (i == TypeFunc::Memory) {
1791       // Ensure a phi on all currently known memories.
1792       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1793         Node* phi = mms.memory();
1794         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1795           assert(phi->req() == pnum, "must be same size as region");
1796           phi->add_req(NULL);
1797         }
1798       }
1799     } else {
1800       if (n->is_Phi() && n->as_Phi()->region() == r) {
1801         assert(n->req() == pnum, "must be same size as region");
1802         n->add_req(NULL);
1803       }
1804     }
1805   }
1806 
1807   return pnum;
1808 }
1809 
1810 //------------------------------ensure_phi-------------------------------------
1811 // Turn the idx'th entry of the current map into a Phi
1812 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1813   SafePointNode* map = this->map();
1814   Node* region = map->control();
1815   assert(region->is_Region(), "");
1816 
1817   Node* o = map->in(idx);
1818   assert(o != NULL, "");
1819 
1820   if (o == top())  return NULL; // TOP always merges into TOP
1821 
1822   if (o->is_Phi() && o->as_Phi()->region() == region) {
1823     return o->as_Phi();
1824   }
1825 
1826   // Now use a Phi here for merging
1827   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1828   const JVMState* jvms = map->jvms();
1829   const Type* t;
1830   if (jvms->is_loc(idx)) {
1831     t = block()->local_type_at(idx - jvms->locoff());
1832   } else if (jvms->is_stk(idx)) {
1833     t = block()->stack_type_at(idx - jvms->stkoff());
1834   } else if (jvms->is_mon(idx)) {
1835     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1836     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1837   } else if ((uint)idx < TypeFunc::Parms) {
1838     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1839   } else {
1840     assert(false, "no type information for this phi");
1841   }
1842 
1843   // If the type falls to bottom, then this must be a local that
1844   // is mixing ints and oops or some such.  Forcing it to top
1845   // makes it go dead.
1846   if (t == Type::BOTTOM) {
1847     map->set_req(idx, top());
1848     return NULL;
1849   }
1850 
1851   // Do not create phis for top either.
1852   // A top on a non-null control flow must be an unused even after the.phi.
1853   if (t == Type::TOP || t == Type::HALF) {
1854     map->set_req(idx, top());
1855     return NULL;
1856   }
1857 
1858   PhiNode* phi = PhiNode::make(region, o, t);
1859   gvn().set_type(phi, t);
1860   if (C->do_escape_analysis()) record_for_igvn(phi);
1861   map->set_req(idx, phi);
1862   return phi;
1863 }
1864 
1865 //--------------------------ensure_memory_phi----------------------------------
1866 // Turn the idx'th slice of the current memory into a Phi
1867 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1868   MergeMemNode* mem = merged_memory();
1869   Node* region = control();
1870   assert(region->is_Region(), "");
1871 
1872   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
1873   assert(o != NULL && o != top(), "");
1874 
1875   PhiNode* phi;
1876   if (o->is_Phi() && o->as_Phi()->region() == region) {
1877     phi = o->as_Phi();
1878     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
1879       // clone the shared base memory phi to make a new memory split
1880       assert(!nocreate, "Cannot build a phi for a block already parsed.");
1881       const Type* t = phi->bottom_type();
1882       const TypePtr* adr_type = C->get_adr_type(idx);
1883       phi = phi->slice_memory(adr_type);
1884       gvn().set_type(phi, t);
1885     }
1886     return phi;
1887   }
1888 
1889   // Now use a Phi here for merging
1890   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1891   const Type* t = o->bottom_type();
1892   const TypePtr* adr_type = C->get_adr_type(idx);
1893   phi = PhiNode::make(region, o, t, adr_type);
1894   gvn().set_type(phi, t);
1895   if (idx == Compile::AliasIdxBot)
1896     mem->set_base_memory(phi);
1897   else
1898     mem->set_memory_at(idx, phi);
1899   return phi;
1900 }
1901 
1902 //------------------------------call_register_finalizer-----------------------
1903 // Check the klass of the receiver and call register_finalizer if the
1904 // class need finalization.
1905 void Parse::call_register_finalizer() {
1906   Node* receiver = local(0);
1907   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
1908          "must have non-null instance type");
1909 
1910   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
1911   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
1912     // The type isn't known exactly so see if CHA tells us anything.
1913     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1914     if (!Dependencies::has_finalizable_subclass(ik)) {
1915       // No finalizable subclasses so skip the dynamic check.
1916       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
1917       return;
1918     }
1919   }
1920 
1921   // Insert a dynamic test for whether the instance needs
1922   // finalization.  In general this will fold up since the concrete
1923   // class is often visible so the access flags are constant.
1924   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
1925   Node* klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS) );
1926 
1927   Node* access_flags_addr = basic_plus_adr(klass, klass, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
1928   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT);
1929 
1930   Node* mask  = _gvn.transform(new (C, 3) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
1931   Node* check = _gvn.transform(new (C, 3) CmpINode(mask, intcon(0)));
1932   Node* test  = _gvn.transform(new (C, 2) BoolNode(check, BoolTest::ne));
1933 
1934   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
1935 
1936   RegionNode* result_rgn = new (C, 3) RegionNode(3);
1937   record_for_igvn(result_rgn);
1938 
1939   Node *skip_register = _gvn.transform(new (C, 1) IfFalseNode(iff));
1940   result_rgn->init_req(1, skip_register);
1941 
1942   Node *needs_register = _gvn.transform(new (C, 1) IfTrueNode(iff));
1943   set_control(needs_register);
1944   if (stopped()) {
1945     // There is no slow path.
1946     result_rgn->init_req(2, top());
1947   } else {
1948     Node *call = make_runtime_call(RC_NO_LEAF,
1949                                    OptoRuntime::register_finalizer_Type(),
1950                                    OptoRuntime::register_finalizer_Java(),
1951                                    NULL, TypePtr::BOTTOM,
1952                                    receiver);
1953     make_slow_call_ex(call, env()->Throwable_klass(), true);
1954 
1955     Node* fast_io  = call->in(TypeFunc::I_O);
1956     Node* fast_mem = call->in(TypeFunc::Memory);
1957     // These two phis are pre-filled with copies of of the fast IO and Memory
1958     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
1959     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
1960 
1961     result_rgn->init_req(2, control());
1962     io_phi    ->init_req(2, i_o());
1963     mem_phi   ->init_req(2, reset_memory());
1964 
1965     set_all_memory( _gvn.transform(mem_phi) );
1966     set_i_o(        _gvn.transform(io_phi) );
1967   }
1968 
1969   set_control( _gvn.transform(result_rgn) );
1970 }
1971 
1972 //------------------------------return_current---------------------------------
1973 // Append current _map to _exit_return
1974 void Parse::return_current(Node* value) {
1975   if (RegisterFinalizersAtInit &&
1976       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
1977     call_register_finalizer();
1978   }
1979 
1980   // Do not set_parse_bci, so that return goo is credited to the return insn.
1981   set_bci(InvocationEntryBci);
1982   if (method()->is_synchronized() && GenerateSynchronizationCode) {
1983     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1984   }
1985   if (C->env()->dtrace_method_probes()) {
1986     make_dtrace_method_exit(method());
1987   }
1988   SafePointNode* exit_return = _exits.map();
1989   exit_return->in( TypeFunc::Control  )->add_req( control() );
1990   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
1991   Node *mem = exit_return->in( TypeFunc::Memory   );
1992   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
1993     if (mms.is_empty()) {
1994       // get a copy of the base memory, and patch just this one input
1995       const TypePtr* adr_type = mms.adr_type(C);
1996       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
1997       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
1998       gvn().set_type_bottom(phi);
1999       phi->del_req(phi->req()-1);  // prepare to re-patch
2000       mms.set_memory(phi);
2001     }
2002     mms.memory()->add_req(mms.memory2());
2003   }
2004 
2005   // frame pointer is always same, already captured
2006   if (value != NULL) {
2007     // If returning oops to an interface-return, there is a silent free
2008     // cast from oop to interface allowed by the Verifier.  Make it explicit
2009     // here.
2010     Node* phi = _exits.argument(0);
2011     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2012     if( tr && tr->klass()->is_loaded() &&
2013         tr->klass()->is_interface() ) {
2014       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2015       if (tp && tp->klass()->is_loaded() &&
2016           !tp->klass()->is_interface()) {
2017         // sharpen the type eagerly; this eases certain assert checking
2018         if (tp->higher_equal(TypeInstPtr::NOTNULL))
2019           tr = tr->join(TypeInstPtr::NOTNULL)->is_instptr();
2020         value = _gvn.transform(new (C, 2) CheckCastPPNode(0,value,tr));
2021       }
2022     }
2023     phi->add_req(value);
2024   }
2025 
2026   stop_and_kill_map();          // This CFG path dies here
2027 }
2028 
2029 
2030 //------------------------------add_safepoint----------------------------------
2031 void Parse::add_safepoint() {
2032   // See if we can avoid this safepoint.  No need for a SafePoint immediately
2033   // after a Call (except Leaf Call) or another SafePoint.
2034   Node *proj = control();
2035   bool add_poll_param = SafePointNode::needs_polling_address_input();
2036   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2037   if( proj->is_Proj() ) {
2038     Node *n0 = proj->in(0);
2039     if( n0->is_Catch() ) {
2040       n0 = n0->in(0)->in(0);
2041       assert( n0->is_Call(), "expect a call here" );
2042     }
2043     if( n0->is_Call() ) {
2044       if( n0->as_Call()->guaranteed_safepoint() )
2045         return;
2046     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2047       return;
2048     }
2049   }
2050 
2051   // Clear out dead values from the debug info.
2052   kill_dead_locals();
2053 
2054   // Clone the JVM State
2055   SafePointNode *sfpnt = new (C, parms) SafePointNode(parms, NULL);
2056 
2057   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2058   // SafePoint we need our GC state to be safe; i.e. we need all our current
2059   // write barriers (card marks) to not float down after the SafePoint so we
2060   // must read raw memory.  Likewise we need all oop stores to match the card
2061   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2062   // state on a deopt).
2063 
2064   // We do not need to WRITE the memory state after a SafePoint.  The control
2065   // edge will keep card-marks and oop-stores from floating up from below a
2066   // SafePoint and our true dependency added here will keep them from floating
2067   // down below a SafePoint.
2068 
2069   // Clone the current memory state
2070   Node* mem = MergeMemNode::make(C, map()->memory());
2071 
2072   mem = _gvn.transform(mem);
2073 
2074   // Pass control through the safepoint
2075   sfpnt->init_req(TypeFunc::Control  , control());
2076   // Fix edges normally used by a call
2077   sfpnt->init_req(TypeFunc::I_O      , top() );
2078   sfpnt->init_req(TypeFunc::Memory   , mem   );
2079   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2080   sfpnt->init_req(TypeFunc::FramePtr , top() );
2081 
2082   // Create a node for the polling address
2083   if( add_poll_param ) {
2084     Node *polladr = ConPNode::make(C, (address)os::get_polling_page());
2085     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2086   }
2087 
2088   // Fix up the JVM State edges
2089   add_safepoint_edges(sfpnt);
2090   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2091   set_control(transformed_sfpnt);
2092 
2093   // Provide an edge from root to safepoint.  This makes the safepoint
2094   // appear useful until the parse has completed.
2095   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2096     assert(C->root() != NULL, "Expect parse is still valid");
2097     C->root()->add_prec(transformed_sfpnt);
2098   }
2099 }
2100 
2101 //------------------------------should_add_predicate--------------------------
2102 bool Parse::should_add_predicate(int target_bci) {
2103   if (!UseLoopPredicate) return false;
2104   Block* target = successor_for_bci(target_bci);
2105   if (target != NULL          &&
2106       target->is_loop_head()  &&
2107       block()->rpo() < target->rpo()) {
2108     return true;
2109   }
2110   return false;
2111 }
2112 
2113 //------------------------------add_predicate---------------------------------
2114 void Parse::add_predicate() {
2115   assert(UseLoopPredicate,"use only for loop predicate");
2116   Node *cont    = _gvn.intcon(1);
2117   Node* opq     = _gvn.transform(new (C, 2) Opaque1Node(C, cont));
2118   Node *bol     = _gvn.transform(new (C, 2) Conv2BNode(opq));
2119   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
2120   Node* iffalse = _gvn.transform(new (C, 1) IfFalseNode(iff));
2121   C->add_predicate_opaq(opq);
2122   {
2123     PreserveJVMState pjvms(this);
2124     set_control(iffalse);
2125     uncommon_trap(Deoptimization::Reason_predicate,
2126                   Deoptimization::Action_maybe_recompile);
2127   }
2128   Node* iftrue = _gvn.transform(new (C, 1) IfTrueNode(iff));
2129   set_control(iftrue);
2130 }
2131 
2132 #ifndef PRODUCT
2133 //------------------------show_parse_info--------------------------------------
2134 void Parse::show_parse_info() {
2135   InlineTree* ilt = NULL;
2136   if (C->ilt() != NULL) {
2137     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2138     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2139   }
2140   if (PrintCompilation && Verbose) {
2141     if (depth() == 1) {
2142       if( ilt->count_inlines() ) {
2143         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2144                      ilt->count_inline_bcs());
2145         tty->cr();
2146       }
2147     } else {
2148       if (method()->is_synchronized())         tty->print("s");
2149       if (method()->has_exception_handlers())  tty->print("!");
2150       // Check this is not the final compiled version
2151       if (C->trap_can_recompile()) {
2152         tty->print("-");
2153       } else {
2154         tty->print(" ");
2155       }
2156       method()->print_short_name();
2157       if (is_osr_parse()) {
2158         tty->print(" @ %d", osr_bci());
2159       }
2160       tty->print(" (%d bytes)",method()->code_size());
2161       if (ilt->count_inlines()) {
2162         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2163                    ilt->count_inline_bcs());
2164       }
2165       tty->cr();
2166     }
2167   }
2168   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2169     // Print that we succeeded; suppress this message on the first osr parse.
2170 
2171     if (method()->is_synchronized())         tty->print("s");
2172     if (method()->has_exception_handlers())  tty->print("!");
2173     // Check this is not the final compiled version
2174     if (C->trap_can_recompile() && depth() == 1) {
2175       tty->print("-");
2176     } else {
2177       tty->print(" ");
2178     }
2179     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2180     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2181     method()->print_short_name();
2182     if (is_osr_parse()) {
2183       tty->print(" @ %d", osr_bci());
2184     }
2185     if (ilt->caller_bci() != -1) {
2186       tty->print(" @ %d", ilt->caller_bci());
2187     }
2188     tty->print(" (%d bytes)",method()->code_size());
2189     if (ilt->count_inlines()) {
2190       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2191                  ilt->count_inline_bcs());
2192     }
2193     tty->cr();
2194   }
2195 }
2196 
2197 
2198 //------------------------------dump-------------------------------------------
2199 // Dump information associated with the bytecodes of current _method
2200 void Parse::dump() {
2201   if( method() != NULL ) {
2202     // Iterate over bytecodes
2203     ciBytecodeStream iter(method());
2204     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2205       dump_bci( iter.cur_bci() );
2206       tty->cr();
2207     }
2208   }
2209 }
2210 
2211 // Dump information associated with a byte code index, 'bci'
2212 void Parse::dump_bci(int bci) {
2213   // Output info on merge-points, cloning, and within _jsr..._ret
2214   // NYI
2215   tty->print(" bci:%d", bci);
2216 }
2217 
2218 #endif