1 /*
   2  * Copyright 1998-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
  26 #include "adlc.hpp"
  27 
  28 //==============================Instructions===================================
  29 //------------------------------InstructForm-----------------------------------
  30 InstructForm::InstructForm(const char *id, bool ideal_only)
  31   : _ident(id), _ideal_only(ideal_only),
  32     _localNames(cmpstr, hashstr, Form::arena),
  33     _effects(cmpstr, hashstr, Form::arena) {
  34       _ftype = Form::INS;
  35 
  36       _matrule   = NULL;
  37       _insencode = NULL;
  38       _opcode    = NULL;
  39       _size      = NULL;
  40       _attribs   = NULL;
  41       _predicate = NULL;
  42       _exprule   = NULL;
  43       _rewrule   = NULL;
  44       _format    = NULL;
  45       _peephole  = NULL;
  46       _ins_pipe  = NULL;
  47       _uniq_idx  = NULL;
  48       _num_uniq  = 0;
  49       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
  50       _cisc_spill_alternate = NULL;            // possible cisc replacement
  51       _cisc_reg_mask_name = NULL;
  52       _is_cisc_alternate = false;
  53       _is_short_branch = false;
  54       _short_branch_form = NULL;
  55       _alignment = 1;
  56 }
  57 
  58 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
  59   : _ident(id), _ideal_only(false),
  60     _localNames(instr->_localNames),
  61     _effects(instr->_effects) {
  62       _ftype = Form::INS;
  63 
  64       _matrule   = rule;
  65       _insencode = instr->_insencode;
  66       _opcode    = instr->_opcode;
  67       _size      = instr->_size;
  68       _attribs   = instr->_attribs;
  69       _predicate = instr->_predicate;
  70       _exprule   = instr->_exprule;
  71       _rewrule   = instr->_rewrule;
  72       _format    = instr->_format;
  73       _peephole  = instr->_peephole;
  74       _ins_pipe  = instr->_ins_pipe;
  75       _uniq_idx  = instr->_uniq_idx;
  76       _num_uniq  = instr->_num_uniq;
  77       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
  78       _cisc_spill_alternate = NULL;            // possible cisc replacement
  79       _cisc_reg_mask_name = NULL;
  80       _is_cisc_alternate = false;
  81       _is_short_branch = false;
  82       _short_branch_form = NULL;
  83       _alignment = 1;
  84      // Copy parameters
  85      const char *name;
  86      instr->_parameters.reset();
  87      for (; (name = instr->_parameters.iter()) != NULL;)
  88        _parameters.addName(name);
  89 }
  90 
  91 InstructForm::~InstructForm() {
  92 }
  93 
  94 InstructForm *InstructForm::is_instruction() const {
  95   return (InstructForm*)this;
  96 }
  97 
  98 bool InstructForm::ideal_only() const {
  99   return _ideal_only;
 100 }
 101 
 102 bool InstructForm::sets_result() const {
 103   return (_matrule != NULL && _matrule->sets_result());
 104 }
 105 
 106 bool InstructForm::needs_projections() {
 107   _components.reset();
 108   for( Component *comp; (comp = _components.iter()) != NULL; ) {
 109     if (comp->isa(Component::KILL)) {
 110       return true;
 111     }
 112   }
 113   return false;
 114 }
 115 
 116 
 117 bool InstructForm::has_temps() {
 118   if (_matrule) {
 119     // Examine each component to see if it is a TEMP
 120     _components.reset();
 121     // Skip the first component, if already handled as (SET dst (...))
 122     Component *comp = NULL;
 123     if (sets_result())  comp = _components.iter();
 124     while ((comp = _components.iter()) != NULL) {
 125       if (comp->isa(Component::TEMP)) {
 126         return true;
 127       }
 128     }
 129   }
 130 
 131   return false;
 132 }
 133 
 134 uint InstructForm::num_defs_or_kills() {
 135   uint   defs_or_kills = 0;
 136 
 137   _components.reset();
 138   for( Component *comp; (comp = _components.iter()) != NULL; ) {
 139     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
 140       ++defs_or_kills;
 141     }
 142   }
 143 
 144   return  defs_or_kills;
 145 }
 146 
 147 // This instruction has an expand rule?
 148 bool InstructForm::expands() const {
 149   return ( _exprule != NULL );
 150 }
 151 
 152 // This instruction has a peephole rule?
 153 Peephole *InstructForm::peepholes() const {
 154   return _peephole;
 155 }
 156 
 157 // This instruction has a peephole rule?
 158 void InstructForm::append_peephole(Peephole *peephole) {
 159   if( _peephole == NULL ) {
 160     _peephole = peephole;
 161   } else {
 162     _peephole->append_peephole(peephole);
 163   }
 164 }
 165 
 166 
 167 // ideal opcode enumeration
 168 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
 169   if( !_matrule ) return "Node"; // Something weird
 170   // Chain rules do not really have ideal Opcodes; use their source
 171   // operand ideal Opcode instead.
 172   if( is_simple_chain_rule(globalNames) ) {
 173     const char *src = _matrule->_rChild->_opType;
 174     OperandForm *src_op = globalNames[src]->is_operand();
 175     assert( src_op, "Not operand class of chain rule" );
 176     if( !src_op->_matrule ) return "Node";
 177     return src_op->_matrule->_opType;
 178   }
 179   // Operand chain rules do not really have ideal Opcodes
 180   if( _matrule->is_chain_rule(globalNames) )
 181     return "Node";
 182   return strcmp(_matrule->_opType,"Set")
 183     ? _matrule->_opType
 184     : _matrule->_rChild->_opType;
 185 }
 186 
 187 // Recursive check on all operands' match rules in my match rule
 188 bool InstructForm::is_pinned(FormDict &globals) {
 189   if ( ! _matrule)  return false;
 190 
 191   int  index   = 0;
 192   if (_matrule->find_type("Goto",          index)) return true;
 193   if (_matrule->find_type("If",            index)) return true;
 194   if (_matrule->find_type("CountedLoopEnd",index)) return true;
 195   if (_matrule->find_type("Return",        index)) return true;
 196   if (_matrule->find_type("Rethrow",       index)) return true;
 197   if (_matrule->find_type("TailCall",      index)) return true;
 198   if (_matrule->find_type("TailJump",      index)) return true;
 199   if (_matrule->find_type("Halt",          index)) return true;
 200   if (_matrule->find_type("Jump",          index)) return true;
 201 
 202   return is_parm(globals);
 203 }
 204 
 205 // Recursive check on all operands' match rules in my match rule
 206 bool InstructForm::is_projection(FormDict &globals) {
 207   if ( ! _matrule)  return false;
 208 
 209   int  index   = 0;
 210   if (_matrule->find_type("Goto",    index)) return true;
 211   if (_matrule->find_type("Return",  index)) return true;
 212   if (_matrule->find_type("Rethrow", index)) return true;
 213   if (_matrule->find_type("TailCall",index)) return true;
 214   if (_matrule->find_type("TailJump",index)) return true;
 215   if (_matrule->find_type("Halt",    index)) return true;
 216 
 217   return false;
 218 }
 219 
 220 // Recursive check on all operands' match rules in my match rule
 221 bool InstructForm::is_parm(FormDict &globals) {
 222   if ( ! _matrule)  return false;
 223 
 224   int  index   = 0;
 225   if (_matrule->find_type("Parm",index)) return true;
 226 
 227   return false;
 228 }
 229 
 230 
 231 // Return 'true' if this instruction matches an ideal 'Copy*' node
 232 int InstructForm::is_ideal_copy() const {
 233   return _matrule ? _matrule->is_ideal_copy() : 0;
 234 }
 235 
 236 // Return 'true' if this instruction is too complex to rematerialize.
 237 int InstructForm::is_expensive() const {
 238   // We can prove it is cheap if it has an empty encoding.
 239   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
 240   if (is_empty_encoding())
 241     return 0;
 242 
 243   if (is_tls_instruction())
 244     return 1;
 245 
 246   if (_matrule == NULL)  return 0;
 247 
 248   return _matrule->is_expensive();
 249 }
 250 
 251 // Has an empty encoding if _size is a constant zero or there
 252 // are no ins_encode tokens.
 253 int InstructForm::is_empty_encoding() const {
 254   if (_insencode != NULL) {
 255     _insencode->reset();
 256     if (_insencode->encode_class_iter() == NULL) {
 257       return 1;
 258     }
 259   }
 260   if (_size != NULL && strcmp(_size, "0") == 0) {
 261     return 1;
 262   }
 263   return 0;
 264 }
 265 
 266 int InstructForm::is_tls_instruction() const {
 267   if (_ident != NULL &&
 268       ( ! strcmp( _ident,"tlsLoadP") ||
 269         ! strncmp(_ident,"tlsLoadP_",9)) ) {
 270     return 1;
 271   }
 272 
 273   if (_matrule != NULL && _insencode != NULL) {
 274     const char* opType = _matrule->_opType;
 275     if (strcmp(opType, "Set")==0)
 276       opType = _matrule->_rChild->_opType;
 277     if (strcmp(opType,"ThreadLocal")==0) {
 278       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
 279               (_ident == NULL ? "NULL" : _ident));
 280       return 1;
 281     }
 282   }
 283 
 284   return 0;
 285 }
 286 
 287 
 288 // Return 'true' if this instruction matches an ideal 'Copy*' node
 289 bool InstructForm::is_ideal_unlock() const {
 290   return _matrule ? _matrule->is_ideal_unlock() : false;
 291 }
 292 
 293 bool InstructForm::is_ideal_call_leaf() const {
 294   return _matrule ? _matrule->is_ideal_call_leaf() : false;
 295 }
 296 
 297 // Return 'true' if this instruction matches an ideal 'If' node
 298 bool InstructForm::is_ideal_if() const {
 299   if( _matrule == NULL ) return false;
 300 
 301   return _matrule->is_ideal_if();
 302 }
 303 
 304 // Return 'true' if this instruction matches an ideal 'FastLock' node
 305 bool InstructForm::is_ideal_fastlock() const {
 306   if( _matrule == NULL ) return false;
 307 
 308   return _matrule->is_ideal_fastlock();
 309 }
 310 
 311 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
 312 bool InstructForm::is_ideal_membar() const {
 313   if( _matrule == NULL ) return false;
 314 
 315   return _matrule->is_ideal_membar();
 316 }
 317 
 318 // Return 'true' if this instruction matches an ideal 'LoadPC' node
 319 bool InstructForm::is_ideal_loadPC() const {
 320   if( _matrule == NULL ) return false;
 321 
 322   return _matrule->is_ideal_loadPC();
 323 }
 324 
 325 // Return 'true' if this instruction matches an ideal 'Box' node
 326 bool InstructForm::is_ideal_box() const {
 327   if( _matrule == NULL ) return false;
 328 
 329   return _matrule->is_ideal_box();
 330 }
 331 
 332 // Return 'true' if this instruction matches an ideal 'Goto' node
 333 bool InstructForm::is_ideal_goto() const {
 334   if( _matrule == NULL ) return false;
 335 
 336   return _matrule->is_ideal_goto();
 337 }
 338 
 339 // Return 'true' if this instruction matches an ideal 'Jump' node
 340 bool InstructForm::is_ideal_jump() const {
 341   if( _matrule == NULL ) return false;
 342 
 343   return _matrule->is_ideal_jump();
 344 }
 345 
 346 // Return 'true' if instruction matches ideal 'If' | 'Goto' |
 347 //                    'CountedLoopEnd' | 'Jump'
 348 bool InstructForm::is_ideal_branch() const {
 349   if( _matrule == NULL ) return false;
 350 
 351   return _matrule->is_ideal_if() || _matrule->is_ideal_goto() || _matrule->is_ideal_jump();
 352 }
 353 
 354 
 355 // Return 'true' if this instruction matches an ideal 'Return' node
 356 bool InstructForm::is_ideal_return() const {
 357   if( _matrule == NULL ) return false;
 358 
 359   // Check MatchRule to see if the first entry is the ideal "Return" node
 360   int  index   = 0;
 361   if (_matrule->find_type("Return",index)) return true;
 362   if (_matrule->find_type("Rethrow",index)) return true;
 363   if (_matrule->find_type("TailCall",index)) return true;
 364   if (_matrule->find_type("TailJump",index)) return true;
 365 
 366   return false;
 367 }
 368 
 369 // Return 'true' if this instruction matches an ideal 'Halt' node
 370 bool InstructForm::is_ideal_halt() const {
 371   int  index   = 0;
 372   return _matrule && _matrule->find_type("Halt",index);
 373 }
 374 
 375 // Return 'true' if this instruction matches an ideal 'SafePoint' node
 376 bool InstructForm::is_ideal_safepoint() const {
 377   int  index   = 0;
 378   return _matrule && _matrule->find_type("SafePoint",index);
 379 }
 380 
 381 // Return 'true' if this instruction matches an ideal 'Nop' node
 382 bool InstructForm::is_ideal_nop() const {
 383   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
 384 }
 385 
 386 bool InstructForm::is_ideal_control() const {
 387   if ( ! _matrule)  return false;
 388 
 389   return is_ideal_return() || is_ideal_branch() || is_ideal_halt();
 390 }
 391 
 392 // Return 'true' if this instruction matches an ideal 'Call' node
 393 Form::CallType InstructForm::is_ideal_call() const {
 394   if( _matrule == NULL ) return Form::invalid_type;
 395 
 396   // Check MatchRule to see if the first entry is the ideal "Call" node
 397   int  idx   = 0;
 398   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
 399   idx = 0;
 400   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
 401   idx = 0;
 402   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
 403   idx = 0;
 404   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
 405   idx = 0;
 406   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
 407   idx = 0;
 408   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
 409   idx = 0;
 410   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
 411   idx = 0;
 412 
 413   return Form::invalid_type;
 414 }
 415 
 416 // Return 'true' if this instruction matches an ideal 'Load?' node
 417 Form::DataType InstructForm::is_ideal_load() const {
 418   if( _matrule == NULL ) return Form::none;
 419 
 420   return  _matrule->is_ideal_load();
 421 }
 422 
 423 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
 424 bool InstructForm::skip_antidep_check() const {
 425   if( _matrule == NULL ) return false;
 426 
 427   return  _matrule->skip_antidep_check();
 428 }
 429 
 430 // Return 'true' if this instruction matches an ideal 'Load?' node
 431 Form::DataType InstructForm::is_ideal_store() const {
 432   if( _matrule == NULL ) return Form::none;
 433 
 434   return  _matrule->is_ideal_store();
 435 }
 436 
 437 // Return the input register that must match the output register
 438 // If this is not required, return 0
 439 uint InstructForm::two_address(FormDict &globals) {
 440   uint  matching_input = 0;
 441   if(_components.count() == 0) return 0;
 442 
 443   _components.reset();
 444   Component *comp = _components.iter();
 445   // Check if there is a DEF
 446   if( comp->isa(Component::DEF) ) {
 447     // Check that this is a register
 448     const char  *def_type = comp->_type;
 449     const Form  *form     = globals[def_type];
 450     OperandForm *op       = form->is_operand();
 451     if( op ) {
 452       if( op->constrained_reg_class() != NULL &&
 453           op->interface_type(globals) == Form::register_interface ) {
 454         // Remember the local name for equality test later
 455         const char *def_name = comp->_name;
 456         // Check if a component has the same name and is a USE
 457         do {
 458           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
 459             return operand_position_format(def_name);
 460           }
 461         } while( (comp = _components.iter()) != NULL);
 462       }
 463     }
 464   }
 465 
 466   return 0;
 467 }
 468 
 469 
 470 // when chaining a constant to an instruction, returns 'true' and sets opType
 471 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
 472   const char *dummy  = NULL;
 473   const char *dummy2 = NULL;
 474   return is_chain_of_constant(globals, dummy, dummy2);
 475 }
 476 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
 477                 const char * &opTypeParam) {
 478   const char *result = NULL;
 479 
 480   return is_chain_of_constant(globals, opTypeParam, result);
 481 }
 482 
 483 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
 484                 const char * &opTypeParam, const char * &resultParam) {
 485   Form::DataType  data_type = Form::none;
 486   if ( ! _matrule)  return data_type;
 487 
 488   // !!!!!
 489   // The source of the chain rule is 'position = 1'
 490   uint         position = 1;
 491   const char  *result   = NULL;
 492   const char  *name     = NULL;
 493   const char  *opType   = NULL;
 494   // Here base_operand is looking for an ideal type to be returned (opType).
 495   if ( _matrule->is_chain_rule(globals)
 496        && _matrule->base_operand(position, globals, result, name, opType) ) {
 497     data_type = ideal_to_const_type(opType);
 498 
 499     // if it isn't an ideal constant type, just return
 500     if ( data_type == Form::none ) return data_type;
 501 
 502     // Ideal constant types also adjust the opType parameter.
 503     resultParam = result;
 504     opTypeParam = opType;
 505     return data_type;
 506   }
 507 
 508   return data_type;
 509 }
 510 
 511 // Check if a simple chain rule
 512 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
 513   if( _matrule && _matrule->sets_result()
 514       && _matrule->_rChild->_lChild == NULL
 515       && globals[_matrule->_rChild->_opType]
 516       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
 517     return true;
 518   }
 519   return false;
 520 }
 521 
 522 // check for structural rematerialization
 523 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
 524   bool   rematerialize = false;
 525 
 526   Form::DataType data_type = is_chain_of_constant(globals);
 527   if( data_type != Form::none )
 528     rematerialize = true;
 529 
 530   // Constants
 531   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
 532     rematerialize = true;
 533 
 534   // Pseudo-constants (values easily available to the runtime)
 535   if (is_empty_encoding() && is_tls_instruction())
 536     rematerialize = true;
 537 
 538   // 1-input, 1-output, such as copies or increments.
 539   if( _components.count() == 2 &&
 540       _components[0]->is(Component::DEF) &&
 541       _components[1]->isa(Component::USE) )
 542     rematerialize = true;
 543 
 544   // Check for an ideal 'Load?' and eliminate rematerialize option
 545   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
 546        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
 547        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
 548     rematerialize = false;
 549   }
 550 
 551   // Always rematerialize the flags.  They are more expensive to save &
 552   // restore than to recompute (and possibly spill the compare's inputs).
 553   if( _components.count() >= 1 ) {
 554     Component *c = _components[0];
 555     const Form *form = globals[c->_type];
 556     OperandForm *opform = form->is_operand();
 557     if( opform ) {
 558       // Avoid the special stack_slots register classes
 559       const char *rc_name = opform->constrained_reg_class();
 560       if( rc_name ) {
 561         if( strcmp(rc_name,"stack_slots") ) {
 562           // Check for ideal_type of RegFlags
 563           const char *type = opform->ideal_type( globals, registers );
 564           if( !strcmp(type,"RegFlags") )
 565             rematerialize = true;
 566         } else
 567           rematerialize = false; // Do not rematerialize things target stk
 568       }
 569     }
 570   }
 571 
 572   return rematerialize;
 573 }
 574 
 575 // loads from memory, so must check for anti-dependence
 576 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
 577   if ( skip_antidep_check() ) return false;
 578 
 579   // Machine independent loads must be checked for anti-dependences
 580   if( is_ideal_load() != Form::none )  return true;
 581 
 582   // !!!!! !!!!! !!!!!
 583   // TEMPORARY
 584   // if( is_simple_chain_rule(globals) )  return false;
 585 
 586   // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
 587   // but writes none
 588   if( _matrule && _matrule->_rChild &&
 589       ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
 590         strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
 591         strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
 592         strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
 593     return true;
 594 
 595   // Check if instruction has a USE of a memory operand class, but no defs
 596   bool USE_of_memory  = false;
 597   bool DEF_of_memory  = false;
 598   Component     *comp = NULL;
 599   ComponentList &components = (ComponentList &)_components;
 600 
 601   components.reset();
 602   while( (comp = components.iter()) != NULL ) {
 603     const Form  *form = globals[comp->_type];
 604     if( !form ) continue;
 605     OpClassForm *op   = form->is_opclass();
 606     if( !op ) continue;
 607     if( form->interface_type(globals) == Form::memory_interface ) {
 608       if( comp->isa(Component::USE) ) USE_of_memory = true;
 609       if( comp->isa(Component::DEF) ) {
 610         OperandForm *oper = form->is_operand();
 611         if( oper && oper->is_user_name_for_sReg() ) {
 612           // Stack slots are unaliased memory handled by allocator
 613           oper = oper;  // debug stopping point !!!!!
 614         } else {
 615           DEF_of_memory = true;
 616         }
 617       }
 618     }
 619   }
 620   return (USE_of_memory && !DEF_of_memory);
 621 }
 622 
 623 
 624 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
 625   if( _matrule == NULL ) return false;
 626   if( !_matrule->_opType ) return false;
 627 
 628   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
 629   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
 630 
 631   return false;
 632 }
 633 
 634 int InstructForm::memory_operand(FormDict &globals) const {
 635   // Machine independent loads must be checked for anti-dependences
 636   // Check if instruction has a USE of a memory operand class, or a def.
 637   int USE_of_memory  = 0;
 638   int DEF_of_memory  = 0;
 639   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
 640   Component     *unique          = NULL;
 641   Component     *comp            = NULL;
 642   ComponentList &components      = (ComponentList &)_components;
 643 
 644   components.reset();
 645   while( (comp = components.iter()) != NULL ) {
 646     const Form  *form = globals[comp->_type];
 647     if( !form ) continue;
 648     OpClassForm *op   = form->is_opclass();
 649     if( !op ) continue;
 650     if( op->stack_slots_only(globals) )  continue;
 651     if( form->interface_type(globals) == Form::memory_interface ) {
 652       if( comp->isa(Component::DEF) ) {
 653         last_memory_DEF = comp->_name;
 654         DEF_of_memory++;
 655         unique = comp;
 656       } else if( comp->isa(Component::USE) ) {
 657         if( last_memory_DEF != NULL ) {
 658           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
 659           last_memory_DEF = NULL;
 660         }
 661         USE_of_memory++;
 662         if (DEF_of_memory == 0)  // defs take precedence
 663           unique = comp;
 664       } else {
 665         assert(last_memory_DEF == NULL, "unpaired memory DEF");
 666       }
 667     }
 668   }
 669   assert(last_memory_DEF == NULL, "unpaired memory DEF");
 670   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
 671   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
 672   if( (USE_of_memory + DEF_of_memory) > 0 ) {
 673     if( is_simple_chain_rule(globals) ) {
 674       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
 675       //((InstructForm*)this)->dump();
 676       // Preceding code prints nothing on sparc and these insns on intel:
 677       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
 678       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
 679       return NO_MEMORY_OPERAND;
 680     }
 681 
 682     if( DEF_of_memory == 1 ) {
 683       assert(unique != NULL, "");
 684       if( USE_of_memory == 0 ) {
 685         // unique def, no uses
 686       } else {
 687         // // unique def, some uses
 688         // // must return bottom unless all uses match def
 689         // unique = NULL;
 690       }
 691     } else if( DEF_of_memory > 0 ) {
 692       // multiple defs, don't care about uses
 693       unique = NULL;
 694     } else if( USE_of_memory == 1) {
 695       // unique use, no defs
 696       assert(unique != NULL, "");
 697     } else if( USE_of_memory > 0 ) {
 698       // multiple uses, no defs
 699       unique = NULL;
 700     } else {
 701       assert(false, "bad case analysis");
 702     }
 703     // process the unique DEF or USE, if there is one
 704     if( unique == NULL ) {
 705       return MANY_MEMORY_OPERANDS;
 706     } else {
 707       int pos = components.operand_position(unique->_name);
 708       if( unique->isa(Component::DEF) ) {
 709         pos += 1;                // get corresponding USE from DEF
 710       }
 711       assert(pos >= 1, "I was just looking at it!");
 712       return pos;
 713     }
 714   }
 715 
 716   // missed the memory op??
 717   if( true ) {  // %%% should not be necessary
 718     if( is_ideal_store() != Form::none ) {
 719       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
 720       ((InstructForm*)this)->dump();
 721       // pretend it has multiple defs and uses
 722       return MANY_MEMORY_OPERANDS;
 723     }
 724     if( is_ideal_load()  != Form::none ) {
 725       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
 726       ((InstructForm*)this)->dump();
 727       // pretend it has multiple uses and no defs
 728       return MANY_MEMORY_OPERANDS;
 729     }
 730   }
 731 
 732   return NO_MEMORY_OPERAND;
 733 }
 734 
 735 
 736 // This instruction captures the machine-independent bottom_type
 737 // Expected use is for pointer vs oop determination for LoadP
 738 bool InstructForm::captures_bottom_type(FormDict &globals) const {
 739   if( _matrule && _matrule->_rChild &&
 740        (!strcmp(_matrule->_rChild->_opType,"CastPP")     ||  // new result type
 741         !strcmp(_matrule->_rChild->_opType,"CastX2P")    ||  // new result type
 742         !strcmp(_matrule->_rChild->_opType,"DecodeN")    ||
 743         !strcmp(_matrule->_rChild->_opType,"EncodeP")    ||
 744         !strcmp(_matrule->_rChild->_opType,"LoadN")      ||
 745         !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
 746         !strcmp(_matrule->_rChild->_opType,"CreateEx")   ||  // type of exception
 747         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
 748   else if ( is_ideal_load() == Form::idealP )                return true;
 749   else if ( is_ideal_store() != Form::none  )                return true;
 750 
 751   if (needs_base_oop_edge(globals)) return true;
 752 
 753   return  false;
 754 }
 755 
 756 
 757 // Access instr_cost attribute or return NULL.
 758 const char* InstructForm::cost() {
 759   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
 760     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
 761       return cur->_val;
 762     }
 763   }
 764   return NULL;
 765 }
 766 
 767 // Return count of top-level operands.
 768 uint InstructForm::num_opnds() {
 769   int  num_opnds = _components.num_operands();
 770 
 771   // Need special handling for matching some ideal nodes
 772   // i.e. Matching a return node
 773   /*
 774   if( _matrule ) {
 775     if( strcmp(_matrule->_opType,"Return"   )==0 ||
 776         strcmp(_matrule->_opType,"Halt"     )==0 )
 777       return 3;
 778   }
 779     */
 780   return num_opnds;
 781 }
 782 
 783 // Return count of unmatched operands.
 784 uint InstructForm::num_post_match_opnds() {
 785   uint  num_post_match_opnds = _components.count();
 786   uint  num_match_opnds = _components.match_count();
 787   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
 788 
 789   return num_post_match_opnds;
 790 }
 791 
 792 // Return the number of leaves below this complex operand
 793 uint InstructForm::num_consts(FormDict &globals) const {
 794   if ( ! _matrule) return 0;
 795 
 796   // This is a recursive invocation on all operands in the matchrule
 797   return _matrule->num_consts(globals);
 798 }
 799 
 800 // Constants in match rule with specified type
 801 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
 802   if ( ! _matrule) return 0;
 803 
 804   // This is a recursive invocation on all operands in the matchrule
 805   return _matrule->num_consts(globals, type);
 806 }
 807 
 808 
 809 // Return the register class associated with 'leaf'.
 810 const char *InstructForm::out_reg_class(FormDict &globals) {
 811   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
 812 
 813   return NULL;
 814 }
 815 
 816 
 817 
 818 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
 819 uint InstructForm::oper_input_base(FormDict &globals) {
 820   if( !_matrule ) return 1;     // Skip control for most nodes
 821 
 822   // Need special handling for matching some ideal nodes
 823   // i.e. Matching a return node
 824   if( strcmp(_matrule->_opType,"Return"    )==0 ||
 825       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
 826       strcmp(_matrule->_opType,"TailCall"  )==0 ||
 827       strcmp(_matrule->_opType,"TailJump"  )==0 ||
 828       strcmp(_matrule->_opType,"SafePoint" )==0 ||
 829       strcmp(_matrule->_opType,"Halt"      )==0 )
 830     return AdlcVMDeps::Parms;   // Skip the machine-state edges
 831 
 832   if( _matrule->_rChild &&
 833       ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
 834         strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
 835         strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
 836         strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 )) {
 837         // String.(compareTo/equals/indexOf) and Arrays.equals
 838         // take 1 control and 1 memory edges.
 839     return 2;
 840   }
 841 
 842   // Check for handling of 'Memory' input/edge in the ideal world.
 843   // The AD file writer is shielded from knowledge of these edges.
 844   int base = 1;                 // Skip control
 845   base += _matrule->needs_ideal_memory_edge(globals);
 846 
 847   // Also skip the base-oop value for uses of derived oops.
 848   // The AD file writer is shielded from knowledge of these edges.
 849   base += needs_base_oop_edge(globals);
 850 
 851   return base;
 852 }
 853 
 854 // Implementation does not modify state of internal structures
 855 void InstructForm::build_components() {
 856   // Add top-level operands to the components
 857   if (_matrule)  _matrule->append_components(_localNames, _components);
 858 
 859   // Add parameters that "do not appear in match rule".
 860   bool has_temp = false;
 861   const char *name;
 862   const char *kill_name = NULL;
 863   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
 864     OperandForm *opForm = (OperandForm*)_localNames[name];
 865 
 866     Effect* e = NULL;
 867     {
 868       const Form* form = _effects[name];
 869       e = form ? form->is_effect() : NULL;
 870     }
 871 
 872     if (e != NULL) {
 873       has_temp |= e->is(Component::TEMP);
 874 
 875       // KILLs must be declared after any TEMPs because TEMPs are real
 876       // uses so their operand numbering must directly follow the real
 877       // inputs from the match rule.  Fixing the numbering seems
 878       // complex so simply enforce the restriction during parse.
 879       if (kill_name != NULL &&
 880           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
 881         OperandForm* kill = (OperandForm*)_localNames[kill_name];
 882         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
 883                              _ident, kill->_ident, kill_name);
 884       } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
 885         kill_name = name;
 886       }
 887     }
 888 
 889     const Component *component  = _components.search(name);
 890     if ( component  == NULL ) {
 891       if (e) {
 892         _components.insert(name, opForm->_ident, e->_use_def, false);
 893         component = _components.search(name);
 894         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
 895           const Form *form = globalAD->globalNames()[component->_type];
 896           assert( form, "component type must be a defined form");
 897           OperandForm *op   = form->is_operand();
 898           if (op->_interface && op->_interface->is_RegInterface()) {
 899             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
 900                                  _ident, opForm->_ident, name);
 901           }
 902         }
 903       } else {
 904         // This would be a nice warning but it triggers in a few places in a benign way
 905         // if (_matrule != NULL && !expands()) {
 906         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
 907         //                        _ident, opForm->_ident, name);
 908         // }
 909         _components.insert(name, opForm->_ident, Component::INVALID, false);
 910       }
 911     }
 912     else if (e) {
 913       // Component was found in the list
 914       // Check if there is a new effect that requires an extra component.
 915       // This happens when adding 'USE' to a component that is not yet one.
 916       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
 917         if (component->isa(Component::USE) && _matrule) {
 918           const Form *form = globalAD->globalNames()[component->_type];
 919           assert( form, "component type must be a defined form");
 920           OperandForm *op   = form->is_operand();
 921           if (op->_interface && op->_interface->is_RegInterface()) {
 922             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
 923                                  _ident, opForm->_ident, name);
 924           }
 925         }
 926         _components.insert(name, opForm->_ident, e->_use_def, false);
 927       } else {
 928         Component  *comp = (Component*)component;
 929         comp->promote_use_def_info(e->_use_def);
 930       }
 931       // Component positions are zero based.
 932       int  pos  = _components.operand_position(name);
 933       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
 934               "Component::DEF can only occur in the first position");
 935     }
 936   }
 937 
 938   // Resolving the interactions between expand rules and TEMPs would
 939   // be complex so simply disallow it.
 940   if (_matrule == NULL && has_temp) {
 941     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
 942   }
 943 
 944   return;
 945 }
 946 
 947 // Return zero-based position in component list;  -1 if not in list.
 948 int   InstructForm::operand_position(const char *name, int usedef) {
 949   return unique_opnds_idx(_components.operand_position(name, usedef));
 950 }
 951 
 952 int   InstructForm::operand_position_format(const char *name) {
 953   return unique_opnds_idx(_components.operand_position_format(name));
 954 }
 955 
 956 // Return zero-based position in component list; -1 if not in list.
 957 int   InstructForm::label_position() {
 958   return unique_opnds_idx(_components.label_position());
 959 }
 960 
 961 int   InstructForm::method_position() {
 962   return unique_opnds_idx(_components.method_position());
 963 }
 964 
 965 // Return number of relocation entries needed for this instruction.
 966 uint  InstructForm::reloc(FormDict &globals) {
 967   uint reloc_entries  = 0;
 968   // Check for "Call" nodes
 969   if ( is_ideal_call() )      ++reloc_entries;
 970   if ( is_ideal_return() )    ++reloc_entries;
 971   if ( is_ideal_safepoint() ) ++reloc_entries;
 972 
 973 
 974   // Check if operands MAYBE oop pointers, by checking for ConP elements
 975   // Proceed through the leaves of the match-tree and check for ConPs
 976   if ( _matrule != NULL ) {
 977     uint         position = 0;
 978     const char  *result   = NULL;
 979     const char  *name     = NULL;
 980     const char  *opType   = NULL;
 981     while (_matrule->base_operand(position, globals, result, name, opType)) {
 982       if ( strcmp(opType,"ConP") == 0 ) {
 983 #ifdef SPARC
 984         reloc_entries += 2; // 1 for sethi + 1 for setlo
 985 #else
 986         ++reloc_entries;
 987 #endif
 988       }
 989       ++position;
 990     }
 991   }
 992 
 993   // Above is only a conservative estimate
 994   // because it did not check contents of operand classes.
 995   // !!!!! !!!!!
 996   // Add 1 to reloc info for each operand class in the component list.
 997   Component  *comp;
 998   _components.reset();
 999   while ( (comp = _components.iter()) != NULL ) {
1000     const Form        *form = globals[comp->_type];
1001     assert( form, "Did not find component's type in global names");
1002     const OpClassForm *opc  = form->is_opclass();
1003     const OperandForm *oper = form->is_operand();
1004     if ( opc && (oper == NULL) ) {
1005       ++reloc_entries;
1006     } else if ( oper ) {
1007       // floats and doubles loaded out of method's constant pool require reloc info
1008       Form::DataType type = oper->is_base_constant(globals);
1009       if ( (type == Form::idealF) || (type == Form::idealD) ) {
1010         ++reloc_entries;
1011       }
1012     }
1013   }
1014 
1015   // Float and Double constants may come from the CodeBuffer table
1016   // and require relocatable addresses for access
1017   // !!!!!
1018   // Check for any component being an immediate float or double.
1019   Form::DataType data_type = is_chain_of_constant(globals);
1020   if( data_type==idealD || data_type==idealF ) {
1021 #ifdef SPARC
1022     // sparc required more relocation entries for floating constants
1023     // (expires 9/98)
1024     reloc_entries += 6;
1025 #else
1026     reloc_entries++;
1027 #endif
1028   }
1029 
1030   return reloc_entries;
1031 }
1032 
1033 // Utility function defined in archDesc.cpp
1034 extern bool is_def(int usedef);
1035 
1036 // Return the result of reducing an instruction
1037 const char *InstructForm::reduce_result() {
1038   const char* result = "Universe";  // default
1039   _components.reset();
1040   Component *comp = _components.iter();
1041   if (comp != NULL && comp->isa(Component::DEF)) {
1042     result = comp->_type;
1043     // Override this if the rule is a store operation:
1044     if (_matrule && _matrule->_rChild &&
1045         is_store_to_memory(_matrule->_rChild->_opType))
1046       result = "Universe";
1047   }
1048   return result;
1049 }
1050 
1051 // Return the name of the operand on the right hand side of the binary match
1052 // Return NULL if there is no right hand side
1053 const char *InstructForm::reduce_right(FormDict &globals)  const {
1054   if( _matrule == NULL ) return NULL;
1055   return  _matrule->reduce_right(globals);
1056 }
1057 
1058 // Similar for left
1059 const char *InstructForm::reduce_left(FormDict &globals)   const {
1060   if( _matrule == NULL ) return NULL;
1061   return  _matrule->reduce_left(globals);
1062 }
1063 
1064 
1065 // Base class for this instruction, MachNode except for calls
1066 const char *InstructForm::mach_base_class(FormDict &globals)  const {
1067   if( is_ideal_call() == Form::JAVA_STATIC ) {
1068     return "MachCallStaticJavaNode";
1069   }
1070   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
1071     return "MachCallDynamicJavaNode";
1072   }
1073   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
1074     return "MachCallRuntimeNode";
1075   }
1076   else if( is_ideal_call() == Form::JAVA_LEAF ) {
1077     return "MachCallLeafNode";
1078   }
1079   else if (is_ideal_return()) {
1080     return "MachReturnNode";
1081   }
1082   else if (is_ideal_halt()) {
1083     return "MachHaltNode";
1084   }
1085   else if (is_ideal_safepoint()) {
1086     return "MachSafePointNode";
1087   }
1088   else if (is_ideal_if()) {
1089     return "MachIfNode";
1090   }
1091   else if (is_ideal_fastlock()) {
1092     return "MachFastLockNode";
1093   }
1094   else if (is_ideal_nop()) {
1095     return "MachNopNode";
1096   }
1097   else if (captures_bottom_type(globals)) {
1098     return "MachTypeNode";
1099   } else {
1100     return "MachNode";
1101   }
1102   assert( false, "ShouldNotReachHere()");
1103   return NULL;
1104 }
1105 
1106 // Compare the instruction predicates for textual equality
1107 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
1108   const Predicate *pred1  = instr1->_predicate;
1109   const Predicate *pred2  = instr2->_predicate;
1110   if( pred1 == NULL && pred2 == NULL ) {
1111     // no predicates means they are identical
1112     return true;
1113   }
1114   if( pred1 != NULL && pred2 != NULL ) {
1115     // compare the predicates
1116     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
1117       return true;
1118     }
1119   }
1120 
1121   return false;
1122 }
1123 
1124 // Check if this instruction can cisc-spill to 'alternate'
1125 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
1126   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
1127   // Do not replace if a cisc-version has been found.
1128   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
1129 
1130   int         cisc_spill_operand = Maybe_cisc_spillable;
1131   char       *result             = NULL;
1132   char       *result2            = NULL;
1133   const char *op_name            = NULL;
1134   const char *reg_type           = NULL;
1135   FormDict   &globals            = AD.globalNames();
1136   cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
1137   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
1138     cisc_spill_operand = operand_position(op_name, Component::USE);
1139     int def_oper  = operand_position(op_name, Component::DEF);
1140     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
1141       // Do not support cisc-spilling for destination operands and
1142       // make sure they have the same number of operands.
1143       _cisc_spill_alternate = instr;
1144       instr->set_cisc_alternate(true);
1145       if( AD._cisc_spill_debug ) {
1146         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
1147         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
1148       }
1149       // Record that a stack-version of the reg_mask is needed
1150       // !!!!!
1151       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
1152       assert( oper != NULL, "cisc-spilling non operand");
1153       const char *reg_class_name = oper->constrained_reg_class();
1154       AD.set_stack_or_reg(reg_class_name);
1155       const char *reg_mask_name  = AD.reg_mask(*oper);
1156       set_cisc_reg_mask_name(reg_mask_name);
1157       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
1158     } else {
1159       cisc_spill_operand = Not_cisc_spillable;
1160     }
1161   } else {
1162     cisc_spill_operand = Not_cisc_spillable;
1163   }
1164 
1165   set_cisc_spill_operand(cisc_spill_operand);
1166   return (cisc_spill_operand != Not_cisc_spillable);
1167 }
1168 
1169 // Check to see if this instruction can be replaced with the short branch
1170 // instruction `short-branch'
1171 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
1172   if (_matrule != NULL &&
1173       this != short_branch &&   // Don't match myself
1174       !is_short_branch() &&     // Don't match another short branch variant
1175       reduce_result() != NULL &&
1176       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
1177       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
1178     // The instructions are equivalent.
1179     if (AD._short_branch_debug) {
1180       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
1181     }
1182     _short_branch_form = short_branch;
1183     return true;
1184   }
1185   return false;
1186 }
1187 
1188 
1189 // --------------------------- FILE *output_routines
1190 //
1191 // Generate the format call for the replacement variable
1192 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
1193   // Find replacement variable's type
1194   const Form *form   = _localNames[rep_var];
1195   if (form == NULL) {
1196     fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
1197     assert(false, "ShouldNotReachHere()");
1198   }
1199   OpClassForm *opc   = form->is_opclass();
1200   assert( opc, "replacement variable was not found in local names");
1201   // Lookup the index position of the replacement variable
1202   int idx  = operand_position_format(rep_var);
1203   if ( idx == -1 ) {
1204     assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
1205     assert( false, "ShouldNotReachHere()");
1206   }
1207 
1208   if (is_noninput_operand(idx)) {
1209     // This component isn't in the input array.  Print out the static
1210     // name of the register.
1211     OperandForm* oper = form->is_operand();
1212     if (oper != NULL && oper->is_bound_register()) {
1213       const RegDef* first = oper->get_RegClass()->find_first_elem();
1214       fprintf(fp, "    tty->print(\"%s\");\n", first->_regname);
1215     } else {
1216       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
1217     }
1218   } else {
1219     // Output the format call for this operand
1220     fprintf(fp,"opnd_array(%d)->",idx);
1221     if (idx == 0)
1222       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
1223     else
1224       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
1225   }
1226 }
1227 
1228 // Seach through operands to determine parameters unique positions.
1229 void InstructForm::set_unique_opnds() {
1230   uint* uniq_idx = NULL;
1231   int  nopnds = num_opnds();
1232   uint  num_uniq = nopnds;
1233   int i;
1234   _uniq_idx_length = 0;
1235   if ( nopnds > 0 ) {
1236     // Allocate index array.  Worst case we're mapping from each
1237     // component back to an index and any DEF always goes at 0 so the
1238     // length of the array has to be the number of components + 1.
1239     _uniq_idx_length = _components.count() + 1;
1240     uniq_idx = (uint*) malloc(sizeof(uint)*(_uniq_idx_length));
1241     for( i = 0; i < _uniq_idx_length; i++ ) {
1242       uniq_idx[i] = i;
1243     }
1244   }
1245   // Do it only if there is a match rule and no expand rule.  With an
1246   // expand rule it is done by creating new mach node in Expand()
1247   // method.
1248   if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
1249     const char *name;
1250     uint count;
1251     bool has_dupl_use = false;
1252 
1253     _parameters.reset();
1254     while( (name = _parameters.iter()) != NULL ) {
1255       count = 0;
1256       int position = 0;
1257       int uniq_position = 0;
1258       _components.reset();
1259       Component *comp = NULL;
1260       if( sets_result() ) {
1261         comp = _components.iter();
1262         position++;
1263       }
1264       // The next code is copied from the method operand_position().
1265       for (; (comp = _components.iter()) != NULL; ++position) {
1266         // When the first component is not a DEF,
1267         // leave space for the result operand!
1268         if ( position==0 && (! comp->isa(Component::DEF)) ) {
1269           ++position;
1270         }
1271         if( strcmp(name, comp->_name)==0 ) {
1272           if( ++count > 1 ) {
1273             assert(position < _uniq_idx_length, "out of bounds");
1274             uniq_idx[position] = uniq_position;
1275             has_dupl_use = true;
1276           } else {
1277             uniq_position = position;
1278           }
1279         }
1280         if( comp->isa(Component::DEF)
1281             && comp->isa(Component::USE) ) {
1282           ++position;
1283           if( position != 1 )
1284             --position;   // only use two slots for the 1st USE_DEF
1285         }
1286       }
1287     }
1288     if( has_dupl_use ) {
1289       for( i = 1; i < nopnds; i++ )
1290         if( i != uniq_idx[i] )
1291           break;
1292       int  j = i;
1293       for( ; i < nopnds; i++ )
1294         if( i == uniq_idx[i] )
1295           uniq_idx[i] = j++;
1296       num_uniq = j;
1297     }
1298   }
1299   _uniq_idx = uniq_idx;
1300   _num_uniq = num_uniq;
1301 }
1302 
1303 // Generate index values needed for determining the operand position
1304 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
1305   uint  idx = 0;                  // position of operand in match rule
1306   int   cur_num_opnds = num_opnds();
1307 
1308   // Compute the index into vector of operand pointers:
1309   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
1310   // idx1 starts at oper_input_base()
1311   if ( cur_num_opnds >= 1 ) {
1312     fprintf(fp,"    // Start at oper_input_base() and count operands\n");
1313     fprintf(fp,"    unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
1314     fprintf(fp,"    unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
1315 
1316     // Generate starting points for other unique operands if they exist
1317     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
1318       if( *receiver == 0 ) {
1319         fprintf(fp,"    unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
1320                 prefix, idx, prefix, idx-1, idx-1 );
1321       } else {
1322         fprintf(fp,"    unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
1323                 prefix, idx, prefix, idx-1, receiver, idx-1 );
1324       }
1325     }
1326   }
1327   if( *receiver != 0 ) {
1328     // This value is used by generate_peepreplace when copying a node.
1329     // Don't emit it in other cases since it can hide bugs with the
1330     // use invalid idx's.
1331     fprintf(fp,"    unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
1332   }
1333 
1334 }
1335 
1336 // ---------------------------
1337 bool InstructForm::verify() {
1338   // !!!!! !!!!!
1339   // Check that a "label" operand occurs last in the operand list, if present
1340   return true;
1341 }
1342 
1343 void InstructForm::dump() {
1344   output(stderr);
1345 }
1346 
1347 void InstructForm::output(FILE *fp) {
1348   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
1349   if (_matrule)   _matrule->output(fp);
1350   if (_insencode) _insencode->output(fp);
1351   if (_opcode)    _opcode->output(fp);
1352   if (_attribs)   _attribs->output(fp);
1353   if (_predicate) _predicate->output(fp);
1354   if (_effects.Size()) {
1355     fprintf(fp,"Effects\n");
1356     _effects.dump();
1357   }
1358   if (_exprule)   _exprule->output(fp);
1359   if (_rewrule)   _rewrule->output(fp);
1360   if (_format)    _format->output(fp);
1361   if (_peephole)  _peephole->output(fp);
1362 }
1363 
1364 void MachNodeForm::dump() {
1365   output(stderr);
1366 }
1367 
1368 void MachNodeForm::output(FILE *fp) {
1369   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
1370 }
1371 
1372 //------------------------------build_predicate--------------------------------
1373 // Build instruction predicates.  If the user uses the same operand name
1374 // twice, we need to check that the operands are pointer-eequivalent in
1375 // the DFA during the labeling process.
1376 Predicate *InstructForm::build_predicate() {
1377   char buf[1024], *s=buf;
1378   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
1379 
1380   MatchNode *mnode =
1381     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
1382   mnode->count_instr_names(names);
1383 
1384   uint first = 1;
1385   // Start with the predicate supplied in the .ad file.
1386   if( _predicate ) {
1387     if( first ) first=0;
1388     strcpy(s,"("); s += strlen(s);
1389     strcpy(s,_predicate->_pred);
1390     s += strlen(s);
1391     strcpy(s,")"); s += strlen(s);
1392   }
1393   for( DictI i(&names); i.test(); ++i ) {
1394     uintptr_t cnt = (uintptr_t)i._value;
1395     if( cnt > 1 ) {             // Need a predicate at all?
1396       assert( cnt == 2, "Unimplemented" );
1397       // Handle many pairs
1398       if( first ) first=0;
1399       else {                    // All tests must pass, so use '&&'
1400         strcpy(s," && ");
1401         s += strlen(s);
1402       }
1403       // Add predicate to working buffer
1404       sprintf(s,"/*%s*/(",(char*)i._key);
1405       s += strlen(s);
1406       mnode->build_instr_pred(s,(char*)i._key,0);
1407       s += strlen(s);
1408       strcpy(s," == "); s += strlen(s);
1409       mnode->build_instr_pred(s,(char*)i._key,1);
1410       s += strlen(s);
1411       strcpy(s,")"); s += strlen(s);
1412     }
1413   }
1414   if( s == buf ) s = NULL;
1415   else {
1416     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
1417     s = strdup(buf);
1418   }
1419   return new Predicate(s);
1420 }
1421 
1422 //------------------------------EncodeForm-------------------------------------
1423 // Constructor
1424 EncodeForm::EncodeForm()
1425   : _encClass(cmpstr,hashstr, Form::arena) {
1426 }
1427 EncodeForm::~EncodeForm() {
1428 }
1429 
1430 // record a new register class
1431 EncClass *EncodeForm::add_EncClass(const char *className) {
1432   EncClass *encClass = new EncClass(className);
1433   _eclasses.addName(className);
1434   _encClass.Insert(className,encClass);
1435   return encClass;
1436 }
1437 
1438 // Lookup the function body for an encoding class
1439 EncClass  *EncodeForm::encClass(const char *className) {
1440   assert( className != NULL, "Must provide a defined encoding name");
1441 
1442   EncClass *encClass = (EncClass*)_encClass[className];
1443   return encClass;
1444 }
1445 
1446 // Lookup the function body for an encoding class
1447 const char *EncodeForm::encClassBody(const char *className) {
1448   if( className == NULL ) return NULL;
1449 
1450   EncClass *encClass = (EncClass*)_encClass[className];
1451   assert( encClass != NULL, "Encode Class is missing.");
1452   encClass->_code.reset();
1453   const char *code = (const char*)encClass->_code.iter();
1454   assert( code != NULL, "Found an empty encode class body.");
1455 
1456   return code;
1457 }
1458 
1459 // Lookup the function body for an encoding class
1460 const char *EncodeForm::encClassPrototype(const char *className) {
1461   assert( className != NULL, "Encode class name must be non NULL.");
1462 
1463   return className;
1464 }
1465 
1466 void EncodeForm::dump() {                  // Debug printer
1467   output(stderr);
1468 }
1469 
1470 void EncodeForm::output(FILE *fp) {          // Write info to output files
1471   const char *name;
1472   fprintf(fp,"\n");
1473   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
1474   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
1475     ((EncClass*)_encClass[name])->output(fp);
1476   }
1477   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
1478 }
1479 //------------------------------EncClass---------------------------------------
1480 EncClass::EncClass(const char *name)
1481   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
1482 }
1483 EncClass::~EncClass() {
1484 }
1485 
1486 // Add a parameter <type,name> pair
1487 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
1488   _parameter_type.addName( parameter_type );
1489   _parameter_name.addName( parameter_name );
1490 }
1491 
1492 // Verify operand types in parameter list
1493 bool EncClass::check_parameter_types(FormDict &globals) {
1494   // !!!!!
1495   return false;
1496 }
1497 
1498 // Add the decomposed "code" sections of an encoding's code-block
1499 void EncClass::add_code(const char *code) {
1500   _code.addName(code);
1501 }
1502 
1503 // Add the decomposed "replacement variables" of an encoding's code-block
1504 void EncClass::add_rep_var(char *replacement_var) {
1505   _code.addName(NameList::_signal);
1506   _rep_vars.addName(replacement_var);
1507 }
1508 
1509 // Lookup the function body for an encoding class
1510 int EncClass::rep_var_index(const char *rep_var) {
1511   uint        position = 0;
1512   const char *name     = NULL;
1513 
1514   _parameter_name.reset();
1515   while ( (name = _parameter_name.iter()) != NULL ) {
1516     if ( strcmp(rep_var,name) == 0 ) return position;
1517     ++position;
1518   }
1519 
1520   return -1;
1521 }
1522 
1523 // Check after parsing
1524 bool EncClass::verify() {
1525   // 1!!!!
1526   // Check that each replacement variable, '$name' in architecture description
1527   // is actually a local variable for this encode class, or a reserved name
1528   // "primary, secondary, tertiary"
1529   return true;
1530 }
1531 
1532 void EncClass::dump() {
1533   output(stderr);
1534 }
1535 
1536 // Write info to output files
1537 void EncClass::output(FILE *fp) {
1538   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
1539 
1540   // Output the parameter list
1541   _parameter_type.reset();
1542   _parameter_name.reset();
1543   const char *type = _parameter_type.iter();
1544   const char *name = _parameter_name.iter();
1545   fprintf(fp, " ( ");
1546   for ( ; (type != NULL) && (name != NULL);
1547         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
1548     fprintf(fp, " %s %s,", type, name);
1549   }
1550   fprintf(fp, " ) ");
1551 
1552   // Output the code block
1553   _code.reset();
1554   _rep_vars.reset();
1555   const char *code;
1556   while ( (code = _code.iter()) != NULL ) {
1557     if ( _code.is_signal(code) ) {
1558       // A replacement variable
1559       const char *rep_var = _rep_vars.iter();
1560       fprintf(fp,"($%s)", rep_var);
1561     } else {
1562       // A section of code
1563       fprintf(fp,"%s", code);
1564     }
1565   }
1566 
1567 }
1568 
1569 //------------------------------Opcode-----------------------------------------
1570 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
1571   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
1572 }
1573 
1574 Opcode::~Opcode() {
1575 }
1576 
1577 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
1578   if( strcmp(param,"primary") == 0 ) {
1579     return Opcode::PRIMARY;
1580   }
1581   else if( strcmp(param,"secondary") == 0 ) {
1582     return Opcode::SECONDARY;
1583   }
1584   else if( strcmp(param,"tertiary") == 0 ) {
1585     return Opcode::TERTIARY;
1586   }
1587   return Opcode::NOT_AN_OPCODE;
1588 }
1589 
1590 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
1591   // Default values previously provided by MachNode::primary()...
1592   const char *description = NULL;
1593   const char *value       = NULL;
1594   // Check if user provided any opcode definitions
1595   if( this != NULL ) {
1596     // Update 'value' if user provided a definition in the instruction
1597     switch (desired_opcode) {
1598     case PRIMARY:
1599       description = "primary()";
1600       if( _primary   != NULL)  { value = _primary;     }
1601       break;
1602     case SECONDARY:
1603       description = "secondary()";
1604       if( _secondary != NULL ) { value = _secondary;   }
1605       break;
1606     case TERTIARY:
1607       description = "tertiary()";
1608       if( _tertiary  != NULL ) { value = _tertiary;    }
1609       break;
1610     default:
1611       assert( false, "ShouldNotReachHere();");
1612       break;
1613     }
1614   }
1615   if (value != NULL) {
1616     fprintf(fp, "(%s /*%s*/)", value, description);
1617   }
1618   return value != NULL;
1619 }
1620 
1621 void Opcode::dump() {
1622   output(stderr);
1623 }
1624 
1625 // Write info to output files
1626 void Opcode::output(FILE *fp) {
1627   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
1628   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
1629   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
1630 }
1631 
1632 //------------------------------InsEncode--------------------------------------
1633 InsEncode::InsEncode() {
1634 }
1635 InsEncode::~InsEncode() {
1636 }
1637 
1638 // Add "encode class name" and its parameters
1639 NameAndList *InsEncode::add_encode(char *encoding) {
1640   assert( encoding != NULL, "Must provide name for encoding");
1641 
1642   // add_parameter(NameList::_signal);
1643   NameAndList *encode = new NameAndList(encoding);
1644   _encoding.addName((char*)encode);
1645 
1646   return encode;
1647 }
1648 
1649 // Access the list of encodings
1650 void InsEncode::reset() {
1651   _encoding.reset();
1652   // _parameter.reset();
1653 }
1654 const char* InsEncode::encode_class_iter() {
1655   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
1656   return  ( encode_class != NULL ? encode_class->name() : NULL );
1657 }
1658 // Obtain parameter name from zero based index
1659 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
1660   NameAndList *params = (NameAndList*)_encoding.current();
1661   assert( params != NULL, "Internal Error");
1662   const char *param = (*params)[param_no];
1663 
1664   // Remove '$' if parser placed it there.
1665   return ( param != NULL && *param == '$') ? (param+1) : param;
1666 }
1667 
1668 void InsEncode::dump() {
1669   output(stderr);
1670 }
1671 
1672 // Write info to output files
1673 void InsEncode::output(FILE *fp) {
1674   NameAndList *encoding  = NULL;
1675   const char  *parameter = NULL;
1676 
1677   fprintf(fp,"InsEncode: ");
1678   _encoding.reset();
1679 
1680   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
1681     // Output the encoding being used
1682     fprintf(fp,"%s(", encoding->name() );
1683 
1684     // Output its parameter list, if any
1685     bool first_param = true;
1686     encoding->reset();
1687     while (  (parameter = encoding->iter()) != 0 ) {
1688       // Output the ',' between parameters
1689       if ( ! first_param )  fprintf(fp,", ");
1690       first_param = false;
1691       // Output the parameter
1692       fprintf(fp,"%s", parameter);
1693     } // done with parameters
1694     fprintf(fp,")  ");
1695   } // done with encodings
1696 
1697   fprintf(fp,"\n");
1698 }
1699 
1700 //------------------------------Effect-----------------------------------------
1701 static int effect_lookup(const char *name) {
1702   if(!strcmp(name, "USE")) return Component::USE;
1703   if(!strcmp(name, "DEF")) return Component::DEF;
1704   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
1705   if(!strcmp(name, "KILL")) return Component::KILL;
1706   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
1707   if(!strcmp(name, "TEMP")) return Component::TEMP;
1708   if(!strcmp(name, "INVALID")) return Component::INVALID;
1709   assert( false,"Invalid effect name specified\n");
1710   return Component::INVALID;
1711 }
1712 
1713 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
1714   _ftype = Form::EFF;
1715 }
1716 Effect::~Effect() {
1717 }
1718 
1719 // Dynamic type check
1720 Effect *Effect::is_effect() const {
1721   return (Effect*)this;
1722 }
1723 
1724 
1725 // True if this component is equal to the parameter.
1726 bool Effect::is(int use_def_kill_enum) const {
1727   return (_use_def == use_def_kill_enum ? true : false);
1728 }
1729 // True if this component is used/def'd/kill'd as the parameter suggests.
1730 bool Effect::isa(int use_def_kill_enum) const {
1731   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
1732 }
1733 
1734 void Effect::dump() {
1735   output(stderr);
1736 }
1737 
1738 void Effect::output(FILE *fp) {          // Write info to output files
1739   fprintf(fp,"Effect: %s\n", (_name?_name:""));
1740 }
1741 
1742 //------------------------------ExpandRule-------------------------------------
1743 ExpandRule::ExpandRule() : _expand_instrs(),
1744                            _newopconst(cmpstr, hashstr, Form::arena) {
1745   _ftype = Form::EXP;
1746 }
1747 
1748 ExpandRule::~ExpandRule() {                  // Destructor
1749 }
1750 
1751 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
1752   _expand_instrs.addName((char*)instruction_name_and_operand_list);
1753 }
1754 
1755 void ExpandRule::reset_instructions() {
1756   _expand_instrs.reset();
1757 }
1758 
1759 NameAndList* ExpandRule::iter_instructions() {
1760   return (NameAndList*)_expand_instrs.iter();
1761 }
1762 
1763 
1764 void ExpandRule::dump() {
1765   output(stderr);
1766 }
1767 
1768 void ExpandRule::output(FILE *fp) {         // Write info to output files
1769   NameAndList *expand_instr = NULL;
1770   const char *opid = NULL;
1771 
1772   fprintf(fp,"\nExpand Rule:\n");
1773 
1774   // Iterate over the instructions 'node' expands into
1775   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
1776     fprintf(fp,"%s(", expand_instr->name());
1777 
1778     // iterate over the operand list
1779     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1780       fprintf(fp,"%s ", opid);
1781     }
1782     fprintf(fp,");\n");
1783   }
1784 }
1785 
1786 //------------------------------RewriteRule------------------------------------
1787 RewriteRule::RewriteRule(char* params, char* block)
1788   : _tempParams(params), _tempBlock(block) { };  // Constructor
1789 RewriteRule::~RewriteRule() {                 // Destructor
1790 }
1791 
1792 void RewriteRule::dump() {
1793   output(stderr);
1794 }
1795 
1796 void RewriteRule::output(FILE *fp) {         // Write info to output files
1797   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
1798           (_tempParams?_tempParams:""),
1799           (_tempBlock?_tempBlock:""));
1800 }
1801 
1802 
1803 //==============================MachNodes======================================
1804 //------------------------------MachNodeForm-----------------------------------
1805 MachNodeForm::MachNodeForm(char *id)
1806   : _ident(id) {
1807 }
1808 
1809 MachNodeForm::~MachNodeForm() {
1810 }
1811 
1812 MachNodeForm *MachNodeForm::is_machnode() const {
1813   return (MachNodeForm*)this;
1814 }
1815 
1816 //==============================Operand Classes================================
1817 //------------------------------OpClassForm------------------------------------
1818 OpClassForm::OpClassForm(const char* id) : _ident(id) {
1819   _ftype = Form::OPCLASS;
1820 }
1821 
1822 OpClassForm::~OpClassForm() {
1823 }
1824 
1825 bool OpClassForm::ideal_only() const { return 0; }
1826 
1827 OpClassForm *OpClassForm::is_opclass() const {
1828   return (OpClassForm*)this;
1829 }
1830 
1831 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
1832   if( _oplst.count() == 0 ) return Form::no_interface;
1833 
1834   // Check that my operands have the same interface type
1835   Form::InterfaceType  interface;
1836   bool  first = true;
1837   NameList &op_list = (NameList &)_oplst;
1838   op_list.reset();
1839   const char *op_name;
1840   while( (op_name = op_list.iter()) != NULL ) {
1841     const Form  *form    = globals[op_name];
1842     OperandForm *operand = form->is_operand();
1843     assert( operand, "Entry in operand class that is not an operand");
1844     if( first ) {
1845       first     = false;
1846       interface = operand->interface_type(globals);
1847     } else {
1848       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
1849     }
1850   }
1851   return interface;
1852 }
1853 
1854 bool OpClassForm::stack_slots_only(FormDict &globals) const {
1855   if( _oplst.count() == 0 ) return false;  // how?
1856 
1857   NameList &op_list = (NameList &)_oplst;
1858   op_list.reset();
1859   const char *op_name;
1860   while( (op_name = op_list.iter()) != NULL ) {
1861     const Form  *form    = globals[op_name];
1862     OperandForm *operand = form->is_operand();
1863     assert( operand, "Entry in operand class that is not an operand");
1864     if( !operand->stack_slots_only(globals) )  return false;
1865   }
1866   return true;
1867 }
1868 
1869 
1870 void OpClassForm::dump() {
1871   output(stderr);
1872 }
1873 
1874 void OpClassForm::output(FILE *fp) {
1875   const char *name;
1876   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
1877   fprintf(fp,"\nCount = %d\n", _oplst.count());
1878   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
1879     fprintf(fp,"%s, ",name);
1880   }
1881   fprintf(fp,"\n");
1882 }
1883 
1884 
1885 //==============================Operands=======================================
1886 //------------------------------OperandForm------------------------------------
1887 OperandForm::OperandForm(const char* id)
1888   : OpClassForm(id), _ideal_only(false),
1889     _localNames(cmpstr, hashstr, Form::arena) {
1890       _ftype = Form::OPER;
1891 
1892       _matrule   = NULL;
1893       _interface = NULL;
1894       _attribs   = NULL;
1895       _predicate = NULL;
1896       _constraint= NULL;
1897       _construct = NULL;
1898       _format    = NULL;
1899 }
1900 OperandForm::OperandForm(const char* id, bool ideal_only)
1901   : OpClassForm(id), _ideal_only(ideal_only),
1902     _localNames(cmpstr, hashstr, Form::arena) {
1903       _ftype = Form::OPER;
1904 
1905       _matrule   = NULL;
1906       _interface = NULL;
1907       _attribs   = NULL;
1908       _predicate = NULL;
1909       _constraint= NULL;
1910       _construct = NULL;
1911       _format    = NULL;
1912 }
1913 OperandForm::~OperandForm() {
1914 }
1915 
1916 
1917 OperandForm *OperandForm::is_operand() const {
1918   return (OperandForm*)this;
1919 }
1920 
1921 bool OperandForm::ideal_only() const {
1922   return _ideal_only;
1923 }
1924 
1925 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
1926   if( _interface == NULL )  return Form::no_interface;
1927 
1928   return _interface->interface_type(globals);
1929 }
1930 
1931 
1932 bool OperandForm::stack_slots_only(FormDict &globals) const {
1933   if( _constraint == NULL )  return false;
1934   return _constraint->stack_slots_only();
1935 }
1936 
1937 
1938 // Access op_cost attribute or return NULL.
1939 const char* OperandForm::cost() {
1940   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
1941     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
1942       return cur->_val;
1943     }
1944   }
1945   return NULL;
1946 }
1947 
1948 // Return the number of leaves below this complex operand
1949 uint OperandForm::num_leaves() const {
1950   if ( ! _matrule) return 0;
1951 
1952   int num_leaves = _matrule->_numleaves;
1953   return num_leaves;
1954 }
1955 
1956 // Return the number of constants contained within this complex operand
1957 uint OperandForm::num_consts(FormDict &globals) const {
1958   if ( ! _matrule) return 0;
1959 
1960   // This is a recursive invocation on all operands in the matchrule
1961   return _matrule->num_consts(globals);
1962 }
1963 
1964 // Return the number of constants in match rule with specified type
1965 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
1966   if ( ! _matrule) return 0;
1967 
1968   // This is a recursive invocation on all operands in the matchrule
1969   return _matrule->num_consts(globals, type);
1970 }
1971 
1972 // Return the number of pointer constants contained within this complex operand
1973 uint OperandForm::num_const_ptrs(FormDict &globals) const {
1974   if ( ! _matrule) return 0;
1975 
1976   // This is a recursive invocation on all operands in the matchrule
1977   return _matrule->num_const_ptrs(globals);
1978 }
1979 
1980 uint OperandForm::num_edges(FormDict &globals) const {
1981   uint edges  = 0;
1982   uint leaves = num_leaves();
1983   uint consts = num_consts(globals);
1984 
1985   // If we are matching a constant directly, there are no leaves.
1986   edges = ( leaves > consts ) ? leaves - consts : 0;
1987 
1988   // !!!!!
1989   // Special case operands that do not have a corresponding ideal node.
1990   if( (edges == 0) && (consts == 0) ) {
1991     if( constrained_reg_class() != NULL ) {
1992       edges = 1;
1993     } else {
1994       if( _matrule
1995           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
1996         const Form *form = globals[_matrule->_opType];
1997         OperandForm *oper = form ? form->is_operand() : NULL;
1998         if( oper ) {
1999           return oper->num_edges(globals);
2000         }
2001       }
2002     }
2003   }
2004 
2005   return edges;
2006 }
2007 
2008 
2009 // Check if this operand is usable for cisc-spilling
2010 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
2011   const char *ideal = ideal_type(globals);
2012   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
2013   return is_cisc_reg;
2014 }
2015 
2016 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
2017   Form::InterfaceType my_interface = interface_type(globals);
2018   return (my_interface == memory_interface);
2019 }
2020 
2021 
2022 // node matches ideal 'Bool'
2023 bool OperandForm::is_ideal_bool() const {
2024   if( _matrule == NULL ) return false;
2025 
2026   return _matrule->is_ideal_bool();
2027 }
2028 
2029 // Require user's name for an sRegX to be stackSlotX
2030 Form::DataType OperandForm::is_user_name_for_sReg() const {
2031   DataType data_type = none;
2032   if( _ident != NULL ) {
2033     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
2034     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
2035     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
2036     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
2037     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
2038   }
2039   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
2040 
2041   return data_type;
2042 }
2043 
2044 
2045 // Return ideal type, if there is a single ideal type for this operand
2046 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
2047   const char *type = NULL;
2048   if (ideal_only()) type = _ident;
2049   else if( _matrule == NULL ) {
2050     // Check for condition code register
2051     const char *rc_name = constrained_reg_class();
2052     // !!!!!
2053     if (rc_name == NULL) return NULL;
2054     // !!!!! !!!!!
2055     // Check constraints on result's register class
2056     if( registers ) {
2057       RegClass *reg_class  = registers->getRegClass(rc_name);
2058       assert( reg_class != NULL, "Register class is not defined");
2059 
2060       // Check for ideal type of entries in register class, all are the same type
2061       reg_class->reset();
2062       RegDef *reg_def = reg_class->RegDef_iter();
2063       assert( reg_def != NULL, "No entries in register class");
2064       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
2065       // Return substring that names the register's ideal type
2066       type = reg_def->_idealtype + 3;
2067       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
2068       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
2069       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
2070     }
2071   }
2072   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
2073     // This operand matches a single type, at the top level.
2074     // Check for ideal type
2075     type = _matrule->_opType;
2076     if( strcmp(type,"Bool") == 0 )
2077       return "Bool";
2078     // transitive lookup
2079     const Form *frm = globals[type];
2080     OperandForm *op = frm->is_operand();
2081     type = op->ideal_type(globals, registers);
2082   }
2083   return type;
2084 }
2085 
2086 
2087 // If there is a single ideal type for this interface field, return it.
2088 const char *OperandForm::interface_ideal_type(FormDict &globals,
2089                                               const char *field) const {
2090   const char  *ideal_type = NULL;
2091   const char  *value      = NULL;
2092 
2093   // Check if "field" is valid for this operand's interface
2094   if ( ! is_interface_field(field, value) )   return ideal_type;
2095 
2096   // !!!!! !!!!! !!!!!
2097   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
2098 
2099   // Else, lookup type of field's replacement variable
2100 
2101   return ideal_type;
2102 }
2103 
2104 
2105 RegClass* OperandForm::get_RegClass() const {
2106   if (_interface && !_interface->is_RegInterface()) return NULL;
2107   return globalAD->get_registers()->getRegClass(constrained_reg_class());
2108 }
2109 
2110 
2111 bool OperandForm::is_bound_register() const {
2112   RegClass *reg_class  = get_RegClass();
2113   if (reg_class == NULL) return false;
2114 
2115   const char * name = ideal_type(globalAD->globalNames());
2116   if (name == NULL) return false;
2117 
2118   int size = 0;
2119   if (strcmp(name,"RegFlags")==0) size =  1;
2120   if (strcmp(name,"RegI")==0) size =  1;
2121   if (strcmp(name,"RegF")==0) size =  1;
2122   if (strcmp(name,"RegD")==0) size =  2;
2123   if (strcmp(name,"RegL")==0) size =  2;
2124   if (strcmp(name,"RegN")==0) size =  1;
2125   if (strcmp(name,"RegP")==0) size =  globalAD->get_preproc_def("_LP64") ? 2 : 1;
2126   if (size == 0) return false;
2127   return size == reg_class->size();
2128 }
2129 
2130 
2131 // Check if this is a valid field for this operand,
2132 // Return 'true' if valid, and set the value to the string the user provided.
2133 bool  OperandForm::is_interface_field(const char *field,
2134                                       const char * &value) const {
2135   return false;
2136 }
2137 
2138 
2139 // Return register class name if a constraint specifies the register class.
2140 const char *OperandForm::constrained_reg_class() const {
2141   const char *reg_class  = NULL;
2142   if ( _constraint ) {
2143     // !!!!!
2144     Constraint *constraint = _constraint;
2145     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
2146       reg_class = _constraint->_arg;
2147     }
2148   }
2149 
2150   return reg_class;
2151 }
2152 
2153 
2154 // Return the register class associated with 'leaf'.
2155 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
2156   const char *reg_class = NULL; // "RegMask::Empty";
2157 
2158   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
2159     reg_class = constrained_reg_class();
2160     return reg_class;
2161   }
2162   const char *result   = NULL;
2163   const char *name     = NULL;
2164   const char *type     = NULL;
2165   // iterate through all base operands
2166   // until we reach the register that corresponds to "leaf"
2167   // This function is not looking for an ideal type.  It needs the first
2168   // level user type associated with the leaf.
2169   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
2170     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
2171     OperandForm *oper = form ? form->is_operand() : NULL;
2172     if( oper ) {
2173       reg_class = oper->constrained_reg_class();
2174       if( reg_class ) {
2175         reg_class = reg_class;
2176       } else {
2177         // ShouldNotReachHere();
2178       }
2179     } else {
2180       // ShouldNotReachHere();
2181     }
2182 
2183     // Increment our target leaf position if current leaf is not a candidate.
2184     if( reg_class == NULL)    ++leaf;
2185     // Exit the loop with the value of reg_class when at the correct index
2186     if( idx == leaf )         break;
2187     // May iterate through all base operands if reg_class for 'leaf' is NULL
2188   }
2189   return reg_class;
2190 }
2191 
2192 
2193 // Recursive call to construct list of top-level operands.
2194 // Implementation does not modify state of internal structures
2195 void OperandForm::build_components() {
2196   if (_matrule)  _matrule->append_components(_localNames, _components);
2197 
2198   // Add parameters that "do not appear in match rule".
2199   const char *name;
2200   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
2201     OperandForm *opForm = (OperandForm*)_localNames[name];
2202 
2203     if ( _components.operand_position(name) == -1 ) {
2204       _components.insert(name, opForm->_ident, Component::INVALID, false);
2205     }
2206   }
2207 
2208   return;
2209 }
2210 
2211 int OperandForm::operand_position(const char *name, int usedef) {
2212   return _components.operand_position(name, usedef);
2213 }
2214 
2215 
2216 // Return zero-based position in component list, only counting constants;
2217 // Return -1 if not in list.
2218 int OperandForm::constant_position(FormDict &globals, const Component *last) {
2219   // Iterate through components and count constants preceding 'constant'
2220   int position = 0;
2221   Component *comp;
2222   _components.reset();
2223   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
2224     // Special case for operands that take a single user-defined operand
2225     // Skip the initial definition in the component list.
2226     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2227 
2228     const char *type = comp->_type;
2229     // Lookup operand form for replacement variable's type
2230     const Form *form = globals[type];
2231     assert( form != NULL, "Component's type not found");
2232     OperandForm *oper = form ? form->is_operand() : NULL;
2233     if( oper ) {
2234       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
2235         ++position;
2236       }
2237     }
2238   }
2239 
2240   // Check for being passed a component that was not in the list
2241   if( comp != last )  position = -1;
2242 
2243   return position;
2244 }
2245 // Provide position of constant by "name"
2246 int OperandForm::constant_position(FormDict &globals, const char *name) {
2247   const Component *comp = _components.search(name);
2248   int idx = constant_position( globals, comp );
2249 
2250   return idx;
2251 }
2252 
2253 
2254 // Return zero-based position in component list, only counting constants;
2255 // Return -1 if not in list.
2256 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
2257   // Iterate through components and count registers preceding 'last'
2258   uint  position = 0;
2259   Component *comp;
2260   _components.reset();
2261   while( (comp = _components.iter()) != NULL
2262          && (strcmp(comp->_name,reg_name) != 0) ) {
2263     // Special case for operands that take a single user-defined operand
2264     // Skip the initial definition in the component list.
2265     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2266 
2267     const char *type = comp->_type;
2268     // Lookup operand form for component's type
2269     const Form *form = globals[type];
2270     assert( form != NULL, "Component's type not found");
2271     OperandForm *oper = form ? form->is_operand() : NULL;
2272     if( oper ) {
2273       if( oper->_matrule->is_base_register(globals) ) {
2274         ++position;
2275       }
2276     }
2277   }
2278 
2279   return position;
2280 }
2281 
2282 
2283 const char *OperandForm::reduce_result()  const {
2284   return _ident;
2285 }
2286 // Return the name of the operand on the right hand side of the binary match
2287 // Return NULL if there is no right hand side
2288 const char *OperandForm::reduce_right(FormDict &globals)  const {
2289   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
2290 }
2291 
2292 // Similar for left
2293 const char *OperandForm::reduce_left(FormDict &globals)   const {
2294   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
2295 }
2296 
2297 
2298 // --------------------------- FILE *output_routines
2299 //
2300 // Output code for disp_is_oop, if true.
2301 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
2302   //  Check it is a memory interface with a non-user-constant disp field
2303   if ( this->_interface == NULL ) return;
2304   MemInterface *mem_interface = this->_interface->is_MemInterface();
2305   if ( mem_interface == NULL )    return;
2306   const char   *disp  = mem_interface->_disp;
2307   if ( *disp != '$' )             return;
2308 
2309   // Lookup replacement variable in operand's component list
2310   const char   *rep_var = disp + 1;
2311   const Component *comp = this->_components.search(rep_var);
2312   assert( comp != NULL, "Replacement variable not found in components");
2313   // Lookup operand form for replacement variable's type
2314   const char      *type = comp->_type;
2315   Form            *form = (Form*)globals[type];
2316   assert( form != NULL, "Replacement variable's type not found");
2317   OperandForm     *op   = form->is_operand();
2318   assert( op, "Memory Interface 'disp' can only emit an operand form");
2319   // Check if this is a ConP, which may require relocation
2320   if ( op->is_base_constant(globals) == Form::idealP ) {
2321     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
2322     uint idx  = op->constant_position( globals, rep_var);
2323     fprintf(fp,"  virtual bool disp_is_oop() const {");
2324     fprintf(fp,  "  return _c%d->isa_oop_ptr();", idx);
2325     fprintf(fp, " }\n");
2326   }
2327 }
2328 
2329 // Generate code for internal and external format methods
2330 //
2331 // internal access to reg# node->_idx
2332 // access to subsumed constant _c0, _c1,
2333 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
2334   Form::DataType dtype;
2335   if (_matrule && (_matrule->is_base_register(globals) ||
2336                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2337     // !!!!! !!!!!
2338     fprintf(fp,    "{ char reg_str[128];\n");
2339     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
2340     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2341     fprintf(fp,"    }\n");
2342   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2343     format_constant( fp, index, dtype );
2344   } else if (ideal_to_sReg_type(_ident) != Form::none) {
2345     // Special format for Stack Slot Register
2346     fprintf(fp,    "{ char reg_str[128];\n");
2347     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
2348     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2349     fprintf(fp,"    }\n");
2350   } else {
2351     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
2352     fflush(fp);
2353     fprintf(stderr,"No format defined for %s\n", _ident);
2354     dump();
2355     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
2356   }
2357 }
2358 
2359 // Similar to "int_format" but for cases where data is external to operand
2360 // external access to reg# node->in(idx)->_idx,
2361 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
2362   Form::DataType dtype;
2363   if (_matrule && (_matrule->is_base_register(globals) ||
2364                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2365     fprintf(fp,    "{ char reg_str[128];\n");
2366     fprintf(fp,"      ra->dump_register(node->in(idx");
2367     if ( index != 0 ) fprintf(fp,                  "+%d",index);
2368     fprintf(fp,                                       "),reg_str);\n");
2369     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2370     fprintf(fp,"    }\n");
2371   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2372     format_constant( fp, index, dtype );
2373   } else if (ideal_to_sReg_type(_ident) != Form::none) {
2374     // Special format for Stack Slot Register
2375     fprintf(fp,    "{ char reg_str[128];\n");
2376     fprintf(fp,"      ra->dump_register(node->in(idx");
2377     if ( index != 0 ) fprintf(fp,                  "+%d",index);
2378     fprintf(fp,                                       "),reg_str);\n");
2379     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2380     fprintf(fp,"    }\n");
2381   } else {
2382     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
2383     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
2384   }
2385 }
2386 
2387 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
2388   switch(const_type) {
2389   case Form::idealI:  fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
2390   case Form::idealP:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
2391   case Form::idealN:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
2392   case Form::idealL:  fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
2393   case Form::idealF:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
2394   case Form::idealD:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
2395   default:
2396     assert( false, "ShouldNotReachHere()");
2397   }
2398 }
2399 
2400 // Return the operand form corresponding to the given index, else NULL.
2401 OperandForm *OperandForm::constant_operand(FormDict &globals,
2402                                            uint      index) {
2403   // !!!!!
2404   // Check behavior on complex operands
2405   uint n_consts = num_consts(globals);
2406   if( n_consts > 0 ) {
2407     uint i = 0;
2408     const char *type;
2409     Component  *comp;
2410     _components.reset();
2411     if ((comp = _components.iter()) == NULL) {
2412       assert(n_consts == 1, "Bad component list detected.\n");
2413       // Current operand is THE operand
2414       if ( index == 0 ) {
2415         return this;
2416       }
2417     } // end if NULL
2418     else {
2419       // Skip the first component, it can not be a DEF of a constant
2420       do {
2421         type = comp->base_type(globals);
2422         // Check that "type" is a 'ConI', 'ConP', ...
2423         if ( ideal_to_const_type(type) != Form::none ) {
2424           // When at correct component, get corresponding Operand
2425           if ( index == 0 ) {
2426             return globals[comp->_type]->is_operand();
2427           }
2428           // Decrement number of constants to go
2429           --index;
2430         }
2431       } while((comp = _components.iter()) != NULL);
2432     }
2433   }
2434 
2435   // Did not find a constant for this index.
2436   return NULL;
2437 }
2438 
2439 // If this operand has a single ideal type, return its type
2440 Form::DataType OperandForm::simple_type(FormDict &globals) const {
2441   const char *type_name = ideal_type(globals);
2442   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
2443                                     : Form::none;
2444   return type;
2445 }
2446 
2447 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
2448   if ( _matrule == NULL )    return Form::none;
2449 
2450   return _matrule->is_base_constant(globals);
2451 }
2452 
2453 // "true" if this operand is a simple type that is swallowed
2454 bool  OperandForm::swallowed(FormDict &globals) const {
2455   Form::DataType type   = simple_type(globals);
2456   if( type != Form::none ) {
2457     return true;
2458   }
2459 
2460   return false;
2461 }
2462 
2463 // Output code to access the value of the index'th constant
2464 void OperandForm::access_constant(FILE *fp, FormDict &globals,
2465                                   uint const_index) {
2466   OperandForm *oper = constant_operand(globals, const_index);
2467   assert( oper, "Index exceeds number of constants in operand");
2468   Form::DataType dtype = oper->is_base_constant(globals);
2469 
2470   switch(dtype) {
2471   case idealI: fprintf(fp,"_c%d",           const_index); break;
2472   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
2473   case idealL: fprintf(fp,"_c%d",           const_index); break;
2474   case idealF: fprintf(fp,"_c%d",           const_index); break;
2475   case idealD: fprintf(fp,"_c%d",           const_index); break;
2476   default:
2477     assert( false, "ShouldNotReachHere()");
2478   }
2479 }
2480 
2481 
2482 void OperandForm::dump() {
2483   output(stderr);
2484 }
2485 
2486 void OperandForm::output(FILE *fp) {
2487   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
2488   if (_matrule)    _matrule->dump();
2489   if (_interface)  _interface->dump();
2490   if (_attribs)    _attribs->dump();
2491   if (_predicate)  _predicate->dump();
2492   if (_constraint) _constraint->dump();
2493   if (_construct)  _construct->dump();
2494   if (_format)     _format->dump();
2495 }
2496 
2497 //------------------------------Constraint-------------------------------------
2498 Constraint::Constraint(const char *func, const char *arg)
2499   : _func(func), _arg(arg) {
2500 }
2501 Constraint::~Constraint() { /* not owner of char* */
2502 }
2503 
2504 bool Constraint::stack_slots_only() const {
2505   return strcmp(_func, "ALLOC_IN_RC") == 0
2506       && strcmp(_arg,  "stack_slots") == 0;
2507 }
2508 
2509 void Constraint::dump() {
2510   output(stderr);
2511 }
2512 
2513 void Constraint::output(FILE *fp) {           // Write info to output files
2514   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
2515   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
2516 }
2517 
2518 //------------------------------Predicate--------------------------------------
2519 Predicate::Predicate(char *pr)
2520   : _pred(pr) {
2521 }
2522 Predicate::~Predicate() {
2523 }
2524 
2525 void Predicate::dump() {
2526   output(stderr);
2527 }
2528 
2529 void Predicate::output(FILE *fp) {
2530   fprintf(fp,"Predicate");  // Write to output files
2531 }
2532 //------------------------------Interface--------------------------------------
2533 Interface::Interface(const char *name) : _name(name) {
2534 }
2535 Interface::~Interface() {
2536 }
2537 
2538 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
2539   Interface *thsi = (Interface*)this;
2540   if ( thsi->is_RegInterface()   ) return Form::register_interface;
2541   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
2542   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
2543   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
2544 
2545   return Form::no_interface;
2546 }
2547 
2548 RegInterface   *Interface::is_RegInterface() {
2549   if ( strcmp(_name,"REG_INTER") != 0 )
2550     return NULL;
2551   return (RegInterface*)this;
2552 }
2553 MemInterface   *Interface::is_MemInterface() {
2554   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
2555   return (MemInterface*)this;
2556 }
2557 ConstInterface *Interface::is_ConstInterface() {
2558   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
2559   return (ConstInterface*)this;
2560 }
2561 CondInterface  *Interface::is_CondInterface() {
2562   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
2563   return (CondInterface*)this;
2564 }
2565 
2566 
2567 void Interface::dump() {
2568   output(stderr);
2569 }
2570 
2571 // Write info to output files
2572 void Interface::output(FILE *fp) {
2573   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
2574 }
2575 
2576 //------------------------------RegInterface-----------------------------------
2577 RegInterface::RegInterface() : Interface("REG_INTER") {
2578 }
2579 RegInterface::~RegInterface() {
2580 }
2581 
2582 void RegInterface::dump() {
2583   output(stderr);
2584 }
2585 
2586 // Write info to output files
2587 void RegInterface::output(FILE *fp) {
2588   Interface::output(fp);
2589 }
2590 
2591 //------------------------------ConstInterface---------------------------------
2592 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
2593 }
2594 ConstInterface::~ConstInterface() {
2595 }
2596 
2597 void ConstInterface::dump() {
2598   output(stderr);
2599 }
2600 
2601 // Write info to output files
2602 void ConstInterface::output(FILE *fp) {
2603   Interface::output(fp);
2604 }
2605 
2606 //------------------------------MemInterface-----------------------------------
2607 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
2608   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
2609 }
2610 MemInterface::~MemInterface() {
2611   // not owner of any character arrays
2612 }
2613 
2614 void MemInterface::dump() {
2615   output(stderr);
2616 }
2617 
2618 // Write info to output files
2619 void MemInterface::output(FILE *fp) {
2620   Interface::output(fp);
2621   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
2622   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
2623   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
2624   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
2625   // fprintf(fp,"\n");
2626 }
2627 
2628 //------------------------------CondInterface----------------------------------
2629 CondInterface::CondInterface(const char* equal,         const char* equal_format,
2630                              const char* not_equal,     const char* not_equal_format,
2631                              const char* less,          const char* less_format,
2632                              const char* greater_equal, const char* greater_equal_format,
2633                              const char* less_equal,    const char* less_equal_format,
2634                              const char* greater,       const char* greater_format)
2635   : Interface("COND_INTER"),
2636     _equal(equal),                 _equal_format(equal_format),
2637     _not_equal(not_equal),         _not_equal_format(not_equal_format),
2638     _less(less),                   _less_format(less_format),
2639     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
2640     _less_equal(less_equal),       _less_equal_format(less_equal_format),
2641     _greater(greater),             _greater_format(greater_format) {
2642 }
2643 CondInterface::~CondInterface() {
2644   // not owner of any character arrays
2645 }
2646 
2647 void CondInterface::dump() {
2648   output(stderr);
2649 }
2650 
2651 // Write info to output files
2652 void CondInterface::output(FILE *fp) {
2653   Interface::output(fp);
2654   if ( _equal  != NULL )     fprintf(fp," equal       == %s\n", _equal);
2655   if ( _not_equal  != NULL ) fprintf(fp," not_equal   == %s\n", _not_equal);
2656   if ( _less  != NULL )      fprintf(fp," less        == %s\n", _less);
2657   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal   == %s\n", _greater_equal);
2658   if ( _less_equal  != NULL ) fprintf(fp," less_equal  == %s\n", _less_equal);
2659   if ( _greater  != NULL )    fprintf(fp," greater     == %s\n", _greater);
2660   // fprintf(fp,"\n");
2661 }
2662 
2663 //------------------------------ConstructRule----------------------------------
2664 ConstructRule::ConstructRule(char *cnstr)
2665   : _construct(cnstr) {
2666 }
2667 ConstructRule::~ConstructRule() {
2668 }
2669 
2670 void ConstructRule::dump() {
2671   output(stderr);
2672 }
2673 
2674 void ConstructRule::output(FILE *fp) {
2675   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
2676 }
2677 
2678 
2679 //==============================Shared Forms===================================
2680 //------------------------------AttributeForm----------------------------------
2681 int         AttributeForm::_insId   = 0;           // start counter at 0
2682 int         AttributeForm::_opId    = 0;           // start counter at 0
2683 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
2684 const char* AttributeForm::_ins_pc_relative = "ins_pc_relative";
2685 const char* AttributeForm::_op_cost  = "op_cost";  // required name
2686 
2687 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
2688   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
2689     if (type==OP_ATTR) {
2690       id = ++_opId;
2691     }
2692     else if (type==INS_ATTR) {
2693       id = ++_insId;
2694     }
2695     else assert( false,"");
2696 }
2697 AttributeForm::~AttributeForm() {
2698 }
2699 
2700 // Dynamic type check
2701 AttributeForm *AttributeForm::is_attribute() const {
2702   return (AttributeForm*)this;
2703 }
2704 
2705 
2706 // inlined  // int  AttributeForm::type() { return id;}
2707 
2708 void AttributeForm::dump() {
2709   output(stderr);
2710 }
2711 
2712 void AttributeForm::output(FILE *fp) {
2713   if( _attrname && _attrdef ) {
2714     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
2715             _attrname, _attrdef);
2716   }
2717   else {
2718     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
2719             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
2720   }
2721 }
2722 
2723 //------------------------------Component--------------------------------------
2724 Component::Component(const char *name, const char *type, int usedef)
2725   : _name(name), _type(type), _usedef(usedef) {
2726     _ftype = Form::COMP;
2727 }
2728 Component::~Component() {
2729 }
2730 
2731 // True if this component is equal to the parameter.
2732 bool Component::is(int use_def_kill_enum) const {
2733   return (_usedef == use_def_kill_enum ? true : false);
2734 }
2735 // True if this component is used/def'd/kill'd as the parameter suggests.
2736 bool Component::isa(int use_def_kill_enum) const {
2737   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
2738 }
2739 
2740 // Extend this component with additional use/def/kill behavior
2741 int Component::promote_use_def_info(int new_use_def) {
2742   _usedef |= new_use_def;
2743 
2744   return _usedef;
2745 }
2746 
2747 // Check the base type of this component, if it has one
2748 const char *Component::base_type(FormDict &globals) {
2749   const Form *frm = globals[_type];
2750   if (frm == NULL) return NULL;
2751   OperandForm *op = frm->is_operand();
2752   if (op == NULL) return NULL;
2753   if (op->ideal_only()) return op->_ident;
2754   return (char *)op->ideal_type(globals);
2755 }
2756 
2757 void Component::dump() {
2758   output(stderr);
2759 }
2760 
2761 void Component::output(FILE *fp) {
2762   fprintf(fp,"Component:");  // Write to output files
2763   fprintf(fp, "  name = %s", _name);
2764   fprintf(fp, ", type = %s", _type);
2765   const char * usedef = "Undefined Use/Def info";
2766   switch (_usedef) {
2767     case USE:      usedef = "USE";      break;
2768     case USE_DEF:  usedef = "USE_DEF";  break;
2769     case USE_KILL: usedef = "USE_KILL"; break;
2770     case KILL:     usedef = "KILL";     break;
2771     case TEMP:     usedef = "TEMP";     break;
2772     case DEF:      usedef = "DEF";      break;
2773     default: assert(false, "unknown effect");
2774   }
2775   fprintf(fp, ", use/def = %s\n", usedef);
2776 }
2777 
2778 
2779 //------------------------------ComponentList---------------------------------
2780 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
2781 }
2782 ComponentList::~ComponentList() {
2783   // // This list may not own its elements if copied via assignment
2784   // Component *component;
2785   // for (reset(); (component = iter()) != NULL;) {
2786   //   delete component;
2787   // }
2788 }
2789 
2790 void   ComponentList::insert(Component *component, bool mflag) {
2791   NameList::addName((char *)component);
2792   if(mflag) _matchcnt++;
2793 }
2794 void   ComponentList::insert(const char *name, const char *opType, int usedef,
2795                              bool mflag) {
2796   Component * component = new Component(name, opType, usedef);
2797   insert(component, mflag);
2798 }
2799 Component *ComponentList::current() { return (Component*)NameList::current(); }
2800 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
2801 Component *ComponentList::match_iter() {
2802   if(_iter < _matchcnt) return (Component*)NameList::iter();
2803   return NULL;
2804 }
2805 Component *ComponentList::post_match_iter() {
2806   Component *comp = iter();
2807   // At end of list?
2808   if ( comp == NULL ) {
2809     return comp;
2810   }
2811   // In post-match components?
2812   if (_iter > match_count()-1) {
2813     return comp;
2814   }
2815 
2816   return post_match_iter();
2817 }
2818 
2819 void       ComponentList::reset()   { NameList::reset(); }
2820 int        ComponentList::count()   { return NameList::count(); }
2821 
2822 Component *ComponentList::operator[](int position) {
2823   // Shortcut complete iteration if there are not enough entries
2824   if (position >= count()) return NULL;
2825 
2826   int        index     = 0;
2827   Component *component = NULL;
2828   for (reset(); (component = iter()) != NULL;) {
2829     if (index == position) {
2830       return component;
2831     }
2832     ++index;
2833   }
2834 
2835   return NULL;
2836 }
2837 
2838 const Component *ComponentList::search(const char *name) {
2839   PreserveIter pi(this);
2840   reset();
2841   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
2842     if( strcmp(comp->_name,name) == 0 ) return comp;
2843   }
2844 
2845   return NULL;
2846 }
2847 
2848 // Return number of USEs + number of DEFs
2849 // When there are no components, or the first component is a USE,
2850 // then we add '1' to hold a space for the 'result' operand.
2851 int ComponentList::num_operands() {
2852   PreserveIter pi(this);
2853   uint       count = 1;           // result operand
2854   uint       position = 0;
2855 
2856   Component *component  = NULL;
2857   for( reset(); (component = iter()) != NULL; ++position ) {
2858     if( component->isa(Component::USE) ||
2859         ( position == 0 && (! component->isa(Component::DEF))) ) {
2860       ++count;
2861     }
2862   }
2863 
2864   return count;
2865 }
2866 
2867 // Return zero-based position in list;  -1 if not in list.
2868 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
2869 int ComponentList::operand_position(const char *name, int usedef) {
2870   PreserveIter pi(this);
2871   int position = 0;
2872   int num_opnds = num_operands();
2873   Component *component;
2874   Component* preceding_non_use = NULL;
2875   Component* first_def = NULL;
2876   for (reset(); (component = iter()) != NULL; ++position) {
2877     // When the first component is not a DEF,
2878     // leave space for the result operand!
2879     if ( position==0 && (! component->isa(Component::DEF)) ) {
2880       ++position;
2881       ++num_opnds;
2882     }
2883     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
2884       // When the first entry in the component list is a DEF and a USE
2885       // Treat them as being separate, a DEF first, then a USE
2886       if( position==0
2887           && usedef==Component::USE && component->isa(Component::DEF) ) {
2888         assert(position+1 < num_opnds, "advertised index in bounds");
2889         return position+1;
2890       } else {
2891         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
2892           fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
2893         }
2894         if( position >= num_opnds ) {
2895           fprintf(stderr, "the name '%s' is too late in its name list\n", name);
2896         }
2897         assert(position < num_opnds, "advertised index in bounds");
2898         return position;
2899       }
2900     }
2901     if( component->isa(Component::DEF)
2902         && component->isa(Component::USE) ) {
2903       ++position;
2904       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2905     }
2906     if( component->isa(Component::DEF) && !first_def ) {
2907       first_def = component;
2908     }
2909     if( !component->isa(Component::USE) && component != first_def ) {
2910       preceding_non_use = component;
2911     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
2912       preceding_non_use = NULL;
2913     }
2914   }
2915   return Not_in_list;
2916 }
2917 
2918 // Find position for this name, regardless of use/def information
2919 int ComponentList::operand_position(const char *name) {
2920   PreserveIter pi(this);
2921   int position = 0;
2922   Component *component;
2923   for (reset(); (component = iter()) != NULL; ++position) {
2924     // When the first component is not a DEF,
2925     // leave space for the result operand!
2926     if ( position==0 && (! component->isa(Component::DEF)) ) {
2927       ++position;
2928     }
2929     if (strcmp(name, component->_name)==0) {
2930       return position;
2931     }
2932     if( component->isa(Component::DEF)
2933         && component->isa(Component::USE) ) {
2934       ++position;
2935       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2936     }
2937   }
2938   return Not_in_list;
2939 }
2940 
2941 int ComponentList::operand_position_format(const char *name) {
2942   PreserveIter pi(this);
2943   int  first_position = operand_position(name);
2944   int  use_position   = operand_position(name, Component::USE);
2945 
2946   return ((first_position < use_position) ? use_position : first_position);
2947 }
2948 
2949 int ComponentList::label_position() {
2950   PreserveIter pi(this);
2951   int position = 0;
2952   reset();
2953   for( Component *comp; (comp = iter()) != NULL; ++position) {
2954     // When the first component is not a DEF,
2955     // leave space for the result operand!
2956     if ( position==0 && (! comp->isa(Component::DEF)) ) {
2957       ++position;
2958     }
2959     if (strcmp(comp->_type, "label")==0) {
2960       return position;
2961     }
2962     if( comp->isa(Component::DEF)
2963         && comp->isa(Component::USE) ) {
2964       ++position;
2965       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2966     }
2967   }
2968 
2969   return -1;
2970 }
2971 
2972 int ComponentList::method_position() {
2973   PreserveIter pi(this);
2974   int position = 0;
2975   reset();
2976   for( Component *comp; (comp = iter()) != NULL; ++position) {
2977     // When the first component is not a DEF,
2978     // leave space for the result operand!
2979     if ( position==0 && (! comp->isa(Component::DEF)) ) {
2980       ++position;
2981     }
2982     if (strcmp(comp->_type, "method")==0) {
2983       return position;
2984     }
2985     if( comp->isa(Component::DEF)
2986         && comp->isa(Component::USE) ) {
2987       ++position;
2988       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2989     }
2990   }
2991 
2992   return -1;
2993 }
2994 
2995 void ComponentList::dump() { output(stderr); }
2996 
2997 void ComponentList::output(FILE *fp) {
2998   PreserveIter pi(this);
2999   fprintf(fp, "\n");
3000   Component *component;
3001   for (reset(); (component = iter()) != NULL;) {
3002     component->output(fp);
3003   }
3004   fprintf(fp, "\n");
3005 }
3006 
3007 //------------------------------MatchNode--------------------------------------
3008 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
3009                      const char *opType, MatchNode *lChild, MatchNode *rChild)
3010   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
3011     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
3012     _commutative_id(0) {
3013   _numleaves = (lChild ? lChild->_numleaves : 0)
3014                + (rChild ? rChild->_numleaves : 0);
3015 }
3016 
3017 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
3018   : _AD(ad), _result(mnode._result), _name(mnode._name),
3019     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
3020     _internalop(0), _numleaves(mnode._numleaves),
3021     _commutative_id(mnode._commutative_id) {
3022 }
3023 
3024 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
3025   : _AD(ad), _result(mnode._result), _name(mnode._name),
3026     _opType(mnode._opType),
3027     _internalop(0), _numleaves(mnode._numleaves),
3028     _commutative_id(mnode._commutative_id) {
3029   if (mnode._lChild) {
3030     _lChild = new MatchNode(ad, *mnode._lChild, clone);
3031   } else {
3032     _lChild = NULL;
3033   }
3034   if (mnode._rChild) {
3035     _rChild = new MatchNode(ad, *mnode._rChild, clone);
3036   } else {
3037     _rChild = NULL;
3038   }
3039 }
3040 
3041 MatchNode::~MatchNode() {
3042   // // This node may not own its children if copied via assignment
3043   // if( _lChild ) delete _lChild;
3044   // if( _rChild ) delete _rChild;
3045 }
3046 
3047 bool  MatchNode::find_type(const char *type, int &position) const {
3048   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
3049   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
3050 
3051   if (strcmp(type,_opType)==0)  {
3052     return true;
3053   } else {
3054     ++position;
3055   }
3056   return false;
3057 }
3058 
3059 // Recursive call collecting info on top-level operands, not transitive.
3060 // Implementation does not modify state of internal structures.
3061 void MatchNode::append_components(FormDict& locals, ComponentList& components,
3062                                   bool def_flag) const {
3063   int usedef = def_flag ? Component::DEF : Component::USE;
3064   FormDict &globals = _AD.globalNames();
3065 
3066   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3067   // Base case
3068   if (_lChild==NULL && _rChild==NULL) {
3069     // If _opType is not an operation, do not build a component for it #####
3070     const Form *f = globals[_opType];
3071     if( f != NULL ) {
3072       // Add non-ideals that are operands, operand-classes,
3073       if( ! f->ideal_only()
3074           && (f->is_opclass() || f->is_operand()) ) {
3075         components.insert(_name, _opType, usedef, true);
3076       }
3077     }
3078     return;
3079   }
3080   // Promote results of "Set" to DEF
3081   bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
3082   if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
3083   tmpdef_flag = false;   // only applies to component immediately following 'Set'
3084   if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
3085 }
3086 
3087 // Find the n'th base-operand in the match node,
3088 // recursively investigates match rules of user-defined operands.
3089 //
3090 // Implementation does not modify state of internal structures since they
3091 // can be shared.
3092 bool MatchNode::base_operand(uint &position, FormDict &globals,
3093                              const char * &result, const char * &name,
3094                              const char * &opType) const {
3095   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
3096   // Base case
3097   if (_lChild==NULL && _rChild==NULL) {
3098     // Check for special case: "Universe", "label"
3099     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
3100       if (position == 0) {
3101         result = _result;
3102         name   = _name;
3103         opType = _opType;
3104         return 1;
3105       } else {
3106         -- position;
3107         return 0;
3108       }
3109     }
3110 
3111     const Form *form = globals[_opType];
3112     MatchNode *matchNode = NULL;
3113     // Check for user-defined type
3114     if (form) {
3115       // User operand or instruction?
3116       OperandForm  *opForm = form->is_operand();
3117       InstructForm *inForm = form->is_instruction();
3118       if ( opForm ) {
3119         matchNode = (MatchNode*)opForm->_matrule;
3120       } else if ( inForm ) {
3121         matchNode = (MatchNode*)inForm->_matrule;
3122       }
3123     }
3124     // if this is user-defined, recurse on match rule
3125     // User-defined operand and instruction forms have a match-rule.
3126     if (matchNode) {
3127       return (matchNode->base_operand(position,globals,result,name,opType));
3128     } else {
3129       // Either not a form, or a system-defined form (no match rule).
3130       if (position==0) {
3131         result = _result;
3132         name   = _name;
3133         opType = _opType;
3134         return 1;
3135       } else {
3136         --position;
3137         return 0;
3138       }
3139     }
3140 
3141   } else {
3142     // Examine the left child and right child as well
3143     if (_lChild) {
3144       if (_lChild->base_operand(position, globals, result, name, opType))
3145         return 1;
3146     }
3147 
3148     if (_rChild) {
3149       if (_rChild->base_operand(position, globals, result, name, opType))
3150         return 1;
3151     }
3152   }
3153 
3154   return 0;
3155 }
3156 
3157 // Recursive call on all operands' match rules in my match rule.
3158 uint  MatchNode::num_consts(FormDict &globals) const {
3159   uint        index      = 0;
3160   uint        num_consts = 0;
3161   const char *result;
3162   const char *name;
3163   const char *opType;
3164 
3165   for (uint position = index;
3166        base_operand(position,globals,result,name,opType); position = index) {
3167     ++index;
3168     if( ideal_to_const_type(opType) )        num_consts++;
3169   }
3170 
3171   return num_consts;
3172 }
3173 
3174 // Recursive call on all operands' match rules in my match rule.
3175 // Constants in match rule subtree with specified type
3176 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
3177   uint        index      = 0;
3178   uint        num_consts = 0;
3179   const char *result;
3180   const char *name;
3181   const char *opType;
3182 
3183   for (uint position = index;
3184        base_operand(position,globals,result,name,opType); position = index) {
3185     ++index;
3186     if( ideal_to_const_type(opType) == type ) num_consts++;
3187   }
3188 
3189   return num_consts;
3190 }
3191 
3192 // Recursive call on all operands' match rules in my match rule.
3193 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
3194   return  num_consts( globals, Form::idealP );
3195 }
3196 
3197 bool  MatchNode::sets_result() const {
3198   return   ( (strcmp(_name,"Set") == 0) ? true : false );
3199 }
3200 
3201 const char *MatchNode::reduce_right(FormDict &globals) const {
3202   // If there is no right reduction, return NULL.
3203   const char      *rightStr    = NULL;
3204 
3205   // If we are a "Set", start from the right child.
3206   const MatchNode *const mnode = sets_result() ?
3207     (const MatchNode *const)this->_rChild :
3208     (const MatchNode *const)this;
3209 
3210   // If our right child exists, it is the right reduction
3211   if ( mnode->_rChild ) {
3212     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
3213       : mnode->_rChild->_opType;
3214   }
3215   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
3216   return rightStr;
3217 }
3218 
3219 const char *MatchNode::reduce_left(FormDict &globals) const {
3220   // If there is no left reduction, return NULL.
3221   const char  *leftStr  = NULL;
3222 
3223   // If we are a "Set", start from the right child.
3224   const MatchNode *const mnode = sets_result() ?
3225     (const MatchNode *const)this->_rChild :
3226     (const MatchNode *const)this;
3227 
3228   // If our left child exists, it is the left reduction
3229   if ( mnode->_lChild ) {
3230     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
3231       : mnode->_lChild->_opType;
3232   } else {
3233     // May be simple chain rule: (Set dst operand_form_source)
3234     if ( sets_result() ) {
3235       OperandForm *oper = globals[mnode->_opType]->is_operand();
3236       if( oper ) {
3237         leftStr = mnode->_opType;
3238       }
3239     }
3240   }
3241   return leftStr;
3242 }
3243 
3244 //------------------------------count_instr_names------------------------------
3245 // Count occurrences of operands names in the leaves of the instruction
3246 // match rule.
3247 void MatchNode::count_instr_names( Dict &names ) {
3248   if( !this ) return;
3249   if( _lChild ) _lChild->count_instr_names(names);
3250   if( _rChild ) _rChild->count_instr_names(names);
3251   if( !_lChild && !_rChild ) {
3252     uintptr_t cnt = (uintptr_t)names[_name];
3253     cnt++;                      // One more name found
3254     names.Insert(_name,(void*)cnt);
3255   }
3256 }
3257 
3258 //------------------------------build_instr_pred-------------------------------
3259 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
3260 // can skip some leading instances of 'name'.
3261 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
3262   if( _lChild ) {
3263     if( !cnt ) strcpy( buf, "_kids[0]->" );
3264     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
3265     if( cnt < 0 ) return cnt;   // Found it, all done
3266   }
3267   if( _rChild ) {
3268     if( !cnt ) strcpy( buf, "_kids[1]->" );
3269     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
3270     if( cnt < 0 ) return cnt;   // Found it, all done
3271   }
3272   if( !_lChild && !_rChild ) {  // Found a leaf
3273     // Wrong name?  Give up...
3274     if( strcmp(name,_name) ) return cnt;
3275     if( !cnt ) strcpy(buf,"_leaf");
3276     return cnt-1;
3277   }
3278   return cnt;
3279 }
3280 
3281 
3282 //------------------------------build_internalop-------------------------------
3283 // Build string representation of subtree
3284 void MatchNode::build_internalop( ) {
3285   char *iop, *subtree;
3286   const char *lstr, *rstr;
3287   // Build string representation of subtree
3288   // Operation lchildType rchildType
3289   int len = (int)strlen(_opType) + 4;
3290   lstr = (_lChild) ? ((_lChild->_internalop) ?
3291                        _lChild->_internalop : _lChild->_opType) : "";
3292   rstr = (_rChild) ? ((_rChild->_internalop) ?
3293                        _rChild->_internalop : _rChild->_opType) : "";
3294   len += (int)strlen(lstr) + (int)strlen(rstr);
3295   subtree = (char *)malloc(len);
3296   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
3297   // Hash the subtree string in _internalOps; if a name exists, use it
3298   iop = (char *)_AD._internalOps[subtree];
3299   // Else create a unique name, and add it to the hash table
3300   if (iop == NULL) {
3301     iop = subtree;
3302     _AD._internalOps.Insert(subtree, iop);
3303     _AD._internalOpNames.addName(iop);
3304     _AD._internalMatch.Insert(iop, this);
3305   }
3306   // Add the internal operand name to the MatchNode
3307   _internalop = iop;
3308   _result = iop;
3309 }
3310 
3311 
3312 void MatchNode::dump() {
3313   output(stderr);
3314 }
3315 
3316 void MatchNode::output(FILE *fp) {
3317   if (_lChild==0 && _rChild==0) {
3318     fprintf(fp," %s",_name);    // operand
3319   }
3320   else {
3321     fprintf(fp," (%s ",_name);  // " (opcodeName "
3322     if(_lChild) _lChild->output(fp); //               left operand
3323     if(_rChild) _rChild->output(fp); //                    right operand
3324     fprintf(fp,")");                 //                                 ")"
3325   }
3326 }
3327 
3328 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
3329   static const char *needs_ideal_memory_list[] = {
3330     "StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
3331     "StoreB","StoreC","Store" ,"StoreFP",
3332     "LoadI", "LoadUI2L", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
3333     "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load"   ,
3334     "Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
3335     "Store8B","Store4B","Store8C","Store4C","Store2C",
3336     "Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
3337     "Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
3338     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
3339     "LoadPLocked", "LoadLLocked",
3340     "StorePConditional", "StoreIConditional", "StoreLConditional",
3341     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
3342     "StoreCM",
3343     "ClearArray"
3344   };
3345   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
3346   if( strcmp(_opType,"PrefetchRead")==0 || strcmp(_opType,"PrefetchWrite")==0 )
3347     return 1;
3348   if( _lChild ) {
3349     const char *opType = _lChild->_opType;
3350     for( int i=0; i<cnt; i++ )
3351       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3352         return 1;
3353     if( _lChild->needs_ideal_memory_edge(globals) )
3354       return 1;
3355   }
3356   if( _rChild ) {
3357     const char *opType = _rChild->_opType;
3358     for( int i=0; i<cnt; i++ )
3359       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3360         return 1;
3361     if( _rChild->needs_ideal_memory_edge(globals) )
3362       return 1;
3363   }
3364 
3365   return 0;
3366 }
3367 
3368 // TRUE if defines a derived oop, and so needs a base oop edge present
3369 // post-matching.
3370 int MatchNode::needs_base_oop_edge() const {
3371   if( !strcmp(_opType,"AddP") ) return 1;
3372   if( strcmp(_opType,"Set") ) return 0;
3373   return !strcmp(_rChild->_opType,"AddP");
3374 }
3375 
3376 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
3377   if( is_simple_chain_rule(globals) ) {
3378     const char *src = _matrule->_rChild->_opType;
3379     OperandForm *src_op = globals[src]->is_operand();
3380     assert( src_op, "Not operand class of chain rule" );
3381     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
3382   }                             // Else check instruction
3383 
3384   return _matrule ? _matrule->needs_base_oop_edge() : 0;
3385 }
3386 
3387 
3388 //-------------------------cisc spilling methods-------------------------------
3389 // helper routines and methods for detecting cisc-spilling instructions
3390 //-------------------------cisc_spill_merge------------------------------------
3391 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
3392   int cisc_spillable  = Maybe_cisc_spillable;
3393 
3394   // Combine results of left and right checks
3395   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
3396     // neither side is spillable, nor prevents cisc spilling
3397     cisc_spillable = Maybe_cisc_spillable;
3398   }
3399   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
3400     // right side is spillable
3401     cisc_spillable = right_spillable;
3402   }
3403   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
3404     // left side is spillable
3405     cisc_spillable = left_spillable;
3406   }
3407   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
3408     // left or right prevents cisc spilling this instruction
3409     cisc_spillable = Not_cisc_spillable;
3410   }
3411   else {
3412     // Only allow one to spill
3413     cisc_spillable = Not_cisc_spillable;
3414   }
3415 
3416   return cisc_spillable;
3417 }
3418 
3419 //-------------------------root_ops_match--------------------------------------
3420 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
3421   // Base Case: check that the current operands/operations match
3422   assert( op1, "Must have op's name");
3423   assert( op2, "Must have op's name");
3424   const Form *form1 = globals[op1];
3425   const Form *form2 = globals[op2];
3426 
3427   return (form1 == form2);
3428 }
3429 
3430 //-------------------------cisc_spill_match_node-------------------------------
3431 // Recursively check two MatchRules for legal conversion via cisc-spilling
3432 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
3433   int cisc_spillable  = Maybe_cisc_spillable;
3434   int left_spillable  = Maybe_cisc_spillable;
3435   int right_spillable = Maybe_cisc_spillable;
3436 
3437   // Check that each has same number of operands at this level
3438   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
3439     return Not_cisc_spillable;
3440 
3441   // Base Case: check that the current operands/operations match
3442   // or are CISC spillable
3443   assert( _opType, "Must have _opType");
3444   assert( mRule2->_opType, "Must have _opType");
3445   const Form *form  = globals[_opType];
3446   const Form *form2 = globals[mRule2->_opType];
3447   if( form == form2 ) {
3448     cisc_spillable = Maybe_cisc_spillable;
3449   } else {
3450     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
3451     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
3452     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
3453     DataType data_type = Form::none;
3454     if (form->is_operand()) {
3455       // Make sure the loadX matches the type of the reg
3456       data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
3457     }
3458     // Detect reg vs (loadX memory)
3459     if( form->is_cisc_reg(globals)
3460         && form2_inst
3461         && data_type != Form::none
3462         && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
3463         && (name_left != NULL)       // NOT (load)
3464         && (name_right == NULL) ) {  // NOT (load memory foo)
3465       const Form *form2_left = name_left ? globals[name_left] : NULL;
3466       if( form2_left && form2_left->is_cisc_mem(globals) ) {
3467         cisc_spillable = Is_cisc_spillable;
3468         operand        = _name;
3469         reg_type       = _result;
3470         return Is_cisc_spillable;
3471       } else {
3472         cisc_spillable = Not_cisc_spillable;
3473       }
3474     }
3475     // Detect reg vs memory
3476     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
3477       cisc_spillable = Is_cisc_spillable;
3478       operand        = _name;
3479       reg_type       = _result;
3480       return Is_cisc_spillable;
3481     } else {
3482       cisc_spillable = Not_cisc_spillable;
3483     }
3484   }
3485 
3486   // If cisc is still possible, check rest of tree
3487   if( cisc_spillable == Maybe_cisc_spillable ) {
3488     // Check that each has same number of operands at this level
3489     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3490 
3491     // Check left operands
3492     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
3493       left_spillable = Maybe_cisc_spillable;
3494     } else {
3495       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
3496     }
3497 
3498     // Check right operands
3499     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3500       right_spillable =  Maybe_cisc_spillable;
3501     } else {
3502       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3503     }
3504 
3505     // Combine results of left and right checks
3506     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3507   }
3508 
3509   return cisc_spillable;
3510 }
3511 
3512 //---------------------------cisc_spill_match_rule------------------------------
3513 // Recursively check two MatchRules for legal conversion via cisc-spilling
3514 // This method handles the root of Match tree,
3515 // general recursive checks done in MatchNode
3516 int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
3517                                            MatchRule* mRule2, const char* &operand,
3518                                            const char* &reg_type) {
3519   int cisc_spillable  = Maybe_cisc_spillable;
3520   int left_spillable  = Maybe_cisc_spillable;
3521   int right_spillable = Maybe_cisc_spillable;
3522 
3523   // Check that each sets a result
3524   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
3525   // Check that each has same number of operands at this level
3526   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3527 
3528   // Check left operands: at root, must be target of 'Set'
3529   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
3530     left_spillable = Not_cisc_spillable;
3531   } else {
3532     // Do not support cisc-spilling instruction's target location
3533     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
3534       left_spillable = Maybe_cisc_spillable;
3535     } else {
3536       left_spillable = Not_cisc_spillable;
3537     }
3538   }
3539 
3540   // Check right operands: recursive walk to identify reg->mem operand
3541   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3542     right_spillable =  Maybe_cisc_spillable;
3543   } else {
3544     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3545   }
3546 
3547   // Combine results of left and right checks
3548   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3549 
3550   return cisc_spillable;
3551 }
3552 
3553 //----------------------------- equivalent ------------------------------------
3554 // Recursively check to see if two match rules are equivalent.
3555 // This rule handles the root.
3556 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
3557   // Check that each sets a result
3558   if (sets_result() != mRule2->sets_result()) {
3559     return false;
3560   }
3561 
3562   // Check that the current operands/operations match
3563   assert( _opType, "Must have _opType");
3564   assert( mRule2->_opType, "Must have _opType");
3565   const Form *form  = globals[_opType];
3566   const Form *form2 = globals[mRule2->_opType];
3567   if( form != form2 ) {
3568     return false;
3569   }
3570 
3571   if (_lChild ) {
3572     if( !_lChild->equivalent(globals, mRule2->_lChild) )
3573       return false;
3574   } else if (mRule2->_lChild) {
3575     return false; // I have NULL left child, mRule2 has non-NULL left child.
3576   }
3577 
3578   if (_rChild ) {
3579     if( !_rChild->equivalent(globals, mRule2->_rChild) )
3580       return false;
3581   } else if (mRule2->_rChild) {
3582     return false; // I have NULL right child, mRule2 has non-NULL right child.
3583   }
3584 
3585   // We've made it through the gauntlet.
3586   return true;
3587 }
3588 
3589 //----------------------------- equivalent ------------------------------------
3590 // Recursively check to see if two match rules are equivalent.
3591 // This rule handles the operands.
3592 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
3593   if( !mNode2 )
3594     return false;
3595 
3596   // Check that the current operands/operations match
3597   assert( _opType, "Must have _opType");
3598   assert( mNode2->_opType, "Must have _opType");
3599   const Form *form  = globals[_opType];
3600   const Form *form2 = globals[mNode2->_opType];
3601   return (form == form2);
3602 }
3603 
3604 //-------------------------- has_commutative_op -------------------------------
3605 // Recursively check for commutative operations with subtree operands
3606 // which could be swapped.
3607 void MatchNode::count_commutative_op(int& count) {
3608   static const char *commut_op_list[] = {
3609     "AddI","AddL","AddF","AddD",
3610     "AndI","AndL",
3611     "MaxI","MinI",
3612     "MulI","MulL","MulF","MulD",
3613     "OrI" ,"OrL" ,
3614     "XorI","XorL"
3615   };
3616   int cnt = sizeof(commut_op_list)/sizeof(char*);
3617 
3618   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
3619     // Don't swap if right operand is an immediate constant.
3620     bool is_const = false;
3621     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
3622       FormDict &globals = _AD.globalNames();
3623       const Form *form = globals[_rChild->_opType];
3624       if ( form ) {
3625         OperandForm  *oper = form->is_operand();
3626         if( oper && oper->interface_type(globals) == Form::constant_interface )
3627           is_const = true;
3628       }
3629     }
3630     if( !is_const ) {
3631       for( int i=0; i<cnt; i++ ) {
3632         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
3633           count++;
3634           _commutative_id = count; // id should be > 0
3635           break;
3636         }
3637       }
3638     }
3639   }
3640   if( _lChild )
3641     _lChild->count_commutative_op(count);
3642   if( _rChild )
3643     _rChild->count_commutative_op(count);
3644 }
3645 
3646 //-------------------------- swap_commutative_op ------------------------------
3647 // Recursively swap specified commutative operation with subtree operands.
3648 void MatchNode::swap_commutative_op(bool atroot, int id) {
3649   if( _commutative_id == id ) { // id should be > 0
3650     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
3651             "not swappable operation");
3652     MatchNode* tmp = _lChild;
3653     _lChild = _rChild;
3654     _rChild = tmp;
3655     // Don't exit here since we need to build internalop.
3656   }
3657 
3658   bool is_set = ( strcmp(_opType, "Set") == 0 );
3659   if( _lChild )
3660     _lChild->swap_commutative_op(is_set, id);
3661   if( _rChild )
3662     _rChild->swap_commutative_op(is_set, id);
3663 
3664   // If not the root, reduce this subtree to an internal operand
3665   if( !atroot && (_lChild || _rChild) ) {
3666     build_internalop();
3667   }
3668 }
3669 
3670 //-------------------------- swap_commutative_op ------------------------------
3671 // Recursively swap specified commutative operation with subtree operands.
3672 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
3673   assert(match_rules_cnt < 100," too many match rule clones");
3674   // Clone
3675   MatchRule* clone = new MatchRule(_AD, this);
3676   // Swap operands of commutative operation
3677   ((MatchNode*)clone)->swap_commutative_op(true, count);
3678   char* buf = (char*) malloc(strlen(instr_ident) + 4);
3679   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
3680   clone->_result = buf;
3681 
3682   clone->_next = this->_next;
3683   this-> _next = clone;
3684   if( (--count) > 0 ) {
3685     this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3686     clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3687   }
3688 }
3689 
3690 //------------------------------MatchRule--------------------------------------
3691 MatchRule::MatchRule(ArchDesc &ad)
3692   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
3693     _next = NULL;
3694 }
3695 
3696 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
3697   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
3698     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
3699     _next = NULL;
3700 }
3701 
3702 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
3703                      int numleaves)
3704   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
3705     _numchilds(0) {
3706       _next = NULL;
3707       mroot->_lChild = NULL;
3708       mroot->_rChild = NULL;
3709       delete mroot;
3710       _numleaves = numleaves;
3711       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
3712 }
3713 MatchRule::~MatchRule() {
3714 }
3715 
3716 // Recursive call collecting info on top-level operands, not transitive.
3717 // Implementation does not modify state of internal structures.
3718 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
3719   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3720 
3721   MatchNode::append_components(locals, components,
3722                                false /* not necessarily a def */);
3723 }
3724 
3725 // Recursive call on all operands' match rules in my match rule.
3726 // Implementation does not modify state of internal structures  since they
3727 // can be shared.
3728 // The MatchNode that is called first treats its
3729 bool MatchRule::base_operand(uint &position0, FormDict &globals,
3730                              const char *&result, const char * &name,
3731                              const char * &opType)const{
3732   uint position = position0;
3733 
3734   return (MatchNode::base_operand( position, globals, result, name, opType));
3735 }
3736 
3737 
3738 bool MatchRule::is_base_register(FormDict &globals) const {
3739   uint   position = 1;
3740   const char  *result   = NULL;
3741   const char  *name     = NULL;
3742   const char  *opType   = NULL;
3743   if (!base_operand(position, globals, result, name, opType)) {
3744     position = 0;
3745     if( base_operand(position, globals, result, name, opType) &&
3746         (strcmp(opType,"RegI")==0 ||
3747          strcmp(opType,"RegP")==0 ||
3748          strcmp(opType,"RegN")==0 ||
3749          strcmp(opType,"RegL")==0 ||
3750          strcmp(opType,"RegF")==0 ||
3751          strcmp(opType,"RegD")==0 ||
3752          strcmp(opType,"Reg" )==0) ) {
3753       return 1;
3754     }
3755   }
3756   return 0;
3757 }
3758 
3759 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
3760   uint         position = 1;
3761   const char  *result   = NULL;
3762   const char  *name     = NULL;
3763   const char  *opType   = NULL;
3764   if (!base_operand(position, globals, result, name, opType)) {
3765     position = 0;
3766     if (base_operand(position, globals, result, name, opType)) {
3767       return ideal_to_const_type(opType);
3768     }
3769   }
3770   return Form::none;
3771 }
3772 
3773 bool MatchRule::is_chain_rule(FormDict &globals) const {
3774 
3775   // Check for chain rule, and do not generate a match list for it
3776   if ((_lChild == NULL) && (_rChild == NULL) ) {
3777     const Form *form = globals[_opType];
3778     // If this is ideal, then it is a base match, not a chain rule.
3779     if ( form && form->is_operand() && (!form->ideal_only())) {
3780       return true;
3781     }
3782   }
3783   // Check for "Set" form of chain rule, and do not generate a match list
3784   if (_rChild) {
3785     const char *rch = _rChild->_opType;
3786     const Form *form = globals[rch];
3787     if ((!strcmp(_opType,"Set") &&
3788          ((form) && form->is_operand()))) {
3789       return true;
3790     }
3791   }
3792   return false;
3793 }
3794 
3795 int MatchRule::is_ideal_copy() const {
3796   if( _rChild ) {
3797     const char  *opType = _rChild->_opType;
3798 #if 1
3799     if( strcmp(opType,"CastIP")==0 )
3800       return 1;
3801 #else
3802     if( strcmp(opType,"CastII")==0 )
3803       return 1;
3804     // Do not treat *CastPP this way, because it
3805     // may transfer a raw pointer to an oop.
3806     // If the register allocator were to coalesce this
3807     // into a single LRG, the GC maps would be incorrect.
3808     //if( strcmp(opType,"CastPP")==0 )
3809     //  return 1;
3810     //if( strcmp(opType,"CheckCastPP")==0 )
3811     //  return 1;
3812     //
3813     // Do not treat CastX2P or CastP2X this way, because
3814     // raw pointers and int types are treated differently
3815     // when saving local & stack info for safepoints in
3816     // Output().
3817     //if( strcmp(opType,"CastX2P")==0 )
3818     //  return 1;
3819     //if( strcmp(opType,"CastP2X")==0 )
3820     //  return 1;
3821 #endif
3822   }
3823   if( is_chain_rule(_AD.globalNames()) &&
3824       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
3825     return 1;
3826   return 0;
3827 }
3828 
3829 
3830 int MatchRule::is_expensive() const {
3831   if( _rChild ) {
3832     const char  *opType = _rChild->_opType;
3833     if( strcmp(opType,"AtanD")==0 ||
3834         strcmp(opType,"CosD")==0 ||
3835         strcmp(opType,"DivD")==0 ||
3836         strcmp(opType,"DivF")==0 ||
3837         strcmp(opType,"DivI")==0 ||
3838         strcmp(opType,"ExpD")==0 ||
3839         strcmp(opType,"LogD")==0 ||
3840         strcmp(opType,"Log10D")==0 ||
3841         strcmp(opType,"ModD")==0 ||
3842         strcmp(opType,"ModF")==0 ||
3843         strcmp(opType,"ModI")==0 ||
3844         strcmp(opType,"PowD")==0 ||
3845         strcmp(opType,"SinD")==0 ||
3846         strcmp(opType,"SqrtD")==0 ||
3847         strcmp(opType,"TanD")==0 ||
3848         strcmp(opType,"ConvD2F")==0 ||
3849         strcmp(opType,"ConvD2I")==0 ||
3850         strcmp(opType,"ConvD2L")==0 ||
3851         strcmp(opType,"ConvF2D")==0 ||
3852         strcmp(opType,"ConvF2I")==0 ||
3853         strcmp(opType,"ConvF2L")==0 ||
3854         strcmp(opType,"ConvI2D")==0 ||
3855         strcmp(opType,"ConvI2F")==0 ||
3856         strcmp(opType,"ConvI2L")==0 ||
3857         strcmp(opType,"ConvL2D")==0 ||
3858         strcmp(opType,"ConvL2F")==0 ||
3859         strcmp(opType,"ConvL2I")==0 ||
3860         strcmp(opType,"DecodeN")==0 ||
3861         strcmp(opType,"EncodeP")==0 ||
3862         strcmp(opType,"RoundDouble")==0 ||
3863         strcmp(opType,"RoundFloat")==0 ||
3864         strcmp(opType,"ReverseBytesI")==0 ||
3865         strcmp(opType,"ReverseBytesL")==0 ||
3866         strcmp(opType,"ReverseBytesUS")==0 ||
3867         strcmp(opType,"ReverseBytesS")==0 ||
3868         strcmp(opType,"Replicate16B")==0 ||
3869         strcmp(opType,"Replicate8B")==0 ||
3870         strcmp(opType,"Replicate4B")==0 ||
3871         strcmp(opType,"Replicate8C")==0 ||
3872         strcmp(opType,"Replicate4C")==0 ||
3873         strcmp(opType,"Replicate8S")==0 ||
3874         strcmp(opType,"Replicate4S")==0 ||
3875         strcmp(opType,"Replicate4I")==0 ||
3876         strcmp(opType,"Replicate2I")==0 ||
3877         strcmp(opType,"Replicate2L")==0 ||
3878         strcmp(opType,"Replicate4F")==0 ||
3879         strcmp(opType,"Replicate2F")==0 ||
3880         strcmp(opType,"Replicate2D")==0 ||
3881         0 /* 0 to line up columns nicely */ )
3882       return 1;
3883   }
3884   return 0;
3885 }
3886 
3887 bool MatchRule::is_ideal_unlock() const {
3888   if( !_opType ) return false;
3889   return !strcmp(_opType,"Unlock") || !strcmp(_opType,"FastUnlock");
3890 }
3891 
3892 
3893 bool MatchRule::is_ideal_call_leaf() const {
3894   if( !_opType ) return false;
3895   return !strcmp(_opType,"CallLeaf")     ||
3896          !strcmp(_opType,"CallLeafNoFP");
3897 }
3898 
3899 
3900 bool MatchRule::is_ideal_if() const {
3901   if( !_opType ) return false;
3902   return
3903     !strcmp(_opType,"If"            ) ||
3904     !strcmp(_opType,"CountedLoopEnd");
3905 }
3906 
3907 bool MatchRule::is_ideal_fastlock() const {
3908   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3909     return (strcmp(_rChild->_opType,"FastLock") == 0);
3910   }
3911   return false;
3912 }
3913 
3914 bool MatchRule::is_ideal_membar() const {
3915   if( !_opType ) return false;
3916   return
3917     !strcmp(_opType,"MemBarAcquire"  ) ||
3918     !strcmp(_opType,"MemBarRelease"  ) ||
3919     !strcmp(_opType,"MemBarVolatile" ) ||
3920     !strcmp(_opType,"MemBarCPUOrder" ) ;
3921 }
3922 
3923 bool MatchRule::is_ideal_loadPC() const {
3924   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3925     return (strcmp(_rChild->_opType,"LoadPC") == 0);
3926   }
3927   return false;
3928 }
3929 
3930 bool MatchRule::is_ideal_box() const {
3931   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3932     return (strcmp(_rChild->_opType,"Box") == 0);
3933   }
3934   return false;
3935 }
3936 
3937 bool MatchRule::is_ideal_goto() const {
3938   bool   ideal_goto = false;
3939 
3940   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
3941     ideal_goto = true;
3942   }
3943   return ideal_goto;
3944 }
3945 
3946 bool MatchRule::is_ideal_jump() const {
3947   if( _opType ) {
3948     if( !strcmp(_opType,"Jump") )
3949       return true;
3950   }
3951   return false;
3952 }
3953 
3954 bool MatchRule::is_ideal_bool() const {
3955   if( _opType ) {
3956     if( !strcmp(_opType,"Bool") )
3957       return true;
3958   }
3959   return false;
3960 }
3961 
3962 
3963 Form::DataType MatchRule::is_ideal_load() const {
3964   Form::DataType ideal_load = Form::none;
3965 
3966   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3967     const char *opType = _rChild->_opType;
3968     ideal_load = is_load_from_memory(opType);
3969   }
3970 
3971   return ideal_load;
3972 }
3973 
3974 
3975 bool MatchRule::skip_antidep_check() const {
3976   // Some loads operate on what is effectively immutable memory so we
3977   // should skip the anti dep computations.  For some of these nodes
3978   // the rewritable field keeps the anti dep logic from triggering but
3979   // for certain kinds of LoadKlass it does not since they are
3980   // actually reading memory which could be rewritten by the runtime,
3981   // though never by generated code.  This disables it uniformly for
3982   // the nodes that behave like this: LoadKlass, LoadNKlass and
3983   // LoadRange.
3984   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3985     const char *opType = _rChild->_opType;
3986     if (strcmp("LoadKlass", opType) == 0 ||
3987         strcmp("LoadNKlass", opType) == 0 ||
3988         strcmp("LoadRange", opType) == 0) {
3989       return true;
3990     }
3991   }
3992 
3993   return false;
3994 }
3995 
3996 
3997 Form::DataType MatchRule::is_ideal_store() const {
3998   Form::DataType ideal_store = Form::none;
3999 
4000   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4001     const char *opType = _rChild->_opType;
4002     ideal_store = is_store_to_memory(opType);
4003   }
4004 
4005   return ideal_store;
4006 }
4007 
4008 
4009 void MatchRule::dump() {
4010   output(stderr);
4011 }
4012 
4013 void MatchRule::output(FILE *fp) {
4014   fprintf(fp,"MatchRule: ( %s",_name);
4015   if (_lChild) _lChild->output(fp);
4016   if (_rChild) _rChild->output(fp);
4017   fprintf(fp," )\n");
4018   fprintf(fp,"   nesting depth = %d\n", _depth);
4019   if (_result) fprintf(fp,"   Result Type = %s", _result);
4020   fprintf(fp,"\n");
4021 }
4022 
4023 //------------------------------Attribute--------------------------------------
4024 Attribute::Attribute(char *id, char* val, int type)
4025   : _ident(id), _val(val), _atype(type) {
4026 }
4027 Attribute::~Attribute() {
4028 }
4029 
4030 int Attribute::int_val(ArchDesc &ad) {
4031   // Make sure it is an integer constant:
4032   int result = 0;
4033   if (!_val || !ADLParser::is_int_token(_val, result)) {
4034     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
4035                   _ident, _val ? _val : "");
4036   }
4037   return result;
4038 }
4039 
4040 void Attribute::dump() {
4041   output(stderr);
4042 } // Debug printer
4043 
4044 // Write to output files
4045 void Attribute::output(FILE *fp) {
4046   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
4047 }
4048 
4049 //------------------------------FormatRule----------------------------------
4050 FormatRule::FormatRule(char *temp)
4051   : _temp(temp) {
4052 }
4053 FormatRule::~FormatRule() {
4054 }
4055 
4056 void FormatRule::dump() {
4057   output(stderr);
4058 }
4059 
4060 // Write to output files
4061 void FormatRule::output(FILE *fp) {
4062   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
4063   fprintf(fp,"\n");
4064 }