1 /*
   2  * Copyright 1998-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // output_h.cpp - Class HPP file output routines for architecture definition
  26 #include "adlc.hpp"
  27 
  28 
  29 // Generate the #define that describes the number of registers.
  30 static void defineRegCount(FILE *fp, RegisterForm *registers) {
  31   if (registers) {
  32     int regCount =  AdlcVMDeps::Physical + registers->_rdefs.count();
  33     fprintf(fp,"\n");
  34     fprintf(fp,"// the number of reserved registers + machine registers.\n");
  35     fprintf(fp,"#define REG_COUNT    %d\n", regCount);
  36   }
  37 }
  38 
  39 // Output enumeration of machine register numbers
  40 // (1)
  41 // // Enumerate machine registers starting after reserved regs.
  42 // // in the order of occurrence in the register block.
  43 // enum MachRegisterNumbers {
  44 //   EAX_num = 0,
  45 //   ...
  46 //   _last_Mach_Reg
  47 // }
  48 void ArchDesc::buildMachRegisterNumbers(FILE *fp_hpp) {
  49   if (_register) {
  50     RegDef *reg_def = NULL;
  51 
  52     // Output a #define for the number of machine registers
  53     defineRegCount(fp_hpp, _register);
  54 
  55     // Count all the Save_On_Entry and Always_Save registers
  56     int    saved_on_entry = 0;
  57     int  c_saved_on_entry = 0;
  58     _register->reset_RegDefs();
  59     while( (reg_def = _register->iter_RegDefs()) != NULL ) {
  60       if( strcmp(reg_def->_callconv,"SOE") == 0 ||
  61           strcmp(reg_def->_callconv,"AS")  == 0 )  ++saved_on_entry;
  62       if( strcmp(reg_def->_c_conv,"SOE") == 0 ||
  63           strcmp(reg_def->_c_conv,"AS")  == 0 )  ++c_saved_on_entry;
  64     }
  65     fprintf(fp_hpp, "\n");
  66     fprintf(fp_hpp, "// the number of save_on_entry + always_saved registers.\n");
  67     fprintf(fp_hpp, "#define MAX_SAVED_ON_ENTRY_REG_COUNT    %d\n",   max(saved_on_entry,c_saved_on_entry));
  68     fprintf(fp_hpp, "#define     SAVED_ON_ENTRY_REG_COUNT    %d\n",   saved_on_entry);
  69     fprintf(fp_hpp, "#define   C_SAVED_ON_ENTRY_REG_COUNT    %d\n", c_saved_on_entry);
  70 
  71     // (1)
  72     // Build definition for enumeration of register numbers
  73     fprintf(fp_hpp, "\n");
  74     fprintf(fp_hpp, "// Enumerate machine register numbers starting after reserved regs.\n");
  75     fprintf(fp_hpp, "// in the order of occurrence in the register block.\n");
  76     fprintf(fp_hpp, "enum MachRegisterNumbers {\n");
  77 
  78     // Output the register number for each register in the allocation classes
  79     _register->reset_RegDefs();
  80     int i = 0;
  81     while( (reg_def = _register->iter_RegDefs()) != NULL ) {
  82       fprintf(fp_hpp,"  %s_num,\t\t// %d\n", reg_def->_regname, i++);
  83     }
  84     // Finish defining enumeration
  85     fprintf(fp_hpp, "  _last_Mach_Reg\t// %d\n", i);
  86     fprintf(fp_hpp, "};\n");
  87   }
  88 
  89   fprintf(fp_hpp, "\n// Size of register-mask in ints\n");
  90   fprintf(fp_hpp, "#define RM_SIZE %d\n",RegisterForm::RegMask_Size());
  91   fprintf(fp_hpp, "// Unroll factor for loops over the data in a RegMask\n");
  92   fprintf(fp_hpp, "#define FORALL_BODY ");
  93   int len = RegisterForm::RegMask_Size();
  94   for( int i = 0; i < len; i++ )
  95     fprintf(fp_hpp, "BODY(%d) ",i);
  96   fprintf(fp_hpp, "\n\n");
  97 
  98   fprintf(fp_hpp,"class RegMask;\n");
  99   // All RegMasks are declared "extern const ..." in ad_<arch>.hpp
 100   // fprintf(fp_hpp,"extern RegMask STACK_OR_STACK_SLOTS_mask;\n\n");
 101 }
 102 
 103 
 104 // Output enumeration of machine register encodings
 105 // (2)
 106 // // Enumerate machine registers starting after reserved regs.
 107 // // in the order of occurrence in the alloc_class(es).
 108 // enum MachRegisterEncodes {
 109 //   EAX_enc = 0x00,
 110 //   ...
 111 // }
 112 void ArchDesc::buildMachRegisterEncodes(FILE *fp_hpp) {
 113   if (_register) {
 114     RegDef *reg_def = NULL;
 115     RegDef *reg_def_next = NULL;
 116 
 117     // (2)
 118     // Build definition for enumeration of encode values
 119     fprintf(fp_hpp, "\n");
 120     fprintf(fp_hpp, "// Enumerate machine registers starting after reserved regs.\n");
 121     fprintf(fp_hpp, "// in the order of occurrence in the alloc_class(es).\n");
 122     fprintf(fp_hpp, "enum MachRegisterEncodes {\n");
 123 
 124     // Output the register encoding for each register in the allocation classes
 125     _register->reset_RegDefs();
 126     reg_def_next = _register->iter_RegDefs();
 127     while( (reg_def = reg_def_next) != NULL ) {
 128       reg_def_next = _register->iter_RegDefs();
 129       fprintf(fp_hpp,"  %s_enc = %s%s\n",
 130               reg_def->_regname, reg_def->register_encode(), reg_def_next == NULL? "" : "," );
 131     }
 132     // Finish defining enumeration
 133     fprintf(fp_hpp, "};\n");
 134 
 135   } // Done with register form
 136 }
 137 
 138 
 139 // Declare an array containing the machine register names, strings.
 140 static void declareRegNames(FILE *fp, RegisterForm *registers) {
 141   if (registers) {
 142 //    fprintf(fp,"\n");
 143 //    fprintf(fp,"// An array of character pointers to machine register names.\n");
 144 //    fprintf(fp,"extern const char *regName[];\n");
 145   }
 146 }
 147 
 148 // Declare an array containing the machine register sizes in 32-bit words.
 149 void ArchDesc::declareRegSizes(FILE *fp) {
 150 // regSize[] is not used
 151 }
 152 
 153 // Declare an array containing the machine register encoding values
 154 static void declareRegEncodes(FILE *fp, RegisterForm *registers) {
 155   if (registers) {
 156     // // //
 157     // fprintf(fp,"\n");
 158     // fprintf(fp,"// An array containing the machine register encode values\n");
 159     // fprintf(fp,"extern const char  regEncode[];\n");
 160   }
 161 }
 162 
 163 
 164 // ---------------------------------------------------------------------------
 165 //------------------------------Utilities to build Instruction Classes--------
 166 // ---------------------------------------------------------------------------
 167 static void out_RegMask(FILE *fp) {
 168   fprintf(fp,"  virtual const RegMask &out_RegMask() const;\n");
 169 }
 170 
 171 // ---------------------------------------------------------------------------
 172 //--------Utilities to build MachOper and MachNode derived Classes------------
 173 // ---------------------------------------------------------------------------
 174 
 175 //------------------------------Utilities to build Operand Classes------------
 176 static void in_RegMask(FILE *fp) {
 177   fprintf(fp,"  virtual const RegMask *in_RegMask(int index) const;\n");
 178 }
 179 
 180 static void declare_hash(FILE *fp) {
 181   fprintf(fp,"  virtual uint           hash() const;\n");
 182 }
 183 
 184 static void declare_cmp(FILE *fp) {
 185   fprintf(fp,"  virtual uint           cmp( const MachOper &oper ) const;\n");
 186 }
 187 
 188 static void declareConstStorage(FILE *fp, FormDict &globals, OperandForm *oper) {
 189   int i = 0;
 190   Component *comp;
 191 
 192   if (oper->num_consts(globals) == 0) return;
 193   // Iterate over the component list looking for constants
 194   oper->_components.reset();
 195   if ((comp = oper->_components.iter()) == NULL) {
 196     assert(oper->num_consts(globals) == 1, "Bad component list detected.\n");
 197     const char *type = oper->ideal_type(globals);
 198     if (!strcmp(type, "ConI")) {
 199       if (i > 0) fprintf(fp,", ");
 200       fprintf(fp,"  int32          _c%d;\n", i);
 201     }
 202     else if (!strcmp(type, "ConP")) {
 203       if (i > 0) fprintf(fp,", ");
 204       fprintf(fp,"  const TypePtr *_c%d;\n", i);
 205     }
 206     else if (!strcmp(type, "ConN")) {
 207       if (i > 0) fprintf(fp,", ");
 208       fprintf(fp,"  const TypeNarrowOop *_c%d;\n", i);
 209     }
 210     else if (!strcmp(type, "ConL")) {
 211       if (i > 0) fprintf(fp,", ");
 212       fprintf(fp,"  jlong          _c%d;\n", i);
 213     }
 214     else if (!strcmp(type, "ConF")) {
 215       if (i > 0) fprintf(fp,", ");
 216       fprintf(fp,"  jfloat         _c%d;\n", i);
 217     }
 218     else if (!strcmp(type, "ConD")) {
 219       if (i > 0) fprintf(fp,", ");
 220       fprintf(fp,"  jdouble        _c%d;\n", i);
 221     }
 222     else if (!strcmp(type, "Bool")) {
 223       fprintf(fp,"private:\n");
 224       fprintf(fp,"  BoolTest::mask _c%d;\n", i);
 225       fprintf(fp,"public:\n");
 226     }
 227     else {
 228       assert(0, "Non-constant operand lacks component list.");
 229     }
 230   } // end if NULL
 231   else {
 232     oper->_components.reset();
 233     while ((comp = oper->_components.iter()) != NULL) {
 234       if (!strcmp(comp->base_type(globals), "ConI")) {
 235         fprintf(fp,"  jint             _c%d;\n", i);
 236         i++;
 237       }
 238       else if (!strcmp(comp->base_type(globals), "ConP")) {
 239         fprintf(fp,"  const TypePtr *_c%d;\n", i);
 240         i++;
 241       }
 242       else if (!strcmp(comp->base_type(globals), "ConN")) {
 243         fprintf(fp,"  const TypePtr *_c%d;\n", i);
 244         i++;
 245       }
 246       else if (!strcmp(comp->base_type(globals), "ConL")) {
 247         fprintf(fp,"  jlong            _c%d;\n", i);
 248         i++;
 249       }
 250       else if (!strcmp(comp->base_type(globals), "ConF")) {
 251         fprintf(fp,"  jfloat           _c%d;\n", i);
 252         i++;
 253       }
 254       else if (!strcmp(comp->base_type(globals), "ConD")) {
 255         fprintf(fp,"  jdouble          _c%d;\n", i);
 256         i++;
 257       }
 258     }
 259   }
 260 }
 261 
 262 // Declare constructor.
 263 // Parameters start with condition code, then all other constants
 264 //
 265 // (0) public:
 266 // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
 267 // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
 268 //
 269 static void defineConstructor(FILE *fp, const char *name, uint num_consts,
 270                               ComponentList &lst, bool is_ideal_bool,
 271                               Form::DataType constant_type, FormDict &globals) {
 272   fprintf(fp,"public:\n");
 273   // generate line (1)
 274   fprintf(fp,"  %sOper(", name);
 275   if( num_consts == 0 ) {
 276     fprintf(fp,") {}\n");
 277     return;
 278   }
 279 
 280   // generate parameters for constants
 281   uint i = 0;
 282   Component *comp;
 283   lst.reset();
 284   if ((comp = lst.iter()) == NULL) {
 285     assert(num_consts == 1, "Bad component list detected.\n");
 286     switch( constant_type ) {
 287     case Form::idealI : {
 288       fprintf(fp,is_ideal_bool ? "BoolTest::mask c%d" : "int32 c%d", i);
 289       break;
 290     }
 291     case Form::idealN : { fprintf(fp,"const TypeNarrowOop *c%d", i); break; }
 292     case Form::idealP : { fprintf(fp,"const TypePtr *c%d", i); break; }
 293     case Form::idealL : { fprintf(fp,"jlong c%d", i);   break;        }
 294     case Form::idealF : { fprintf(fp,"jfloat c%d", i);  break;        }
 295     case Form::idealD : { fprintf(fp,"jdouble c%d", i); break;        }
 296     default:
 297       assert(!is_ideal_bool, "Non-constant operand lacks component list.");
 298       break;
 299     }
 300   } // end if NULL
 301   else {
 302     lst.reset();
 303     while((comp = lst.iter()) != NULL) {
 304       if (!strcmp(comp->base_type(globals), "ConI")) {
 305         if (i > 0) fprintf(fp,", ");
 306         fprintf(fp,"int32 c%d", i);
 307         i++;
 308       }
 309       else if (!strcmp(comp->base_type(globals), "ConP")) {
 310         if (i > 0) fprintf(fp,", ");
 311         fprintf(fp,"const TypePtr *c%d", i);
 312         i++;
 313       }
 314       else if (!strcmp(comp->base_type(globals), "ConN")) {
 315         if (i > 0) fprintf(fp,", ");
 316         fprintf(fp,"const TypePtr *c%d", i);
 317         i++;
 318       }
 319       else if (!strcmp(comp->base_type(globals), "ConL")) {
 320         if (i > 0) fprintf(fp,", ");
 321         fprintf(fp,"jlong c%d", i);
 322         i++;
 323       }
 324       else if (!strcmp(comp->base_type(globals), "ConF")) {
 325         if (i > 0) fprintf(fp,", ");
 326         fprintf(fp,"jfloat c%d", i);
 327         i++;
 328       }
 329       else if (!strcmp(comp->base_type(globals), "ConD")) {
 330         if (i > 0) fprintf(fp,", ");
 331         fprintf(fp,"jdouble c%d", i);
 332         i++;
 333       }
 334       else if (!strcmp(comp->base_type(globals), "Bool")) {
 335         if (i > 0) fprintf(fp,", ");
 336         fprintf(fp,"BoolTest::mask c%d", i);
 337         i++;
 338       }
 339     }
 340   }
 341   // finish line (1) and start line (2)
 342   fprintf(fp,")  : ");
 343   // generate initializers for constants
 344   i = 0;
 345   fprintf(fp,"_c%d(c%d)", i, i);
 346   for( i = 1; i < num_consts; ++i) {
 347     fprintf(fp,", _c%d(c%d)", i, i);
 348   }
 349   // The body for the constructor is empty
 350   fprintf(fp," {}\n");
 351 }
 352 
 353 // ---------------------------------------------------------------------------
 354 // Utilities to generate format rules for machine operands and instructions
 355 // ---------------------------------------------------------------------------
 356 
 357 // Generate the format rule for condition codes
 358 static void defineCCodeDump(OperandForm* oper, FILE *fp, int i) {
 359   assert(oper != NULL, "what");
 360   CondInterface* cond = oper->_interface->is_CondInterface();
 361   fprintf(fp, "         if( _c%d == BoolTest::eq ) st->print(\"%s\");\n",i,cond->_equal_format);
 362   fprintf(fp, "    else if( _c%d == BoolTest::ne ) st->print(\"%s\");\n",i,cond->_not_equal_format);
 363   fprintf(fp, "    else if( _c%d == BoolTest::le ) st->print(\"%s\");\n",i,cond->_less_equal_format);
 364   fprintf(fp, "    else if( _c%d == BoolTest::ge ) st->print(\"%s\");\n",i,cond->_greater_equal_format);
 365   fprintf(fp, "    else if( _c%d == BoolTest::lt ) st->print(\"%s\");\n",i,cond->_less_format);
 366   fprintf(fp, "    else if( _c%d == BoolTest::gt ) st->print(\"%s\");\n",i,cond->_greater_format);
 367 }
 368 
 369 // Output code that dumps constant values, increment "i" if type is constant
 370 static uint dump_spec_constant(FILE *fp, const char *ideal_type, uint i, OperandForm* oper) {
 371   if (!strcmp(ideal_type, "ConI")) {
 372     fprintf(fp,"   st->print(\"#%%d\", _c%d);\n", i);
 373     ++i;
 374   }
 375   else if (!strcmp(ideal_type, "ConP")) {
 376     fprintf(fp,"    _c%d->dump_on(st);\n", i);
 377     ++i;
 378   }
 379   else if (!strcmp(ideal_type, "ConN")) {
 380     fprintf(fp,"    _c%d->dump_on(st);\n", i);
 381     ++i;
 382   }
 383   else if (!strcmp(ideal_type, "ConL")) {
 384     fprintf(fp,"    st->print(\"#\" INT64_FORMAT, _c%d);\n", i);
 385     ++i;
 386   }
 387   else if (!strcmp(ideal_type, "ConF")) {
 388     fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
 389     ++i;
 390   }
 391   else if (!strcmp(ideal_type, "ConD")) {
 392     fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
 393     ++i;
 394   }
 395   else if (!strcmp(ideal_type, "Bool")) {
 396     defineCCodeDump(oper, fp,i);
 397     ++i;
 398   }
 399 
 400   return i;
 401 }
 402 
 403 // Generate the format rule for an operand
 404 void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file = false) {
 405   if (!for_c_file) {
 406     // invoked after output #ifndef PRODUCT to ad_<arch>.hpp
 407     // compile the bodies separately, to cut down on recompilations
 408     fprintf(fp,"  virtual void           int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;\n");
 409     fprintf(fp,"  virtual void           ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const;\n");
 410     return;
 411   }
 412 
 413   // Local pointer indicates remaining part of format rule
 414   uint  idx = 0;                   // position of operand in match rule
 415 
 416   // Generate internal format function, used when stored locally
 417   fprintf(fp, "\n#ifndef PRODUCT\n");
 418   fprintf(fp,"void %sOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {\n", oper._ident);
 419   // Generate the user-defined portion of the format
 420   if (oper._format) {
 421     if ( oper._format->_strings.count() != 0 ) {
 422       // No initialization code for int_format
 423 
 424       // Build the format from the entries in strings and rep_vars
 425       const char  *string  = NULL;
 426       oper._format->_rep_vars.reset();
 427       oper._format->_strings.reset();
 428       while ( (string = oper._format->_strings.iter()) != NULL ) {
 429         fprintf(fp,"  ");
 430 
 431         // Check if this is a standard string or a replacement variable
 432         if ( string != NameList::_signal ) {
 433           // Normal string
 434           // Pass through to st->print
 435           fprintf(fp,"st->print(\"%s\");\n", string);
 436         } else {
 437           // Replacement variable
 438           const char *rep_var = oper._format->_rep_vars.iter();
 439           // Check that it is a local name, and an operand
 440           const Form* form = oper._localNames[rep_var];
 441           if (form == NULL) {
 442             globalAD->syntax_err(oper._linenum,
 443                                  "\'%s\' not found in format for %s\n", rep_var, oper._ident);
 444             assert(form, "replacement variable was not found in local names");
 445           }
 446           OperandForm *op      = form->is_operand();
 447           // Get index if register or constant
 448           if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
 449             idx  = oper.register_position( globals, rep_var);
 450           }
 451           else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
 452             idx  = oper.constant_position( globals, rep_var);
 453           } else {
 454             idx = 0;
 455           }
 456 
 457           // output invocation of "$..."s format function
 458           if ( op != NULL )   op->int_format(fp, globals, idx);
 459 
 460           if ( idx == -1 ) {
 461             fprintf(stderr,
 462                     "Using a name, %s, that isn't in match rule\n", rep_var);
 463             assert( strcmp(op->_ident,"label")==0, "Unimplemented");
 464           }
 465         } // Done with a replacement variable
 466       } // Done with all format strings
 467     } else {
 468       // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
 469       oper.int_format(fp, globals, 0);
 470     }
 471 
 472   } else { // oper._format == NULL
 473     // Provide a few special case formats where the AD writer cannot.
 474     if ( strcmp(oper._ident,"Universe")==0 ) {
 475       fprintf(fp, "  st->print(\"$$univ\");\n");
 476     }
 477     // labelOper::int_format is defined in ad_<...>.cpp
 478   }
 479   // ALWAYS! Provide a special case output for condition codes.
 480   if( oper.is_ideal_bool() ) {
 481     defineCCodeDump(&oper, fp,0);
 482   }
 483   fprintf(fp,"}\n");
 484 
 485   // Generate external format function, when data is stored externally
 486   fprintf(fp,"void %sOper::ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const {\n", oper._ident);
 487   // Generate the user-defined portion of the format
 488   if (oper._format) {
 489     if ( oper._format->_strings.count() != 0 ) {
 490 
 491       // Check for a replacement string "$..."
 492       if ( oper._format->_rep_vars.count() != 0 ) {
 493         // Initialization code for ext_format
 494       }
 495 
 496       // Build the format from the entries in strings and rep_vars
 497       const char  *string  = NULL;
 498       oper._format->_rep_vars.reset();
 499       oper._format->_strings.reset();
 500       while ( (string = oper._format->_strings.iter()) != NULL ) {
 501         fprintf(fp,"  ");
 502 
 503         // Check if this is a standard string or a replacement variable
 504         if ( string != NameList::_signal ) {
 505           // Normal string
 506           // Pass through to st->print
 507           fprintf(fp,"st->print(\"%s\");\n", string);
 508         } else {
 509           // Replacement variable
 510           const char *rep_var = oper._format->_rep_vars.iter();
 511          // Check that it is a local name, and an operand
 512           const Form* form = oper._localNames[rep_var];
 513           if (form == NULL) {
 514             globalAD->syntax_err(oper._linenum,
 515                                  "\'%s\' not found in format for %s\n", rep_var, oper._ident);
 516             assert(form, "replacement variable was not found in local names");
 517           }
 518           OperandForm *op      = form->is_operand();
 519           // Get index if register or constant
 520           if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
 521             idx  = oper.register_position( globals, rep_var);
 522           }
 523           else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
 524             idx  = oper.constant_position( globals, rep_var);
 525           } else {
 526             idx = 0;
 527           }
 528           // output invocation of "$..."s format function
 529           if ( op != NULL )   op->ext_format(fp, globals, idx);
 530 
 531           // Lookup the index position of the replacement variable
 532           idx      = oper._components.operand_position_format(rep_var);
 533           if ( idx == -1 ) {
 534             fprintf(stderr,
 535                     "Using a name, %s, that isn't in match rule\n", rep_var);
 536             assert( strcmp(op->_ident,"label")==0, "Unimplemented");
 537           }
 538         } // Done with a replacement variable
 539       } // Done with all format strings
 540 
 541     } else {
 542       // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
 543       oper.ext_format(fp, globals, 0);
 544     }
 545   } else { // oper._format == NULL
 546     // Provide a few special case formats where the AD writer cannot.
 547     if ( strcmp(oper._ident,"Universe")==0 ) {
 548       fprintf(fp, "  st->print(\"$$univ\");\n");
 549     }
 550     // labelOper::ext_format is defined in ad_<...>.cpp
 551   }
 552   // ALWAYS! Provide a special case output for condition codes.
 553   if( oper.is_ideal_bool() ) {
 554     defineCCodeDump(&oper, fp,0);
 555   }
 556   fprintf(fp, "}\n");
 557   fprintf(fp, "#endif\n");
 558 }
 559 
 560 
 561 // Generate the format rule for an instruction
 562 void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c_file = false) {
 563   if (!for_c_file) {
 564     // compile the bodies separately, to cut down on recompilations
 565     // #ifndef PRODUCT region generated by caller
 566     fprintf(fp,"  virtual void           format(PhaseRegAlloc *ra, outputStream *st) const;\n");
 567     return;
 568   }
 569 
 570   // Define the format function
 571   fprintf(fp, "#ifndef PRODUCT\n");
 572   fprintf(fp, "void %sNode::format(PhaseRegAlloc *ra, outputStream *st) const {\n", inst._ident);
 573 
 574   // Generate the user-defined portion of the format
 575   if( inst._format ) {
 576     // If there are replacement variables,
 577     // Generate index values needed for determining the operand position
 578     if( inst._format->_rep_vars.count() )
 579       inst.index_temps(fp, globals);
 580 
 581     // Build the format from the entries in strings and rep_vars
 582     const char  *string  = NULL;
 583     inst._format->_rep_vars.reset();
 584     inst._format->_strings.reset();
 585     while( (string = inst._format->_strings.iter()) != NULL ) {
 586       fprintf(fp,"    ");
 587       // Check if this is a standard string or a replacement variable
 588       if( string == NameList::_signal ) { // Replacement variable
 589         const char* rep_var =  inst._format->_rep_vars.iter();
 590         inst.rep_var_format( fp, rep_var);
 591       } else if( string == NameList::_signal3 ) { // Replacement variable in raw text
 592         const char* rep_var =  inst._format->_rep_vars.iter();
 593         const Form *form   = inst._localNames[rep_var];
 594         if (form == NULL) {
 595           fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
 596           assert(false, "ShouldNotReachHere()");
 597         }
 598         OpClassForm *opc   = form->is_opclass();
 599         assert( opc, "replacement variable was not found in local names");
 600         // Lookup the index position of the replacement variable
 601         int idx  = inst.operand_position_format(rep_var);
 602         if ( idx == -1 ) {
 603           assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
 604           assert( false, "ShouldNotReachHere()");
 605         }
 606 
 607         if (inst.is_noninput_operand(idx)) {
 608           assert( false, "ShouldNotReachHere()");
 609         } else {
 610           // Output the format call for this operand
 611           fprintf(fp,"opnd_array(%d)",idx);
 612         }
 613         rep_var =  inst._format->_rep_vars.iter();
 614         inst._format->_strings.iter();
 615         if ( strcmp(rep_var,"$constant") == 0 && opc->is_operand()) {
 616           Form::DataType constant_type = form->is_operand()->is_base_constant(globals);
 617           if ( constant_type == Form::idealD ) {
 618             fprintf(fp,"->constantD()");
 619           } else if ( constant_type == Form::idealF ) {
 620             fprintf(fp,"->constantF()");
 621           } else if ( constant_type == Form::idealL ) {
 622             fprintf(fp,"->constantL()");
 623           } else {
 624             fprintf(fp,"->constant()");
 625           }
 626         } else if ( strcmp(rep_var,"$cmpcode") == 0) {
 627             fprintf(fp,"->ccode()");
 628         } else {
 629           assert( false, "ShouldNotReachHere()");
 630         }
 631       } else if( string == NameList::_signal2 ) // Raw program text
 632         fputs(inst._format->_strings.iter(), fp);
 633       else
 634         fprintf(fp,"st->print(\"%s\");\n", string);
 635     } // Done with all format strings
 636   } // Done generating the user-defined portion of the format
 637 
 638   // Add call debug info automatically
 639   Form::CallType call_type = inst.is_ideal_call();
 640   if( call_type != Form::invalid_type ) {
 641     switch( call_type ) {
 642     case Form::JAVA_DYNAMIC:
 643       fprintf(fp,"    _method->print_short_name();\n");
 644       break;
 645     case Form::JAVA_STATIC:
 646       fprintf(fp,"    if( _method ) _method->print_short_name(st); else st->print(\" wrapper for: %%s\", _name);\n");
 647       fprintf(fp,"    if( !_method ) dump_trap_args(st);\n");
 648       break;
 649     case Form::JAVA_COMPILED:
 650     case Form::JAVA_INTERP:
 651       break;
 652     case Form::JAVA_RUNTIME:
 653     case Form::JAVA_LEAF:
 654     case Form::JAVA_NATIVE:
 655       fprintf(fp,"    st->print(\" %%s\", _name);");
 656       break;
 657     default:
 658       assert(0,"ShouldNotReacHere");
 659     }
 660     fprintf(fp,  "    st->print_cr(\"\");\n" );
 661     fprintf(fp,  "    if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
 662     fprintf(fp,  "    st->print(\"        # \");\n" );
 663     fprintf(fp,  "    if( _jvms ) _oop_map->print_on(st);\n");
 664   }
 665   else if(inst.is_ideal_safepoint()) {
 666     fprintf(fp,  "    st->print(\"\");\n" );
 667     fprintf(fp,  "    if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
 668     fprintf(fp,  "    st->print(\"        # \");\n" );
 669     fprintf(fp,  "    if( _jvms ) _oop_map->print_on(st);\n");
 670   }
 671   else if( inst.is_ideal_if() ) {
 672     fprintf(fp,  "    st->print(\"  P=%%f C=%%f\",_prob,_fcnt);\n" );
 673   }
 674   else if( inst.is_ideal_mem() ) {
 675     // Print out the field name if available to improve readability
 676     fprintf(fp,  "    if (ra->C->alias_type(adr_type())->field() != NULL) {\n");
 677     fprintf(fp,  "      st->print(\" ! Field \");\n");
 678     fprintf(fp,  "      if( ra->C->alias_type(adr_type())->is_volatile() )\n");
 679     fprintf(fp,  "        st->print(\" Volatile\");\n");
 680     fprintf(fp,  "      ra->C->alias_type(adr_type())->field()->holder()->name()->print_symbol_on(st);\n");
 681     fprintf(fp,  "      st->print(\".\");\n");
 682     fprintf(fp,  "      ra->C->alias_type(adr_type())->field()->name()->print_symbol_on(st);\n");
 683     fprintf(fp,  "    } else\n");
 684     // Make sure 'Volatile' gets printed out
 685     fprintf(fp,  "    if( ra->C->alias_type(adr_type())->is_volatile() )\n");
 686     fprintf(fp,  "      st->print(\" Volatile!\");\n");
 687   }
 688 
 689   // Complete the definition of the format function
 690   fprintf(fp, "  }\n#endif\n");
 691 }
 692 
 693 static bool is_non_constant(char* x) {
 694   // Tells whether the string (part of an operator interface) is non-constant.
 695   // Simply detect whether there is an occurrence of a formal parameter,
 696   // which will always begin with '$'.
 697   return strchr(x, '$') == 0;
 698 }
 699 
 700 void ArchDesc::declare_pipe_classes(FILE *fp_hpp) {
 701   if (!_pipeline)
 702     return;
 703 
 704   fprintf(fp_hpp, "\n");
 705   fprintf(fp_hpp, "// Pipeline_Use_Cycle_Mask Class\n");
 706   fprintf(fp_hpp, "class Pipeline_Use_Cycle_Mask {\n");
 707 
 708   if (_pipeline->_maxcycleused <=
 709 #ifdef SPARC
 710     64
 711 #else
 712     32
 713 #endif
 714       ) {
 715     fprintf(fp_hpp, "protected:\n");
 716     fprintf(fp_hpp, "  %s _mask;\n\n", _pipeline->_maxcycleused <= 32 ? "uint" : "uint64_t" );
 717     fprintf(fp_hpp, "public:\n");
 718     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : _mask(0) {}\n\n");
 719     if (_pipeline->_maxcycleused <= 32)
 720       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask) : _mask(mask) {}\n\n");
 721     else {
 722       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask1, uint mask2) : _mask((((uint64_t)mask1) << 32) | mask2) {}\n\n");
 723       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint64_t mask) : _mask(mask) {}\n\n");
 724     }
 725     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
 726     fprintf(fp_hpp, "    _mask = in._mask;\n");
 727     fprintf(fp_hpp, "    return *this;\n");
 728     fprintf(fp_hpp, "  }\n\n");
 729     fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
 730     fprintf(fp_hpp, "    return ((_mask & in2._mask) != 0);\n");
 731     fprintf(fp_hpp, "  }\n\n");
 732     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
 733     fprintf(fp_hpp, "    _mask <<= n;\n");
 734     fprintf(fp_hpp, "    return *this;\n");
 735     fprintf(fp_hpp, "  }\n\n");
 736     fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &in2) {\n");
 737     fprintf(fp_hpp, "    _mask |= in2._mask;\n");
 738     fprintf(fp_hpp, "  }\n\n");
 739     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
 740     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
 741   }
 742   else {
 743     fprintf(fp_hpp, "protected:\n");
 744     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 745     uint l;
 746     fprintf(fp_hpp, "  uint ");
 747     for (l = 1; l <= masklen; l++)
 748       fprintf(fp_hpp, "_mask%d%s", l, l < masklen ? ", " : ";\n\n");
 749     fprintf(fp_hpp, "public:\n");
 750     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : ");
 751     for (l = 1; l <= masklen; l++)
 752       fprintf(fp_hpp, "_mask%d(0)%s", l, l < masklen ? ", " : " {}\n\n");
 753     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(");
 754     for (l = 1; l <= masklen; l++)
 755       fprintf(fp_hpp, "uint mask%d%s", l, l < masklen ? ", " : ") : ");
 756     for (l = 1; l <= masklen; l++)
 757       fprintf(fp_hpp, "_mask%d(mask%d)%s", l, l, l < masklen ? ", " : " {}\n\n");
 758 
 759     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
 760     for (l = 1; l <= masklen; l++)
 761       fprintf(fp_hpp, "    _mask%d = in._mask%d;\n", l, l);
 762     fprintf(fp_hpp, "    return *this;\n");
 763     fprintf(fp_hpp, "  }\n\n");
 764     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask intersect(const Pipeline_Use_Cycle_Mask &in2) {\n");
 765     fprintf(fp_hpp, "    Pipeline_Use_Cycle_Mask out;\n");
 766     for (l = 1; l <= masklen; l++)
 767       fprintf(fp_hpp, "    out._mask%d = _mask%d & in2._mask%d;\n", l, l, l);
 768     fprintf(fp_hpp, "    return out;\n");
 769     fprintf(fp_hpp, "  }\n\n");
 770     fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
 771     fprintf(fp_hpp, "    return (");
 772     for (l = 1; l <= masklen; l++)
 773       fprintf(fp_hpp, "((_mask%d & in2._mask%d) != 0)%s", l, l, l < masklen ? " || " : "");
 774     fprintf(fp_hpp, ") ? true : false;\n");
 775     fprintf(fp_hpp, "  }\n\n");
 776     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
 777     fprintf(fp_hpp, "    if (n >= 32)\n");
 778     fprintf(fp_hpp, "      do {\n       ");
 779     for (l = masklen; l > 1; l--)
 780       fprintf(fp_hpp, " _mask%d = _mask%d;", l, l-1);
 781     fprintf(fp_hpp, " _mask%d = 0;\n", 1);
 782     fprintf(fp_hpp, "      } while ((n -= 32) >= 32);\n\n");
 783     fprintf(fp_hpp, "    if (n > 0) {\n");
 784     fprintf(fp_hpp, "      uint m = 32 - n;\n");
 785     fprintf(fp_hpp, "      uint mask = (1 << n) - 1;\n");
 786     fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n;\n", 2, 1, 1);
 787     for (l = 2; l < masklen; l++) {
 788       fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n; _mask%d |= temp%d;\n", l+1, l, l, l, l);
 789     }
 790     fprintf(fp_hpp, "      _mask%d <<= n; _mask%d |= temp%d;\n", masklen, masklen, masklen);
 791     fprintf(fp_hpp, "    }\n");
 792 
 793     fprintf(fp_hpp, "    return *this;\n");
 794     fprintf(fp_hpp, "  }\n\n");
 795     fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &);\n\n");
 796     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
 797     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
 798   }
 799 
 800   fprintf(fp_hpp, "  friend class Pipeline_Use;\n\n");
 801   fprintf(fp_hpp, "  friend class Pipeline_Use_Element;\n\n");
 802   fprintf(fp_hpp, "};\n\n");
 803 
 804   uint rescount = 0;
 805   const char *resource;
 806 
 807   for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
 808       int mask = _pipeline->_resdict[resource]->is_resource()->mask();
 809       if ((mask & (mask-1)) == 0)
 810         rescount++;
 811     }
 812 
 813   fprintf(fp_hpp, "// Pipeline_Use_Element Class\n");
 814   fprintf(fp_hpp, "class Pipeline_Use_Element {\n");
 815   fprintf(fp_hpp, "protected:\n");
 816   fprintf(fp_hpp, "  // Mask of used functional units\n");
 817   fprintf(fp_hpp, "  uint _used;\n\n");
 818   fprintf(fp_hpp, "  // Lower and upper bound of functional unit number range\n");
 819   fprintf(fp_hpp, "  uint _lb, _ub;\n\n");
 820   fprintf(fp_hpp, "  // Indicates multiple functionals units available\n");
 821   fprintf(fp_hpp, "  bool _multiple;\n\n");
 822   fprintf(fp_hpp, "  // Mask of specific used cycles\n");
 823   fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask _mask;\n\n");
 824   fprintf(fp_hpp, "public:\n");
 825   fprintf(fp_hpp, "  Pipeline_Use_Element() {}\n\n");
 826   fprintf(fp_hpp, "  Pipeline_Use_Element(uint used, uint lb, uint ub, bool multiple, Pipeline_Use_Cycle_Mask mask)\n");
 827   fprintf(fp_hpp, "  : _used(used), _lb(lb), _ub(ub), _multiple(multiple), _mask(mask) {}\n\n");
 828   fprintf(fp_hpp, "  uint used() const { return _used; }\n\n");
 829   fprintf(fp_hpp, "  uint lowerBound() const { return _lb; }\n\n");
 830   fprintf(fp_hpp, "  uint upperBound() const { return _ub; }\n\n");
 831   fprintf(fp_hpp, "  bool multiple() const { return _multiple; }\n\n");
 832   fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask mask() const { return _mask; }\n\n");
 833   fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Element &in2) const {\n");
 834   fprintf(fp_hpp, "    return ((_used & in2._used) != 0 && _mask.overlaps(in2._mask));\n");
 835   fprintf(fp_hpp, "  }\n\n");
 836   fprintf(fp_hpp, "  void step(uint cycles) {\n");
 837   fprintf(fp_hpp, "    _used = 0;\n");
 838   fprintf(fp_hpp, "    _mask <<= cycles;\n");
 839   fprintf(fp_hpp, "  }\n\n");
 840   fprintf(fp_hpp, "  friend class Pipeline_Use;\n");
 841   fprintf(fp_hpp, "};\n\n");
 842 
 843   fprintf(fp_hpp, "// Pipeline_Use Class\n");
 844   fprintf(fp_hpp, "class Pipeline_Use {\n");
 845   fprintf(fp_hpp, "protected:\n");
 846   fprintf(fp_hpp, "  // These resources can be used\n");
 847   fprintf(fp_hpp, "  uint _resources_used;\n\n");
 848   fprintf(fp_hpp, "  // These resources are used; excludes multiple choice functional units\n");
 849   fprintf(fp_hpp, "  uint _resources_used_exclusively;\n\n");
 850   fprintf(fp_hpp, "  // Number of elements\n");
 851   fprintf(fp_hpp, "  uint _count;\n\n");
 852   fprintf(fp_hpp, "  // This is the array of Pipeline_Use_Elements\n");
 853   fprintf(fp_hpp, "  Pipeline_Use_Element * _elements;\n\n");
 854   fprintf(fp_hpp, "public:\n");
 855   fprintf(fp_hpp, "  Pipeline_Use(uint resources_used, uint resources_used_exclusively, uint count, Pipeline_Use_Element *elements)\n");
 856   fprintf(fp_hpp, "  : _resources_used(resources_used)\n");
 857   fprintf(fp_hpp, "  , _resources_used_exclusively(resources_used_exclusively)\n");
 858   fprintf(fp_hpp, "  , _count(count)\n");
 859   fprintf(fp_hpp, "  , _elements(elements)\n");
 860   fprintf(fp_hpp, "  {}\n\n");
 861   fprintf(fp_hpp, "  uint resourcesUsed() const { return _resources_used; }\n\n");
 862   fprintf(fp_hpp, "  uint resourcesUsedExclusively() const { return _resources_used_exclusively; }\n\n");
 863   fprintf(fp_hpp, "  uint count() const { return _count; }\n\n");
 864   fprintf(fp_hpp, "  Pipeline_Use_Element * element(uint i) const { return &_elements[i]; }\n\n");
 865   fprintf(fp_hpp, "  uint full_latency(uint delay, const Pipeline_Use &pred) const;\n\n");
 866   fprintf(fp_hpp, "  void add_usage(const Pipeline_Use &pred);\n\n");
 867   fprintf(fp_hpp, "  void reset() {\n");
 868   fprintf(fp_hpp, "    _resources_used = _resources_used_exclusively = 0;\n");
 869   fprintf(fp_hpp, "  };\n\n");
 870   fprintf(fp_hpp, "  void step(uint cycles) {\n");
 871   fprintf(fp_hpp, "    reset();\n");
 872   fprintf(fp_hpp, "    for (uint i = 0; i < %d; i++)\n",
 873     rescount);
 874   fprintf(fp_hpp, "      (&_elements[i])->step(cycles);\n");
 875   fprintf(fp_hpp, "  };\n\n");
 876   fprintf(fp_hpp, "  static const Pipeline_Use         elaborated_use;\n");
 877   fprintf(fp_hpp, "  static const Pipeline_Use_Element elaborated_elements[%d];\n\n",
 878     rescount);
 879   fprintf(fp_hpp, "  friend class Pipeline;\n");
 880   fprintf(fp_hpp, "};\n\n");
 881 
 882   fprintf(fp_hpp, "// Pipeline Class\n");
 883   fprintf(fp_hpp, "class Pipeline {\n");
 884   fprintf(fp_hpp, "public:\n");
 885 
 886   fprintf(fp_hpp, "  static bool enabled() { return %s; }\n\n",
 887     _pipeline ? "true" : "false" );
 888 
 889   assert( _pipeline->_maxInstrsPerBundle &&
 890         ( _pipeline->_instrUnitSize || _pipeline->_bundleUnitSize) &&
 891           _pipeline->_instrFetchUnitSize &&
 892           _pipeline->_instrFetchUnits,
 893     "unspecified pipeline architecture units");
 894 
 895   uint unitSize = _pipeline->_instrUnitSize ? _pipeline->_instrUnitSize : _pipeline->_bundleUnitSize;
 896 
 897   fprintf(fp_hpp, "  enum {\n");
 898   fprintf(fp_hpp, "    _variable_size_instructions = %d,\n",
 899     _pipeline->_variableSizeInstrs ? 1 : 0);
 900   fprintf(fp_hpp, "    _fixed_size_instructions = %d,\n",
 901     _pipeline->_variableSizeInstrs ? 0 : 1);
 902   fprintf(fp_hpp, "    _branch_has_delay_slot = %d,\n",
 903     _pipeline->_branchHasDelaySlot ? 1 : 0);
 904   fprintf(fp_hpp, "    _max_instrs_per_bundle = %d,\n",
 905     _pipeline->_maxInstrsPerBundle);
 906   fprintf(fp_hpp, "    _max_bundles_per_cycle = %d,\n",
 907     _pipeline->_maxBundlesPerCycle);
 908   fprintf(fp_hpp, "    _max_instrs_per_cycle = %d\n",
 909     _pipeline->_maxBundlesPerCycle * _pipeline->_maxInstrsPerBundle);
 910   fprintf(fp_hpp, "  };\n\n");
 911 
 912   fprintf(fp_hpp, "  static bool instr_has_unit_size() { return %s; }\n\n",
 913     _pipeline->_instrUnitSize != 0 ? "true" : "false" );
 914   if( _pipeline->_bundleUnitSize != 0 )
 915     if( _pipeline->_instrUnitSize != 0 )
 916       fprintf(fp_hpp, "// Individual Instructions may be bundled together by the hardware\n\n");
 917     else
 918       fprintf(fp_hpp, "// Instructions exist only in bundles\n\n");
 919   else
 920     fprintf(fp_hpp, "// Bundling is not supported\n\n");
 921   if( _pipeline->_instrUnitSize != 0 )
 922     fprintf(fp_hpp, "  // Size of an instruction\n");
 923   else
 924     fprintf(fp_hpp, "  // Size of an individual instruction does not exist - unsupported\n");
 925   fprintf(fp_hpp, "  static uint instr_unit_size() {");
 926   if( _pipeline->_instrUnitSize == 0 )
 927     fprintf(fp_hpp, " assert( false, \"Instructions are only in bundles\" );");
 928   fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_instrUnitSize);
 929 
 930   if( _pipeline->_bundleUnitSize != 0 )
 931     fprintf(fp_hpp, "  // Size of a bundle\n");
 932   else
 933     fprintf(fp_hpp, "  // Bundles do not exist - unsupported\n");
 934   fprintf(fp_hpp, "  static uint bundle_unit_size() {");
 935   if( _pipeline->_bundleUnitSize == 0 )
 936     fprintf(fp_hpp, " assert( false, \"Bundles are not supported\" );");
 937   fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_bundleUnitSize);
 938 
 939   fprintf(fp_hpp, "  static bool requires_bundling() { return %s; }\n\n",
 940     _pipeline->_bundleUnitSize != 0 && _pipeline->_instrUnitSize == 0 ? "true" : "false" );
 941 
 942   fprintf(fp_hpp, "private:\n");
 943   fprintf(fp_hpp, "  Pipeline();  // Not a legal constructor\n");
 944   fprintf(fp_hpp, "\n");
 945   fprintf(fp_hpp, "  const unsigned char                   _read_stage_count;\n");
 946   fprintf(fp_hpp, "  const unsigned char                   _write_stage;\n");
 947   fprintf(fp_hpp, "  const unsigned char                   _fixed_latency;\n");
 948   fprintf(fp_hpp, "  const unsigned char                   _instruction_count;\n");
 949   fprintf(fp_hpp, "  const bool                            _has_fixed_latency;\n");
 950   fprintf(fp_hpp, "  const bool                            _has_branch_delay;\n");
 951   fprintf(fp_hpp, "  const bool                            _has_multiple_bundles;\n");
 952   fprintf(fp_hpp, "  const bool                            _force_serialization;\n");
 953   fprintf(fp_hpp, "  const bool                            _may_have_no_code;\n");
 954   fprintf(fp_hpp, "  const enum machPipelineStages * const _read_stages;\n");
 955   fprintf(fp_hpp, "  const enum machPipelineStages * const _resource_stage;\n");
 956   fprintf(fp_hpp, "  const uint                    * const _resource_cycles;\n");
 957   fprintf(fp_hpp, "  const Pipeline_Use                    _resource_use;\n");
 958   fprintf(fp_hpp, "\n");
 959   fprintf(fp_hpp, "public:\n");
 960   fprintf(fp_hpp, "  Pipeline(uint                            write_stage,\n");
 961   fprintf(fp_hpp, "           uint                            count,\n");
 962   fprintf(fp_hpp, "           bool                            has_fixed_latency,\n");
 963   fprintf(fp_hpp, "           uint                            fixed_latency,\n");
 964   fprintf(fp_hpp, "           uint                            instruction_count,\n");
 965   fprintf(fp_hpp, "           bool                            has_branch_delay,\n");
 966   fprintf(fp_hpp, "           bool                            has_multiple_bundles,\n");
 967   fprintf(fp_hpp, "           bool                            force_serialization,\n");
 968   fprintf(fp_hpp, "           bool                            may_have_no_code,\n");
 969   fprintf(fp_hpp, "           enum machPipelineStages * const dst,\n");
 970   fprintf(fp_hpp, "           enum machPipelineStages * const stage,\n");
 971   fprintf(fp_hpp, "           uint                    * const cycles,\n");
 972   fprintf(fp_hpp, "           Pipeline_Use                    resource_use)\n");
 973   fprintf(fp_hpp, "  : _write_stage(write_stage)\n");
 974   fprintf(fp_hpp, "  , _read_stage_count(count)\n");
 975   fprintf(fp_hpp, "  , _has_fixed_latency(has_fixed_latency)\n");
 976   fprintf(fp_hpp, "  , _fixed_latency(fixed_latency)\n");
 977   fprintf(fp_hpp, "  , _read_stages(dst)\n");
 978   fprintf(fp_hpp, "  , _resource_stage(stage)\n");
 979   fprintf(fp_hpp, "  , _resource_cycles(cycles)\n");
 980   fprintf(fp_hpp, "  , _resource_use(resource_use)\n");
 981   fprintf(fp_hpp, "  , _instruction_count(instruction_count)\n");
 982   fprintf(fp_hpp, "  , _has_branch_delay(has_branch_delay)\n");
 983   fprintf(fp_hpp, "  , _has_multiple_bundles(has_multiple_bundles)\n");
 984   fprintf(fp_hpp, "  , _force_serialization(force_serialization)\n");
 985   fprintf(fp_hpp, "  , _may_have_no_code(may_have_no_code)\n");
 986   fprintf(fp_hpp, "  {};\n");
 987   fprintf(fp_hpp, "\n");
 988   fprintf(fp_hpp, "  uint writeStage() const {\n");
 989   fprintf(fp_hpp, "    return (_write_stage);\n");
 990   fprintf(fp_hpp, "  }\n");
 991   fprintf(fp_hpp, "\n");
 992   fprintf(fp_hpp, "  enum machPipelineStages readStage(int ndx) const {\n");
 993   fprintf(fp_hpp, "    return (ndx < _read_stage_count ? _read_stages[ndx] : stage_undefined);");
 994   fprintf(fp_hpp, "  }\n\n");
 995   fprintf(fp_hpp, "  uint resourcesUsed() const {\n");
 996   fprintf(fp_hpp, "    return _resource_use.resourcesUsed();\n  }\n\n");
 997   fprintf(fp_hpp, "  uint resourcesUsedExclusively() const {\n");
 998   fprintf(fp_hpp, "    return _resource_use.resourcesUsedExclusively();\n  }\n\n");
 999   fprintf(fp_hpp, "  bool hasFixedLatency() const {\n");
1000   fprintf(fp_hpp, "    return (_has_fixed_latency);\n  }\n\n");
1001   fprintf(fp_hpp, "  uint fixedLatency() const {\n");
1002   fprintf(fp_hpp, "    return (_fixed_latency);\n  }\n\n");
1003   fprintf(fp_hpp, "  uint functional_unit_latency(uint start, const Pipeline *pred) const;\n\n");
1004   fprintf(fp_hpp, "  uint operand_latency(uint opnd, const Pipeline *pred) const;\n\n");
1005   fprintf(fp_hpp, "  const Pipeline_Use& resourceUse() const {\n");
1006   fprintf(fp_hpp, "    return (_resource_use); }\n\n");
1007   fprintf(fp_hpp, "  const Pipeline_Use_Element * resourceUseElement(uint i) const {\n");
1008   fprintf(fp_hpp, "    return (&_resource_use._elements[i]); }\n\n");
1009   fprintf(fp_hpp, "  uint resourceUseCount() const {\n");
1010   fprintf(fp_hpp, "    return (_resource_use._count); }\n\n");
1011   fprintf(fp_hpp, "  uint instructionCount() const {\n");
1012   fprintf(fp_hpp, "    return (_instruction_count); }\n\n");
1013   fprintf(fp_hpp, "  bool hasBranchDelay() const {\n");
1014   fprintf(fp_hpp, "    return (_has_branch_delay); }\n\n");
1015   fprintf(fp_hpp, "  bool hasMultipleBundles() const {\n");
1016   fprintf(fp_hpp, "    return (_has_multiple_bundles); }\n\n");
1017   fprintf(fp_hpp, "  bool forceSerialization() const {\n");
1018   fprintf(fp_hpp, "    return (_force_serialization); }\n\n");
1019   fprintf(fp_hpp, "  bool mayHaveNoCode() const {\n");
1020   fprintf(fp_hpp, "    return (_may_have_no_code); }\n\n");
1021   fprintf(fp_hpp, "//const Pipeline_Use_Cycle_Mask& resourceUseMask(int resource) const {\n");
1022   fprintf(fp_hpp, "//  return (_resource_use_masks[resource]); }\n\n");
1023   fprintf(fp_hpp, "\n#ifndef PRODUCT\n");
1024   fprintf(fp_hpp, "  static const char * stageName(uint i);\n");
1025   fprintf(fp_hpp, "#endif\n");
1026   fprintf(fp_hpp, "};\n\n");
1027 
1028   fprintf(fp_hpp, "// Bundle class\n");
1029   fprintf(fp_hpp, "class Bundle {\n");
1030 
1031   uint mshift = 0;
1032   for (uint msize = _pipeline->_maxInstrsPerBundle * _pipeline->_maxBundlesPerCycle; msize != 0; msize >>= 1)
1033     mshift++;
1034 
1035   uint rshift = rescount;
1036 
1037   fprintf(fp_hpp, "protected:\n");
1038   fprintf(fp_hpp, "  enum {\n");
1039   fprintf(fp_hpp, "    _unused_delay                   = 0x%x,\n", 0);
1040   fprintf(fp_hpp, "    _use_nop_delay                  = 0x%x,\n", 1);
1041   fprintf(fp_hpp, "    _use_unconditional_delay        = 0x%x,\n", 2);
1042   fprintf(fp_hpp, "    _use_conditional_delay          = 0x%x,\n", 3);
1043   fprintf(fp_hpp, "    _used_in_conditional_delay      = 0x%x,\n", 4);
1044   fprintf(fp_hpp, "    _used_in_unconditional_delay    = 0x%x,\n", 5);
1045   fprintf(fp_hpp, "    _used_in_all_conditional_delays = 0x%x,\n", 6);
1046   fprintf(fp_hpp, "\n");
1047   fprintf(fp_hpp, "    _use_delay                      = 0x%x,\n", 3);
1048   fprintf(fp_hpp, "    _used_in_delay                  = 0x%x\n",  4);
1049   fprintf(fp_hpp, "  };\n\n");
1050   fprintf(fp_hpp, "  uint _flags          : 3,\n");
1051   fprintf(fp_hpp, "       _starts_bundle  : 1,\n");
1052   fprintf(fp_hpp, "       _instr_count    : %d,\n",   mshift);
1053   fprintf(fp_hpp, "       _resources_used : %d;\n",   rshift);
1054   fprintf(fp_hpp, "public:\n");
1055   fprintf(fp_hpp, "  Bundle() : _flags(_unused_delay), _starts_bundle(0), _instr_count(0), _resources_used(0) {}\n\n");
1056   fprintf(fp_hpp, "  void set_instr_count(uint i) { _instr_count  = i; }\n");
1057   fprintf(fp_hpp, "  void set_resources_used(uint i) { _resources_used   = i; }\n");
1058   fprintf(fp_hpp, "  void clear_usage() { _flags = _unused_delay; }\n");
1059   fprintf(fp_hpp, "  void set_starts_bundle() { _starts_bundle = true; }\n");
1060 
1061   fprintf(fp_hpp, "  uint flags() const { return (_flags); }\n");
1062   fprintf(fp_hpp, "  uint instr_count() const { return (_instr_count); }\n");
1063   fprintf(fp_hpp, "  uint resources_used() const { return (_resources_used); }\n");
1064   fprintf(fp_hpp, "  bool starts_bundle() const { return (_starts_bundle != 0); }\n");
1065 
1066   fprintf(fp_hpp, "  void set_use_nop_delay() { _flags = _use_nop_delay; }\n");
1067   fprintf(fp_hpp, "  void set_use_unconditional_delay() { _flags = _use_unconditional_delay; }\n");
1068   fprintf(fp_hpp, "  void set_use_conditional_delay() { _flags = _use_conditional_delay; }\n");
1069   fprintf(fp_hpp, "  void set_used_in_unconditional_delay() { _flags = _used_in_unconditional_delay; }\n");
1070   fprintf(fp_hpp, "  void set_used_in_conditional_delay() { _flags = _used_in_conditional_delay; }\n");
1071   fprintf(fp_hpp, "  void set_used_in_all_conditional_delays() { _flags = _used_in_all_conditional_delays; }\n");
1072 
1073   fprintf(fp_hpp, "  bool use_nop_delay() { return (_flags == _use_nop_delay); }\n");
1074   fprintf(fp_hpp, "  bool use_unconditional_delay() { return (_flags == _use_unconditional_delay); }\n");
1075   fprintf(fp_hpp, "  bool use_conditional_delay() { return (_flags == _use_conditional_delay); }\n");
1076   fprintf(fp_hpp, "  bool used_in_unconditional_delay() { return (_flags == _used_in_unconditional_delay); }\n");
1077   fprintf(fp_hpp, "  bool used_in_conditional_delay() { return (_flags == _used_in_conditional_delay); }\n");
1078   fprintf(fp_hpp, "  bool used_in_all_conditional_delays() { return (_flags == _used_in_all_conditional_delays); }\n");
1079   fprintf(fp_hpp, "  bool use_delay() { return ((_flags & _use_delay) != 0); }\n");
1080   fprintf(fp_hpp, "  bool used_in_delay() { return ((_flags & _used_in_delay) != 0); }\n\n");
1081 
1082   fprintf(fp_hpp, "  enum {\n");
1083   fprintf(fp_hpp, "    _nop_count = %d\n",
1084     _pipeline->_nopcnt);
1085   fprintf(fp_hpp, "  };\n\n");
1086   fprintf(fp_hpp, "  static void initialize_nops(MachNode *nop_list[%d], Compile* C);\n\n",
1087     _pipeline->_nopcnt);
1088   fprintf(fp_hpp, "#ifndef PRODUCT\n");
1089   fprintf(fp_hpp, "  void dump() const;\n");
1090   fprintf(fp_hpp, "#endif\n");
1091   fprintf(fp_hpp, "};\n\n");
1092 
1093 //  const char *classname;
1094 //  for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
1095 //    PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
1096 //    fprintf(fp_hpp, "// Pipeline Class Instance for \"%s\"\n", classname);
1097 //  }
1098 }
1099 
1100 //------------------------------declareClasses---------------------------------
1101 // Construct the class hierarchy of MachNode classes from the instruction &
1102 // operand lists
1103 void ArchDesc::declareClasses(FILE *fp) {
1104 
1105   // Declare an array containing the machine register names, strings.
1106   declareRegNames(fp, _register);
1107 
1108   // Declare an array containing the machine register encoding values
1109   declareRegEncodes(fp, _register);
1110 
1111   // Generate declarations for the total number of operands
1112   fprintf(fp,"\n");
1113   fprintf(fp,"// Total number of operands defined in architecture definition\n");
1114   int num_operands = 0;
1115   OperandForm *op;
1116   for (_operands.reset(); (op = (OperandForm*)_operands.iter()) != NULL; ) {
1117     // Ensure this is a machine-world instruction
1118     if (op->ideal_only()) continue;
1119 
1120     ++num_operands;
1121   }
1122   int first_operand_class = num_operands;
1123   OpClassForm *opc;
1124   for (_opclass.reset(); (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
1125     // Ensure this is a machine-world instruction
1126     if (opc->ideal_only()) continue;
1127 
1128     ++num_operands;
1129   }
1130   fprintf(fp,"#define FIRST_OPERAND_CLASS   %d\n", first_operand_class);
1131   fprintf(fp,"#define NUM_OPERANDS          %d\n", num_operands);
1132   fprintf(fp,"\n");
1133   // Generate declarations for the total number of instructions
1134   fprintf(fp,"// Total number of instructions defined in architecture definition\n");
1135   fprintf(fp,"#define NUM_INSTRUCTIONS   %d\n",instructFormCount());
1136 
1137 
1138   // Generate Machine Classes for each operand defined in AD file
1139   fprintf(fp,"\n");
1140   fprintf(fp,"//----------------------------Declare classes derived from MachOper----------\n");
1141   // Iterate through all operands
1142   _operands.reset();
1143   OperandForm *oper;
1144   for( ; (oper = (OperandForm*)_operands.iter()) != NULL;) {
1145     // Ensure this is a machine-world instruction
1146     if (oper->ideal_only() ) continue;
1147     // The declaration of labelOper is in machine-independent file: machnode
1148     if ( strcmp(oper->_ident,"label")  == 0 ) continue;
1149     // The declaration of methodOper is in machine-independent file: machnode
1150     if ( strcmp(oper->_ident,"method") == 0 ) continue;
1151 
1152     // Build class definition for this operand
1153     fprintf(fp,"\n");
1154     fprintf(fp,"class %sOper : public MachOper { \n",oper->_ident);
1155     fprintf(fp,"private:\n");
1156     // Operand definitions that depend upon number of input edges
1157     {
1158       uint num_edges = oper->num_edges(_globalNames);
1159       if( num_edges != 1 ) { // Use MachOper::num_edges() {return 1;}
1160         fprintf(fp,"  virtual uint           num_edges() const { return %d; }\n",
1161               num_edges );
1162       }
1163       if( num_edges > 0 ) {
1164         in_RegMask(fp);
1165       }
1166     }
1167 
1168     // Support storing constants inside the MachOper
1169     declareConstStorage(fp,_globalNames,oper);
1170 
1171     // Support storage of the condition codes
1172     if( oper->is_ideal_bool() ) {
1173       fprintf(fp,"  virtual int ccode() const { \n");
1174       fprintf(fp,"    switch (_c0) {\n");
1175       fprintf(fp,"    case  BoolTest::eq : return equal();\n");
1176       fprintf(fp,"    case  BoolTest::gt : return greater();\n");
1177       fprintf(fp,"    case  BoolTest::lt : return less();\n");
1178       fprintf(fp,"    case  BoolTest::ne : return not_equal();\n");
1179       fprintf(fp,"    case  BoolTest::le : return less_equal();\n");
1180       fprintf(fp,"    case  BoolTest::ge : return greater_equal();\n");
1181       fprintf(fp,"    default : ShouldNotReachHere(); return 0;\n");
1182       fprintf(fp,"    }\n");
1183       fprintf(fp,"  };\n");
1184     }
1185 
1186     // Support storage of the condition codes
1187     if( oper->is_ideal_bool() ) {
1188       fprintf(fp,"  virtual void negate() { \n");
1189       fprintf(fp,"    _c0 = (BoolTest::mask)((int)_c0^0x4); \n");
1190       fprintf(fp,"  };\n");
1191     }
1192 
1193     // Declare constructor.
1194     // Parameters start with condition code, then all other constants
1195     //
1196     // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
1197     // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
1198     //
1199     Form::DataType constant_type = oper->simple_type(_globalNames);
1200     defineConstructor(fp, oper->_ident, oper->num_consts(_globalNames),
1201                       oper->_components, oper->is_ideal_bool(),
1202                       constant_type, _globalNames);
1203 
1204     // Clone function
1205     fprintf(fp,"  virtual MachOper      *clone(Compile* C) const;\n");
1206 
1207     // Support setting a spill offset into a constant operand.
1208     // We only support setting an 'int' offset, while in the
1209     // LP64 build spill offsets are added with an AddP which
1210     // requires a long constant.  Thus we don't support spilling
1211     // in frames larger than 4Gig.
1212     if( oper->has_conI(_globalNames) ||
1213         oper->has_conL(_globalNames) )
1214       fprintf(fp, "  virtual void set_con( jint c0 ) { _c0 = c0; }\n");
1215 
1216     // virtual functions for encoding and format
1217     //    fprintf(fp,"  virtual void           encode()   const {\n    %s }\n",
1218     //            (oper->_encrule)?(oper->_encrule->_encrule):"");
1219     // Check the interface type, and generate the correct query functions
1220     // encoding queries based upon MEMORY_INTER, REG_INTER, CONST_INTER.
1221 
1222     fprintf(fp,"  virtual uint           opcode() const { return %s; }\n",
1223             machOperEnum(oper->_ident));
1224 
1225     // virtual function to look up ideal return type of machine instruction
1226     //
1227     // (1)  virtual const Type    *type() const { return .....; }
1228     //
1229     if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) &&
1230         (oper->_matrule->_rChild == NULL)) {
1231       unsigned int position = 0;
1232       const char  *opret, *opname, *optype;
1233       oper->_matrule->base_operand(position,_globalNames,opret,opname,optype);
1234       fprintf(fp,"  virtual const Type *type() const {");
1235       const char *type = getIdealType(optype);
1236       if( type != NULL ) {
1237         Form::DataType data_type = oper->is_base_constant(_globalNames);
1238         // Check if we are an ideal pointer type
1239         if( data_type == Form::idealP || data_type == Form::idealN ) {
1240           // Return the ideal type we already have: <TypePtr *>
1241           fprintf(fp," return _c0;");
1242         } else {
1243           // Return the appropriate bottom type
1244           fprintf(fp," return %s;", getIdealType(optype));
1245         }
1246       } else {
1247         fprintf(fp," ShouldNotCallThis(); return Type::BOTTOM;");
1248       }
1249       fprintf(fp," }\n");
1250     } else {
1251       // Check for user-defined stack slots, based upon sRegX
1252       Form::DataType data_type = oper->is_user_name_for_sReg();
1253       if( data_type != Form::none ){
1254         const char *type = NULL;
1255         switch( data_type ) {
1256         case Form::idealI: type = "TypeInt::INT";   break;
1257         case Form::idealP: type = "TypePtr::BOTTOM";break;
1258         case Form::idealF: type = "Type::FLOAT";    break;
1259         case Form::idealD: type = "Type::DOUBLE";   break;
1260         case Form::idealL: type = "TypeLong::LONG"; break;
1261         case Form::none: // fall through
1262         default:
1263           assert( false, "No support for this type of stackSlot");
1264         }
1265         fprintf(fp,"  virtual const Type    *type() const { return %s; } // stackSlotX\n", type);
1266       }
1267     }
1268 
1269 
1270     //
1271     // virtual functions for defining the encoding interface.
1272     //
1273     // Access the linearized ideal register mask,
1274     // map to physical register encoding
1275     if ( oper->_matrule && oper->_matrule->is_base_register(_globalNames) ) {
1276       // Just use the default virtual 'reg' call
1277     } else if ( oper->ideal_to_sReg_type(oper->_ident) != Form::none ) {
1278       // Special handling for operand 'sReg', a Stack Slot Register.
1279       // Map linearized ideal register mask to stack slot number
1280       fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node) const {\n");
1281       fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node));/* sReg */\n");
1282       fprintf(fp,"  }\n");
1283       fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {\n");
1284       fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
1285       fprintf(fp,"  }\n");
1286     }
1287 
1288     // Output the operand specific access functions used by an enc_class
1289     // These are only defined when we want to override the default virtual func
1290     if (oper->_interface != NULL) {
1291       fprintf(fp,"\n");
1292       // Check if it is a Memory Interface
1293       if ( oper->_interface->is_MemInterface() != NULL ) {
1294         MemInterface *mem_interface = oper->_interface->is_MemInterface();
1295         const char *base = mem_interface->_base;
1296         if( base != NULL ) {
1297           define_oper_interface(fp, *oper, _globalNames, "base", base);
1298         }
1299         char *index = mem_interface->_index;
1300         if( index != NULL ) {
1301           define_oper_interface(fp, *oper, _globalNames, "index", index);
1302         }
1303         const char *scale = mem_interface->_scale;
1304         if( scale != NULL ) {
1305           define_oper_interface(fp, *oper, _globalNames, "scale", scale);
1306         }
1307         const char *disp = mem_interface->_disp;
1308         if( disp != NULL ) {
1309           define_oper_interface(fp, *oper, _globalNames, "disp", disp);
1310           oper->disp_is_oop(fp, _globalNames);
1311         }
1312         if( oper->stack_slots_only(_globalNames) ) {
1313           // should not call this:
1314           fprintf(fp,"  virtual int       constant_disp() const { return Type::OffsetBot; }");
1315         } else if ( disp != NULL ) {
1316           define_oper_interface(fp, *oper, _globalNames, "constant_disp", disp);
1317         }
1318       } // end Memory Interface
1319       // Check if it is a Conditional Interface
1320       else if (oper->_interface->is_CondInterface() != NULL) {
1321         CondInterface *cInterface = oper->_interface->is_CondInterface();
1322         const char *equal = cInterface->_equal;
1323         if( equal != NULL ) {
1324           define_oper_interface(fp, *oper, _globalNames, "equal", equal);
1325         }
1326         const char *not_equal = cInterface->_not_equal;
1327         if( not_equal != NULL ) {
1328           define_oper_interface(fp, *oper, _globalNames, "not_equal", not_equal);
1329         }
1330         const char *less = cInterface->_less;
1331         if( less != NULL ) {
1332           define_oper_interface(fp, *oper, _globalNames, "less", less);
1333         }
1334         const char *greater_equal = cInterface->_greater_equal;
1335         if( greater_equal != NULL ) {
1336           define_oper_interface(fp, *oper, _globalNames, "greater_equal", greater_equal);
1337         }
1338         const char *less_equal = cInterface->_less_equal;
1339         if( less_equal != NULL ) {
1340           define_oper_interface(fp, *oper, _globalNames, "less_equal", less_equal);
1341         }
1342         const char *greater = cInterface->_greater;
1343         if( greater != NULL ) {
1344           define_oper_interface(fp, *oper, _globalNames, "greater", greater);
1345         }
1346       } // end Conditional Interface
1347       // Check if it is a Constant Interface
1348       else if (oper->_interface->is_ConstInterface() != NULL ) {
1349         assert( oper->num_consts(_globalNames) == 1,
1350                 "Must have one constant when using CONST_INTER encoding");
1351         if (!strcmp(oper->ideal_type(_globalNames), "ConI")) {
1352           // Access the locally stored constant
1353           fprintf(fp,"  virtual intptr_t       constant() const {");
1354           fprintf(fp,   " return (intptr_t)_c0;");
1355           fprintf(fp,"  }\n");
1356         }
1357         else if (!strcmp(oper->ideal_type(_globalNames), "ConP")) {
1358           // Access the locally stored constant
1359           fprintf(fp,"  virtual intptr_t       constant() const {");
1360           fprintf(fp,   " return _c0->get_con();");
1361           fprintf(fp, " }\n");
1362           // Generate query to determine if this pointer is an oop
1363           fprintf(fp,"  virtual bool           constant_is_oop() const {");
1364           fprintf(fp,   " return _c0->isa_oop_ptr();");
1365           fprintf(fp, " }\n");
1366         }
1367         else if (!strcmp(oper->ideal_type(_globalNames), "ConN")) {
1368           // Access the locally stored constant
1369           fprintf(fp,"  virtual intptr_t       constant() const {");
1370           fprintf(fp,   " return _c0->get_ptrtype()->get_con();");
1371           fprintf(fp, " }\n");
1372           // Generate query to determine if this pointer is an oop
1373           fprintf(fp,"  virtual bool           constant_is_oop() const {");
1374           fprintf(fp,   " return _c0->get_ptrtype()->isa_oop_ptr();");
1375           fprintf(fp, " }\n");
1376         }
1377         else if (!strcmp(oper->ideal_type(_globalNames), "ConL")) {
1378           fprintf(fp,"  virtual intptr_t       constant() const {");
1379           // We don't support addressing modes with > 4Gig offsets.
1380           // Truncate to int.
1381           fprintf(fp,   "  return (intptr_t)_c0;");
1382           fprintf(fp, " }\n");
1383           fprintf(fp,"  virtual jlong          constantL() const {");
1384           fprintf(fp,   " return _c0;");
1385           fprintf(fp, " }\n");
1386         }
1387         else if (!strcmp(oper->ideal_type(_globalNames), "ConF")) {
1388           fprintf(fp,"  virtual intptr_t       constant() const {");
1389           fprintf(fp,   " ShouldNotReachHere(); return 0; ");
1390           fprintf(fp, " }\n");
1391           fprintf(fp,"  virtual jfloat         constantF() const {");
1392           fprintf(fp,   " return (jfloat)_c0;");
1393           fprintf(fp, " }\n");
1394         }
1395         else if (!strcmp(oper->ideal_type(_globalNames), "ConD")) {
1396           fprintf(fp,"  virtual intptr_t       constant() const {");
1397           fprintf(fp,   " ShouldNotReachHere(); return 0; ");
1398           fprintf(fp, " }\n");
1399           fprintf(fp,"  virtual jdouble        constantD() const {");
1400           fprintf(fp,   " return _c0;");
1401           fprintf(fp, " }\n");
1402         }
1403       }
1404       else if (oper->_interface->is_RegInterface() != NULL) {
1405         // make sure that a fixed format string isn't used for an
1406         // operand which might be assiged to multiple registers.
1407         // Otherwise the opto assembly output could be misleading.
1408         if (oper->_format->_strings.count() != 0 && !oper->is_bound_register()) {
1409           syntax_err(oper->_linenum,
1410                      "Only bound registers can have fixed formats: %s\n",
1411                      oper->_ident);
1412         }
1413       }
1414       else {
1415         assert( false, "ShouldNotReachHere();");
1416       }
1417     }
1418 
1419     fprintf(fp,"\n");
1420     // // Currently all XXXOper::hash() methods are identical (990820)
1421     // declare_hash(fp);
1422     // // Currently all XXXOper::Cmp() methods are identical (990820)
1423     // declare_cmp(fp);
1424 
1425     // Do not place dump_spec() and Name() into PRODUCT code
1426     // int_format and ext_format are not needed in PRODUCT code either
1427     fprintf(fp, "#ifndef PRODUCT\n");
1428 
1429     // Declare int_format() and ext_format()
1430     gen_oper_format(fp, _globalNames, *oper);
1431 
1432     // Machine independent print functionality for debugging
1433     // IF we have constants, create a dump_spec function for the derived class
1434     //
1435     // (1)  virtual void           dump_spec() const {
1436     // (2)    st->print("#%d", _c#);        // Constant != ConP
1437     //  OR    _c#->dump_on(st);             // Type ConP
1438     //  ...
1439     // (3)  }
1440     uint num_consts = oper->num_consts(_globalNames);
1441     if( num_consts > 0 ) {
1442       // line (1)
1443       fprintf(fp, "  virtual void           dump_spec(outputStream *st) const {\n");
1444       // generate format string for st->print
1445       // Iterate over the component list & spit out the right thing
1446       uint i = 0;
1447       const char *type = oper->ideal_type(_globalNames);
1448       Component  *comp;
1449       oper->_components.reset();
1450       if ((comp = oper->_components.iter()) == NULL) {
1451         assert(num_consts == 1, "Bad component list detected.\n");
1452         i = dump_spec_constant( fp, type, i, oper );
1453         // Check that type actually matched
1454         assert( i != 0, "Non-constant operand lacks component list.");
1455       } // end if NULL
1456       else {
1457         // line (2)
1458         // dump all components
1459         oper->_components.reset();
1460         while((comp = oper->_components.iter()) != NULL) {
1461           type = comp->base_type(_globalNames);
1462           i = dump_spec_constant( fp, type, i, NULL );
1463         }
1464       }
1465       // finish line (3)
1466       fprintf(fp,"  }\n");
1467     }
1468 
1469     fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
1470             oper->_ident);
1471 
1472     fprintf(fp,"#endif\n");
1473 
1474     // Close definition of this XxxMachOper
1475     fprintf(fp,"};\n");
1476   }
1477 
1478 
1479   // Generate Machine Classes for each instruction defined in AD file
1480   fprintf(fp,"\n");
1481   fprintf(fp,"//----------------------------Declare classes for Pipelines-----------------\n");
1482   declare_pipe_classes(fp);
1483 
1484   // Generate Machine Classes for each instruction defined in AD file
1485   fprintf(fp,"\n");
1486   fprintf(fp,"//----------------------------Declare classes derived from MachNode----------\n");
1487   _instructions.reset();
1488   InstructForm *instr;
1489   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
1490     // Ensure this is a machine-world instruction
1491     if ( instr->ideal_only() ) continue;
1492 
1493     // Build class definition for this instruction
1494     fprintf(fp,"\n");
1495     fprintf(fp,"class %sNode : public %s { \n",
1496             instr->_ident, instr->mach_base_class(_globalNames) );
1497     fprintf(fp,"private:\n");
1498     fprintf(fp,"  MachOper *_opnd_array[%d];\n", instr->num_opnds() );
1499     if ( instr->is_ideal_jump() ) {
1500       fprintf(fp, "  GrowableArray<Label*> _index2label;\n");
1501     }
1502     fprintf(fp,"public:\n");
1503     fprintf(fp,"  MachOper *opnd_array(uint operand_index) const { assert(operand_index < _num_opnds, \"invalid _opnd_array index\"); return _opnd_array[operand_index]; }\n");
1504     fprintf(fp,"  void      set_opnd_array(uint operand_index, MachOper *operand) { assert(operand_index < _num_opnds, \"invalid _opnd_array index\"); _opnd_array[operand_index] = operand; }\n");
1505     fprintf(fp,"private:\n");
1506     if ( instr->is_ideal_jump() ) {
1507       fprintf(fp,"  virtual void           add_case_label(int index_num, Label* blockLabel) {\n");
1508       fprintf(fp,"                                          _index2label.at_put_grow(index_num, blockLabel);}\n");
1509     }
1510     if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1511       fprintf(fp,"  const RegMask  *_cisc_RegMask;\n");
1512     }
1513 
1514     out_RegMask(fp);                      // output register mask
1515     fprintf(fp,"  virtual uint           rule() const { return %s_rule; }\n",
1516             instr->_ident);
1517 
1518     // If this instruction contains a labelOper
1519     // Declare Node::methods that set operand Label's contents
1520     int label_position = instr->label_position();
1521     if( label_position != -1 ) {
1522       // Set the label, stored in labelOper::_branch_label
1523       fprintf(fp,"  virtual void           label_set( Label& label, uint block_num );\n");
1524     }
1525 
1526     // If this instruction contains a methodOper
1527     // Declare Node::methods that set operand method's contents
1528     int method_position = instr->method_position();
1529     if( method_position != -1 ) {
1530       // Set the address method, stored in methodOper::_method
1531       fprintf(fp,"  virtual void           method_set( intptr_t method );\n");
1532     }
1533 
1534     // virtual functions for attributes
1535     //
1536     // Each instruction attribute results in a virtual call of same name.
1537     // The ins_cost is not handled here.
1538     Attribute *attr = instr->_attribs;
1539     bool is_pc_relative = false;
1540     while (attr != NULL) {
1541       if (strcmp(attr->_ident,"ins_cost") &&
1542           strcmp(attr->_ident,"ins_pc_relative")) {
1543         fprintf(fp,"  int             %s() const { return %s; }\n",
1544                 attr->_ident, attr->_val);
1545       }
1546       // Check value for ins_pc_relative, and if it is true (1), set the flag
1547       if (!strcmp(attr->_ident,"ins_pc_relative") && attr->int_val(*this) != 0)
1548         is_pc_relative = true;
1549       attr = (Attribute *)attr->_next;
1550     }
1551 
1552     // virtual functions for encode and format
1553     //
1554     // Output the opcode function and the encode function here using the
1555     // encoding class information in the _insencode slot.
1556     if ( instr->_insencode ) {
1557       fprintf(fp,"  virtual void           emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;\n");
1558     }
1559 
1560     // virtual function for getting the size of an instruction
1561     if ( instr->_size ) {
1562        fprintf(fp,"  virtual uint           size(PhaseRegAlloc *ra_) const;\n");
1563     }
1564 
1565     // Return the top-level ideal opcode.
1566     // Use MachNode::ideal_Opcode() for nodes based on MachNode class
1567     // if the ideal_Opcode == Op_Node.
1568     if ( strcmp("Node", instr->ideal_Opcode(_globalNames)) != 0 ||
1569          strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
1570       fprintf(fp,"  virtual int            ideal_Opcode() const { return Op_%s; }\n",
1571             instr->ideal_Opcode(_globalNames) );
1572     }
1573 
1574     // Allow machine-independent optimization, invert the sense of the IF test
1575     if( instr->is_ideal_if() ) {
1576       fprintf(fp,"  virtual void           negate() { \n");
1577       // Identify which operand contains the negate(able) ideal condition code
1578       int   idx = 0;
1579       instr->_components.reset();
1580       for( Component *comp; (comp = instr->_components.iter()) != NULL; ) {
1581         // Check that component is an operand
1582         Form *form = (Form*)_globalNames[comp->_type];
1583         OperandForm *opForm = form ? form->is_operand() : NULL;
1584         if( opForm == NULL ) continue;
1585 
1586         // Lookup the position of the operand in the instruction.
1587         if( opForm->is_ideal_bool() ) {
1588           idx = instr->operand_position(comp->_name, comp->_usedef);
1589           assert( idx != NameList::Not_in_list, "Did not find component in list that contained it.");
1590           break;
1591         }
1592       }
1593       fprintf(fp,"    opnd_array(%d)->negate();\n", idx);
1594       fprintf(fp,"    _prob = 1.0f - _prob;\n");
1595       fprintf(fp,"  };\n");
1596     }
1597 
1598 
1599     // Identify which input register matches the input register.
1600     uint  matching_input = instr->two_address(_globalNames);
1601 
1602     // Generate the method if it returns != 0 otherwise use MachNode::two_adr()
1603     if( matching_input != 0 ) {
1604       fprintf(fp,"  virtual uint           two_adr() const  ");
1605       fprintf(fp,"{ return oper_input_base()");
1606       for( uint i = 2; i <= matching_input; i++ )
1607         fprintf(fp," + opnd_array(%d)->num_edges()",i-1);
1608       fprintf(fp,"; }\n");
1609     }
1610 
1611     // Declare cisc_version, if applicable
1612     //   MachNode *cisc_version( int offset /* ,... */ );
1613     instr->declare_cisc_version(*this, fp);
1614 
1615     // If there is an explicit peephole rule, build it
1616     if ( instr->peepholes() != NULL ) {
1617       fprintf(fp,"  virtual MachNode      *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile *C);\n");
1618     }
1619 
1620     // Output the declaration for number of relocation entries
1621     if ( instr->reloc(_globalNames) != 0 ) {
1622       fprintf(fp,"  virtual int            reloc()   const;\n");
1623     }
1624 
1625     if (instr->alignment() != 1) {
1626       fprintf(fp,"  virtual int            alignment_required()   const { return %d; }\n", instr->alignment());
1627       fprintf(fp,"  virtual int            compute_padding(int current_offset)   const;\n");
1628     }
1629 
1630     // Starting point for inputs matcher wants.
1631     // Use MachNode::oper_input_base() for nodes based on MachNode class
1632     // if the base == 1.
1633     if ( instr->oper_input_base(_globalNames) != 1 ||
1634          strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
1635       fprintf(fp,"  virtual uint           oper_input_base() const { return %d; }\n",
1636             instr->oper_input_base(_globalNames));
1637     }
1638 
1639     // Make the constructor and following methods 'public:'
1640     fprintf(fp,"public:\n");
1641 
1642     // Constructor
1643     if ( instr->is_ideal_jump() ) {
1644       fprintf(fp,"  %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident);
1645     } else {
1646       fprintf(fp,"  %sNode() { ", instr->_ident);
1647       if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1648         fprintf(fp,"_cisc_RegMask = NULL; ");
1649       }
1650     }
1651 
1652     fprintf(fp," _num_opnds = %d; _opnds = _opnd_array; ", instr->num_opnds());
1653 
1654     bool node_flags_set = false;
1655     // flag: if this instruction matches an ideal 'Goto' node
1656     if ( instr->is_ideal_goto() ) {
1657       fprintf(fp,"init_flags(Flag_is_Goto");
1658       node_flags_set = true;
1659     }
1660 
1661     // flag: if this instruction matches an ideal 'Copy*' node
1662     if ( instr->is_ideal_copy() != 0 ) {
1663       if ( node_flags_set ) {
1664         fprintf(fp," | Flag_is_Copy");
1665       } else {
1666         fprintf(fp,"init_flags(Flag_is_Copy");
1667         node_flags_set = true;
1668       }
1669     }
1670 
1671     // Is an instruction is a constant?  If so, get its type
1672     Form::DataType  data_type;
1673     const char     *opType = NULL;
1674     const char     *result = NULL;
1675     data_type    = instr->is_chain_of_constant(_globalNames, opType, result);
1676     // Check if this instruction is a constant
1677     if ( data_type != Form::none ) {
1678       if ( node_flags_set ) {
1679         fprintf(fp," | Flag_is_Con");
1680       } else {
1681         fprintf(fp,"init_flags(Flag_is_Con");
1682         node_flags_set = true;
1683       }
1684     }
1685 
1686     // flag: if instruction matches 'If' | 'Goto' | 'CountedLoopEnd | 'Jump'
1687     if ( instr->is_ideal_branch() ) {
1688       if ( node_flags_set ) {
1689         fprintf(fp," | Flag_is_Branch");
1690       } else {
1691         fprintf(fp,"init_flags(Flag_is_Branch");
1692         node_flags_set = true;
1693       }
1694     }
1695 
1696     // flag: if this instruction is cisc alternate
1697     if ( can_cisc_spill() && instr->is_cisc_alternate() ) {
1698       if ( node_flags_set ) {
1699         fprintf(fp," | Flag_is_cisc_alternate");
1700       } else {
1701         fprintf(fp,"init_flags(Flag_is_cisc_alternate");
1702         node_flags_set = true;
1703       }
1704     }
1705 
1706     // flag: if this instruction is pc relative
1707     if ( is_pc_relative ) {
1708       if ( node_flags_set ) {
1709         fprintf(fp," | Flag_is_pc_relative");
1710       } else {
1711         fprintf(fp,"init_flags(Flag_is_pc_relative");
1712         node_flags_set = true;
1713       }
1714     }
1715 
1716     // flag: if this instruction has short branch form
1717     if ( instr->has_short_branch_form() ) {
1718       if ( node_flags_set ) {
1719         fprintf(fp," | Flag_may_be_short_branch");
1720       } else {
1721         fprintf(fp,"init_flags(Flag_may_be_short_branch");
1722         node_flags_set = true;
1723       }
1724     }
1725 
1726     // Check if machine instructions that USE memory, but do not DEF memory,
1727     // depend upon a node that defines memory in machine-independent graph.
1728     if ( instr->needs_anti_dependence_check(_globalNames) ) {
1729       if ( node_flags_set ) {
1730         fprintf(fp," | Flag_needs_anti_dependence_check");
1731       } else {
1732         fprintf(fp,"init_flags(Flag_needs_anti_dependence_check");
1733         node_flags_set = true;
1734       }
1735     }
1736 
1737     if ( node_flags_set ) {
1738       fprintf(fp,"); ");
1739     }
1740 
1741     if (instr->is_ideal_unlock() || instr->is_ideal_call_leaf()) {
1742       fprintf(fp,"clear_flag(Flag_is_safepoint_node); ");
1743     }
1744 
1745     fprintf(fp,"}\n");
1746 
1747     // size_of, used by base class's clone to obtain the correct size.
1748     fprintf(fp,"  virtual uint           size_of() const {");
1749     fprintf(fp,   " return sizeof(%sNode);", instr->_ident);
1750     fprintf(fp, " }\n");
1751 
1752     // Virtual methods which are only generated to override base class
1753     if( instr->expands() || instr->needs_projections() ||
1754         instr->has_temps() ||
1755         instr->_matrule != NULL &&
1756         instr->num_opnds() != instr->num_unique_opnds() ) {
1757       fprintf(fp,"  virtual MachNode      *Expand(State *state, Node_List &proj_list, Node* mem);\n");
1758     }
1759 
1760     if (instr->is_pinned(_globalNames)) {
1761       fprintf(fp,"  virtual bool           pinned() const { return ");
1762       if (instr->is_parm(_globalNames)) {
1763         fprintf(fp,"_in[0]->pinned();");
1764       } else {
1765         fprintf(fp,"true;");
1766       }
1767       fprintf(fp," }\n");
1768     }
1769     if (instr->is_projection(_globalNames)) {
1770       fprintf(fp,"  virtual const Node *is_block_proj() const { return this; }\n");
1771     }
1772     if ( instr->num_post_match_opnds() != 0
1773          || instr->is_chain_of_constant(_globalNames) ) {
1774       fprintf(fp,"  friend MachNode *State::MachNodeGenerator(int opcode, Compile* C);\n");
1775     }
1776     if ( instr->rematerialize(_globalNames, get_registers()) ) {
1777       fprintf(fp,"  // Rematerialize %s\n", instr->_ident);
1778     }
1779 
1780     // Declare short branch methods, if applicable
1781     instr->declare_short_branch_methods(fp);
1782 
1783     // Instructions containing a constant that will be entered into the
1784     // float/double table redefine the base virtual function
1785 #ifdef SPARC
1786     // Sparc doubles entries in the constant table require more space for
1787     // alignment. (expires 9/98)
1788     int table_entries = (3 * instr->num_consts( _globalNames, Form::idealD ))
1789       + instr->num_consts( _globalNames, Form::idealF );
1790 #else
1791     int table_entries = instr->num_consts( _globalNames, Form::idealD )
1792       + instr->num_consts( _globalNames, Form::idealF );
1793 #endif
1794     if( table_entries != 0 ) {
1795       fprintf(fp,"  virtual int            const_size() const {");
1796       fprintf(fp,   " return %d;", table_entries);
1797       fprintf(fp, " }\n");
1798     }
1799 
1800 
1801     // See if there is an "ins_pipe" declaration for this instruction
1802     if (instr->_ins_pipe) {
1803       fprintf(fp,"  static  const Pipeline *pipeline_class();\n");
1804       fprintf(fp,"  virtual const Pipeline *pipeline() const;\n");
1805     }
1806 
1807     // Generate virtual function for MachNodeX::bottom_type when necessary
1808     //
1809     // Note on accuracy:  Pointer-types of machine nodes need to be accurate,
1810     // or else alias analysis on the matched graph may produce bad code.
1811     // Moreover, the aliasing decisions made on machine-node graph must be
1812     // no less accurate than those made on the ideal graph, or else the graph
1813     // may fail to schedule.  (Reason:  Memory ops which are reordered in
1814     // the ideal graph might look interdependent in the machine graph,
1815     // thereby removing degrees of scheduling freedom that the optimizer
1816     // assumed would be available.)
1817     //
1818     // %%% We should handle many of these cases with an explicit ADL clause:
1819     // instruct foo() %{ ... bottom_type(TypeRawPtr::BOTTOM); ... %}
1820     if( data_type != Form::none ) {
1821       // A constant's bottom_type returns a Type containing its constant value
1822 
1823       // !!!!!
1824       // Convert all ints, floats, ... to machine-independent TypeXs
1825       // as is done for pointers
1826       //
1827       // Construct appropriate constant type containing the constant value.
1828       fprintf(fp,"  virtual const class Type *bottom_type() const{\n");
1829       switch( data_type ) {
1830       case Form::idealI:
1831         fprintf(fp,"    return  TypeInt::make(opnd_array(1)->constant());\n");
1832         break;
1833       case Form::idealP:
1834       case Form::idealN:
1835         fprintf(fp,"    return  opnd_array(1)->type();\n");
1836         break;
1837       case Form::idealD:
1838         fprintf(fp,"    return  TypeD::make(opnd_array(1)->constantD());\n");
1839         break;
1840       case Form::idealF:
1841         fprintf(fp,"    return  TypeF::make(opnd_array(1)->constantF());\n");
1842         break;
1843       case Form::idealL:
1844         fprintf(fp,"    return  TypeLong::make(opnd_array(1)->constantL());\n");
1845         break;
1846       default:
1847         assert( false, "Unimplemented()" );
1848         break;
1849       }
1850       fprintf(fp,"  };\n");
1851     }
1852 /*    else if ( instr->_matrule && instr->_matrule->_rChild &&
1853         (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1854         || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
1855       // !!!!! !!!!!
1856       // Provide explicit bottom type for conversions to int
1857       // On Intel the result operand is a stackSlot, untyped.
1858       fprintf(fp,"  virtual const class Type *bottom_type() const{");
1859       fprintf(fp,   " return  TypeInt::INT;");
1860       fprintf(fp, " };\n");
1861     }*/
1862     else if( instr->is_ideal_copy() &&
1863               !strcmp(instr->_matrule->_lChild->_opType,"stackSlotP") ) {
1864       // !!!!!
1865       // Special hack for ideal Copy of pointer.  Bottom type is oop or not depending on input.
1866       fprintf(fp,"  const Type            *bottom_type() const { return in(1)->bottom_type(); } // Copy?\n");
1867     }
1868     else if( instr->is_ideal_loadPC() ) {
1869       // LoadPCNode provides the return address of a call to native code.
1870       // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1871       // since it is a pointer to an internal VM location and must have a zero offset.
1872       // Allocation detects derived pointers, in part, by their non-zero offsets.
1873       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // LoadPC?\n");
1874     }
1875     else if( instr->is_ideal_box() ) {
1876       // BoxNode provides the address of a stack slot.
1877       // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1878       // This prevent s insert_anti_dependencies from complaining. It will
1879       // complain if it see that the pointer base is TypePtr::BOTTOM since
1880       // it doesn't understand what that might alias.
1881       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // Box?\n");
1882     }
1883     else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveP") ) {
1884       int offset = 1;
1885       // Special special hack to see if the Cmp? has been incorporated in the conditional move
1886       MatchNode *rl = instr->_matrule->_rChild->_lChild;
1887       if( rl && !strcmp(rl->_opType, "Binary") ) {
1888           MatchNode *rlr = rl->_rChild;
1889           if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
1890             offset = 2;
1891       }
1892       // Special hack for ideal CMoveP; ideal type depends on inputs
1893       fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveP\n",
1894         offset, offset+1, offset+1);
1895     }
1896     else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveN") ) {
1897       int offset = 1;
1898       // Special special hack to see if the Cmp? has been incorporated in the conditional move
1899       MatchNode *rl = instr->_matrule->_rChild->_lChild;
1900       if( rl && !strcmp(rl->_opType, "Binary") ) {
1901           MatchNode *rlr = rl->_rChild;
1902           if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
1903             offset = 2;
1904       }
1905       // Special hack for ideal CMoveN; ideal type depends on inputs
1906       fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveN\n",
1907         offset, offset+1, offset+1);
1908     }
1909     else if (instr->is_tls_instruction()) {
1910       // Special hack for tlsLoadP
1911       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // tlsLoadP\n");
1912     }
1913     else if ( instr->is_ideal_if() ) {
1914       fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::IFBOTH; } // matched IfNode\n");
1915     }
1916     else if ( instr->is_ideal_membar() ) {
1917       fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::MEMBAR; } // matched MemBar\n");
1918     }
1919 
1920     // Check where 'ideal_type' must be customized
1921     /*
1922     if ( instr->_matrule && instr->_matrule->_rChild &&
1923         (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1924         || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
1925       fprintf(fp,"  virtual uint           ideal_reg() const { return Compile::current()->matcher()->base2reg[Type::Int]; }\n");
1926     }*/
1927 
1928     // Analyze machine instructions that either USE or DEF memory.
1929     int memory_operand = instr->memory_operand(_globalNames);
1930     // Some guys kill all of memory
1931     if ( instr->is_wide_memory_kill(_globalNames) ) {
1932       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
1933     }
1934     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1935       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
1936         fprintf(fp,"  virtual const TypePtr *adr_type() const;\n");
1937       }
1938       fprintf(fp,"  virtual const MachOper *memory_operand() const;\n");
1939     }
1940 
1941     fprintf(fp, "#ifndef PRODUCT\n");
1942 
1943     // virtual function for generating the user's assembler output
1944     gen_inst_format(fp, _globalNames,*instr);
1945 
1946     // Machine independent print functionality for debugging
1947     fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
1948             instr->_ident);
1949 
1950     fprintf(fp, "#endif\n");
1951 
1952     // Close definition of this XxxMachNode
1953     fprintf(fp,"};\n");
1954   };
1955 
1956 }
1957 
1958 void ArchDesc::defineStateClass(FILE *fp) {
1959   static const char *state__valid    = "_valid[((uint)index) >> 5] &  (0x1 << (((uint)index) & 0x0001F))";
1960   static const char *state__set_valid= "_valid[((uint)index) >> 5] |= (0x1 << (((uint)index) & 0x0001F))";
1961 
1962   fprintf(fp,"\n");
1963   fprintf(fp,"// MACROS to inline and constant fold State::valid(index)...\n");
1964   fprintf(fp,"// when given a constant 'index' in dfa_<arch>.cpp\n");
1965   fprintf(fp,"//   uint word   = index >> 5;       // Shift out bit position\n");
1966   fprintf(fp,"//   uint bitpos = index & 0x0001F;  // Mask off word bits\n");
1967   fprintf(fp,"#define STATE__VALID(index) ");
1968   fprintf(fp,"    (%s)\n", state__valid);
1969   fprintf(fp,"\n");
1970   fprintf(fp,"#define STATE__NOT_YET_VALID(index) ");
1971   fprintf(fp,"  ( (%s) == 0 )\n", state__valid);
1972   fprintf(fp,"\n");
1973   fprintf(fp,"#define STATE__VALID_CHILD(state,index) ");
1974   fprintf(fp,"  ( state && (state->%s) )\n", state__valid);
1975   fprintf(fp,"\n");
1976   fprintf(fp,"#define STATE__SET_VALID(index) ");
1977   fprintf(fp,"  (%s)\n", state__set_valid);
1978   fprintf(fp,"\n");
1979   fprintf(fp,
1980           "//---------------------------State-------------------------------------------\n");
1981   fprintf(fp,"// State contains an integral cost vector, indexed by machine operand opcodes,\n");
1982   fprintf(fp,"// a rule vector consisting of machine operand/instruction opcodes, and also\n");
1983   fprintf(fp,"// indexed by machine operand opcodes, pointers to the children in the label\n");
1984   fprintf(fp,"// tree generated by the Label routines in ideal nodes (currently limited to\n");
1985   fprintf(fp,"// two for convenience, but this could change).\n");
1986   fprintf(fp,"class State : public ResourceObj {\n");
1987   fprintf(fp,"public:\n");
1988   fprintf(fp,"  int    _id;         // State identifier\n");
1989   fprintf(fp,"  Node  *_leaf;       // Ideal (non-machine-node) leaf of match tree\n");
1990   fprintf(fp,"  State *_kids[2];       // Children of state node in label tree\n");
1991   fprintf(fp,"  unsigned int _cost[_LAST_MACH_OPER];  // Cost vector, indexed by operand opcodes\n");
1992   fprintf(fp,"  unsigned int _rule[_LAST_MACH_OPER];  // Rule vector, indexed by operand opcodes\n");
1993   fprintf(fp,"  unsigned int _valid[(_LAST_MACH_OPER/32)+1]; // Bit Map of valid Cost/Rule entries\n");
1994   fprintf(fp,"\n");
1995   fprintf(fp,"  State(void);                      // Constructor\n");
1996   fprintf(fp,"  DEBUG_ONLY( ~State(void); )       // Destructor\n");
1997   fprintf(fp,"\n");
1998   fprintf(fp,"  // Methods created by ADLC and invoked by Reduce\n");
1999   fprintf(fp,"  MachOper *MachOperGenerator( int opcode, Compile* C );\n");
2000   fprintf(fp,"  MachNode *MachNodeGenerator( int opcode, Compile* C );\n");
2001   fprintf(fp,"\n");
2002   fprintf(fp,"  // Assign a state to a node, definition of method produced by ADLC\n");
2003   fprintf(fp,"  bool DFA( int opcode, const Node *ideal );\n");
2004   fprintf(fp,"\n");
2005   fprintf(fp,"  // Access function for _valid bit vector\n");
2006   fprintf(fp,"  bool valid(uint index) {\n");
2007   fprintf(fp,"    return( STATE__VALID(index) != 0 );\n");
2008   fprintf(fp,"  }\n");
2009   fprintf(fp,"\n");
2010   fprintf(fp,"  // Set function for _valid bit vector\n");
2011   fprintf(fp,"  void set_valid(uint index) {\n");
2012   fprintf(fp,"    STATE__SET_VALID(index);\n");
2013   fprintf(fp,"  }\n");
2014   fprintf(fp,"\n");
2015   fprintf(fp,"#ifndef PRODUCT\n");
2016   fprintf(fp,"  void dump();                // Debugging prints\n");
2017   fprintf(fp,"  void dump(int depth);\n");
2018   fprintf(fp,"#endif\n");
2019   if (_dfa_small) {
2020     // Generate the routine name we'll need
2021     for (int i = 1; i < _last_opcode; i++) {
2022       if (_mlistab[i] == NULL) continue;
2023       fprintf(fp, "  void  _sub_Op_%s(const Node *n);\n", NodeClassNames[i]);
2024     }
2025   }
2026   fprintf(fp,"};\n");
2027   fprintf(fp,"\n");
2028   fprintf(fp,"\n");
2029 
2030 }
2031 
2032 
2033 //---------------------------buildMachOperEnum---------------------------------
2034 // Build enumeration for densely packed operands.
2035 // This enumeration is used to index into the arrays in the State objects
2036 // that indicate cost and a successfull rule match.
2037 
2038 // Information needed to generate the ReduceOp mapping for the DFA
2039 class OutputMachOperands : public OutputMap {
2040 public:
2041   OutputMachOperands(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
2042     : OutputMap(hpp, cpp, globals, AD) {};
2043 
2044   void declaration() { }
2045   void definition()  { fprintf(_cpp, "enum MachOperands {\n"); }
2046   void closing()     { fprintf(_cpp, "  _LAST_MACH_OPER\n");
2047                        OutputMap::closing();
2048   }
2049   void map(OpClassForm &opc)  { fprintf(_cpp, "  %s", _AD.machOperEnum(opc._ident) ); }
2050   void map(OperandForm &oper) { fprintf(_cpp, "  %s", _AD.machOperEnum(oper._ident) ); }
2051   void map(char        *name) { fprintf(_cpp, "  %s", _AD.machOperEnum(name)); }
2052 
2053   bool do_instructions()      { return false; }
2054   void map(InstructForm &inst){ assert( false, "ShouldNotCallThis()"); }
2055 };
2056 
2057 
2058 void ArchDesc::buildMachOperEnum(FILE *fp_hpp) {
2059   // Construct the table for MachOpcodes
2060   OutputMachOperands output_mach_operands(fp_hpp, fp_hpp, _globalNames, *this);
2061   build_map(output_mach_operands);
2062 }
2063 
2064 
2065 //---------------------------buildMachEnum----------------------------------
2066 // Build enumeration for all MachOpers and all MachNodes
2067 
2068 // Information needed to generate the ReduceOp mapping for the DFA
2069 class OutputMachOpcodes : public OutputMap {
2070   int begin_inst_chain_rule;
2071   int end_inst_chain_rule;
2072   int begin_rematerialize;
2073   int end_rematerialize;
2074   int end_instructions;
2075 public:
2076   OutputMachOpcodes(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
2077     : OutputMap(hpp, cpp, globals, AD),
2078       begin_inst_chain_rule(-1), end_inst_chain_rule(-1), end_instructions(-1)
2079   {};
2080 
2081   void declaration() { }
2082   void definition()  { fprintf(_cpp, "enum MachOpcodes {\n"); }
2083   void closing()     {
2084     if( begin_inst_chain_rule != -1 )
2085       fprintf(_cpp, "  _BEGIN_INST_CHAIN_RULE = %d,\n", begin_inst_chain_rule);
2086     if( end_inst_chain_rule   != -1 )
2087       fprintf(_cpp, "  _END_INST_CHAIN_RULE  = %d,\n", end_inst_chain_rule);
2088     if( begin_rematerialize   != -1 )
2089       fprintf(_cpp, "  _BEGIN_REMATERIALIZE   = %d,\n", begin_rematerialize);
2090     if( end_rematerialize     != -1 )
2091       fprintf(_cpp, "  _END_REMATERIALIZE    = %d,\n", end_rematerialize);
2092     // always execute since do_instructions() is true, and avoids trailing comma
2093     fprintf(_cpp, "  _last_Mach_Node  = %d \n",  end_instructions);
2094     OutputMap::closing();
2095   }
2096   void map(OpClassForm &opc)  { fprintf(_cpp, "  %s_rule", opc._ident ); }
2097   void map(OperandForm &oper) { fprintf(_cpp, "  %s_rule", oper._ident ); }
2098   void map(char        *name) { if (name) fprintf(_cpp, "  %s_rule", name);
2099                                 else      fprintf(_cpp, "  0"); }
2100   void map(InstructForm &inst) {fprintf(_cpp, "  %s_rule", inst._ident ); }
2101 
2102   void record_position(OutputMap::position place, int idx ) {
2103     switch(place) {
2104     case OutputMap::BEGIN_INST_CHAIN_RULES :
2105       begin_inst_chain_rule = idx;
2106       break;
2107     case OutputMap::END_INST_CHAIN_RULES :
2108       end_inst_chain_rule   = idx;
2109       break;
2110     case OutputMap::BEGIN_REMATERIALIZE :
2111       begin_rematerialize   = idx;
2112       break;
2113     case OutputMap::END_REMATERIALIZE :
2114       end_rematerialize     = idx;
2115       break;
2116     case OutputMap::END_INSTRUCTIONS :
2117       end_instructions      = idx;
2118       break;
2119     default:
2120       break;
2121     }
2122   }
2123 };
2124 
2125 
2126 void ArchDesc::buildMachOpcodesEnum(FILE *fp_hpp) {
2127   // Construct the table for MachOpcodes
2128   OutputMachOpcodes output_mach_opcodes(fp_hpp, fp_hpp, _globalNames, *this);
2129   build_map(output_mach_opcodes);
2130 }
2131 
2132 
2133 // Generate an enumeration of the pipeline states, and both
2134 // the functional units (resources) and the masks for
2135 // specifying resources
2136 void ArchDesc::build_pipeline_enums(FILE *fp_hpp) {
2137   int stagelen = (int)strlen("undefined");
2138   int stagenum = 0;
2139 
2140   if (_pipeline) {              // Find max enum string length
2141     const char *stage;
2142     for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) {
2143       int len = (int)strlen(stage);
2144       if (stagelen < len) stagelen = len;
2145     }
2146   }
2147 
2148   // Generate a list of stages
2149   fprintf(fp_hpp, "\n");
2150   fprintf(fp_hpp, "// Pipeline Stages\n");
2151   fprintf(fp_hpp, "enum machPipelineStages {\n");
2152   fprintf(fp_hpp, "   stage_%-*s = 0,\n", stagelen, "undefined");
2153 
2154   if( _pipeline ) {
2155     const char *stage;
2156     for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; )
2157       fprintf(fp_hpp, "   stage_%-*s = %d,\n", stagelen, stage, ++stagenum);
2158   }
2159 
2160   fprintf(fp_hpp, "   stage_%-*s = %d\n", stagelen, "count", stagenum);
2161   fprintf(fp_hpp, "};\n");
2162 
2163   fprintf(fp_hpp, "\n");
2164   fprintf(fp_hpp, "// Pipeline Resources\n");
2165   fprintf(fp_hpp, "enum machPipelineResources {\n");
2166   int rescount = 0;
2167 
2168   if( _pipeline ) {
2169     const char *resource;
2170     int reslen = 0;
2171 
2172     // Generate a list of resources, and masks
2173     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2174       int len = (int)strlen(resource);
2175       if (reslen < len)
2176         reslen = len;
2177     }
2178 
2179     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2180       const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2181       int mask = resform->mask();
2182       if ((mask & (mask-1)) == 0)
2183         fprintf(fp_hpp, "   resource_%-*s = %d,\n", reslen, resource, rescount++);
2184     }
2185     fprintf(fp_hpp, "\n");
2186     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2187       const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2188       fprintf(fp_hpp, "   res_mask_%-*s = 0x%08x,\n", reslen, resource, resform->mask());
2189     }
2190     fprintf(fp_hpp, "\n");
2191   }
2192   fprintf(fp_hpp, "   resource_count = %d\n", rescount);
2193   fprintf(fp_hpp, "};\n");
2194 }