1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 class BlockBegin;
  26 class BlockList;
  27 class LIR_Assembler;
  28 class CodeEmitInfo;
  29 class CodeStub;
  30 class CodeStubList;
  31 class ArrayCopyStub;
  32 class LIR_Op;
  33 class ciType;
  34 class ValueType;
  35 class LIR_OpVisitState;
  36 class FpuStackSim;
  37 
  38 //---------------------------------------------------------------------
  39 //                 LIR Operands
  40 //  LIR_OprDesc
  41 //    LIR_OprPtr
  42 //      LIR_Const
  43 //      LIR_Address
  44 //---------------------------------------------------------------------
  45 class LIR_OprDesc;
  46 class LIR_OprPtr;
  47 class LIR_Const;
  48 class LIR_Address;
  49 class LIR_OprVisitor;
  50 
  51 
  52 typedef LIR_OprDesc* LIR_Opr;
  53 typedef int          RegNr;
  54 
  55 define_array(LIR_OprArray, LIR_Opr)
  56 define_stack(LIR_OprList, LIR_OprArray)
  57 
  58 define_array(LIR_OprRefArray, LIR_Opr*)
  59 define_stack(LIR_OprRefList, LIR_OprRefArray)
  60 
  61 define_array(CodeEmitInfoArray, CodeEmitInfo*)
  62 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
  63 
  64 define_array(LIR_OpArray, LIR_Op*)
  65 define_stack(LIR_OpList, LIR_OpArray)
  66 
  67 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  68 class LIR_OprPtr: public CompilationResourceObj {
  69  public:
  70   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  71   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  72 
  73   virtual LIR_Const*  as_constant()              { return NULL; }
  74   virtual LIR_Address* as_address()              { return NULL; }
  75   virtual BasicType type() const                 = 0;
  76   virtual void print_value_on(outputStream* out) const = 0;
  77 };
  78 
  79 
  80 
  81 // LIR constants
  82 class LIR_Const: public LIR_OprPtr {
  83  private:
  84   JavaValue _value;
  85 
  86   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  87   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  88   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  89 
  90  public:
  91   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  92   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
  93   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
  94   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
  95   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
  96   LIR_Const(void* p) {
  97 #ifdef _LP64
  98     assert(sizeof(jlong) >= sizeof(p), "too small");;
  99     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
 100 #else
 101     assert(sizeof(jint) >= sizeof(p), "too small");;
 102     _value.set_type(T_INT);     _value.set_jint((jint)p);
 103 #endif
 104   }
 105 
 106   virtual BasicType type()       const { return _value.get_type(); }
 107   virtual LIR_Const* as_constant()     { return this; }
 108 
 109   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 110   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 111   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 112   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 113   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 114   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 115   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 116 
 117 #ifdef _LP64
 118   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 119 #else
 120   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 121 #endif
 122 
 123 
 124   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 125   jint      as_jint_lo_bits() const    {
 126     if (type() == T_DOUBLE) {
 127       return low(jlong_cast(_value.get_jdouble()));
 128     } else {
 129       return as_jint_lo();
 130     }
 131   }
 132   jint      as_jint_hi_bits() const    {
 133     if (type() == T_DOUBLE) {
 134       return high(jlong_cast(_value.get_jdouble()));
 135     } else {
 136       return as_jint_hi();
 137     }
 138   }
 139   jlong      as_jlong_bits() const    {
 140     if (type() == T_DOUBLE) {
 141       return jlong_cast(_value.get_jdouble());
 142     } else {
 143       return as_jlong();
 144     }
 145   }
 146 
 147   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 148 
 149 
 150   bool is_zero_float() {
 151     jfloat f = as_jfloat();
 152     jfloat ok = 0.0f;
 153     return jint_cast(f) == jint_cast(ok);
 154   }
 155 
 156   bool is_one_float() {
 157     jfloat f = as_jfloat();
 158     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 159   }
 160 
 161   bool is_zero_double() {
 162     jdouble d = as_jdouble();
 163     jdouble ok = 0.0;
 164     return jlong_cast(d) == jlong_cast(ok);
 165   }
 166 
 167   bool is_one_double() {
 168     jdouble d = as_jdouble();
 169     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 170   }
 171 };
 172 
 173 
 174 //---------------------LIR Operand descriptor------------------------------------
 175 //
 176 // The class LIR_OprDesc represents a LIR instruction operand;
 177 // it can be a register (ALU/FPU), stack location or a constant;
 178 // Constants and addresses are represented as resource area allocated
 179 // structures (see above).
 180 // Registers and stack locations are inlined into the this pointer
 181 // (see value function).
 182 
 183 class LIR_OprDesc: public CompilationResourceObj {
 184  public:
 185   // value structure:
 186   //     data       opr-type opr-kind
 187   // +--------------+-------+-------+
 188   // [max...........|7 6 5 4|3 2 1 0]
 189   //                             ^
 190   //                    is_pointer bit
 191   //
 192   // lowest bit cleared, means it is a structure pointer
 193   // we need  4 bits to represent types
 194 
 195  private:
 196   friend class LIR_OprFact;
 197 
 198   // Conversion
 199   intptr_t value() const                         { return (intptr_t) this; }
 200 
 201   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 202     return (value() & mask) == masked_value;
 203   }
 204 
 205   enum OprKind {
 206       pointer_value      = 0
 207     , stack_value        = 1
 208     , cpu_register       = 3
 209     , fpu_register       = 5
 210     , illegal_value      = 7
 211   };
 212 
 213   enum OprBits {
 214       pointer_bits   = 1
 215     , kind_bits      = 3
 216     , type_bits      = 4
 217     , size_bits      = 2
 218     , destroys_bits  = 1
 219     , virtual_bits   = 1
 220     , is_xmm_bits    = 1
 221     , last_use_bits  = 1
 222     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 223     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
 224                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
 225     , data_bits      = BitsPerInt - non_data_bits
 226     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 227   };
 228 
 229   enum OprShift {
 230       kind_shift     = 0
 231     , type_shift     = kind_shift     + kind_bits
 232     , size_shift     = type_shift     + type_bits
 233     , destroys_shift = size_shift     + size_bits
 234     , last_use_shift = destroys_shift + destroys_bits
 235     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 236     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 237     , is_xmm_shift   = virtual_shift + virtual_bits
 238     , data_shift     = is_xmm_shift + is_xmm_bits
 239     , reg1_shift = data_shift
 240     , reg2_shift = data_shift + reg_bits
 241 
 242   };
 243 
 244   enum OprSize {
 245       single_size = 0 << size_shift
 246     , double_size = 1 << size_shift
 247   };
 248 
 249   enum OprMask {
 250       kind_mask      = right_n_bits(kind_bits)
 251     , type_mask      = right_n_bits(type_bits) << type_shift
 252     , size_mask      = right_n_bits(size_bits) << size_shift
 253     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 254     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 255     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 256     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 257     , pointer_mask   = right_n_bits(pointer_bits)
 258     , lower_reg_mask = right_n_bits(reg_bits)
 259     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 260   };
 261 
 262   uintptr_t data() const                         { return value() >> data_shift; }
 263   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 264   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 265   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 266   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 267 
 268   static char type_char(BasicType t);
 269 
 270  public:
 271   enum {
 272     vreg_base = ConcreteRegisterImpl::number_of_registers,
 273     vreg_max = (1 << data_bits) - 1
 274   };
 275 
 276   static inline LIR_Opr illegalOpr();
 277 
 278   enum OprType {
 279       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 280     , int_type      = 1 << type_shift
 281     , long_type     = 2 << type_shift
 282     , object_type   = 3 << type_shift
 283     , pointer_type  = 4 << type_shift
 284     , float_type    = 5 << type_shift
 285     , double_type   = 6 << type_shift
 286   };
 287   friend OprType as_OprType(BasicType t);
 288   friend BasicType as_BasicType(OprType t);
 289 
 290   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 291   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 292 
 293   static OprSize size_for(BasicType t) {
 294     switch (t) {
 295       case T_LONG:
 296       case T_DOUBLE:
 297         return double_size;
 298         break;
 299 
 300       case T_FLOAT:
 301       case T_BOOLEAN:
 302       case T_CHAR:
 303       case T_BYTE:
 304       case T_SHORT:
 305       case T_INT:
 306       case T_OBJECT:
 307       case T_ARRAY:
 308         return single_size;
 309         break;
 310 
 311       default:
 312         ShouldNotReachHere();
 313         return single_size;
 314       }
 315   }
 316 
 317 
 318   void validate_type() const PRODUCT_RETURN;
 319 
 320   BasicType type() const {
 321     if (is_pointer()) {
 322       return pointer()->type();
 323     }
 324     return as_BasicType(type_field());
 325   }
 326 
 327 
 328   ValueType* value_type() const                  { return as_ValueType(type()); }
 329 
 330   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 331 
 332   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 333   // checks whether types are same
 334   bool is_same_type(LIR_Opr opr) const     {
 335     assert(type_field() != unknown_type &&
 336            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 337     return type_field() == opr->type_field();
 338   }
 339   bool is_same_register(LIR_Opr opr) {
 340     return (is_register() && opr->is_register() &&
 341             kind_field() == opr->kind_field() &&
 342             (value() & no_type_mask) == (opr->value() & no_type_mask));
 343   }
 344 
 345   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 346   bool is_illegal() const      { return kind_field() == illegal_value; }
 347   bool is_valid() const        { return kind_field() != illegal_value; }
 348 
 349   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 350   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 351 
 352   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 353   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 354 
 355   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 356   bool is_oop() const;
 357 
 358   // semantic for fpu- and xmm-registers:
 359   // * is_float and is_double return true for xmm_registers
 360   //   (so is_single_fpu and is_single_xmm are true)
 361   // * So you must always check for is_???_xmm prior to is_???_fpu to
 362   //   distinguish between fpu- and xmm-registers
 363 
 364   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 365   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 366   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 367 
 368   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 369   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 370   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 371   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 372   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 373 
 374   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 375   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 376   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 377   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 378   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 379 
 380   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 381   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 382   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 383 
 384   // fast accessor functions for special bits that do not work for pointers
 385   // (in this functions, the check for is_pointer() is omitted)
 386   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 387   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 388   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 389   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 390   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 391 
 392   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 393   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 394   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 395   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 396 
 397 
 398   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 399   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 400   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 401   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 402   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 403   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 404   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 405   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 406   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 407   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 408   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 409   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 410 
 411   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 412   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 413   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 414 
 415   Register as_register()    const;
 416   Register as_register_lo() const;
 417   Register as_register_hi() const;
 418 
 419   Register as_pointer_register() {
 420 #ifdef _LP64
 421     if (is_double_cpu()) {
 422       assert(as_register_lo() == as_register_hi(), "should be a single register");
 423       return as_register_lo();
 424     }
 425 #endif
 426     return as_register();
 427   }
 428 
 429 #ifdef X86
 430   XMMRegister as_xmm_float_reg() const;
 431   XMMRegister as_xmm_double_reg() const;
 432   // for compatibility with RInfo
 433   int fpu () const                                  { return lo_reg_half(); }
 434 #endif // X86
 435 #if defined(SPARC) || defined(ARM) || defined(PPC)
 436   FloatRegister as_float_reg   () const;
 437   FloatRegister as_double_reg  () const;
 438 #endif
 439 
 440   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 441   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 442   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 443   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 444   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 445 
 446   void print() const PRODUCT_RETURN;
 447   void print(outputStream* out) const PRODUCT_RETURN;
 448 };
 449 
 450 
 451 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 452   switch (type) {
 453   case T_INT:      return LIR_OprDesc::int_type;
 454   case T_LONG:     return LIR_OprDesc::long_type;
 455   case T_FLOAT:    return LIR_OprDesc::float_type;
 456   case T_DOUBLE:   return LIR_OprDesc::double_type;
 457   case T_OBJECT:
 458   case T_ARRAY:    return LIR_OprDesc::object_type;
 459   case T_ILLEGAL:  // fall through
 460   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 461   }
 462 }
 463 
 464 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 465   switch (t) {
 466   case LIR_OprDesc::int_type:     return T_INT;
 467   case LIR_OprDesc::long_type:    return T_LONG;
 468   case LIR_OprDesc::float_type:   return T_FLOAT;
 469   case LIR_OprDesc::double_type:  return T_DOUBLE;
 470   case LIR_OprDesc::object_type:  return T_OBJECT;
 471   case LIR_OprDesc::unknown_type: // fall through
 472   default: ShouldNotReachHere();  return T_ILLEGAL;
 473   }
 474 }
 475 
 476 
 477 // LIR_Address
 478 class LIR_Address: public LIR_OprPtr {
 479  friend class LIR_OpVisitState;
 480 
 481  public:
 482   // NOTE: currently these must be the log2 of the scale factor (and
 483   // must also be equivalent to the ScaleFactor enum in
 484   // assembler_i486.hpp)
 485   enum Scale {
 486     times_1  =  0,
 487     times_2  =  1,
 488     times_4  =  2,
 489     times_8  =  3
 490   };
 491 
 492  private:
 493   LIR_Opr   _base;
 494   LIR_Opr   _index;
 495   Scale     _scale;
 496   intx      _disp;
 497   BasicType _type;
 498 
 499  public:
 500   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 501        _base(base)
 502      , _index(index)
 503      , _scale(times_1)
 504      , _type(type)
 505      , _disp(0) { verify(); }
 506 
 507   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 508        _base(base)
 509      , _index(LIR_OprDesc::illegalOpr())
 510      , _scale(times_1)
 511      , _type(type)
 512      , _disp(disp) { verify(); }
 513 
 514   LIR_Address(LIR_Opr base, BasicType type):
 515        _base(base)
 516      , _index(LIR_OprDesc::illegalOpr())
 517      , _scale(times_1)
 518      , _type(type)
 519      , _disp(0) { verify(); }
 520 
 521 #if defined(X86) || defined(ARM)
 522   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 523        _base(base)
 524      , _index(index)
 525      , _scale(scale)
 526      , _type(type)
 527      , _disp(disp) { verify(); }
 528 #endif // X86 || ARM
 529 
 530   LIR_Opr base()  const                          { return _base;  }
 531   LIR_Opr index() const                          { return _index; }
 532   Scale   scale() const                          { return _scale; }
 533   intx    disp()  const                          { return _disp;  }
 534 
 535   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 536 
 537   virtual LIR_Address* as_address()              { return this;   }
 538   virtual BasicType type() const                 { return _type; }
 539   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 540 
 541   void verify() const PRODUCT_RETURN;
 542 
 543   static Scale scale(BasicType type);
 544 };
 545 
 546 
 547 // operand factory
 548 class LIR_OprFact: public AllStatic {
 549  public:
 550 
 551   static LIR_Opr illegalOpr;
 552 
 553   static LIR_Opr single_cpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::int_type    | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
 554   static LIR_Opr single_cpu_oop(int reg)        { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::object_type | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
 555   static LIR_Opr double_cpu(int reg1, int reg2) {
 556     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 557     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 558                                (reg2 << LIR_OprDesc::reg2_shift) |
 559                                LIR_OprDesc::long_type            |
 560                                LIR_OprDesc::cpu_register         |
 561                                LIR_OprDesc::double_size);
 562   }
 563 
 564   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 565                                                                              LIR_OprDesc::float_type           |
 566                                                                              LIR_OprDesc::fpu_register         |
 567                                                                              LIR_OprDesc::single_size); }
 568 #if defined(ARM)
 569   static LIR_Opr double_fpu(int reg1, int reg2)    { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
 570   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::float_type  | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
 571   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); }
 572 #endif
 573 #ifdef SPARC
 574   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 575                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
 576                                                                              LIR_OprDesc::double_type          |
 577                                                                              LIR_OprDesc::fpu_register         |
 578                                                                              LIR_OprDesc::double_size); }
 579 #endif
 580 #ifdef X86
 581   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 582                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 583                                                                              LIR_OprDesc::double_type          |
 584                                                                              LIR_OprDesc::fpu_register         |
 585                                                                              LIR_OprDesc::double_size); }
 586 
 587   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 588                                                                              LIR_OprDesc::float_type           |
 589                                                                              LIR_OprDesc::fpu_register         |
 590                                                                              LIR_OprDesc::single_size          |
 591                                                                              LIR_OprDesc::is_xmm_mask); }
 592   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 593                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 594                                                                              LIR_OprDesc::double_type          |
 595                                                                              LIR_OprDesc::fpu_register         |
 596                                                                              LIR_OprDesc::double_size          |
 597                                                                              LIR_OprDesc::is_xmm_mask); }
 598 #endif // X86
 599 #ifdef PPC
 600   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 601                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 602                                                                              LIR_OprDesc::double_type          |
 603                                                                              LIR_OprDesc::fpu_register         |
 604                                                                              LIR_OprDesc::double_size); }
 605   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift)        |
 606                                                                              LIR_OprDesc::float_type           |
 607                                                                              LIR_OprDesc::cpu_register         |
 608                                                                              LIR_OprDesc::single_size); }
 609   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg2 << LIR_OprDesc::reg1_shift)        |
 610                                                                              (reg1 << LIR_OprDesc::reg2_shift) |
 611                                                                              LIR_OprDesc::double_type          |
 612                                                                              LIR_OprDesc::cpu_register         |
 613                                                                              LIR_OprDesc::double_size); }
 614 #endif // PPC
 615 
 616   static LIR_Opr virtual_register(int index, BasicType type) {
 617     LIR_Opr res;
 618     switch (type) {
 619       case T_OBJECT: // fall through
 620       case T_ARRAY:
 621         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 622                                             LIR_OprDesc::object_type  |
 623                                             LIR_OprDesc::cpu_register |
 624                                             LIR_OprDesc::single_size  |
 625                                             LIR_OprDesc::virtual_mask);
 626         break;
 627 
 628       case T_INT:
 629         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 630                                   LIR_OprDesc::int_type              |
 631                                   LIR_OprDesc::cpu_register          |
 632                                   LIR_OprDesc::single_size           |
 633                                   LIR_OprDesc::virtual_mask);
 634         break;
 635 
 636       case T_LONG:
 637         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 638                                   LIR_OprDesc::long_type             |
 639                                   LIR_OprDesc::cpu_register          |
 640                                   LIR_OprDesc::double_size           |
 641                                   LIR_OprDesc::virtual_mask);
 642         break;
 643 
 644 #ifdef __SOFTFP__
 645       case T_FLOAT:
 646         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 647                                   LIR_OprDesc::float_type  |
 648                                   LIR_OprDesc::cpu_register |
 649                                   LIR_OprDesc::single_size |
 650                                   LIR_OprDesc::virtual_mask);
 651         break;
 652       case T_DOUBLE:
 653         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 654                                   LIR_OprDesc::double_type |
 655                                   LIR_OprDesc::cpu_register |
 656                                   LIR_OprDesc::double_size |
 657                                   LIR_OprDesc::virtual_mask);
 658         break;
 659 #else // __SOFTFP__
 660       case T_FLOAT:
 661         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 662                                   LIR_OprDesc::float_type           |
 663                                   LIR_OprDesc::fpu_register         |
 664                                   LIR_OprDesc::single_size          |
 665                                   LIR_OprDesc::virtual_mask);
 666         break;
 667 
 668       case
 669         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 670                                             LIR_OprDesc::double_type           |
 671                                             LIR_OprDesc::fpu_register          |
 672                                             LIR_OprDesc::double_size           |
 673                                             LIR_OprDesc::virtual_mask);
 674         break;
 675 #endif // __SOFTFP__
 676       default:       ShouldNotReachHere(); res = illegalOpr;
 677     }
 678 
 679 #ifdef ASSERT
 680     res->validate_type();
 681     assert(res->vreg_number() == index, "conversion check");
 682     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 683     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 684 
 685     // old-style calculation; check if old and new method are equal
 686     LIR_OprDesc::OprType t = as_OprType(type);
 687 #ifdef __SOFTFP__
 688     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 689                                t |
 690                                LIR_OprDesc::cpu_register |
 691                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 692 #else // __SOFTFP__
 693     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 694                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 695                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 696     assert(res == old_res, "old and new method not equal");
 697 #endif // __SOFTFP__
 698 #endif // ASSERT
 699 
 700     return res;
 701   }
 702 
 703   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 704   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 705   // index 2.
 706   static LIR_Opr stack(int index, BasicType type) {
 707     LIR_Opr res;
 708     switch (type) {
 709       case T_OBJECT: // fall through
 710       case T_ARRAY:
 711         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 712                                   LIR_OprDesc::object_type           |
 713                                   LIR_OprDesc::stack_value           |
 714                                   LIR_OprDesc::single_size);
 715         break;
 716 
 717       case T_INT:
 718         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 719                                   LIR_OprDesc::int_type              |
 720                                   LIR_OprDesc::stack_value           |
 721                                   LIR_OprDesc::single_size);
 722         break;
 723 
 724       case T_LONG:
 725         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 726                                   LIR_OprDesc::long_type             |
 727                                   LIR_OprDesc::stack_value           |
 728                                   LIR_OprDesc::double_size);
 729         break;
 730 
 731       case T_FLOAT:
 732         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 733                                   LIR_OprDesc::float_type            |
 734                                   LIR_OprDesc::stack_value           |
 735                                   LIR_OprDesc::single_size);
 736         break;
 737       case T_DOUBLE:
 738         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 739                                   LIR_OprDesc::double_type           |
 740                                   LIR_OprDesc::stack_value           |
 741                                   LIR_OprDesc::double_size);
 742         break;
 743 
 744       default:       ShouldNotReachHere(); res = illegalOpr;
 745     }
 746 
 747 #ifdef ASSERT
 748     assert(index >= 0, "index must be positive");
 749     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 750 
 751     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 752                                           LIR_OprDesc::stack_value           |
 753                                           as_OprType(type)                   |
 754                                           LIR_OprDesc::size_for(type));
 755     assert(res == old_res, "old and new method not equal");
 756 #endif
 757 
 758     return res;
 759   }
 760 
 761   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 762   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 763   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 764   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 765   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 766   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 767   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 768   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 769   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 770   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 771 
 772   static LIR_Opr value_type(ValueType* type);
 773   static LIR_Opr dummy_value_type(ValueType* type);
 774 };
 775 
 776 
 777 //-------------------------------------------------------------------------------
 778 //                   LIR Instructions
 779 //-------------------------------------------------------------------------------
 780 //
 781 // Note:
 782 //  - every instruction has a result operand
 783 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 784 //  - every instruction has a LIR_OpCode operand
 785 //  - LIR_OpN, means an instruction that has N input operands
 786 //
 787 // class hierarchy:
 788 //
 789 class  LIR_Op;
 790 class    LIR_Op0;
 791 class      LIR_OpLabel;
 792 class    LIR_Op1;
 793 class      LIR_OpBranch;
 794 class      LIR_OpConvert;
 795 class      LIR_OpAllocObj;
 796 class      LIR_OpRoundFP;
 797 class    LIR_Op2;
 798 class    LIR_OpDelay;
 799 class    LIR_Op3;
 800 class      LIR_OpAllocArray;
 801 class    LIR_OpCall;
 802 class      LIR_OpJavaCall;
 803 class      LIR_OpRTCall;
 804 class    LIR_OpArrayCopy;
 805 class    LIR_OpLock;
 806 class    LIR_OpTypeCheck;
 807 class    LIR_OpCompareAndSwap;
 808 class    LIR_OpProfileCall;
 809 
 810 
 811 // LIR operation codes
 812 enum LIR_Code {
 813     lir_none
 814   , begin_op0
 815       , lir_word_align
 816       , lir_label
 817       , lir_nop
 818       , lir_backwardbranch_target
 819       , lir_std_entry
 820       , lir_osr_entry
 821       , lir_build_frame
 822       , lir_fpop_raw
 823       , lir_24bit_FPU
 824       , lir_reset_FPU
 825       , lir_breakpoint
 826       , lir_rtcall
 827       , lir_membar
 828       , lir_membar_acquire
 829       , lir_membar_release
 830       , lir_get_thread
 831   , end_op0
 832   , begin_op1
 833       , lir_fxch
 834       , lir_fld
 835       , lir_ffree
 836       , lir_push
 837       , lir_pop
 838       , lir_null_check
 839       , lir_return
 840       , lir_leal
 841       , lir_neg
 842       , lir_branch
 843       , lir_cond_float_branch
 844       , lir_move
 845       , lir_prefetchr
 846       , lir_prefetchw
 847       , lir_convert
 848       , lir_alloc_object
 849       , lir_monaddr
 850       , lir_roundfp
 851       , lir_safepoint
 852       , lir_unwind
 853   , end_op1
 854   , begin_op2
 855       , lir_cmp
 856       , lir_cmp_l2i
 857       , lir_ucmp_fd2i
 858       , lir_cmp_fd2i
 859       , lir_cmove
 860       , lir_add
 861       , lir_sub
 862       , lir_mul
 863       , lir_mul_strictfp
 864       , lir_div
 865       , lir_div_strictfp
 866       , lir_rem
 867       , lir_sqrt
 868       , lir_abs
 869       , lir_sin
 870       , lir_cos
 871       , lir_tan
 872       , lir_log
 873       , lir_log10
 874       , lir_logic_and
 875       , lir_logic_or
 876       , lir_logic_xor
 877       , lir_shl
 878       , lir_shr
 879       , lir_ushr
 880       , lir_alloc_array
 881       , lir_throw
 882       , lir_compare_to
 883   , end_op2
 884   , begin_op3
 885       , lir_idiv
 886       , lir_irem
 887   , end_op3
 888   , begin_opJavaCall
 889       , lir_static_call
 890       , lir_optvirtual_call
 891       , lir_icvirtual_call
 892       , lir_virtual_call
 893       , lir_dynamic_call
 894   , end_opJavaCall
 895   , begin_opArrayCopy
 896       , lir_arraycopy
 897   , end_opArrayCopy
 898   , begin_opLock
 899     , lir_lock
 900     , lir_unlock
 901   , end_opLock
 902   , begin_delay_slot
 903     , lir_delay_slot
 904   , end_delay_slot
 905   , begin_opTypeCheck
 906     , lir_instanceof
 907     , lir_checkcast
 908     , lir_store_check
 909   , end_opTypeCheck
 910   , begin_opCompareAndSwap
 911     , lir_cas_long
 912     , lir_cas_obj
 913     , lir_cas_int
 914   , end_opCompareAndSwap
 915   , begin_opMDOProfile
 916     , lir_profile_call
 917   , end_opMDOProfile
 918 };
 919 
 920 
 921 enum LIR_Condition {
 922     lir_cond_equal
 923   , lir_cond_notEqual
 924   , lir_cond_less
 925   , lir_cond_lessEqual
 926   , lir_cond_greaterEqual
 927   , lir_cond_greater
 928   , lir_cond_belowEqual
 929   , lir_cond_aboveEqual
 930   , lir_cond_always
 931   , lir_cond_unknown = -1
 932 };
 933 
 934 
 935 enum LIR_PatchCode {
 936   lir_patch_none,
 937   lir_patch_low,
 938   lir_patch_high,
 939   lir_patch_normal
 940 };
 941 
 942 
 943 enum LIR_MoveKind {
 944   lir_move_normal,
 945   lir_move_volatile,
 946   lir_move_unaligned,
 947   lir_move_max_flag
 948 };
 949 
 950 
 951 // --------------------------------------------------
 952 // LIR_Op
 953 // --------------------------------------------------
 954 class LIR_Op: public CompilationResourceObj {
 955  friend class LIR_OpVisitState;
 956 
 957 #ifdef ASSERT
 958  private:
 959   const char *  _file;
 960   int           _line;
 961 #endif
 962 
 963  protected:
 964   LIR_Opr       _result;
 965   unsigned short _code;
 966   unsigned short _flags;
 967   CodeEmitInfo* _info;
 968   int           _id;     // value id for register allocation
 969   int           _fpu_pop_count;
 970   Instruction*  _source; // for debugging
 971 
 972   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
 973 
 974  protected:
 975   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
 976 
 977  public:
 978   LIR_Op()
 979     : _result(LIR_OprFact::illegalOpr)
 980     , _code(lir_none)
 981     , _flags(0)
 982     , _info(NULL)
 983 #ifdef ASSERT
 984     , _file(NULL)
 985     , _line(0)
 986 #endif
 987     , _fpu_pop_count(0)
 988     , _source(NULL)
 989     , _id(-1)                             {}
 990 
 991   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
 992     : _result(result)
 993     , _code(code)
 994     , _flags(0)
 995     , _info(info)
 996 #ifdef ASSERT
 997     , _file(NULL)
 998     , _line(0)
 999 #endif
1000     , _fpu_pop_count(0)
1001     , _source(NULL)
1002     , _id(-1)                             {}
1003 
1004   CodeEmitInfo* info() const                  { return _info;   }
1005   LIR_Code code()      const                  { return (LIR_Code)_code;   }
1006   LIR_Opr result_opr() const                  { return _result; }
1007   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1008 
1009 #ifdef ASSERT
1010   void set_file_and_line(const char * file, int line) {
1011     _file = file;
1012     _line = line;
1013   }
1014 #endif
1015 
1016   virtual const char * name() const PRODUCT_RETURN0;
1017 
1018   int id()             const                  { return _id;     }
1019   void set_id(int id)                         { _id = id; }
1020 
1021   // FPU stack simulation helpers -- only used on Intel
1022   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1023   int  fpu_pop_count() const                  { return _fpu_pop_count; }
1024   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1025 
1026   Instruction* source() const                 { return _source; }
1027   void set_source(Instruction* ins)           { _source = ins; }
1028 
1029   virtual void emit_code(LIR_Assembler* masm) = 0;
1030   virtual void print_instr(outputStream* out) const   = 0;
1031   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1032 
1033   virtual LIR_OpCall* as_OpCall() { return NULL; }
1034   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1035   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1036   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1037   virtual LIR_OpLock* as_OpLock() { return NULL; }
1038   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1039   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1040   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1041   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1042   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1043   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1044   virtual LIR_Op0* as_Op0() { return NULL; }
1045   virtual LIR_Op1* as_Op1() { return NULL; }
1046   virtual LIR_Op2* as_Op2() { return NULL; }
1047   virtual LIR_Op3* as_Op3() { return NULL; }
1048   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1049   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1050   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1051   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1052 
1053   virtual void verify() const {}
1054 };
1055 
1056 // for calls
1057 class LIR_OpCall: public LIR_Op {
1058  friend class LIR_OpVisitState;
1059 
1060  protected:
1061   address      _addr;
1062   LIR_OprList* _arguments;
1063  protected:
1064   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1065              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1066     : LIR_Op(code, result, info)
1067     , _arguments(arguments)
1068     , _addr(addr) {}
1069 
1070  public:
1071   address addr() const                           { return _addr; }
1072   const LIR_OprList* arguments() const           { return _arguments; }
1073   virtual LIR_OpCall* as_OpCall()                { return this; }
1074 };
1075 
1076 
1077 // --------------------------------------------------
1078 // LIR_OpJavaCall
1079 // --------------------------------------------------
1080 class LIR_OpJavaCall: public LIR_OpCall {
1081  friend class LIR_OpVisitState;
1082 
1083  private:
1084   ciMethod* _method;
1085   LIR_Opr   _receiver;
1086   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1087 
1088  public:
1089   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1090                  LIR_Opr receiver, LIR_Opr result,
1091                  address addr, LIR_OprList* arguments,
1092                  CodeEmitInfo* info)
1093   : LIR_OpCall(code, addr, result, arguments, info)
1094   , _receiver(receiver)
1095   , _method(method)
1096   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1097   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1098 
1099   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1100                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1101                  LIR_OprList* arguments, CodeEmitInfo* info)
1102   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1103   , _receiver(receiver)
1104   , _method(method)
1105   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1106   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1107 
1108   LIR_Opr receiver() const                       { return _receiver; }
1109   ciMethod* method() const                       { return _method;   }
1110 
1111   // JSR 292 support.
1112   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1113   bool is_method_handle_invoke() const {
1114     return
1115       is_invokedynamic()  // An invokedynamic is always a MethodHandle call site.
1116       ||
1117       (method()->holder()->name() == ciSymbol::java_dyn_MethodHandle() &&
1118        methodOopDesc::is_method_handle_invoke_name(method()->name()->sid()));
1119   }
1120 
1121   intptr_t vtable_offset() const {
1122     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1123     return (intptr_t) addr();
1124   }
1125 
1126   virtual void emit_code(LIR_Assembler* masm);
1127   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1128   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1129 };
1130 
1131 // --------------------------------------------------
1132 // LIR_OpLabel
1133 // --------------------------------------------------
1134 // Location where a branch can continue
1135 class LIR_OpLabel: public LIR_Op {
1136  friend class LIR_OpVisitState;
1137 
1138  private:
1139   Label* _label;
1140  public:
1141   LIR_OpLabel(Label* lbl)
1142    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1143    , _label(lbl)                                 {}
1144   Label* label() const                           { return _label; }
1145 
1146   virtual void emit_code(LIR_Assembler* masm);
1147   virtual LIR_OpLabel* as_OpLabel() { return this; }
1148   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1149 };
1150 
1151 // LIR_OpArrayCopy
1152 class LIR_OpArrayCopy: public LIR_Op {
1153  friend class LIR_OpVisitState;
1154 
1155  private:
1156   ArrayCopyStub*  _stub;
1157   LIR_Opr   _src;
1158   LIR_Opr   _src_pos;
1159   LIR_Opr   _dst;
1160   LIR_Opr   _dst_pos;
1161   LIR_Opr   _length;
1162   LIR_Opr   _tmp;
1163   ciArrayKlass* _expected_type;
1164   int       _flags;
1165 
1166 public:
1167   enum Flags {
1168     src_null_check         = 1 << 0,
1169     dst_null_check         = 1 << 1,
1170     src_pos_positive_check = 1 << 2,
1171     dst_pos_positive_check = 1 << 3,
1172     length_positive_check  = 1 << 4,
1173     src_range_check        = 1 << 5,
1174     dst_range_check        = 1 << 6,
1175     type_check             = 1 << 7,
1176     all_flags              = (1 << 8) - 1
1177   };
1178 
1179   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1180                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1181 
1182   LIR_Opr src() const                            { return _src; }
1183   LIR_Opr src_pos() const                        { return _src_pos; }
1184   LIR_Opr dst() const                            { return _dst; }
1185   LIR_Opr dst_pos() const                        { return _dst_pos; }
1186   LIR_Opr length() const                         { return _length; }
1187   LIR_Opr tmp() const                            { return _tmp; }
1188   int flags() const                              { return _flags; }
1189   ciArrayKlass* expected_type() const            { return _expected_type; }
1190   ArrayCopyStub* stub() const                    { return _stub; }
1191 
1192   virtual void emit_code(LIR_Assembler* masm);
1193   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1194   void print_instr(outputStream* out) const PRODUCT_RETURN;
1195 };
1196 
1197 
1198 // --------------------------------------------------
1199 // LIR_Op0
1200 // --------------------------------------------------
1201 class LIR_Op0: public LIR_Op {
1202  friend class LIR_OpVisitState;
1203 
1204  public:
1205   LIR_Op0(LIR_Code code)
1206    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1207   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1208    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1209 
1210   virtual void emit_code(LIR_Assembler* masm);
1211   virtual LIR_Op0* as_Op0() { return this; }
1212   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1213 };
1214 
1215 
1216 // --------------------------------------------------
1217 // LIR_Op1
1218 // --------------------------------------------------
1219 
1220 class LIR_Op1: public LIR_Op {
1221  friend class LIR_OpVisitState;
1222 
1223  protected:
1224   LIR_Opr         _opr;   // input operand
1225   BasicType       _type;  // Operand types
1226   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1227 
1228   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1229 
1230   void set_kind(LIR_MoveKind kind) {
1231     assert(code() == lir_move, "must be");
1232     _flags = kind;
1233   }
1234 
1235  public:
1236   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1237     : LIR_Op(code, result, info)
1238     , _opr(opr)
1239     , _patch(patch)
1240     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1241 
1242   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1243     : LIR_Op(code, result, info)
1244     , _opr(opr)
1245     , _patch(patch)
1246     , _type(type)                      {
1247     assert(code == lir_move, "must be");
1248     set_kind(kind);
1249   }
1250 
1251   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1252     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1253     , _opr(opr)
1254     , _patch(lir_patch_none)
1255     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1256 
1257   LIR_Opr in_opr()           const               { return _opr;   }
1258   LIR_PatchCode patch_code() const               { return _patch; }
1259   BasicType type()           const               { return _type;  }
1260 
1261   LIR_MoveKind move_kind() const {
1262     assert(code() == lir_move, "must be");
1263     return (LIR_MoveKind)_flags;
1264   }
1265 
1266   virtual void emit_code(LIR_Assembler* masm);
1267   virtual LIR_Op1* as_Op1() { return this; }
1268   virtual const char * name() const PRODUCT_RETURN0;
1269 
1270   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1271 
1272   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1273   virtual void verify() const;
1274 };
1275 
1276 
1277 // for runtime calls
1278 class LIR_OpRTCall: public LIR_OpCall {
1279  friend class LIR_OpVisitState;
1280 
1281  private:
1282   LIR_Opr _tmp;
1283  public:
1284   LIR_OpRTCall(address addr, LIR_Opr tmp,
1285                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1286     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1287     , _tmp(tmp) {}
1288 
1289   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1290   virtual void emit_code(LIR_Assembler* masm);
1291   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1292 
1293   LIR_Opr tmp() const                            { return _tmp; }
1294 
1295   virtual void verify() const;
1296 };
1297 
1298 
1299 class LIR_OpBranch: public LIR_Op {
1300  friend class LIR_OpVisitState;
1301 
1302  private:
1303   LIR_Condition _cond;
1304   BasicType     _type;
1305   Label*        _label;
1306   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1307   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1308   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1309 
1310  public:
1311   LIR_OpBranch(LIR_Condition cond, Label* lbl)
1312     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1313     , _cond(cond)
1314     , _label(lbl)
1315     , _block(NULL)
1316     , _ublock(NULL)
1317     , _stub(NULL) { }
1318 
1319   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1320   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1321 
1322   // for unordered comparisons
1323   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1324 
1325   LIR_Condition cond()        const              { return _cond;        }
1326   BasicType     type()        const              { return _type;        }
1327   Label*        label()       const              { return _label;       }
1328   BlockBegin*   block()       const              { return _block;       }
1329   BlockBegin*   ublock()      const              { return _ublock;      }
1330   CodeStub*     stub()        const              { return _stub;       }
1331 
1332   void          change_block(BlockBegin* b);
1333   void          change_ublock(BlockBegin* b);
1334   void          negate_cond();
1335 
1336   virtual void emit_code(LIR_Assembler* masm);
1337   virtual LIR_OpBranch* as_OpBranch() { return this; }
1338   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1339 };
1340 
1341 
1342 class ConversionStub;
1343 
1344 class LIR_OpConvert: public LIR_Op1 {
1345  friend class LIR_OpVisitState;
1346 
1347  private:
1348    Bytecodes::Code _bytecode;
1349    ConversionStub* _stub;
1350 #ifdef PPC
1351   LIR_Opr _tmp1;
1352   LIR_Opr _tmp2;
1353 #endif
1354 
1355  public:
1356    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1357      : LIR_Op1(lir_convert, opr, result)
1358      , _stub(stub)
1359 #ifdef PPC
1360      , _tmp1(LIR_OprDesc::illegalOpr())
1361      , _tmp2(LIR_OprDesc::illegalOpr())
1362 #endif
1363      , _bytecode(code)                           {}
1364 
1365 #ifdef PPC
1366    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub
1367                  ,LIR_Opr tmp1, LIR_Opr tmp2)
1368      : LIR_Op1(lir_convert, opr, result)
1369      , _stub(stub)
1370      , _tmp1(tmp1)
1371      , _tmp2(tmp2)
1372      , _bytecode(code)                           {}
1373 #endif
1374 
1375   Bytecodes::Code bytecode() const               { return _bytecode; }
1376   ConversionStub* stub() const                   { return _stub; }
1377 #ifdef PPC
1378   LIR_Opr tmp1() const                           { return _tmp1; }
1379   LIR_Opr tmp2() const                           { return _tmp2; }
1380 #endif
1381 
1382   virtual void emit_code(LIR_Assembler* masm);
1383   virtual LIR_OpConvert* as_OpConvert() { return this; }
1384   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1385 
1386   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1387 };
1388 
1389 
1390 // LIR_OpAllocObj
1391 class LIR_OpAllocObj : public LIR_Op1 {
1392  friend class LIR_OpVisitState;
1393 
1394  private:
1395   LIR_Opr _tmp1;
1396   LIR_Opr _tmp2;
1397   LIR_Opr _tmp3;
1398   LIR_Opr _tmp4;
1399   int     _hdr_size;
1400   int     _obj_size;
1401   CodeStub* _stub;
1402   bool    _init_check;
1403 
1404  public:
1405   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1406                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1407                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1408     : LIR_Op1(lir_alloc_object, klass, result)
1409     , _tmp1(t1)
1410     , _tmp2(t2)
1411     , _tmp3(t3)
1412     , _tmp4(t4)
1413     , _hdr_size(hdr_size)
1414     , _obj_size(obj_size)
1415     , _init_check(init_check)
1416     , _stub(stub)                                { }
1417 
1418   LIR_Opr klass()        const                   { return in_opr();     }
1419   LIR_Opr obj()          const                   { return result_opr(); }
1420   LIR_Opr tmp1()         const                   { return _tmp1;        }
1421   LIR_Opr tmp2()         const                   { return _tmp2;        }
1422   LIR_Opr tmp3()         const                   { return _tmp3;        }
1423   LIR_Opr tmp4()         const                   { return _tmp4;        }
1424   int     header_size()  const                   { return _hdr_size;    }
1425   int     object_size()  const                   { return _obj_size;    }
1426   bool    init_check()   const                   { return _init_check;  }
1427   CodeStub* stub()       const                   { return _stub;        }
1428 
1429   virtual void emit_code(LIR_Assembler* masm);
1430   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1431   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1432 };
1433 
1434 
1435 // LIR_OpRoundFP
1436 class LIR_OpRoundFP : public LIR_Op1 {
1437  friend class LIR_OpVisitState;
1438 
1439  private:
1440   LIR_Opr _tmp;
1441 
1442  public:
1443   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1444     : LIR_Op1(lir_roundfp, reg, result)
1445     , _tmp(stack_loc_temp) {}
1446 
1447   LIR_Opr tmp() const                            { return _tmp; }
1448   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1449   void print_instr(outputStream* out) const PRODUCT_RETURN;
1450 };
1451 
1452 // LIR_OpTypeCheck
1453 class LIR_OpTypeCheck: public LIR_Op {
1454  friend class LIR_OpVisitState;
1455 
1456  private:
1457   LIR_Opr       _object;
1458   LIR_Opr       _array;
1459   ciKlass*      _klass;
1460   LIR_Opr       _tmp1;
1461   LIR_Opr       _tmp2;
1462   LIR_Opr       _tmp3;
1463   bool          _fast_check;
1464   CodeEmitInfo* _info_for_patch;
1465   CodeEmitInfo* _info_for_exception;
1466   CodeStub*     _stub;
1467   // Helpers for Tier1UpdateMethodData
1468   ciMethod*     _profiled_method;
1469   int           _profiled_bci;
1470 
1471 public:
1472   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1473                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1474                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1475                   ciMethod* profiled_method, int profiled_bci);
1476   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1477                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception,
1478                   ciMethod* profiled_method, int profiled_bci);
1479 
1480   LIR_Opr object() const                         { return _object;         }
1481   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1482   LIR_Opr tmp1() const                           { return _tmp1;           }
1483   LIR_Opr tmp2() const                           { return _tmp2;           }
1484   LIR_Opr tmp3() const                           { return _tmp3;           }
1485   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1486   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1487   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1488   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1489   CodeStub* stub() const                         { return _stub;           }
1490 
1491   // methodDataOop profiling
1492   ciMethod* profiled_method()                    { return _profiled_method; }
1493   int       profiled_bci()                       { return _profiled_bci; }
1494 
1495   virtual void emit_code(LIR_Assembler* masm);
1496   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1497   void print_instr(outputStream* out) const PRODUCT_RETURN;
1498 };
1499 
1500 // LIR_Op2
1501 class LIR_Op2: public LIR_Op {
1502  friend class LIR_OpVisitState;
1503 
1504   int  _fpu_stack_size; // for sin/cos implementation on Intel
1505 
1506  protected:
1507   LIR_Opr   _opr1;
1508   LIR_Opr   _opr2;
1509   BasicType _type;
1510   LIR_Opr   _tmp;
1511   LIR_Condition _condition;
1512 
1513   void verify() const;
1514 
1515  public:
1516   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1517     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1518     , _opr1(opr1)
1519     , _opr2(opr2)
1520     , _type(T_ILLEGAL)
1521     , _condition(condition)
1522     , _fpu_stack_size(0)
1523     , _tmp(LIR_OprFact::illegalOpr) {
1524     assert(code == lir_cmp, "code check");
1525   }
1526 
1527   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result)
1528     : LIR_Op(code, result, NULL)
1529     , _opr1(opr1)
1530     , _opr2(opr2)
1531     , _type(T_ILLEGAL)
1532     , _condition(condition)
1533     , _fpu_stack_size(0)
1534     , _tmp(LIR_OprFact::illegalOpr) {
1535     assert(code == lir_cmove, "code check");
1536   }
1537 
1538   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1539           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1540     : LIR_Op(code, result, info)
1541     , _opr1(opr1)
1542     , _opr2(opr2)
1543     , _type(type)
1544     , _condition(lir_cond_unknown)
1545     , _fpu_stack_size(0)
1546     , _tmp(LIR_OprFact::illegalOpr) {
1547     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1548   }
1549 
1550   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp)
1551     : LIR_Op(code, result, NULL)
1552     , _opr1(opr1)
1553     , _opr2(opr2)
1554     , _type(T_ILLEGAL)
1555     , _condition(lir_cond_unknown)
1556     , _fpu_stack_size(0)
1557     , _tmp(tmp) {
1558     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1559   }
1560 
1561   LIR_Opr in_opr1() const                        { return _opr1; }
1562   LIR_Opr in_opr2() const                        { return _opr2; }
1563   BasicType type()  const                        { return _type; }
1564   LIR_Opr tmp_opr() const                        { return _tmp; }
1565   LIR_Condition condition() const  {
1566     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); return _condition;
1567   }
1568   void set_condition(LIR_Condition condition) {
1569     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1570   }
1571 
1572   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1573   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1574 
1575   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1576   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1577 
1578   virtual void emit_code(LIR_Assembler* masm);
1579   virtual LIR_Op2* as_Op2() { return this; }
1580   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1581 };
1582 
1583 class LIR_OpAllocArray : public LIR_Op {
1584  friend class LIR_OpVisitState;
1585 
1586  private:
1587   LIR_Opr   _klass;
1588   LIR_Opr   _len;
1589   LIR_Opr   _tmp1;
1590   LIR_Opr   _tmp2;
1591   LIR_Opr   _tmp3;
1592   LIR_Opr   _tmp4;
1593   BasicType _type;
1594   CodeStub* _stub;
1595 
1596  public:
1597   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1598     : LIR_Op(lir_alloc_array, result, NULL)
1599     , _klass(klass)
1600     , _len(len)
1601     , _tmp1(t1)
1602     , _tmp2(t2)
1603     , _tmp3(t3)
1604     , _tmp4(t4)
1605     , _type(type)
1606     , _stub(stub) {}
1607 
1608   LIR_Opr   klass()   const                      { return _klass;       }
1609   LIR_Opr   len()     const                      { return _len;         }
1610   LIR_Opr   obj()     const                      { return result_opr(); }
1611   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1612   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1613   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1614   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1615   BasicType type()    const                      { return _type;        }
1616   CodeStub* stub()    const                      { return _stub;        }
1617 
1618   virtual void emit_code(LIR_Assembler* masm);
1619   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1620   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1621 };
1622 
1623 
1624 class LIR_Op3: public LIR_Op {
1625  friend class LIR_OpVisitState;
1626 
1627  private:
1628   LIR_Opr _opr1;
1629   LIR_Opr _opr2;
1630   LIR_Opr _opr3;
1631  public:
1632   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1633     : LIR_Op(code, result, info)
1634     , _opr1(opr1)
1635     , _opr2(opr2)
1636     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1637   LIR_Opr in_opr1() const                        { return _opr1; }
1638   LIR_Opr in_opr2() const                        { return _opr2; }
1639   LIR_Opr in_opr3() const                        { return _opr3; }
1640 
1641   virtual void emit_code(LIR_Assembler* masm);
1642   virtual LIR_Op3* as_Op3() { return this; }
1643   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1644 };
1645 
1646 
1647 //--------------------------------
1648 class LabelObj: public CompilationResourceObj {
1649  private:
1650   Label _label;
1651  public:
1652   LabelObj()                                     {}
1653   Label* label()                                 { return &_label; }
1654 };
1655 
1656 
1657 class LIR_OpLock: public LIR_Op {
1658  friend class LIR_OpVisitState;
1659 
1660  private:
1661   LIR_Opr _hdr;
1662   LIR_Opr _obj;
1663   LIR_Opr _lock;
1664   LIR_Opr _scratch;
1665   CodeStub* _stub;
1666  public:
1667   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1668     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1669     , _hdr(hdr)
1670     , _obj(obj)
1671     , _lock(lock)
1672     , _scratch(scratch)
1673     , _stub(stub)                      {}
1674 
1675   LIR_Opr hdr_opr() const                        { return _hdr; }
1676   LIR_Opr obj_opr() const                        { return _obj; }
1677   LIR_Opr lock_opr() const                       { return _lock; }
1678   LIR_Opr scratch_opr() const                    { return _scratch; }
1679   CodeStub* stub() const                         { return _stub; }
1680 
1681   virtual void emit_code(LIR_Assembler* masm);
1682   virtual LIR_OpLock* as_OpLock() { return this; }
1683   void print_instr(outputStream* out) const PRODUCT_RETURN;
1684 };
1685 
1686 
1687 class LIR_OpDelay: public LIR_Op {
1688  friend class LIR_OpVisitState;
1689 
1690  private:
1691   LIR_Op* _op;
1692 
1693  public:
1694   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1695     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1696     _op(op) {
1697     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1698   }
1699   virtual void emit_code(LIR_Assembler* masm);
1700   virtual LIR_OpDelay* as_OpDelay() { return this; }
1701   void print_instr(outputStream* out) const PRODUCT_RETURN;
1702   LIR_Op* delay_op() const { return _op; }
1703   CodeEmitInfo* call_info() const { return info(); }
1704 };
1705 
1706 
1707 // LIR_OpCompareAndSwap
1708 class LIR_OpCompareAndSwap : public LIR_Op {
1709  friend class LIR_OpVisitState;
1710 
1711  private:
1712   LIR_Opr _addr;
1713   LIR_Opr _cmp_value;
1714   LIR_Opr _new_value;
1715   LIR_Opr _tmp1;
1716   LIR_Opr _tmp2;
1717 
1718  public:
1719   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1720                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1721     : LIR_Op(code, result, NULL)  // no result, no info
1722     , _addr(addr)
1723     , _cmp_value(cmp_value)
1724     , _new_value(new_value)
1725     , _tmp1(t1)
1726     , _tmp2(t2)                                  { }
1727 
1728   LIR_Opr addr()        const                    { return _addr;  }
1729   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1730   LIR_Opr new_value()   const                    { return _new_value; }
1731   LIR_Opr tmp1()        const                    { return _tmp1;      }
1732   LIR_Opr tmp2()        const                    { return _tmp2;      }
1733 
1734   virtual void emit_code(LIR_Assembler* masm);
1735   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1736   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1737 };
1738 
1739 // LIR_OpProfileCall
1740 class LIR_OpProfileCall : public LIR_Op {
1741  friend class LIR_OpVisitState;
1742 
1743  private:
1744   ciMethod* _profiled_method;
1745   int _profiled_bci;
1746   LIR_Opr _mdo;
1747   LIR_Opr _recv;
1748   LIR_Opr _tmp1;
1749   ciKlass* _known_holder;
1750 
1751  public:
1752   // Destroys recv
1753   LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1754     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1755     , _profiled_method(profiled_method)
1756     , _profiled_bci(profiled_bci)
1757     , _mdo(mdo)
1758     , _recv(recv)
1759     , _tmp1(t1)
1760     , _known_holder(known_holder)                { }
1761 
1762   ciMethod* profiled_method() const              { return _profiled_method;  }
1763   int       profiled_bci()    const              { return _profiled_bci;     }
1764   LIR_Opr   mdo()             const              { return _mdo;              }
1765   LIR_Opr   recv()            const              { return _recv;             }
1766   LIR_Opr   tmp1()            const              { return _tmp1;             }
1767   ciKlass*  known_holder()    const              { return _known_holder;     }
1768 
1769   virtual void emit_code(LIR_Assembler* masm);
1770   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1771   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1772 };
1773 
1774 
1775 class LIR_InsertionBuffer;
1776 
1777 //--------------------------------LIR_List---------------------------------------------------
1778 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
1779 // The LIR instructions are appended by the LIR_List class itself;
1780 //
1781 // Notes:
1782 // - all offsets are(should be) in bytes
1783 // - local positions are specified with an offset, with offset 0 being local 0
1784 
1785 class LIR_List: public CompilationResourceObj {
1786  private:
1787   LIR_OpList  _operations;
1788 
1789   Compilation*  _compilation;
1790 #ifndef PRODUCT
1791   BlockBegin*   _block;
1792 #endif
1793 #ifdef ASSERT
1794   const char *  _file;
1795   int           _line;
1796 #endif
1797 
1798   void append(LIR_Op* op) {
1799     if (op->source() == NULL)
1800       op->set_source(_compilation->current_instruction());
1801 #ifndef PRODUCT
1802     if (PrintIRWithLIR) {
1803       _compilation->maybe_print_current_instruction();
1804       op->print(); tty->cr();
1805     }
1806 #endif // PRODUCT
1807 
1808     _operations.append(op);
1809 
1810 #ifdef ASSERT
1811     op->verify();
1812     op->set_file_and_line(_file, _line);
1813     _file = NULL;
1814     _line = 0;
1815 #endif
1816   }
1817 
1818  public:
1819   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
1820 
1821 #ifdef ASSERT
1822   void set_file_and_line(const char * file, int line);
1823 #endif
1824 
1825   //---------- accessors ---------------
1826   LIR_OpList* instructions_list()                { return &_operations; }
1827   int         length() const                     { return _operations.length(); }
1828   LIR_Op*     at(int i) const                    { return _operations.at(i); }
1829 
1830   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
1831 
1832   // insert LIR_Ops in buffer to right places in LIR_List
1833   void append(LIR_InsertionBuffer* buffer);
1834 
1835   //---------- mutators ---------------
1836   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
1837   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
1838 
1839   //---------- printing -------------
1840   void print_instructions() PRODUCT_RETURN;
1841 
1842 
1843   //---------- instructions -------------
1844   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1845                         address dest, LIR_OprList* arguments,
1846                         CodeEmitInfo* info) {
1847     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
1848   }
1849   void call_static(ciMethod* method, LIR_Opr result,
1850                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
1851     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
1852   }
1853   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1854                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
1855     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
1856   }
1857   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1858                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
1859     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
1860   }
1861   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1862                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
1863     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
1864   }
1865 
1866   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
1867   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
1868   void membar()                                  { append(new LIR_Op0(lir_membar)); }
1869   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
1870   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
1871 
1872   void nop()                                     { append(new LIR_Op0(lir_nop)); }
1873   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
1874 
1875   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
1876   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
1877 
1878   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
1879 
1880   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
1881   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
1882 
1883   // result is a stack location for old backend and vreg for UseLinearScan
1884   // stack_loc_temp is an illegal register for old backend
1885   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
1886   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
1887   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
1888   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
1889   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
1890   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
1891   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
1892 
1893   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
1894 
1895   void oop2reg  (jobject o, LIR_Opr reg)         { append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
1896   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
1897 
1898   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
1899 
1900   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
1901 
1902 #ifdef PPC
1903   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_OpConvert(code, left, dst, NULL, tmp1, tmp2)); }
1904 #endif
1905   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
1906 
1907   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
1908   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
1909   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
1910 
1911   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
1912   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1913     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
1914   }
1915   void unwind_exception(LIR_Opr exceptionOop) {
1916     append(new LIR_Op1(lir_unwind, exceptionOop));
1917   }
1918 
1919   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1920     append(new LIR_Op2(lir_compare_to,  left, right, dst));
1921   }
1922 
1923   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
1924   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
1925 
1926   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
1927     append(new LIR_Op2(lir_cmp, condition, left, right, info));
1928   }
1929   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
1930     cmp(condition, left, LIR_OprFact::intConst(right), info);
1931   }
1932 
1933   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
1934   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
1935 
1936   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst) {
1937     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst));
1938   }
1939 
1940   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1941                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
1942   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1943                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
1944   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1945                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
1946 
1947   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
1948   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
1949   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, LIR_OprFact::illegalOpr, to, tmp)); }
1950   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
1951   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
1952   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
1953   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
1954 
1955   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
1956   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
1957   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
1958   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
1959   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
1960   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
1961   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
1962 
1963   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
1964   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
1965 
1966   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
1967 
1968   void prefetch(LIR_Address* addr, bool is_store);
1969 
1970   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
1971   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
1972   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
1973   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
1974   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
1975 
1976   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
1977   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
1978   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
1979   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
1980 
1981   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
1982   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
1983 
1984   // jump is an unconditional branch
1985   void jump(BlockBegin* block) {
1986     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
1987   }
1988   void jump(CodeStub* stub) {
1989     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
1990   }
1991   void branch(LIR_Condition cond, Label* lbl)        { append(new LIR_OpBranch(cond, lbl)); }
1992   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
1993     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
1994     append(new LIR_OpBranch(cond, type, block));
1995   }
1996   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
1997     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
1998     append(new LIR_OpBranch(cond, type, stub));
1999   }
2000   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
2001     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
2002     append(new LIR_OpBranch(cond, type, block, unordered));
2003   }
2004 
2005   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2006   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2007   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2008 
2009   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2010   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2011   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2012 
2013   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2014   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2015 
2016   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2017     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2018   }
2019 
2020   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2021                     LIR_OprList* arguments, CodeEmitInfo* info) {
2022     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2023   }
2024 
2025   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2026   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2027   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2028 
2029   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
2030   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
2031   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2032 
2033   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2034 
2035   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
2036 
2037   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2038                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2039                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2040                   ciMethod* profiled_method, int profiled_bci);
2041   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch);
2042   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
2043 
2044   // methodDataOop profiling
2045   void profile_call(ciMethod* method, int bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { append(new LIR_OpProfileCall(lir_profile_call, method, bci, mdo, recv, t1, cha_klass)); }
2046 };
2047 
2048 void print_LIR(BlockList* blocks);
2049 
2050 class LIR_InsertionBuffer : public CompilationResourceObj {
2051  private:
2052   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2053 
2054   // list of insertion points. index and count are stored alternately:
2055   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2056   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2057   intStack    _index_and_count;
2058 
2059   // the LIR_Ops to be inserted
2060   LIR_OpList  _ops;
2061 
2062   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2063   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2064   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2065 
2066 #ifdef ASSERT
2067   void verify();
2068 #endif
2069  public:
2070   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2071 
2072   // must be called before using the insertion buffer
2073   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2074   bool initialized() const  { return _lir != NULL; }
2075   // called automatically when the buffer is appended to the LIR_List
2076   void finish()             { _lir = NULL; }
2077 
2078   // accessors
2079   LIR_List*  lir_list() const             { return _lir; }
2080   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2081   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2082   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2083 
2084   int number_of_ops() const               { return _ops.length(); }
2085   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2086 
2087   // append an instruction to the buffer
2088   void append(int index, LIR_Op* op);
2089 
2090   // instruction
2091   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2092 };
2093 
2094 
2095 //
2096 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2097 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2098 // information about the input, output and temporaries used by the
2099 // op to be recorded.  It also records whether the op has call semantics
2100 // and also records all the CodeEmitInfos used by this op.
2101 //
2102 
2103 
2104 class LIR_OpVisitState: public StackObj {
2105  public:
2106   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2107 
2108   enum {
2109     maxNumberOfOperands = 16,
2110     maxNumberOfInfos = 4
2111   };
2112 
2113  private:
2114   LIR_Op*          _op;
2115 
2116   // optimization: the operands and infos are not stored in a variable-length
2117   //               list, but in a fixed-size array to save time of size checks and resizing
2118   int              _oprs_len[numModes];
2119   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2120   int _info_len;
2121   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2122 
2123   bool             _has_call;
2124   bool             _has_slow_case;
2125 
2126 
2127   // only include register operands
2128   // addresses are decomposed to the base and index registers
2129   // constants and stack operands are ignored
2130   void append(LIR_Opr& opr, OprMode mode) {
2131     assert(opr->is_valid(), "should not call this otherwise");
2132     assert(mode >= 0 && mode < numModes, "bad mode");
2133 
2134     if (opr->is_register()) {
2135        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2136       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2137 
2138     } else if (opr->is_pointer()) {
2139       LIR_Address* address = opr->as_address_ptr();
2140       if (address != NULL) {
2141         // special handling for addresses: add base and index register of the address
2142         // both are always input operands!
2143         if (address->_base->is_valid()) {
2144           assert(address->_base->is_register(), "must be");
2145           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
2146           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_base;
2147         }
2148         if (address->_index->is_valid()) {
2149           assert(address->_index->is_register(), "must be");
2150           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
2151           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_index;
2152         }
2153 
2154       } else {
2155         assert(opr->is_constant(), "constant operands are not processed");
2156       }
2157     } else {
2158       assert(opr->is_stack(), "stack operands are not processed");
2159     }
2160   }
2161 
2162   void append(CodeEmitInfo* info) {
2163     assert(info != NULL, "should not call this otherwise");
2164     assert(_info_len < maxNumberOfInfos, "array overflow");
2165     _info_new[_info_len++] = info;
2166   }
2167 
2168  public:
2169   LIR_OpVisitState()         { reset(); }
2170 
2171   LIR_Op* op() const         { return _op; }
2172   void set_op(LIR_Op* op)    { reset(); _op = op; }
2173 
2174   bool has_call() const      { return _has_call; }
2175   bool has_slow_case() const { return _has_slow_case; }
2176 
2177   void reset() {
2178     _op = NULL;
2179     _has_call = false;
2180     _has_slow_case = false;
2181 
2182     _oprs_len[inputMode] = 0;
2183     _oprs_len[tempMode] = 0;
2184     _oprs_len[outputMode] = 0;
2185     _info_len = 0;
2186   }
2187 
2188 
2189   int opr_count(OprMode mode) const {
2190     assert(mode >= 0 && mode < numModes, "bad mode");
2191     return _oprs_len[mode];
2192   }
2193 
2194   LIR_Opr opr_at(OprMode mode, int index) const {
2195     assert(mode >= 0 && mode < numModes, "bad mode");
2196     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2197     return *_oprs_new[mode][index];
2198   }
2199 
2200   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2201     assert(mode >= 0 && mode < numModes, "bad mode");
2202     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2203     *_oprs_new[mode][index] = opr;
2204   }
2205 
2206   int info_count() const {
2207     return _info_len;
2208   }
2209 
2210   CodeEmitInfo* info_at(int index) const {
2211     assert(index < _info_len, "index out of bounds");
2212     return _info_new[index];
2213   }
2214 
2215   XHandlers* all_xhandler();
2216 
2217   // collects all register operands of the instruction
2218   void visit(LIR_Op* op);
2219 
2220 #if ASSERT
2221   // check that an operation has no operands
2222   bool no_operands(LIR_Op* op);
2223 #endif
2224 
2225   // LIR_Op visitor functions use these to fill in the state
2226   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2227   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2228   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2229   void do_info(CodeEmitInfo* info)        { append(info); }
2230 
2231   void do_stub(CodeStub* stub);
2232   void do_call()                          { _has_call = true; }
2233   void do_slow_case()                     { _has_slow_case = true; }
2234   void do_slow_case(CodeEmitInfo* info) {
2235     _has_slow_case = true;
2236     append(info);
2237   }
2238 };
2239 
2240 
2241 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };