1 /*
   2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_c1_LinearScan.cpp.incl"
  27 
  28 
  29 #ifndef PRODUCT
  30 
  31   static LinearScanStatistic _stat_before_alloc;
  32   static LinearScanStatistic _stat_after_asign;
  33   static LinearScanStatistic _stat_final;
  34 
  35   static LinearScanTimers _total_timer;
  36 
  37   // helper macro for short definition of timer
  38   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
  39 
  40   // helper macro for short definition of trace-output inside code
  41   #define TRACE_LINEAR_SCAN(level, code)       \
  42     if (TraceLinearScanLevel >= level) {       \
  43       code;                                    \
  44     }
  45 
  46 #else
  47 
  48   #define TIME_LINEAR_SCAN(timer_name)
  49   #define TRACE_LINEAR_SCAN(level, code)
  50 
  51 #endif
  52 
  53 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
  54 #ifdef _LP64
  55 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 1, -1};
  56 #else
  57 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1};
  58 #endif
  59 
  60 
  61 // Implementation of LinearScan
  62 
  63 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
  64  : _compilation(ir->compilation())
  65  , _ir(ir)
  66  , _gen(gen)
  67  , _frame_map(frame_map)
  68  , _num_virtual_regs(gen->max_virtual_register_number())
  69  , _has_fpu_registers(false)
  70  , _num_calls(-1)
  71  , _max_spills(0)
  72  , _unused_spill_slot(-1)
  73  , _intervals(0)   // initialized later with correct length
  74  , _new_intervals_from_allocation(new IntervalList())
  75  , _sorted_intervals(NULL)
  76  , _lir_ops(0)     // initialized later with correct length
  77  , _block_of_op(0) // initialized later with correct length
  78  , _has_info(0)
  79  , _has_call(0)
  80  , _scope_value_cache(0) // initialized later with correct length
  81  , _interval_in_loop(0, 0) // initialized later with correct length
  82  , _cached_blocks(*ir->linear_scan_order())
  83 #ifdef X86
  84  , _fpu_stack_allocator(NULL)
  85 #endif
  86 {
  87   assert(this->ir() != NULL,          "check if valid");
  88   assert(this->compilation() != NULL, "check if valid");
  89   assert(this->gen() != NULL,         "check if valid");
  90   assert(this->frame_map() != NULL,   "check if valid");
  91 }
  92 
  93 
  94 // ********** functions for converting LIR-Operands to register numbers
  95 //
  96 // Emulate a flat register file comprising physical integer registers,
  97 // physical floating-point registers and virtual registers, in that order.
  98 // Virtual registers already have appropriate numbers, since V0 is
  99 // the number of physical registers.
 100 // Returns -1 for hi word if opr is a single word operand.
 101 //
 102 // Note: the inverse operation (calculating an operand for register numbers)
 103 //       is done in calc_operand_for_interval()
 104 
 105 int LinearScan::reg_num(LIR_Opr opr) {
 106   assert(opr->is_register(), "should not call this otherwise");
 107 
 108   if (opr->is_virtual_register()) {
 109     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
 110     return opr->vreg_number();
 111   } else if (opr->is_single_cpu()) {
 112     return opr->cpu_regnr();
 113   } else if (opr->is_double_cpu()) {
 114     return opr->cpu_regnrLo();
 115 #ifdef X86
 116   } else if (opr->is_single_xmm()) {
 117     return opr->fpu_regnr() + pd_first_xmm_reg;
 118   } else if (opr->is_double_xmm()) {
 119     return opr->fpu_regnrLo() + pd_first_xmm_reg;
 120 #endif
 121   } else if (opr->is_single_fpu()) {
 122     return opr->fpu_regnr() + pd_first_fpu_reg;
 123   } else if (opr->is_double_fpu()) {
 124     return opr->fpu_regnrLo() + pd_first_fpu_reg;
 125   } else {
 126     ShouldNotReachHere();
 127     return -1;
 128   }
 129 }
 130 
 131 int LinearScan::reg_numHi(LIR_Opr opr) {
 132   assert(opr->is_register(), "should not call this otherwise");
 133 
 134   if (opr->is_virtual_register()) {
 135     return -1;
 136   } else if (opr->is_single_cpu()) {
 137     return -1;
 138   } else if (opr->is_double_cpu()) {
 139     return opr->cpu_regnrHi();
 140 #ifdef X86
 141   } else if (opr->is_single_xmm()) {
 142     return -1;
 143   } else if (opr->is_double_xmm()) {
 144     return -1;
 145 #endif
 146   } else if (opr->is_single_fpu()) {
 147     return -1;
 148   } else if (opr->is_double_fpu()) {
 149     return opr->fpu_regnrHi() + pd_first_fpu_reg;
 150   } else {
 151     ShouldNotReachHere();
 152     return -1;
 153   }
 154 }
 155 
 156 
 157 // ********** functions for classification of intervals
 158 
 159 bool LinearScan::is_precolored_interval(const Interval* i) {
 160   return i->reg_num() < LinearScan::nof_regs;
 161 }
 162 
 163 bool LinearScan::is_virtual_interval(const Interval* i) {
 164   return i->reg_num() >= LIR_OprDesc::vreg_base;
 165 }
 166 
 167 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
 168   return i->reg_num() < LinearScan::nof_cpu_regs;
 169 }
 170 
 171 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
 172 #if defined(__SOFTFP__) || defined(E500V2)
 173   return i->reg_num() >= LIR_OprDesc::vreg_base;
 174 #else
 175   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
 176 #endif // __SOFTFP__ or E500V2
 177 }
 178 
 179 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
 180   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
 181 }
 182 
 183 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
 184 #if defined(__SOFTFP__) || defined(E500V2)
 185   return false;
 186 #else
 187   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
 188 #endif // __SOFTFP__ or E500V2
 189 }
 190 
 191 bool LinearScan::is_in_fpu_register(const Interval* i) {
 192   // fixed intervals not needed for FPU stack allocation
 193   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
 194 }
 195 
 196 bool LinearScan::is_oop_interval(const Interval* i) {
 197   // fixed intervals never contain oops
 198   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
 199 }
 200 
 201 
 202 // ********** General helper functions
 203 
 204 // compute next unused stack index that can be used for spilling
 205 int LinearScan::allocate_spill_slot(bool double_word) {
 206   int spill_slot;
 207   if (double_word) {
 208     if ((_max_spills & 1) == 1) {
 209       // alignment of double-word values
 210       // the hole because of the alignment is filled with the next single-word value
 211       assert(_unused_spill_slot == -1, "wasting a spill slot");
 212       _unused_spill_slot = _max_spills;
 213       _max_spills++;
 214     }
 215     spill_slot = _max_spills;
 216     _max_spills += 2;
 217 
 218   } else if (_unused_spill_slot != -1) {
 219     // re-use hole that was the result of a previous double-word alignment
 220     spill_slot = _unused_spill_slot;
 221     _unused_spill_slot = -1;
 222 
 223   } else {
 224     spill_slot = _max_spills;
 225     _max_spills++;
 226   }
 227 
 228   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
 229 
 230   // the class OopMapValue uses only 11 bits for storing the name of the
 231   // oop location. So a stack slot bigger than 2^11 leads to an overflow
 232   // that is not reported in product builds. Prevent this by checking the
 233   // spill slot here (altough this value and the later used location name
 234   // are slightly different)
 235   if (result > 2000) {
 236     bailout("too many stack slots used");
 237   }
 238 
 239   return result;
 240 }
 241 
 242 void LinearScan::assign_spill_slot(Interval* it) {
 243   // assign the canonical spill slot of the parent (if a part of the interval
 244   // is already spilled) or allocate a new spill slot
 245   if (it->canonical_spill_slot() >= 0) {
 246     it->assign_reg(it->canonical_spill_slot());
 247   } else {
 248     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
 249     it->set_canonical_spill_slot(spill);
 250     it->assign_reg(spill);
 251   }
 252 }
 253 
 254 void LinearScan::propagate_spill_slots() {
 255   if (!frame_map()->finalize_frame(max_spills())) {
 256     bailout("frame too large");
 257   }
 258 }
 259 
 260 // create a new interval with a predefined reg_num
 261 // (only used for parent intervals that are created during the building phase)
 262 Interval* LinearScan::create_interval(int reg_num) {
 263   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
 264 
 265   Interval* interval = new Interval(reg_num);
 266   _intervals.at_put(reg_num, interval);
 267 
 268   // assign register number for precolored intervals
 269   if (reg_num < LIR_OprDesc::vreg_base) {
 270     interval->assign_reg(reg_num);
 271   }
 272   return interval;
 273 }
 274 
 275 // assign a new reg_num to the interval and append it to the list of intervals
 276 // (only used for child intervals that are created during register allocation)
 277 void LinearScan::append_interval(Interval* it) {
 278   it->set_reg_num(_intervals.length());
 279   _intervals.append(it);
 280   _new_intervals_from_allocation->append(it);
 281 }
 282 
 283 // copy the vreg-flags if an interval is split
 284 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
 285   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
 286     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
 287   }
 288   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
 289     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
 290   }
 291 
 292   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
 293   //       intervals (only the very beginning of the interval must be in memory)
 294 }
 295 
 296 
 297 // ********** spill move optimization
 298 // eliminate moves from register to stack if stack slot is known to be correct
 299 
 300 // called during building of intervals
 301 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
 302   assert(interval->is_split_parent(), "can only be called for split parents");
 303 
 304   switch (interval->spill_state()) {
 305     case noDefinitionFound:
 306       assert(interval->spill_definition_pos() == -1, "must no be set before");
 307       interval->set_spill_definition_pos(def_pos);
 308       interval->set_spill_state(oneDefinitionFound);
 309       break;
 310 
 311     case oneDefinitionFound:
 312       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
 313       if (def_pos < interval->spill_definition_pos() - 2) {
 314         // second definition found, so no spill optimization possible for this interval
 315         interval->set_spill_state(noOptimization);
 316       } else {
 317         // two consecutive definitions (because of two-operand LIR form)
 318         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
 319       }
 320       break;
 321 
 322     case noOptimization:
 323       // nothing to do
 324       break;
 325 
 326     default:
 327       assert(false, "other states not allowed at this time");
 328   }
 329 }
 330 
 331 // called during register allocation
 332 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
 333   switch (interval->spill_state()) {
 334     case oneDefinitionFound: {
 335       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
 336       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
 337 
 338       if (def_loop_depth < spill_loop_depth) {
 339         // the loop depth of the spilling position is higher then the loop depth
 340         // at the definition of the interval -> move write to memory out of loop
 341         // by storing at definitin of the interval
 342         interval->set_spill_state(storeAtDefinition);
 343       } else {
 344         // the interval is currently spilled only once, so for now there is no
 345         // reason to store the interval at the definition
 346         interval->set_spill_state(oneMoveInserted);
 347       }
 348       break;
 349     }
 350 
 351     case oneMoveInserted: {
 352       // the interval is spilled more then once, so it is better to store it to
 353       // memory at the definition
 354       interval->set_spill_state(storeAtDefinition);
 355       break;
 356     }
 357 
 358     case storeAtDefinition:
 359     case startInMemory:
 360     case noOptimization:
 361     case noDefinitionFound:
 362       // nothing to do
 363       break;
 364 
 365     default:
 366       assert(false, "other states not allowed at this time");
 367   }
 368 }
 369 
 370 
 371 bool LinearScan::must_store_at_definition(const Interval* i) {
 372   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
 373 }
 374 
 375 // called once before asignment of register numbers
 376 void LinearScan::eliminate_spill_moves() {
 377   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
 378   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
 379 
 380   // collect all intervals that must be stored after their definion.
 381   // the list is sorted by Interval::spill_definition_pos
 382   Interval* interval;
 383   Interval* temp_list;
 384   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
 385 
 386 #ifdef ASSERT
 387   Interval* prev = NULL;
 388   Interval* temp = interval;
 389   while (temp != Interval::end()) {
 390     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
 391     if (prev != NULL) {
 392       assert(temp->from() >= prev->from(), "intervals not sorted");
 393       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
 394     }
 395 
 396     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
 397     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
 398     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
 399 
 400     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
 401 
 402     temp = temp->next();
 403   }
 404 #endif
 405 
 406   LIR_InsertionBuffer insertion_buffer;
 407   int num_blocks = block_count();
 408   for (int i = 0; i < num_blocks; i++) {
 409     BlockBegin* block = block_at(i);
 410     LIR_OpList* instructions = block->lir()->instructions_list();
 411     int         num_inst = instructions->length();
 412     bool        has_new = false;
 413 
 414     // iterate all instructions of the block. skip the first because it is always a label
 415     for (int j = 1; j < num_inst; j++) {
 416       LIR_Op* op = instructions->at(j);
 417       int op_id = op->id();
 418 
 419       if (op_id == -1) {
 420         // remove move from register to stack if the stack slot is guaranteed to be correct.
 421         // only moves that have been inserted by LinearScan can be removed.
 422         assert(op->code() == lir_move, "only moves can have a op_id of -1");
 423         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
 424         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
 425 
 426         LIR_Op1* op1 = (LIR_Op1*)op;
 427         Interval* interval = interval_at(op1->result_opr()->vreg_number());
 428 
 429         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
 430           // move target is a stack slot that is always correct, so eliminate instruction
 431           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
 432           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
 433         }
 434 
 435       } else {
 436         // insert move from register to stack just after the beginning of the interval
 437         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
 438         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
 439 
 440         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
 441           if (!has_new) {
 442             // prepare insertion buffer (appended when all instructions of the block are processed)
 443             insertion_buffer.init(block->lir());
 444             has_new = true;
 445           }
 446 
 447           LIR_Opr from_opr = operand_for_interval(interval);
 448           LIR_Opr to_opr = canonical_spill_opr(interval);
 449           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
 450           assert(to_opr->is_stack(), "to operand must be a stack slot");
 451 
 452           insertion_buffer.move(j, from_opr, to_opr);
 453           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
 454 
 455           interval = interval->next();
 456         }
 457       }
 458     } // end of instruction iteration
 459 
 460     if (has_new) {
 461       block->lir()->append(&insertion_buffer);
 462     }
 463   } // end of block iteration
 464 
 465   assert(interval == Interval::end(), "missed an interval");
 466 }
 467 
 468 
 469 // ********** Phase 1: number all instructions in all blocks
 470 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
 471 
 472 void LinearScan::number_instructions() {
 473   {
 474     // dummy-timer to measure the cost of the timer itself
 475     // (this time is then subtracted from all other timers to get the real value)
 476     TIME_LINEAR_SCAN(timer_do_nothing);
 477   }
 478   TIME_LINEAR_SCAN(timer_number_instructions);
 479 
 480   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
 481   int num_blocks = block_count();
 482   int num_instructions = 0;
 483   int i;
 484   for (i = 0; i < num_blocks; i++) {
 485     num_instructions += block_at(i)->lir()->instructions_list()->length();
 486   }
 487 
 488   // initialize with correct length
 489   _lir_ops = LIR_OpArray(num_instructions);
 490   _block_of_op = BlockBeginArray(num_instructions);
 491 
 492   int op_id = 0;
 493   int idx = 0;
 494 
 495   for (i = 0; i < num_blocks; i++) {
 496     BlockBegin* block = block_at(i);
 497     block->set_first_lir_instruction_id(op_id);
 498     LIR_OpList* instructions = block->lir()->instructions_list();
 499 
 500     int num_inst = instructions->length();
 501     for (int j = 0; j < num_inst; j++) {
 502       LIR_Op* op = instructions->at(j);
 503       op->set_id(op_id);
 504 
 505       _lir_ops.at_put(idx, op);
 506       _block_of_op.at_put(idx, block);
 507       assert(lir_op_with_id(op_id) == op, "must match");
 508 
 509       idx++;
 510       op_id += 2; // numbering of lir_ops by two
 511     }
 512     block->set_last_lir_instruction_id(op_id - 2);
 513   }
 514   assert(idx == num_instructions, "must match");
 515   assert(idx * 2 == op_id, "must match");
 516 
 517   _has_call = BitMap(num_instructions); _has_call.clear();
 518   _has_info = BitMap(num_instructions); _has_info.clear();
 519 }
 520 
 521 
 522 // ********** Phase 2: compute local live sets separately for each block
 523 // (sets live_gen and live_kill for each block)
 524 
 525 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
 526   LIR_Opr opr = value->operand();
 527   Constant* con = value->as_Constant();
 528 
 529   // check some asumptions about debug information
 530   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
 531   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
 532   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
 533 
 534   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 535     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 536     int reg = opr->vreg_number();
 537     if (!live_kill.at(reg)) {
 538       live_gen.set_bit(reg);
 539       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
 540     }
 541   }
 542 }
 543 
 544 
 545 void LinearScan::compute_local_live_sets() {
 546   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
 547 
 548   int  num_blocks = block_count();
 549   int  live_size = live_set_size();
 550   bool local_has_fpu_registers = false;
 551   int  local_num_calls = 0;
 552   LIR_OpVisitState visitor;
 553 
 554   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
 555   local_interval_in_loop.clear();
 556 
 557   // iterate all blocks
 558   for (int i = 0; i < num_blocks; i++) {
 559     BlockBegin* block = block_at(i);
 560 
 561     BitMap live_gen(live_size);  live_gen.clear();
 562     BitMap live_kill(live_size); live_kill.clear();
 563 
 564     if (block->is_set(BlockBegin::exception_entry_flag)) {
 565       // Phi functions at the begin of an exception handler are
 566       // implicitly defined (= killed) at the beginning of the block.
 567       for_each_phi_fun(block, phi,
 568         live_kill.set_bit(phi->operand()->vreg_number())
 569       );
 570     }
 571 
 572     LIR_OpList* instructions = block->lir()->instructions_list();
 573     int num_inst = instructions->length();
 574 
 575     // iterate all instructions of the block. skip the first because it is always a label
 576     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
 577     for (int j = 1; j < num_inst; j++) {
 578       LIR_Op* op = instructions->at(j);
 579 
 580       // visit operation to collect all operands
 581       visitor.visit(op);
 582 
 583       if (visitor.has_call()) {
 584         _has_call.set_bit(op->id() >> 1);
 585         local_num_calls++;
 586       }
 587       if (visitor.info_count() > 0) {
 588         _has_info.set_bit(op->id() >> 1);
 589       }
 590 
 591       // iterate input operands of instruction
 592       int k, n, reg;
 593       n = visitor.opr_count(LIR_OpVisitState::inputMode);
 594       for (k = 0; k < n; k++) {
 595         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
 596         assert(opr->is_register(), "visitor should only return register operands");
 597 
 598         if (opr->is_virtual_register()) {
 599           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 600           reg = opr->vreg_number();
 601           if (!live_kill.at(reg)) {
 602             live_gen.set_bit(reg);
 603             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
 604           }
 605           if (block->loop_index() >= 0) {
 606             local_interval_in_loop.set_bit(reg, block->loop_index());
 607           }
 608           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 609         }
 610 
 611 #ifdef ASSERT
 612         // fixed intervals are never live at block boundaries, so
 613         // they need not be processed in live sets.
 614         // this is checked by these assertions to be sure about it.
 615         // the entry block may have incoming values in registers, which is ok.
 616         if (!opr->is_virtual_register() && block != ir()->start()) {
 617           reg = reg_num(opr);
 618           if (is_processed_reg_num(reg)) {
 619             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 620           }
 621           reg = reg_numHi(opr);
 622           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 623             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 624           }
 625         }
 626 #endif
 627       }
 628 
 629       // Add uses of live locals from interpreter's point of view for proper debug information generation
 630       n = visitor.info_count();
 631       for (k = 0; k < n; k++) {
 632         CodeEmitInfo* info = visitor.info_at(k);
 633         ValueStack* stack = info->stack();
 634         for_each_state_value(stack, value,
 635           set_live_gen_kill(value, op, live_gen, live_kill)
 636         );
 637       }
 638 
 639       // iterate temp operands of instruction
 640       n = visitor.opr_count(LIR_OpVisitState::tempMode);
 641       for (k = 0; k < n; k++) {
 642         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
 643         assert(opr->is_register(), "visitor should only return register operands");
 644 
 645         if (opr->is_virtual_register()) {
 646           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 647           reg = opr->vreg_number();
 648           live_kill.set_bit(reg);
 649           if (block->loop_index() >= 0) {
 650             local_interval_in_loop.set_bit(reg, block->loop_index());
 651           }
 652           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 653         }
 654 
 655 #ifdef ASSERT
 656         // fixed intervals are never live at block boundaries, so
 657         // they need not be processed in live sets
 658         // process them only in debug mode so that this can be checked
 659         if (!opr->is_virtual_register()) {
 660           reg = reg_num(opr);
 661           if (is_processed_reg_num(reg)) {
 662             live_kill.set_bit(reg_num(opr));
 663           }
 664           reg = reg_numHi(opr);
 665           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 666             live_kill.set_bit(reg);
 667           }
 668         }
 669 #endif
 670       }
 671 
 672       // iterate output operands of instruction
 673       n = visitor.opr_count(LIR_OpVisitState::outputMode);
 674       for (k = 0; k < n; k++) {
 675         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
 676         assert(opr->is_register(), "visitor should only return register operands");
 677 
 678         if (opr->is_virtual_register()) {
 679           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 680           reg = opr->vreg_number();
 681           live_kill.set_bit(reg);
 682           if (block->loop_index() >= 0) {
 683             local_interval_in_loop.set_bit(reg, block->loop_index());
 684           }
 685           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 686         }
 687 
 688 #ifdef ASSERT
 689         // fixed intervals are never live at block boundaries, so
 690         // they need not be processed in live sets
 691         // process them only in debug mode so that this can be checked
 692         if (!opr->is_virtual_register()) {
 693           reg = reg_num(opr);
 694           if (is_processed_reg_num(reg)) {
 695             live_kill.set_bit(reg_num(opr));
 696           }
 697           reg = reg_numHi(opr);
 698           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 699             live_kill.set_bit(reg);
 700           }
 701         }
 702 #endif
 703       }
 704     } // end of instruction iteration
 705 
 706     block->set_live_gen (live_gen);
 707     block->set_live_kill(live_kill);
 708     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
 709     block->set_live_out (BitMap(live_size)); block->live_out().clear();
 710 
 711     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
 712     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
 713   } // end of block iteration
 714 
 715   // propagate local calculated information into LinearScan object
 716   _has_fpu_registers = local_has_fpu_registers;
 717   compilation()->set_has_fpu_code(local_has_fpu_registers);
 718 
 719   _num_calls = local_num_calls;
 720   _interval_in_loop = local_interval_in_loop;
 721 }
 722 
 723 
 724 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
 725 // (sets live_in and live_out for each block)
 726 
 727 void LinearScan::compute_global_live_sets() {
 728   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
 729 
 730   int  num_blocks = block_count();
 731   bool change_occurred;
 732   bool change_occurred_in_block;
 733   int  iteration_count = 0;
 734   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
 735 
 736   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
 737   // The loop is executed until a fixpoint is reached (no changes in an iteration)
 738   // Exception handlers must be processed because not all live values are
 739   // present in the state array, e.g. because of global value numbering
 740   do {
 741     change_occurred = false;
 742 
 743     // iterate all blocks in reverse order
 744     for (int i = num_blocks - 1; i >= 0; i--) {
 745       BlockBegin* block = block_at(i);
 746 
 747       change_occurred_in_block = false;
 748 
 749       // live_out(block) is the union of live_in(sux), for successors sux of block
 750       int n = block->number_of_sux();
 751       int e = block->number_of_exception_handlers();
 752       if (n + e > 0) {
 753         // block has successors
 754         if (n > 0) {
 755           live_out.set_from(block->sux_at(0)->live_in());
 756           for (int j = 1; j < n; j++) {
 757             live_out.set_union(block->sux_at(j)->live_in());
 758           }
 759         } else {
 760           live_out.clear();
 761         }
 762         for (int j = 0; j < e; j++) {
 763           live_out.set_union(block->exception_handler_at(j)->live_in());
 764         }
 765 
 766         if (!block->live_out().is_same(live_out)) {
 767           // A change occurred.  Swap the old and new live out sets to avoid copying.
 768           BitMap temp = block->live_out();
 769           block->set_live_out(live_out);
 770           live_out = temp;
 771 
 772           change_occurred = true;
 773           change_occurred_in_block = true;
 774         }
 775       }
 776 
 777       if (iteration_count == 0 || change_occurred_in_block) {
 778         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
 779         // note: live_in has to be computed only in first iteration or if live_out has changed!
 780         BitMap live_in = block->live_in();
 781         live_in.set_from(block->live_out());
 782         live_in.set_difference(block->live_kill());
 783         live_in.set_union(block->live_gen());
 784       }
 785 
 786 #ifndef PRODUCT
 787       if (TraceLinearScanLevel >= 4) {
 788         char c = ' ';
 789         if (iteration_count == 0 || change_occurred_in_block) {
 790           c = '*';
 791         }
 792         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
 793         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
 794       }
 795 #endif
 796     }
 797     iteration_count++;
 798 
 799     if (change_occurred && iteration_count > 50) {
 800       BAILOUT("too many iterations in compute_global_live_sets");
 801     }
 802   } while (change_occurred);
 803 
 804 
 805 #ifdef ASSERT
 806   // check that fixed intervals are not live at block boundaries
 807   // (live set must be empty at fixed intervals)
 808   for (int i = 0; i < num_blocks; i++) {
 809     BlockBegin* block = block_at(i);
 810     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
 811       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
 812       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
 813       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
 814     }
 815   }
 816 #endif
 817 
 818   // check that the live_in set of the first block is empty
 819   BitMap live_in_args(ir()->start()->live_in().size());
 820   live_in_args.clear();
 821   if (!ir()->start()->live_in().is_same(live_in_args)) {
 822 #ifdef ASSERT
 823     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
 824     tty->print_cr("affected registers:");
 825     print_bitmap(ir()->start()->live_in());
 826 
 827     // print some additional information to simplify debugging
 828     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
 829       if (ir()->start()->live_in().at(i)) {
 830         Instruction* instr = gen()->instruction_for_vreg(i);
 831         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
 832 
 833         for (int j = 0; j < num_blocks; j++) {
 834           BlockBegin* block = block_at(j);
 835           if (block->live_gen().at(i)) {
 836             tty->print_cr("  used in block B%d", block->block_id());
 837           }
 838           if (block->live_kill().at(i)) {
 839             tty->print_cr("  defined in block B%d", block->block_id());
 840           }
 841         }
 842       }
 843     }
 844 
 845 #endif
 846     // when this fails, virtual registers are used before they are defined.
 847     assert(false, "live_in set of first block must be empty");
 848     // bailout of if this occurs in product mode.
 849     bailout("live_in set of first block not empty");
 850   }
 851 }
 852 
 853 
 854 // ********** Phase 4: build intervals
 855 // (fills the list _intervals)
 856 
 857 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
 858   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
 859   LIR_Opr opr = value->operand();
 860   Constant* con = value->as_Constant();
 861 
 862   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 863     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 864     add_use(opr, from, to, use_kind);
 865   }
 866 }
 867 
 868 
 869 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
 870   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
 871   assert(opr->is_register(), "should not be called otherwise");
 872 
 873   if (opr->is_virtual_register()) {
 874     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 875     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
 876 
 877   } else {
 878     int reg = reg_num(opr);
 879     if (is_processed_reg_num(reg)) {
 880       add_def(reg, def_pos, use_kind, opr->type_register());
 881     }
 882     reg = reg_numHi(opr);
 883     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 884       add_def(reg, def_pos, use_kind, opr->type_register());
 885     }
 886   }
 887 }
 888 
 889 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
 890   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
 891   assert(opr->is_register(), "should not be called otherwise");
 892 
 893   if (opr->is_virtual_register()) {
 894     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 895     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
 896 
 897   } else {
 898     int reg = reg_num(opr);
 899     if (is_processed_reg_num(reg)) {
 900       add_use(reg, from, to, use_kind, opr->type_register());
 901     }
 902     reg = reg_numHi(opr);
 903     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 904       add_use(reg, from, to, use_kind, opr->type_register());
 905     }
 906   }
 907 }
 908 
 909 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
 910   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
 911   assert(opr->is_register(), "should not be called otherwise");
 912 
 913   if (opr->is_virtual_register()) {
 914     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 915     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
 916 
 917   } else {
 918     int reg = reg_num(opr);
 919     if (is_processed_reg_num(reg)) {
 920       add_temp(reg, temp_pos, use_kind, opr->type_register());
 921     }
 922     reg = reg_numHi(opr);
 923     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 924       add_temp(reg, temp_pos, use_kind, opr->type_register());
 925     }
 926   }
 927 }
 928 
 929 
 930 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
 931   Interval* interval = interval_at(reg_num);
 932   if (interval != NULL) {
 933     assert(interval->reg_num() == reg_num, "wrong interval");
 934 
 935     if (type != T_ILLEGAL) {
 936       interval->set_type(type);
 937     }
 938 
 939     Range* r = interval->first();
 940     if (r->from() <= def_pos) {
 941       // Update the starting point (when a range is first created for a use, its
 942       // start is the beginning of the current block until a def is encountered.)
 943       r->set_from(def_pos);
 944       interval->add_use_pos(def_pos, use_kind);
 945 
 946     } else {
 947       // Dead value - make vacuous interval
 948       // also add use_kind for dead intervals
 949       interval->add_range(def_pos, def_pos + 1);
 950       interval->add_use_pos(def_pos, use_kind);
 951       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
 952     }
 953 
 954   } else {
 955     // Dead value - make vacuous interval
 956     // also add use_kind for dead intervals
 957     interval = create_interval(reg_num);
 958     if (type != T_ILLEGAL) {
 959       interval->set_type(type);
 960     }
 961 
 962     interval->add_range(def_pos, def_pos + 1);
 963     interval->add_use_pos(def_pos, use_kind);
 964     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
 965   }
 966 
 967   change_spill_definition_pos(interval, def_pos);
 968   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
 969         // detection of method-parameters and roundfp-results
 970         // TODO: move this directly to position where use-kind is computed
 971     interval->set_spill_state(startInMemory);
 972   }
 973 }
 974 
 975 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
 976   Interval* interval = interval_at(reg_num);
 977   if (interval == NULL) {
 978     interval = create_interval(reg_num);
 979   }
 980   assert(interval->reg_num() == reg_num, "wrong interval");
 981 
 982   if (type != T_ILLEGAL) {
 983     interval->set_type(type);
 984   }
 985 
 986   interval->add_range(from, to);
 987   interval->add_use_pos(to, use_kind);
 988 }
 989 
 990 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
 991   Interval* interval = interval_at(reg_num);
 992   if (interval == NULL) {
 993     interval = create_interval(reg_num);
 994   }
 995   assert(interval->reg_num() == reg_num, "wrong interval");
 996 
 997   if (type != T_ILLEGAL) {
 998     interval->set_type(type);
 999   }
1000 
1001   interval->add_range(temp_pos, temp_pos + 1);
1002   interval->add_use_pos(temp_pos, use_kind);
1003 }
1004 
1005 
1006 // the results of this functions are used for optimizing spilling and reloading
1007 // if the functions return shouldHaveRegister and the interval is spilled,
1008 // it is not reloaded to a register.
1009 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1010   if (op->code() == lir_move) {
1011     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1012     LIR_Op1* move = (LIR_Op1*)op;
1013     LIR_Opr res = move->result_opr();
1014     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1015 
1016     if (result_in_memory) {
1017       // Begin of an interval with must_start_in_memory set.
1018       // This interval will always get a stack slot first, so return noUse.
1019       return noUse;
1020 
1021     } else if (move->in_opr()->is_stack()) {
1022       // method argument (condition must be equal to handle_method_arguments)
1023       return noUse;
1024 
1025     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1026       // Move from register to register
1027       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1028         // special handling of phi-function moves inside osr-entry blocks
1029         // input operand must have a register instead of output operand (leads to better register allocation)
1030         return shouldHaveRegister;
1031       }
1032     }
1033   }
1034 
1035   if (opr->is_virtual() &&
1036       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1037     // result is a stack-slot, so prevent immediate reloading
1038     return noUse;
1039   }
1040 
1041   // all other operands require a register
1042   return mustHaveRegister;
1043 }
1044 
1045 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1046   if (op->code() == lir_move) {
1047     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1048     LIR_Op1* move = (LIR_Op1*)op;
1049     LIR_Opr res = move->result_opr();
1050     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1051 
1052     if (result_in_memory) {
1053       // Move to an interval with must_start_in_memory set.
1054       // To avoid moves from stack to stack (not allowed) force the input operand to a register
1055       return mustHaveRegister;
1056 
1057     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1058       // Move from register to register
1059       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1060         // special handling of phi-function moves inside osr-entry blocks
1061         // input operand must have a register instead of output operand (leads to better register allocation)
1062         return mustHaveRegister;
1063       }
1064 
1065       // The input operand is not forced to a register (moves from stack to register are allowed),
1066       // but it is faster if the input operand is in a register
1067       return shouldHaveRegister;
1068     }
1069   }
1070 
1071 
1072 #ifdef X86
1073   if (op->code() == lir_cmove) {
1074     // conditional moves can handle stack operands
1075     assert(op->result_opr()->is_register(), "result must always be in a register");
1076     return shouldHaveRegister;
1077   }
1078 
1079   // optimizations for second input operand of arithmehtic operations on Intel
1080   // this operand is allowed to be on the stack in some cases
1081   BasicType opr_type = opr->type_register();
1082   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1083     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
1084       // SSE float instruction (T_DOUBLE only supported with SSE2)
1085       switch (op->code()) {
1086         case lir_cmp:
1087         case lir_add:
1088         case lir_sub:
1089         case lir_mul:
1090         case lir_div:
1091         {
1092           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1093           LIR_Op2* op2 = (LIR_Op2*)op;
1094           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1095             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1096             return shouldHaveRegister;
1097           }
1098         }
1099       }
1100     } else {
1101       // FPU stack float instruction
1102       switch (op->code()) {
1103         case lir_add:
1104         case lir_sub:
1105         case lir_mul:
1106         case lir_div:
1107         {
1108           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1109           LIR_Op2* op2 = (LIR_Op2*)op;
1110           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1111             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1112             return shouldHaveRegister;
1113           }
1114         }
1115       }
1116     }
1117 
1118   } else if (opr_type != T_LONG) {
1119     // integer instruction (note: long operands must always be in register)
1120     switch (op->code()) {
1121       case lir_cmp:
1122       case lir_add:
1123       case lir_sub:
1124       case lir_logic_and:
1125       case lir_logic_or:
1126       case lir_logic_xor:
1127       {
1128         assert(op->as_Op2() != NULL, "must be LIR_Op2");
1129         LIR_Op2* op2 = (LIR_Op2*)op;
1130         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1131           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1132           return shouldHaveRegister;
1133         }
1134       }
1135     }
1136   }
1137 #endif // X86
1138 
1139   // all other operands require a register
1140   return mustHaveRegister;
1141 }
1142 
1143 
1144 void LinearScan::handle_method_arguments(LIR_Op* op) {
1145   // special handling for method arguments (moves from stack to virtual register):
1146   // the interval gets no register assigned, but the stack slot.
1147   // it is split before the first use by the register allocator.
1148 
1149   if (op->code() == lir_move) {
1150     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1151     LIR_Op1* move = (LIR_Op1*)op;
1152 
1153     if (move->in_opr()->is_stack()) {
1154 #ifdef ASSERT
1155       int arg_size = compilation()->method()->arg_size();
1156       LIR_Opr o = move->in_opr();
1157       if (o->is_single_stack()) {
1158         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1159       } else if (o->is_double_stack()) {
1160         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1161       } else {
1162         ShouldNotReachHere();
1163       }
1164 
1165       assert(move->id() > 0, "invalid id");
1166       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1167       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1168 
1169       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1170 #endif
1171 
1172       Interval* interval = interval_at(reg_num(move->result_opr()));
1173 
1174       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1175       interval->set_canonical_spill_slot(stack_slot);
1176       interval->assign_reg(stack_slot);
1177     }
1178   }
1179 }
1180 
1181 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1182   // special handling for doubleword move from memory to register:
1183   // in this case the registers of the input address and the result
1184   // registers must not overlap -> add a temp range for the input registers
1185   if (op->code() == lir_move) {
1186     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1187     LIR_Op1* move = (LIR_Op1*)op;
1188 
1189     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1190       LIR_Address* address = move->in_opr()->as_address_ptr();
1191       if (address != NULL) {
1192         if (address->base()->is_valid()) {
1193           add_temp(address->base(), op->id(), noUse);
1194         }
1195         if (address->index()->is_valid()) {
1196           add_temp(address->index(), op->id(), noUse);
1197         }
1198       }
1199     }
1200   }
1201 }
1202 
1203 void LinearScan::add_register_hints(LIR_Op* op) {
1204   switch (op->code()) {
1205     case lir_move:      // fall through
1206     case lir_convert: {
1207       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1208       LIR_Op1* move = (LIR_Op1*)op;
1209 
1210       LIR_Opr move_from = move->in_opr();
1211       LIR_Opr move_to = move->result_opr();
1212 
1213       if (move_to->is_register() && move_from->is_register()) {
1214         Interval* from = interval_at(reg_num(move_from));
1215         Interval* to = interval_at(reg_num(move_to));
1216         if (from != NULL && to != NULL) {
1217           to->set_register_hint(from);
1218           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1219         }
1220       }
1221       break;
1222     }
1223     case lir_cmove: {
1224       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1225       LIR_Op2* cmove = (LIR_Op2*)op;
1226 
1227       LIR_Opr move_from = cmove->in_opr1();
1228       LIR_Opr move_to = cmove->result_opr();
1229 
1230       if (move_to->is_register() && move_from->is_register()) {
1231         Interval* from = interval_at(reg_num(move_from));
1232         Interval* to = interval_at(reg_num(move_to));
1233         if (from != NULL && to != NULL) {
1234           to->set_register_hint(from);
1235           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1236         }
1237       }
1238       break;
1239     }
1240   }
1241 }
1242 
1243 
1244 void LinearScan::build_intervals() {
1245   TIME_LINEAR_SCAN(timer_build_intervals);
1246 
1247   // initialize interval list with expected number of intervals
1248   // (32 is added to have some space for split children without having to resize the list)
1249   _intervals = IntervalList(num_virtual_regs() + 32);
1250   // initialize all slots that are used by build_intervals
1251   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1252 
1253   // create a list with all caller-save registers (cpu, fpu, xmm)
1254   // when an instruction is a call, a temp range is created for all these registers
1255   int num_caller_save_registers = 0;
1256   int caller_save_registers[LinearScan::nof_regs];
1257 
1258   int i;
1259   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs; i++) {
1260     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1261     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1262     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1263     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1264   }
1265 
1266   // temp ranges for fpu registers are only created when the method has
1267   // virtual fpu operands. Otherwise no allocation for fpu registers is
1268   // perfomed and so the temp ranges would be useless
1269   if (has_fpu_registers()) {
1270 #ifdef X86
1271     if (UseSSE < 2) {
1272 #endif
1273       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1274         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1275         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1276         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1277         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1278       }
1279 #ifdef X86
1280     }
1281     if (UseSSE > 0) {
1282       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
1283         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1284         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1285         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1286         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1287       }
1288     }
1289 #endif
1290   }
1291   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1292 
1293 
1294   LIR_OpVisitState visitor;
1295 
1296   // iterate all blocks in reverse order
1297   for (i = block_count() - 1; i >= 0; i--) {
1298     BlockBegin* block = block_at(i);
1299     LIR_OpList* instructions = block->lir()->instructions_list();
1300     int         block_from =   block->first_lir_instruction_id();
1301     int         block_to =     block->last_lir_instruction_id();
1302 
1303     assert(block_from == instructions->at(0)->id(), "must be");
1304     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1305 
1306     // Update intervals for registers live at the end of this block;
1307     BitMap live = block->live_out();
1308     int size = (int)live.size();
1309     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1310       assert(live.at(number), "should not stop here otherwise");
1311       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1312       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1313 
1314       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1315 
1316       // add special use positions for loop-end blocks when the
1317       // interval is used anywhere inside this loop.  It's possible
1318       // that the block was part of a non-natural loop, so it might
1319       // have an invalid loop index.
1320       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1321           block->loop_index() != -1 &&
1322           is_interval_in_loop(number, block->loop_index())) {
1323         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1324       }
1325     }
1326 
1327     // iterate all instructions of the block in reverse order.
1328     // skip the first instruction because it is always a label
1329     // definitions of intervals are processed before uses
1330     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1331     for (int j = instructions->length() - 1; j >= 1; j--) {
1332       LIR_Op* op = instructions->at(j);
1333       int op_id = op->id();
1334 
1335       // visit operation to collect all operands
1336       visitor.visit(op);
1337 
1338       // add a temp range for each register if operation destroys caller-save registers
1339       if (visitor.has_call()) {
1340         for (int k = 0; k < num_caller_save_registers; k++) {
1341           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1342         }
1343         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1344       }
1345 
1346       // Add any platform dependent temps
1347       pd_add_temps(op);
1348 
1349       // visit definitions (output and temp operands)
1350       int k, n;
1351       n = visitor.opr_count(LIR_OpVisitState::outputMode);
1352       for (k = 0; k < n; k++) {
1353         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1354         assert(opr->is_register(), "visitor should only return register operands");
1355         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1356       }
1357 
1358       n = visitor.opr_count(LIR_OpVisitState::tempMode);
1359       for (k = 0; k < n; k++) {
1360         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1361         assert(opr->is_register(), "visitor should only return register operands");
1362         add_temp(opr, op_id, mustHaveRegister);
1363       }
1364 
1365       // visit uses (input operands)
1366       n = visitor.opr_count(LIR_OpVisitState::inputMode);
1367       for (k = 0; k < n; k++) {
1368         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1369         assert(opr->is_register(), "visitor should only return register operands");
1370         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1371       }
1372 
1373       // Add uses of live locals from interpreter's point of view for proper
1374       // debug information generation
1375       // Treat these operands as temp values (if the life range is extended
1376       // to a call site, the value would be in a register at the call otherwise)
1377       n = visitor.info_count();
1378       for (k = 0; k < n; k++) {
1379         CodeEmitInfo* info = visitor.info_at(k);
1380         ValueStack* stack = info->stack();
1381         for_each_state_value(stack, value,
1382           add_use(value, block_from, op_id + 1, noUse);
1383         );
1384       }
1385 
1386       // special steps for some instructions (especially moves)
1387       handle_method_arguments(op);
1388       handle_doubleword_moves(op);
1389       add_register_hints(op);
1390 
1391     } // end of instruction iteration
1392   } // end of block iteration
1393 
1394 
1395   // add the range [0, 1[ to all fixed intervals
1396   // -> the register allocator need not handle unhandled fixed intervals
1397   for (int n = 0; n < LinearScan::nof_regs; n++) {
1398     Interval* interval = interval_at(n);
1399     if (interval != NULL) {
1400       interval->add_range(0, 1);
1401     }
1402   }
1403 }
1404 
1405 
1406 // ********** Phase 5: actual register allocation
1407 
1408 int LinearScan::interval_cmp(Interval** a, Interval** b) {
1409   if (*a != NULL) {
1410     if (*b != NULL) {
1411       return (*a)->from() - (*b)->from();
1412     } else {
1413       return -1;
1414     }
1415   } else {
1416     if (*b != NULL) {
1417       return 1;
1418     } else {
1419       return 0;
1420     }
1421   }
1422 }
1423 
1424 #ifndef PRODUCT
1425 bool LinearScan::is_sorted(IntervalArray* intervals) {
1426   int from = -1;
1427   int i, j;
1428   for (i = 0; i < intervals->length(); i ++) {
1429     Interval* it = intervals->at(i);
1430     if (it != NULL) {
1431       if (from > it->from()) {
1432         assert(false, "");
1433         return false;
1434       }
1435       from = it->from();
1436     }
1437   }
1438 
1439   // check in both directions if sorted list and unsorted list contain same intervals
1440   for (i = 0; i < interval_count(); i++) {
1441     if (interval_at(i) != NULL) {
1442       int num_found = 0;
1443       for (j = 0; j < intervals->length(); j++) {
1444         if (interval_at(i) == intervals->at(j)) {
1445           num_found++;
1446         }
1447       }
1448       assert(num_found == 1, "lists do not contain same intervals");
1449     }
1450   }
1451   for (j = 0; j < intervals->length(); j++) {
1452     int num_found = 0;
1453     for (i = 0; i < interval_count(); i++) {
1454       if (interval_at(i) == intervals->at(j)) {
1455         num_found++;
1456       }
1457     }
1458     assert(num_found == 1, "lists do not contain same intervals");
1459   }
1460 
1461   return true;
1462 }
1463 #endif
1464 
1465 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1466   if (*prev != NULL) {
1467     (*prev)->set_next(interval);
1468   } else {
1469     *first = interval;
1470   }
1471   *prev = interval;
1472 }
1473 
1474 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1475   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1476 
1477   *list1 = *list2 = Interval::end();
1478 
1479   Interval* list1_prev = NULL;
1480   Interval* list2_prev = NULL;
1481   Interval* v;
1482 
1483   const int n = _sorted_intervals->length();
1484   for (int i = 0; i < n; i++) {
1485     v = _sorted_intervals->at(i);
1486     if (v == NULL) continue;
1487 
1488     if (is_list1(v)) {
1489       add_to_list(list1, &list1_prev, v);
1490     } else if (is_list2 == NULL || is_list2(v)) {
1491       add_to_list(list2, &list2_prev, v);
1492     }
1493   }
1494 
1495   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1496   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1497 
1498   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1499   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1500 }
1501 
1502 
1503 void LinearScan::sort_intervals_before_allocation() {
1504   TIME_LINEAR_SCAN(timer_sort_intervals_before);
1505 
1506   IntervalList* unsorted_list = &_intervals;
1507   int unsorted_len = unsorted_list->length();
1508   int sorted_len = 0;
1509   int unsorted_idx;
1510   int sorted_idx = 0;
1511   int sorted_from_max = -1;
1512 
1513   // calc number of items for sorted list (sorted list must not contain NULL values)
1514   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1515     if (unsorted_list->at(unsorted_idx) != NULL) {
1516       sorted_len++;
1517     }
1518   }
1519   IntervalArray* sorted_list = new IntervalArray(sorted_len);
1520 
1521   // special sorting algorithm: the original interval-list is almost sorted,
1522   // only some intervals are swapped. So this is much faster than a complete QuickSort
1523   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1524     Interval* cur_interval = unsorted_list->at(unsorted_idx);
1525 
1526     if (cur_interval != NULL) {
1527       int cur_from = cur_interval->from();
1528 
1529       if (sorted_from_max <= cur_from) {
1530         sorted_list->at_put(sorted_idx++, cur_interval);
1531         sorted_from_max = cur_interval->from();
1532       } else {
1533         // the asumption that the intervals are already sorted failed,
1534         // so this interval must be sorted in manually
1535         int j;
1536         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1537           sorted_list->at_put(j + 1, sorted_list->at(j));
1538         }
1539         sorted_list->at_put(j + 1, cur_interval);
1540         sorted_idx++;
1541       }
1542     }
1543   }
1544   _sorted_intervals = sorted_list;
1545 }
1546 
1547 void LinearScan::sort_intervals_after_allocation() {
1548   TIME_LINEAR_SCAN(timer_sort_intervals_after);
1549 
1550   IntervalArray* old_list      = _sorted_intervals;
1551   IntervalList*  new_list      = _new_intervals_from_allocation;
1552   int old_len = old_list->length();
1553   int new_len = new_list->length();
1554 
1555   if (new_len == 0) {
1556     // no intervals have been added during allocation, so sorted list is already up to date
1557     return;
1558   }
1559 
1560   // conventional sort-algorithm for new intervals
1561   new_list->sort(interval_cmp);
1562 
1563   // merge old and new list (both already sorted) into one combined list
1564   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
1565   int old_idx = 0;
1566   int new_idx = 0;
1567 
1568   while (old_idx + new_idx < old_len + new_len) {
1569     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1570       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1571       old_idx++;
1572     } else {
1573       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1574       new_idx++;
1575     }
1576   }
1577 
1578   _sorted_intervals = combined_list;
1579 }
1580 
1581 
1582 void LinearScan::allocate_registers() {
1583   TIME_LINEAR_SCAN(timer_allocate_registers);
1584 
1585   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1586   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1587 
1588   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
1589   if (has_fpu_registers()) {
1590     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1591 #ifdef ASSERT
1592   } else {
1593     // fpu register allocation is omitted because no virtual fpu registers are present
1594     // just check this again...
1595     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1596     assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
1597 #endif
1598   }
1599 
1600   // allocate cpu registers
1601   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1602   cpu_lsw.walk();
1603   cpu_lsw.finish_allocation();
1604 
1605   if (has_fpu_registers()) {
1606     // allocate fpu registers
1607     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1608     fpu_lsw.walk();
1609     fpu_lsw.finish_allocation();
1610   }
1611 }
1612 
1613 
1614 // ********** Phase 6: resolve data flow
1615 // (insert moves at edges between blocks if intervals have been split)
1616 
1617 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1618 // instead of returning NULL
1619 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1620   Interval* result = interval->split_child_at_op_id(op_id, mode);
1621   if (result != NULL) {
1622     return result;
1623   }
1624 
1625   assert(false, "must find an interval, but do a clean bailout in product mode");
1626   result = new Interval(LIR_OprDesc::vreg_base);
1627   result->assign_reg(0);
1628   result->set_type(T_INT);
1629   BAILOUT_("LinearScan: interval is NULL", result);
1630 }
1631 
1632 
1633 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1634   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1635   assert(interval_at(reg_num) != NULL, "no interval found");
1636 
1637   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1638 }
1639 
1640 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1641   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1642   assert(interval_at(reg_num) != NULL, "no interval found");
1643 
1644   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1645 }
1646 
1647 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1648   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1649   assert(interval_at(reg_num) != NULL, "no interval found");
1650 
1651   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1652 }
1653 
1654 
1655 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1656   DEBUG_ONLY(move_resolver.check_empty());
1657 
1658   const int num_regs = num_virtual_regs();
1659   const int size = live_set_size();
1660   const BitMap live_at_edge = to_block->live_in();
1661 
1662   // visit all registers where the live_at_edge bit is set
1663   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1664     assert(r < num_regs, "live information set for not exisiting interval");
1665     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1666 
1667     Interval* from_interval = interval_at_block_end(from_block, r);
1668     Interval* to_interval = interval_at_block_begin(to_block, r);
1669 
1670     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1671       // need to insert move instruction
1672       move_resolver.add_mapping(from_interval, to_interval);
1673     }
1674   }
1675 }
1676 
1677 
1678 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1679   if (from_block->number_of_sux() <= 1) {
1680     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1681 
1682     LIR_OpList* instructions = from_block->lir()->instructions_list();
1683     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1684     if (branch != NULL) {
1685       // insert moves before branch
1686       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1687       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1688     } else {
1689       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1690     }
1691 
1692   } else {
1693     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1694 #ifdef ASSERT
1695     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1696 
1697     // because the number of predecessor edges matches the number of
1698     // successor edges, blocks which are reached by switch statements
1699     // may have be more than one predecessor but it will be guaranteed
1700     // that all predecessors will be the same.
1701     for (int i = 0; i < to_block->number_of_preds(); i++) {
1702       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1703     }
1704 #endif
1705 
1706     move_resolver.set_insert_position(to_block->lir(), 0);
1707   }
1708 }
1709 
1710 
1711 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1712 void LinearScan::resolve_data_flow() {
1713   TIME_LINEAR_SCAN(timer_resolve_data_flow);
1714 
1715   int num_blocks = block_count();
1716   MoveResolver move_resolver(this);
1717   BitMap block_completed(num_blocks);  block_completed.clear();
1718   BitMap already_resolved(num_blocks); already_resolved.clear();
1719 
1720   int i;
1721   for (i = 0; i < num_blocks; i++) {
1722     BlockBegin* block = block_at(i);
1723 
1724     // check if block has only one predecessor and only one successor
1725     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1726       LIR_OpList* instructions = block->lir()->instructions_list();
1727       assert(instructions->at(0)->code() == lir_label, "block must start with label");
1728       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1729       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1730 
1731       // check if block is empty (only label and branch)
1732       if (instructions->length() == 2) {
1733         BlockBegin* pred = block->pred_at(0);
1734         BlockBegin* sux = block->sux_at(0);
1735 
1736         // prevent optimization of two consecutive blocks
1737         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1738           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1739           block_completed.set_bit(block->linear_scan_number());
1740 
1741           // directly resolve between pred and sux (without looking at the empty block between)
1742           resolve_collect_mappings(pred, sux, move_resolver);
1743           if (move_resolver.has_mappings()) {
1744             move_resolver.set_insert_position(block->lir(), 0);
1745             move_resolver.resolve_and_append_moves();
1746           }
1747         }
1748       }
1749     }
1750   }
1751 
1752 
1753   for (i = 0; i < num_blocks; i++) {
1754     if (!block_completed.at(i)) {
1755       BlockBegin* from_block = block_at(i);
1756       already_resolved.set_from(block_completed);
1757 
1758       int num_sux = from_block->number_of_sux();
1759       for (int s = 0; s < num_sux; s++) {
1760         BlockBegin* to_block = from_block->sux_at(s);
1761 
1762         // check for duplicate edges between the same blocks (can happen with switch blocks)
1763         if (!already_resolved.at(to_block->linear_scan_number())) {
1764           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1765           already_resolved.set_bit(to_block->linear_scan_number());
1766 
1767           // collect all intervals that have been split between from_block and to_block
1768           resolve_collect_mappings(from_block, to_block, move_resolver);
1769           if (move_resolver.has_mappings()) {
1770             resolve_find_insert_pos(from_block, to_block, move_resolver);
1771             move_resolver.resolve_and_append_moves();
1772           }
1773         }
1774       }
1775     }
1776   }
1777 }
1778 
1779 
1780 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1781   if (interval_at(reg_num) == NULL) {
1782     // if a phi function is never used, no interval is created -> ignore this
1783     return;
1784   }
1785 
1786   Interval* interval = interval_at_block_begin(block, reg_num);
1787   int reg = interval->assigned_reg();
1788   int regHi = interval->assigned_regHi();
1789 
1790   if ((reg < nof_regs && interval->always_in_memory()) ||
1791       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1792     // the interval is split to get a short range that is located on the stack
1793     // in the following two cases:
1794     // * the interval started in memory (e.g. method parameter), but is currently in a register
1795     //   this is an optimization for exception handling that reduces the number of moves that
1796     //   are necessary for resolving the states when an exception uses this exception handler
1797     // * the interval would be on the fpu stack at the begin of the exception handler
1798     //   this is not allowed because of the complicated fpu stack handling on Intel
1799 
1800     // range that will be spilled to memory
1801     int from_op_id = block->first_lir_instruction_id();
1802     int to_op_id = from_op_id + 1;  // short live range of length 1
1803     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1804            "no split allowed between exception entry and first instruction");
1805 
1806     if (interval->from() != from_op_id) {
1807       // the part before from_op_id is unchanged
1808       interval = interval->split(from_op_id);
1809       interval->assign_reg(reg, regHi);
1810       append_interval(interval);
1811     }
1812     assert(interval->from() == from_op_id, "must be true now");
1813 
1814     Interval* spilled_part = interval;
1815     if (interval->to() != to_op_id) {
1816       // the part after to_op_id is unchanged
1817       spilled_part = interval->split_from_start(to_op_id);
1818       append_interval(spilled_part);
1819       move_resolver.add_mapping(spilled_part, interval);
1820     }
1821     assign_spill_slot(spilled_part);
1822 
1823     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1824   }
1825 }
1826 
1827 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1828   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1829   DEBUG_ONLY(move_resolver.check_empty());
1830 
1831   // visit all registers where the live_in bit is set
1832   int size = live_set_size();
1833   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1834     resolve_exception_entry(block, r, move_resolver);
1835   }
1836 
1837   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1838   for_each_phi_fun(block, phi,
1839     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1840   );
1841 
1842   if (move_resolver.has_mappings()) {
1843     // insert moves after first instruction
1844     move_resolver.set_insert_position(block->lir(), 1);
1845     move_resolver.resolve_and_append_moves();
1846   }
1847 }
1848 
1849 
1850 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1851   if (interval_at(reg_num) == NULL) {
1852     // if a phi function is never used, no interval is created -> ignore this
1853     return;
1854   }
1855 
1856   // the computation of to_interval is equal to resolve_collect_mappings,
1857   // but from_interval is more complicated because of phi functions
1858   BlockBegin* to_block = handler->entry_block();
1859   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1860 
1861   if (phi != NULL) {
1862     // phi function of the exception entry block
1863     // no moves are created for this phi function in the LIR_Generator, so the
1864     // interval at the throwing instruction must be searched using the operands
1865     // of the phi function
1866     Value from_value = phi->operand_at(handler->phi_operand());
1867 
1868     // with phi functions it can happen that the same from_value is used in
1869     // multiple mappings, so notify move-resolver that this is allowed
1870     move_resolver.set_multiple_reads_allowed();
1871 
1872     Constant* con = from_value->as_Constant();
1873     if (con != NULL && !con->is_pinned()) {
1874       // unpinned constants may have no register, so add mapping from constant to interval
1875       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1876     } else {
1877       // search split child at the throwing op_id
1878       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1879       move_resolver.add_mapping(from_interval, to_interval);
1880     }
1881 
1882   } else {
1883     // no phi function, so use reg_num also for from_interval
1884     // search split child at the throwing op_id
1885     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1886     if (from_interval != to_interval) {
1887       // optimization to reduce number of moves: when to_interval is on stack and
1888       // the stack slot is known to be always correct, then no move is necessary
1889       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1890         move_resolver.add_mapping(from_interval, to_interval);
1891       }
1892     }
1893   }
1894 }
1895 
1896 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1897   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1898 
1899   DEBUG_ONLY(move_resolver.check_empty());
1900   assert(handler->lir_op_id() == -1, "already processed this xhandler");
1901   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1902   assert(handler->entry_code() == NULL, "code already present");
1903 
1904   // visit all registers where the live_in bit is set
1905   BlockBegin* block = handler->entry_block();
1906   int size = live_set_size();
1907   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1908     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1909   }
1910 
1911   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1912   for_each_phi_fun(block, phi,
1913     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1914   );
1915 
1916   if (move_resolver.has_mappings()) {
1917     LIR_List* entry_code = new LIR_List(compilation());
1918     move_resolver.set_insert_position(entry_code, 0);
1919     move_resolver.resolve_and_append_moves();
1920 
1921     entry_code->jump(handler->entry_block());
1922     handler->set_entry_code(entry_code);
1923   }
1924 }
1925 
1926 
1927 void LinearScan::resolve_exception_handlers() {
1928   MoveResolver move_resolver(this);
1929   LIR_OpVisitState visitor;
1930   int num_blocks = block_count();
1931 
1932   int i;
1933   for (i = 0; i < num_blocks; i++) {
1934     BlockBegin* block = block_at(i);
1935     if (block->is_set(BlockBegin::exception_entry_flag)) {
1936       resolve_exception_entry(block, move_resolver);
1937     }
1938   }
1939 
1940   for (i = 0; i < num_blocks; i++) {
1941     BlockBegin* block = block_at(i);
1942     LIR_List* ops = block->lir();
1943     int num_ops = ops->length();
1944 
1945     // iterate all instructions of the block. skip the first because it is always a label
1946     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
1947     for (int j = 1; j < num_ops; j++) {
1948       LIR_Op* op = ops->at(j);
1949       int op_id = op->id();
1950 
1951       if (op_id != -1 && has_info(op_id)) {
1952         // visit operation to collect all operands
1953         visitor.visit(op);
1954         assert(visitor.info_count() > 0, "should not visit otherwise");
1955 
1956         XHandlers* xhandlers = visitor.all_xhandler();
1957         int n = xhandlers->length();
1958         for (int k = 0; k < n; k++) {
1959           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
1960         }
1961 
1962 #ifdef ASSERT
1963       } else {
1964         visitor.visit(op);
1965         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
1966 #endif
1967       }
1968     }
1969   }
1970 }
1971 
1972 
1973 // ********** Phase 7: assign register numbers back to LIR
1974 // (includes computation of debug information and oop maps)
1975 
1976 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
1977   VMReg reg = interval->cached_vm_reg();
1978   if (!reg->is_valid() ) {
1979     reg = vm_reg_for_operand(operand_for_interval(interval));
1980     interval->set_cached_vm_reg(reg);
1981   }
1982   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
1983   return reg;
1984 }
1985 
1986 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
1987   assert(opr->is_oop(), "currently only implemented for oop operands");
1988   return frame_map()->regname(opr);
1989 }
1990 
1991 
1992 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
1993   LIR_Opr opr = interval->cached_opr();
1994   if (opr->is_illegal()) {
1995     opr = calc_operand_for_interval(interval);
1996     interval->set_cached_opr(opr);
1997   }
1998 
1999   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2000   return opr;
2001 }
2002 
2003 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2004   int assigned_reg = interval->assigned_reg();
2005   BasicType type = interval->type();
2006 
2007   if (assigned_reg >= nof_regs) {
2008     // stack slot
2009     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2010     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2011 
2012   } else {
2013     // register
2014     switch (type) {
2015       case T_OBJECT: {
2016         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2017         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2018         return LIR_OprFact::single_cpu_oop(assigned_reg);
2019       }
2020 
2021 #ifdef __SOFTFP__
2022       case T_FLOAT:  // fall through
2023 #endif // __SOFTFP__
2024       case T_INT: {
2025         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2026         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2027         return LIR_OprFact::single_cpu(assigned_reg);
2028       }
2029 
2030 #ifdef __SOFTFP__
2031       case T_DOUBLE:  // fall through
2032 #endif // __SOFTFP__
2033       case T_LONG: {
2034         int assigned_regHi = interval->assigned_regHi();
2035         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2036         assert(num_physical_regs(T_LONG) == 1 ||
2037                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2038 
2039         assert(assigned_reg != assigned_regHi, "invalid allocation");
2040         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2041                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2042         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2043         if (requires_adjacent_regs(T_LONG)) {
2044           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2045         }
2046 
2047 #ifdef _LP64
2048         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2049 #else
2050 #if defined(SPARC) || defined(PPC)
2051         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2052 #else
2053         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2054 #endif // SPARC
2055 #endif // LP64
2056       }
2057 
2058 #ifndef __SOFTFP__
2059       case T_FLOAT: {
2060 #ifdef X86
2061         if (UseSSE >= 1) {
2062           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2063           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2064           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2065         }
2066 #endif
2067 
2068         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2069         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2070         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2071       }
2072 
2073       case T_DOUBLE: {
2074 #ifdef X86
2075         if (UseSSE >= 2) {
2076           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2077           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2078           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2079         }
2080 #endif
2081 
2082 #ifdef SPARC
2083         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2084         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2085         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2086         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2087 #elif defined(ARM)
2088         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2089         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2090         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2091         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2092 #else
2093         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2094         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2095         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2096 #endif
2097         return result;
2098       }
2099 #endif // __SOFTFP__
2100 
2101       default: {
2102         ShouldNotReachHere();
2103         return LIR_OprFact::illegalOpr;
2104       }
2105     }
2106   }
2107 }
2108 
2109 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2110   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2111   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2112 }
2113 
2114 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2115   assert(opr->is_virtual(), "should not call this otherwise");
2116 
2117   Interval* interval = interval_at(opr->vreg_number());
2118   assert(interval != NULL, "interval must exist");
2119 
2120   if (op_id != -1) {
2121 #ifdef ASSERT
2122     BlockBegin* block = block_of_op_with_id(op_id);
2123     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2124       // check if spill moves could have been appended at the end of this block, but
2125       // before the branch instruction. So the split child information for this branch would
2126       // be incorrect.
2127       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2128       if (branch != NULL) {
2129         if (block->live_out().at(opr->vreg_number())) {
2130           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2131           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2132         }
2133       }
2134     }
2135 #endif
2136 
2137     // operands are not changed when an interval is split during allocation,
2138     // so search the right interval here
2139     interval = split_child_at_op_id(interval, op_id, mode);
2140   }
2141 
2142   LIR_Opr res = operand_for_interval(interval);
2143 
2144 #ifdef X86
2145   // new semantic for is_last_use: not only set on definite end of interval,
2146   // but also before hole
2147   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2148   // last use information is completely correct
2149   // information is only needed for fpu stack allocation
2150   if (res->is_fpu_register()) {
2151     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2152       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2153       res = res->make_last_use();
2154     }
2155   }
2156 #endif
2157 
2158   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2159 
2160   return res;
2161 }
2162 
2163 
2164 #ifdef ASSERT
2165 // some methods used to check correctness of debug information
2166 
2167 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2168   if (values == NULL) {
2169     return;
2170   }
2171 
2172   for (int i = 0; i < values->length(); i++) {
2173     ScopeValue* value = values->at(i);
2174 
2175     if (value->is_location()) {
2176       Location location = ((LocationValue*)value)->location();
2177       assert(location.where() == Location::on_stack, "value is in register");
2178     }
2179   }
2180 }
2181 
2182 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2183   if (values == NULL) {
2184     return;
2185   }
2186 
2187   for (int i = 0; i < values->length(); i++) {
2188     MonitorValue* value = values->at(i);
2189 
2190     if (value->owner()->is_location()) {
2191       Location location = ((LocationValue*)value->owner())->location();
2192       assert(location.where() == Location::on_stack, "owner is in register");
2193     }
2194     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2195   }
2196 }
2197 
2198 void assert_equal(Location l1, Location l2) {
2199   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2200 }
2201 
2202 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2203   if (v1->is_location()) {
2204     assert(v2->is_location(), "");
2205     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2206   } else if (v1->is_constant_int()) {
2207     assert(v2->is_constant_int(), "");
2208     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2209   } else if (v1->is_constant_double()) {
2210     assert(v2->is_constant_double(), "");
2211     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2212   } else if (v1->is_constant_long()) {
2213     assert(v2->is_constant_long(), "");
2214     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2215   } else if (v1->is_constant_oop()) {
2216     assert(v2->is_constant_oop(), "");
2217     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2218   } else {
2219     ShouldNotReachHere();
2220   }
2221 }
2222 
2223 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2224   assert_equal(m1->owner(), m2->owner());
2225   assert_equal(m1->basic_lock(), m2->basic_lock());
2226 }
2227 
2228 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2229   assert(d1->scope() == d2->scope(), "not equal");
2230   assert(d1->bci() == d2->bci(), "not equal");
2231 
2232   if (d1->locals() != NULL) {
2233     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2234     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2235     for (int i = 0; i < d1->locals()->length(); i++) {
2236       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2237     }
2238   } else {
2239     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2240   }
2241 
2242   if (d1->expressions() != NULL) {
2243     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2244     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2245     for (int i = 0; i < d1->expressions()->length(); i++) {
2246       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2247     }
2248   } else {
2249     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2250   }
2251 
2252   if (d1->monitors() != NULL) {
2253     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2254     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2255     for (int i = 0; i < d1->monitors()->length(); i++) {
2256       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2257     }
2258   } else {
2259     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2260   }
2261 
2262   if (d1->caller() != NULL) {
2263     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2264     assert_equal(d1->caller(), d2->caller());
2265   } else {
2266     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2267   }
2268 }
2269 
2270 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2271   if (info->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2272     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->bci());
2273     switch (code) {
2274       case Bytecodes::_ifnull    : // fall through
2275       case Bytecodes::_ifnonnull : // fall through
2276       case Bytecodes::_ifeq      : // fall through
2277       case Bytecodes::_ifne      : // fall through
2278       case Bytecodes::_iflt      : // fall through
2279       case Bytecodes::_ifge      : // fall through
2280       case Bytecodes::_ifgt      : // fall through
2281       case Bytecodes::_ifle      : // fall through
2282       case Bytecodes::_if_icmpeq : // fall through
2283       case Bytecodes::_if_icmpne : // fall through
2284       case Bytecodes::_if_icmplt : // fall through
2285       case Bytecodes::_if_icmpge : // fall through
2286       case Bytecodes::_if_icmpgt : // fall through
2287       case Bytecodes::_if_icmple : // fall through
2288       case Bytecodes::_if_acmpeq : // fall through
2289       case Bytecodes::_if_acmpne :
2290         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2291         break;
2292     }
2293   }
2294 }
2295 
2296 #endif // ASSERT
2297 
2298 
2299 IntervalWalker* LinearScan::init_compute_oop_maps() {
2300   // setup lists of potential oops for walking
2301   Interval* oop_intervals;
2302   Interval* non_oop_intervals;
2303 
2304   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2305 
2306   // intervals that have no oops inside need not to be processed
2307   // to ensure a walking until the last instruction id, add a dummy interval
2308   // with a high operation id
2309   non_oop_intervals = new Interval(any_reg);
2310   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2311 
2312   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2313 }
2314 
2315 
2316 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2317   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2318 
2319   // walk before the current operation -> intervals that start at
2320   // the operation (= output operands of the operation) are not
2321   // included in the oop map
2322   iw->walk_before(op->id());
2323 
2324   int frame_size = frame_map()->framesize();
2325   int arg_count = frame_map()->oop_map_arg_count();
2326   OopMap* map = new OopMap(frame_size, arg_count);
2327 
2328   // Check if this is a patch site.
2329   bool is_patch_info = false;
2330   if (op->code() == lir_move) {
2331     assert(!is_call_site, "move must not be a call site");
2332     assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2333     LIR_Op1* move = (LIR_Op1*)op;
2334 
2335     is_patch_info = move->patch_code() != lir_patch_none;
2336   }
2337 
2338   // Iterate through active intervals
2339   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2340     int assigned_reg = interval->assigned_reg();
2341 
2342     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2343     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2344     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2345 
2346     // Check if this range covers the instruction. Intervals that
2347     // start or end at the current operation are not included in the
2348     // oop map, except in the case of patching moves.  For patching
2349     // moves, any intervals which end at this instruction are included
2350     // in the oop map since we may safepoint while doing the patch
2351     // before we've consumed the inputs.
2352     if (is_patch_info || op->id() < interval->current_to()) {
2353 
2354       // caller-save registers must not be included into oop-maps at calls
2355       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2356 
2357       VMReg name = vm_reg_for_interval(interval);
2358       map->set_oop(name);
2359 
2360       // Spill optimization: when the stack value is guaranteed to be always correct,
2361       // then it must be added to the oop map even if the interval is currently in a register
2362       if (interval->always_in_memory() &&
2363           op->id() > interval->spill_definition_pos() &&
2364           interval->assigned_reg() != interval->canonical_spill_slot()) {
2365         assert(interval->spill_definition_pos() > 0, "position not set correctly");
2366         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2367         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2368 
2369         map->set_oop(frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2370       }
2371     }
2372   }
2373 
2374   // add oops from lock stack
2375   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2376   int locks_count = info->stack()->locks_size();
2377   for (int i = 0; i < locks_count; i++) {
2378     map->set_oop(frame_map()->monitor_object_regname(i));
2379   }
2380 
2381   return map;
2382 }
2383 
2384 
2385 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2386   assert(visitor.info_count() > 0, "no oop map needed");
2387 
2388   // compute oop_map only for first CodeEmitInfo
2389   // because it is (in most cases) equal for all other infos of the same operation
2390   CodeEmitInfo* first_info = visitor.info_at(0);
2391   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2392 
2393   for (int i = 0; i < visitor.info_count(); i++) {
2394     CodeEmitInfo* info = visitor.info_at(i);
2395     OopMap* oop_map = first_oop_map;
2396 
2397     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2398       // this info has a different number of locks then the precomputed oop map
2399       // (possible for lock and unlock instructions) -> compute oop map with
2400       // correct lock information
2401       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2402     }
2403 
2404     if (info->_oop_map == NULL) {
2405       info->_oop_map = oop_map;
2406     } else {
2407       // a CodeEmitInfo can not be shared between different LIR-instructions
2408       // because interval splitting can occur anywhere between two instructions
2409       // and so the oop maps must be different
2410       // -> check if the already set oop_map is exactly the one calculated for this operation
2411       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2412     }
2413   }
2414 }
2415 
2416 
2417 // frequently used constants
2418 ConstantOopWriteValue LinearScan::_oop_null_scope_value = ConstantOopWriteValue(NULL);
2419 ConstantIntValue      LinearScan::_int_m1_scope_value = ConstantIntValue(-1);
2420 ConstantIntValue      LinearScan::_int_0_scope_value =  ConstantIntValue(0);
2421 ConstantIntValue      LinearScan::_int_1_scope_value =  ConstantIntValue(1);
2422 ConstantIntValue      LinearScan::_int_2_scope_value =  ConstantIntValue(2);
2423 LocationValue         _illegal_value = LocationValue(Location());
2424 
2425 void LinearScan::init_compute_debug_info() {
2426   // cache for frequently used scope values
2427   // (cpu registers and stack slots)
2428   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
2429 }
2430 
2431 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2432   Location loc;
2433   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2434     bailout("too large frame");
2435   }
2436   ScopeValue* object_scope_value = new LocationValue(loc);
2437 
2438   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2439     bailout("too large frame");
2440   }
2441   return new MonitorValue(object_scope_value, loc);
2442 }
2443 
2444 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2445   Location loc;
2446   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2447     bailout("too large frame");
2448   }
2449   return new LocationValue(loc);
2450 }
2451 
2452 
2453 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2454   assert(opr->is_constant(), "should not be called otherwise");
2455 
2456   LIR_Const* c = opr->as_constant_ptr();
2457   BasicType t = c->type();
2458   switch (t) {
2459     case T_OBJECT: {
2460       jobject value = c->as_jobject();
2461       if (value == NULL) {
2462         scope_values->append(&_oop_null_scope_value);
2463       } else {
2464         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2465       }
2466       return 1;
2467     }
2468 
2469     case T_INT: // fall through
2470     case T_FLOAT: {
2471       int value = c->as_jint_bits();
2472       switch (value) {
2473         case -1: scope_values->append(&_int_m1_scope_value); break;
2474         case 0:  scope_values->append(&_int_0_scope_value); break;
2475         case 1:  scope_values->append(&_int_1_scope_value); break;
2476         case 2:  scope_values->append(&_int_2_scope_value); break;
2477         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2478       }
2479       return 1;
2480     }
2481 
2482     case T_LONG: // fall through
2483     case T_DOUBLE: {
2484 #ifdef _LP64
2485       scope_values->append(&_int_0_scope_value);
2486       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2487 #else
2488       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2489         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2490         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2491       } else {
2492         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2493         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2494       }
2495 #endif
2496       return 2;
2497     }
2498 
2499     case T_ADDRESS: {
2500 #ifdef _LP64
2501       scope_values->append(new ConstantLongValue(c->as_jint()));
2502 #else
2503       scope_values->append(new ConstantIntValue(c->as_jint()));
2504 #endif
2505       return 1;
2506     }
2507 
2508     default:
2509       ShouldNotReachHere();
2510       return -1;
2511   }
2512 }
2513 
2514 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2515   if (opr->is_single_stack()) {
2516     int stack_idx = opr->single_stack_ix();
2517     bool is_oop = opr->is_oop_register();
2518     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2519 
2520     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2521     if (sv == NULL) {
2522       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2523       sv = location_for_name(stack_idx, loc_type);
2524       _scope_value_cache.at_put(cache_idx, sv);
2525     }
2526 
2527     // check if cached value is correct
2528     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2529 
2530     scope_values->append(sv);
2531     return 1;
2532 
2533   } else if (opr->is_single_cpu()) {
2534     bool is_oop = opr->is_oop_register();
2535     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2536     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2537 
2538     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2539     if (sv == NULL) {
2540       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2541       VMReg rname = frame_map()->regname(opr);
2542       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2543       _scope_value_cache.at_put(cache_idx, sv);
2544     }
2545 
2546     // check if cached value is correct
2547     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2548 
2549     scope_values->append(sv);
2550     return 1;
2551 
2552 #ifdef X86
2553   } else if (opr->is_single_xmm()) {
2554     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2555     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2556 
2557     scope_values->append(sv);
2558     return 1;
2559 #endif
2560 
2561   } else if (opr->is_single_fpu()) {
2562 #ifdef X86
2563     // the exact location of fpu stack values is only known
2564     // during fpu stack allocation, so the stack allocator object
2565     // must be present
2566     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2567     assert(_fpu_stack_allocator != NULL, "must be present");
2568     opr = _fpu_stack_allocator->to_fpu_stack(opr);
2569 #endif
2570 
2571     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2572     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2573     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2574 
2575     scope_values->append(sv);
2576     return 1;
2577 
2578   } else {
2579     // double-size operands
2580 
2581     ScopeValue* first;
2582     ScopeValue* second;
2583 
2584     if (opr->is_double_stack()) {
2585 #ifdef _LP64
2586       Location loc1;
2587       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2588       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2589         bailout("too large frame");
2590       }
2591       // Does this reverse on x86 vs. sparc?
2592       first =  new LocationValue(loc1);
2593       second = &_int_0_scope_value;
2594 #else
2595       Location loc1, loc2;
2596       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2597         bailout("too large frame");
2598       }
2599       first =  new LocationValue(loc1);
2600       second = new LocationValue(loc2);
2601 #endif // _LP64
2602 
2603     } else if (opr->is_double_cpu()) {
2604 #ifdef _LP64
2605       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2606       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2607       second = &_int_0_scope_value;
2608 #else
2609       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2610       VMReg rname_second = opr->as_register_hi()->as_VMReg();
2611 
2612       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2613         // lo/hi and swapped relative to first and second, so swap them
2614         VMReg tmp = rname_first;
2615         rname_first = rname_second;
2616         rname_second = tmp;
2617       }
2618 
2619       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2620       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2621 #endif //_LP64
2622 
2623 
2624 #ifdef X86
2625     } else if (opr->is_double_xmm()) {
2626       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2627       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2628 #  ifdef _LP64
2629       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2630       second = &_int_0_scope_value;
2631 #  else
2632       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2633       // %%% This is probably a waste but we'll keep things as they were for now
2634       if (true) {
2635         VMReg rname_second = rname_first->next();
2636         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2637       }
2638 #  endif
2639 #endif
2640 
2641     } else if (opr->is_double_fpu()) {
2642       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2643       // the double as float registers in the native ordering. On X86,
2644       // fpu_regnrLo is a FPU stack slot whose VMReg represents
2645       // the low-order word of the double and fpu_regnrLo + 1 is the
2646       // name for the other half.  *first and *second must represent the
2647       // least and most significant words, respectively.
2648 
2649 #ifdef X86
2650       // the exact location of fpu stack values is only known
2651       // during fpu stack allocation, so the stack allocator object
2652       // must be present
2653       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2654       assert(_fpu_stack_allocator != NULL, "must be present");
2655       opr = _fpu_stack_allocator->to_fpu_stack(opr);
2656 
2657       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2658 #endif
2659 #ifdef SPARC
2660       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2661 #endif
2662 #ifdef ARM
2663       assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2664 #endif
2665 #ifdef PPC
2666       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2667 #endif
2668 
2669       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2670 #ifdef _LP64
2671       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2672       second = &_int_0_scope_value;
2673 #else
2674       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2675       // %%% This is probably a waste but we'll keep things as they were for now
2676       if (true) {
2677         VMReg rname_second = rname_first->next();
2678         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2679       }
2680 #endif
2681 
2682     } else {
2683       ShouldNotReachHere();
2684       first = NULL;
2685       second = NULL;
2686     }
2687 
2688     assert(first != NULL && second != NULL, "must be set");
2689     // The convention the interpreter uses is that the second local
2690     // holds the first raw word of the native double representation.
2691     // This is actually reasonable, since locals and stack arrays
2692     // grow downwards in all implementations.
2693     // (If, on some machine, the interpreter's Java locals or stack
2694     // were to grow upwards, the embedded doubles would be word-swapped.)
2695     scope_values->append(second);
2696     scope_values->append(first);
2697     return 2;
2698   }
2699 }
2700 
2701 
2702 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2703   if (value != NULL) {
2704     LIR_Opr opr = value->operand();
2705     Constant* con = value->as_Constant();
2706 
2707     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2708     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2709 
2710     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2711       // Unpinned constants may have a virtual operand for a part of the lifetime
2712       // or may be illegal when it was optimized away,
2713       // so always use a constant operand
2714       opr = LIR_OprFact::value_type(con->type());
2715     }
2716     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2717 
2718     if (opr->is_virtual()) {
2719       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2720 
2721       BlockBegin* block = block_of_op_with_id(op_id);
2722       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2723         // generating debug information for the last instruction of a block.
2724         // if this instruction is a branch, spill moves are inserted before this branch
2725         // and so the wrong operand would be returned (spill moves at block boundaries are not
2726         // considered in the live ranges of intervals)
2727         // Solution: use the first op_id of the branch target block instead.
2728         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2729           if (block->live_out().at(opr->vreg_number())) {
2730             op_id = block->sux_at(0)->first_lir_instruction_id();
2731             mode = LIR_OpVisitState::outputMode;
2732           }
2733         }
2734       }
2735 
2736       // Get current location of operand
2737       // The operand must be live because debug information is considered when building the intervals
2738       // if the interval is not live, color_lir_opr will cause an assertion failure
2739       opr = color_lir_opr(opr, op_id, mode);
2740       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2741 
2742       // Append to ScopeValue array
2743       return append_scope_value_for_operand(opr, scope_values);
2744 
2745     } else {
2746       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2747       assert(opr->is_constant(), "operand must be constant");
2748 
2749       return append_scope_value_for_constant(opr, scope_values);
2750     }
2751   } else {
2752     // append a dummy value because real value not needed
2753     scope_values->append(&_illegal_value);
2754     return 1;
2755   }
2756 }
2757 
2758 
2759 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state, int cur_bci, int stack_end, int locks_end) {
2760   IRScopeDebugInfo* caller_debug_info = NULL;
2761   int stack_begin, locks_begin;
2762 
2763   ValueStack* caller_state = cur_scope->caller_state();
2764   if (caller_state != NULL) {
2765     // process recursively to compute outermost scope first
2766     stack_begin = caller_state->stack_size();
2767     locks_begin = caller_state->locks_size();
2768     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state, cur_scope->caller_bci(), stack_begin, locks_begin);
2769   } else {
2770     stack_begin = 0;
2771     locks_begin = 0;
2772   }
2773 
2774   // initialize these to null.
2775   // If we don't need deopt info or there are no locals, expressions or monitors,
2776   // then these get recorded as no information and avoids the allocation of 0 length arrays.
2777   GrowableArray<ScopeValue*>*   locals      = NULL;
2778   GrowableArray<ScopeValue*>*   expressions = NULL;
2779   GrowableArray<MonitorValue*>* monitors    = NULL;
2780 
2781   // describe local variable values
2782   int nof_locals = cur_scope->method()->max_locals();
2783   if (nof_locals > 0) {
2784     locals = new GrowableArray<ScopeValue*>(nof_locals);
2785 
2786     int pos = 0;
2787     while (pos < nof_locals) {
2788       assert(pos < cur_state->locals_size(), "why not?");
2789 
2790       Value local = cur_state->local_at(pos);
2791       pos += append_scope_value(op_id, local, locals);
2792 
2793       assert(locals->length() == pos, "must match");
2794     }
2795     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2796     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2797   }
2798 
2799 
2800   // describe expression stack
2801   //
2802   // When we inline methods containing exception handlers, the
2803   // "lock_stacks" are changed to preserve expression stack values
2804   // in caller scopes when exception handlers are present. This
2805   // can cause callee stacks to be smaller than caller stacks.
2806   if (stack_end > innermost_state->stack_size()) {
2807     stack_end = innermost_state->stack_size();
2808   }
2809 
2810 
2811 
2812   int nof_stack = stack_end - stack_begin;
2813   if (nof_stack > 0) {
2814     expressions = new GrowableArray<ScopeValue*>(nof_stack);
2815 
2816     int pos = stack_begin;
2817     while (pos < stack_end) {
2818       Value expression = innermost_state->stack_at_inc(pos);
2819       append_scope_value(op_id, expression, expressions);
2820 
2821       assert(expressions->length() + stack_begin == pos, "must match");
2822     }
2823   }
2824 
2825   // describe monitors
2826   assert(locks_begin <= locks_end, "error in scope iteration");
2827   int nof_locks = locks_end - locks_begin;
2828   if (nof_locks > 0) {
2829     monitors = new GrowableArray<MonitorValue*>(nof_locks);
2830     for (int i = locks_begin; i < locks_end; i++) {
2831       monitors->append(location_for_monitor_index(i));
2832     }
2833   }
2834 
2835   return new IRScopeDebugInfo(cur_scope, cur_bci, locals, expressions, monitors, caller_debug_info);
2836 }
2837 
2838 
2839 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2840   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2841 
2842   IRScope* innermost_scope = info->scope();
2843   ValueStack* innermost_state = info->stack();
2844 
2845   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2846 
2847   int stack_end = innermost_state->stack_size();
2848   int locks_end = innermost_state->locks_size();
2849 
2850   DEBUG_ONLY(check_stack_depth(info, stack_end));
2851 
2852   if (info->_scope_debug_info == NULL) {
2853     // compute debug information
2854     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end);
2855   } else {
2856     // debug information already set. Check that it is correct from the current point of view
2857     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end)));
2858   }
2859 }
2860 
2861 
2862 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2863   LIR_OpVisitState visitor;
2864   int num_inst = instructions->length();
2865   bool has_dead = false;
2866 
2867   for (int j = 0; j < num_inst; j++) {
2868     LIR_Op* op = instructions->at(j);
2869     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2870       has_dead = true;
2871       continue;
2872     }
2873     int op_id = op->id();
2874 
2875     // visit instruction to get list of operands
2876     visitor.visit(op);
2877 
2878     // iterate all modes of the visitor and process all virtual operands
2879     for_each_visitor_mode(mode) {
2880       int n = visitor.opr_count(mode);
2881       for (int k = 0; k < n; k++) {
2882         LIR_Opr opr = visitor.opr_at(mode, k);
2883         if (opr->is_virtual_register()) {
2884           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2885         }
2886       }
2887     }
2888 
2889     if (visitor.info_count() > 0) {
2890       // exception handling
2891       if (compilation()->has_exception_handlers()) {
2892         XHandlers* xhandlers = visitor.all_xhandler();
2893         int n = xhandlers->length();
2894         for (int k = 0; k < n; k++) {
2895           XHandler* handler = xhandlers->handler_at(k);
2896           if (handler->entry_code() != NULL) {
2897             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
2898           }
2899         }
2900       } else {
2901         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2902       }
2903 
2904       // compute oop map
2905       assert(iw != NULL, "needed for compute_oop_map");
2906       compute_oop_map(iw, visitor, op);
2907 
2908       // compute debug information
2909       if (!use_fpu_stack_allocation()) {
2910         // compute debug information if fpu stack allocation is not needed.
2911         // when fpu stack allocation is needed, the debug information can not
2912         // be computed here because the exact location of fpu operands is not known
2913         // -> debug information is created inside the fpu stack allocator
2914         int n = visitor.info_count();
2915         for (int k = 0; k < n; k++) {
2916           compute_debug_info(visitor.info_at(k), op_id);
2917         }
2918       }
2919     }
2920 
2921 #ifdef ASSERT
2922     // make sure we haven't made the op invalid.
2923     op->verify();
2924 #endif
2925 
2926     // remove useless moves
2927     if (op->code() == lir_move) {
2928       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2929       LIR_Op1* move = (LIR_Op1*)op;
2930       LIR_Opr src = move->in_opr();
2931       LIR_Opr dst = move->result_opr();
2932       if (dst == src ||
2933           !dst->is_pointer() && !src->is_pointer() &&
2934           src->is_same_register(dst)) {
2935         instructions->at_put(j, NULL);
2936         has_dead = true;
2937       }
2938     }
2939   }
2940 
2941   if (has_dead) {
2942     // iterate all instructions of the block and remove all null-values.
2943     int insert_point = 0;
2944     for (int j = 0; j < num_inst; j++) {
2945       LIR_Op* op = instructions->at(j);
2946       if (op != NULL) {
2947         if (insert_point != j) {
2948           instructions->at_put(insert_point, op);
2949         }
2950         insert_point++;
2951       }
2952     }
2953     instructions->truncate(insert_point);
2954   }
2955 }
2956 
2957 void LinearScan::assign_reg_num() {
2958   TIME_LINEAR_SCAN(timer_assign_reg_num);
2959 
2960   init_compute_debug_info();
2961   IntervalWalker* iw = init_compute_oop_maps();
2962 
2963   int num_blocks = block_count();
2964   for (int i = 0; i < num_blocks; i++) {
2965     BlockBegin* block = block_at(i);
2966     assign_reg_num(block->lir()->instructions_list(), iw);
2967   }
2968 }
2969 
2970 
2971 void LinearScan::do_linear_scan() {
2972   NOT_PRODUCT(_total_timer.begin_method());
2973 
2974   number_instructions();
2975 
2976   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
2977 
2978   compute_local_live_sets();
2979   compute_global_live_sets();
2980   CHECK_BAILOUT();
2981 
2982   build_intervals();
2983   CHECK_BAILOUT();
2984   sort_intervals_before_allocation();
2985 
2986   NOT_PRODUCT(print_intervals("Before Register Allocation"));
2987   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
2988 
2989   allocate_registers();
2990   CHECK_BAILOUT();
2991 
2992   resolve_data_flow();
2993   if (compilation()->has_exception_handlers()) {
2994     resolve_exception_handlers();
2995   }
2996   // fill in number of spill slots into frame_map
2997   propagate_spill_slots();
2998   CHECK_BAILOUT();
2999 
3000   NOT_PRODUCT(print_intervals("After Register Allocation"));
3001   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3002 
3003   sort_intervals_after_allocation();
3004 
3005   DEBUG_ONLY(verify());
3006 
3007   eliminate_spill_moves();
3008   assign_reg_num();
3009   CHECK_BAILOUT();
3010 
3011   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3012   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3013 
3014   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3015 
3016     if (use_fpu_stack_allocation()) {
3017       allocate_fpu_stack(); // Only has effect on Intel
3018       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3019     }
3020   }
3021 
3022   { TIME_LINEAR_SCAN(timer_optimize_lir);
3023 
3024     EdgeMoveOptimizer::optimize(ir()->code());
3025     ControlFlowOptimizer::optimize(ir()->code());
3026     // check that cfg is still correct after optimizations
3027     ir()->verify();
3028   }
3029 
3030   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3031   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3032   NOT_PRODUCT(_total_timer.end_method(this));
3033 }
3034 
3035 
3036 // ********** Printing functions
3037 
3038 #ifndef PRODUCT
3039 
3040 void LinearScan::print_timers(double total) {
3041   _total_timer.print(total);
3042 }
3043 
3044 void LinearScan::print_statistics() {
3045   _stat_before_alloc.print("before allocation");
3046   _stat_after_asign.print("after assignment of register");
3047   _stat_final.print("after optimization");
3048 }
3049 
3050 void LinearScan::print_bitmap(BitMap& b) {
3051   for (unsigned int i = 0; i < b.size(); i++) {
3052     if (b.at(i)) tty->print("%d ", i);
3053   }
3054   tty->cr();
3055 }
3056 
3057 void LinearScan::print_intervals(const char* label) {
3058   if (TraceLinearScanLevel >= 1) {
3059     int i;
3060     tty->cr();
3061     tty->print_cr("%s", label);
3062 
3063     for (i = 0; i < interval_count(); i++) {
3064       Interval* interval = interval_at(i);
3065       if (interval != NULL) {
3066         interval->print();
3067       }
3068     }
3069 
3070     tty->cr();
3071     tty->print_cr("--- Basic Blocks ---");
3072     for (i = 0; i < block_count(); i++) {
3073       BlockBegin* block = block_at(i);
3074       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3075     }
3076     tty->cr();
3077     tty->cr();
3078   }
3079 
3080   if (PrintCFGToFile) {
3081     CFGPrinter::print_intervals(&_intervals, label);
3082   }
3083 }
3084 
3085 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3086   if (TraceLinearScanLevel >= level) {
3087     tty->cr();
3088     tty->print_cr("%s", label);
3089     print_LIR(ir()->linear_scan_order());
3090     tty->cr();
3091   }
3092 
3093   if (level == 1 && PrintCFGToFile) {
3094     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3095   }
3096 }
3097 
3098 #endif //PRODUCT
3099 
3100 
3101 // ********** verification functions for allocation
3102 // (check that all intervals have a correct register and that no registers are overwritten)
3103 #ifdef ASSERT
3104 
3105 void LinearScan::verify() {
3106   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3107   verify_intervals();
3108 
3109   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3110   verify_no_oops_in_fixed_intervals();
3111 
3112   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3113   verify_constants();
3114 
3115   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3116   verify_registers();
3117 
3118   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3119 }
3120 
3121 void LinearScan::verify_intervals() {
3122   int len = interval_count();
3123   bool has_error = false;
3124 
3125   for (int i = 0; i < len; i++) {
3126     Interval* i1 = interval_at(i);
3127     if (i1 == NULL) continue;
3128 
3129     i1->check_split_children();
3130 
3131     if (i1->reg_num() != i) {
3132       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3133       has_error = true;
3134     }
3135 
3136     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3137       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3138       has_error = true;
3139     }
3140 
3141     if (i1->assigned_reg() == any_reg) {
3142       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3143       has_error = true;
3144     }
3145 
3146     if (i1->assigned_reg() == i1->assigned_regHi()) {
3147       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3148       has_error = true;
3149     }
3150 
3151     if (!is_processed_reg_num(i1->assigned_reg())) {
3152       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3153       has_error = true;
3154     }
3155 
3156     if (i1->first() == Range::end()) {
3157       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3158       has_error = true;
3159     }
3160 
3161     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3162       if (r->from() >= r->to()) {
3163         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3164         has_error = true;
3165       }
3166     }
3167 
3168     for (int j = i + 1; j < len; j++) {
3169       Interval* i2 = interval_at(j);
3170       if (i2 == NULL) continue;
3171 
3172       // special intervals that are created in MoveResolver
3173       // -> ignore them because the range information has no meaning there
3174       if (i1->from() == 1 && i1->to() == 2) continue;
3175       if (i2->from() == 1 && i2->to() == 2) continue;
3176 
3177       int r1 = i1->assigned_reg();
3178       int r1Hi = i1->assigned_regHi();
3179       int r2 = i2->assigned_reg();
3180       int r2Hi = i2->assigned_regHi();
3181       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
3182         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3183         i1->print(); tty->cr();
3184         i2->print(); tty->cr();
3185         has_error = true;
3186       }
3187     }
3188   }
3189 
3190   assert(has_error == false, "register allocation invalid");
3191 }
3192 
3193 
3194 void LinearScan::verify_no_oops_in_fixed_intervals() {
3195   Interval* fixed_intervals;
3196   Interval* other_intervals;
3197   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3198 
3199   // to ensure a walking until the last instruction id, add a dummy interval
3200   // with a high operation id
3201   other_intervals = new Interval(any_reg);
3202   other_intervals->add_range(max_jint - 2, max_jint - 1);
3203   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3204 
3205   LIR_OpVisitState visitor;
3206   for (int i = 0; i < block_count(); i++) {
3207     BlockBegin* block = block_at(i);
3208 
3209     LIR_OpList* instructions = block->lir()->instructions_list();
3210 
3211     for (int j = 0; j < instructions->length(); j++) {
3212       LIR_Op* op = instructions->at(j);
3213       int op_id = op->id();
3214 
3215       visitor.visit(op);
3216 
3217       if (visitor.info_count() > 0) {
3218         iw->walk_before(op->id());
3219         bool check_live = true;
3220         if (op->code() == lir_move) {
3221           LIR_Op1* move = (LIR_Op1*)op;
3222           check_live = (move->patch_code() == lir_patch_none);
3223         }
3224         LIR_OpBranch* branch = op->as_OpBranch();
3225         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3226           // Don't bother checking the stub in this case since the
3227           // exception stub will never return to normal control flow.
3228           check_live = false;
3229         }
3230 
3231         // Make sure none of the fixed registers is live across an
3232         // oopmap since we can't handle that correctly.
3233         if (check_live) {
3234           for (Interval* interval = iw->active_first(fixedKind);
3235                interval != Interval::end();
3236                interval = interval->next()) {
3237             if (interval->current_to() > op->id() + 1) {
3238               // This interval is live out of this op so make sure
3239               // that this interval represents some value that's
3240               // referenced by this op either as an input or output.
3241               bool ok = false;
3242               for_each_visitor_mode(mode) {
3243                 int n = visitor.opr_count(mode);
3244                 for (int k = 0; k < n; k++) {
3245                   LIR_Opr opr = visitor.opr_at(mode, k);
3246                   if (opr->is_fixed_cpu()) {
3247                     if (interval_at(reg_num(opr)) == interval) {
3248                       ok = true;
3249                       break;
3250                     }
3251                     int hi = reg_numHi(opr);
3252                     if (hi != -1 && interval_at(hi) == interval) {
3253                       ok = true;
3254                       break;
3255                     }
3256                   }
3257                 }
3258               }
3259               assert(ok, "fixed intervals should never be live across an oopmap point");
3260             }
3261           }
3262         }
3263       }
3264 
3265       // oop-maps at calls do not contain registers, so check is not needed
3266       if (!visitor.has_call()) {
3267 
3268         for_each_visitor_mode(mode) {
3269           int n = visitor.opr_count(mode);
3270           for (int k = 0; k < n; k++) {
3271             LIR_Opr opr = visitor.opr_at(mode, k);
3272 
3273             if (opr->is_fixed_cpu() && opr->is_oop()) {
3274               // operand is a non-virtual cpu register and contains an oop
3275               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3276 
3277               Interval* interval = interval_at(reg_num(opr));
3278               assert(interval != NULL, "no interval");
3279 
3280               if (mode == LIR_OpVisitState::inputMode) {
3281                 if (interval->to() >= op_id + 1) {
3282                   assert(interval->to() < op_id + 2 ||
3283                          interval->has_hole_between(op_id, op_id + 2),
3284                          "oop input operand live after instruction");
3285                 }
3286               } else if (mode == LIR_OpVisitState::outputMode) {
3287                 if (interval->from() <= op_id - 1) {
3288                   assert(interval->has_hole_between(op_id - 1, op_id),
3289                          "oop input operand live after instruction");
3290                 }
3291               }
3292             }
3293           }
3294         }
3295       }
3296     }
3297   }
3298 }
3299 
3300 
3301 void LinearScan::verify_constants() {
3302   int num_regs = num_virtual_regs();
3303   int size = live_set_size();
3304   int num_blocks = block_count();
3305 
3306   for (int i = 0; i < num_blocks; i++) {
3307     BlockBegin* block = block_at(i);
3308     BitMap live_at_edge = block->live_in();
3309 
3310     // visit all registers where the live_at_edge bit is set
3311     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3312       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3313 
3314       Value value = gen()->instruction_for_vreg(r);
3315 
3316       assert(value != NULL, "all intervals live across block boundaries must have Value");
3317       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3318       assert(value->operand()->vreg_number() == r, "register number must match");
3319       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3320     }
3321   }
3322 }
3323 
3324 
3325 class RegisterVerifier: public StackObj {
3326  private:
3327   LinearScan*   _allocator;
3328   BlockList     _work_list;      // all blocks that must be processed
3329   IntervalsList _saved_states;   // saved information of previous check
3330 
3331   // simplified access to methods of LinearScan
3332   Compilation*  compilation() const              { return _allocator->compilation(); }
3333   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3334   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3335 
3336   // currently, only registers are processed
3337   int           state_size()                     { return LinearScan::nof_regs; }
3338 
3339   // accessors
3340   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3341   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3342   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3343 
3344   // helper functions
3345   IntervalList* copy(IntervalList* input_state);
3346   void          state_put(IntervalList* input_state, int reg, Interval* interval);
3347   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3348 
3349   void process_block(BlockBegin* block);
3350   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3351   void process_successor(BlockBegin* block, IntervalList* input_state);
3352   void process_operations(LIR_List* ops, IntervalList* input_state);
3353 
3354  public:
3355   RegisterVerifier(LinearScan* allocator)
3356     : _allocator(allocator)
3357     , _work_list(16)
3358     , _saved_states(BlockBegin::number_of_blocks(), NULL)
3359   { }
3360 
3361   void verify(BlockBegin* start);
3362 };
3363 
3364 
3365 // entry function from LinearScan that starts the verification
3366 void LinearScan::verify_registers() {
3367   RegisterVerifier verifier(this);
3368   verifier.verify(block_at(0));
3369 }
3370 
3371 
3372 void RegisterVerifier::verify(BlockBegin* start) {
3373   // setup input registers (method arguments) for first block
3374   IntervalList* input_state = new IntervalList(state_size(), NULL);
3375   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3376   for (int n = 0; n < args->length(); n++) {
3377     LIR_Opr opr = args->at(n);
3378     if (opr->is_register()) {
3379       Interval* interval = interval_at(reg_num(opr));
3380 
3381       if (interval->assigned_reg() < state_size()) {
3382         input_state->at_put(interval->assigned_reg(), interval);
3383       }
3384       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3385         input_state->at_put(interval->assigned_regHi(), interval);
3386       }
3387     }
3388   }
3389 
3390   set_state_for_block(start, input_state);
3391   add_to_work_list(start);
3392 
3393   // main loop for verification
3394   do {
3395     BlockBegin* block = _work_list.at(0);
3396     _work_list.remove_at(0);
3397 
3398     process_block(block);
3399   } while (!_work_list.is_empty());
3400 }
3401 
3402 void RegisterVerifier::process_block(BlockBegin* block) {
3403   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3404 
3405   // must copy state because it is modified
3406   IntervalList* input_state = copy(state_for_block(block));
3407 
3408   if (TraceLinearScanLevel >= 4) {
3409     tty->print_cr("Input-State of intervals:");
3410     tty->print("    ");
3411     for (int i = 0; i < state_size(); i++) {
3412       if (input_state->at(i) != NULL) {
3413         tty->print(" %4d", input_state->at(i)->reg_num());
3414       } else {
3415         tty->print("   __");
3416       }
3417     }
3418     tty->cr();
3419     tty->cr();
3420   }
3421 
3422   // process all operations of the block
3423   process_operations(block->lir(), input_state);
3424 
3425   // iterate all successors
3426   for (int i = 0; i < block->number_of_sux(); i++) {
3427     process_successor(block->sux_at(i), input_state);
3428   }
3429 }
3430 
3431 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3432   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3433 
3434   // must copy state because it is modified
3435   input_state = copy(input_state);
3436 
3437   if (xhandler->entry_code() != NULL) {
3438     process_operations(xhandler->entry_code(), input_state);
3439   }
3440   process_successor(xhandler->entry_block(), input_state);
3441 }
3442 
3443 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3444   IntervalList* saved_state = state_for_block(block);
3445 
3446   if (saved_state != NULL) {
3447     // this block was already processed before.
3448     // check if new input_state is consistent with saved_state
3449 
3450     bool saved_state_correct = true;
3451     for (int i = 0; i < state_size(); i++) {
3452       if (input_state->at(i) != saved_state->at(i)) {
3453         // current input_state and previous saved_state assume a different
3454         // interval in this register -> assume that this register is invalid
3455         if (saved_state->at(i) != NULL) {
3456           // invalidate old calculation only if it assumed that
3457           // register was valid. when the register was already invalid,
3458           // then the old calculation was correct.
3459           saved_state_correct = false;
3460           saved_state->at_put(i, NULL);
3461 
3462           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3463         }
3464       }
3465     }
3466 
3467     if (saved_state_correct) {
3468       // already processed block with correct input_state
3469       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3470     } else {
3471       // must re-visit this block
3472       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3473       add_to_work_list(block);
3474     }
3475 
3476   } else {
3477     // block was not processed before, so set initial input_state
3478     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3479 
3480     set_state_for_block(block, copy(input_state));
3481     add_to_work_list(block);
3482   }
3483 }
3484 
3485 
3486 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3487   IntervalList* copy_state = new IntervalList(input_state->length());
3488   copy_state->push_all(input_state);
3489   return copy_state;
3490 }
3491 
3492 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3493   if (reg != LinearScan::any_reg && reg < state_size()) {
3494     if (interval != NULL) {
3495       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3496     } else if (input_state->at(reg) != NULL) {
3497       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3498     }
3499 
3500     input_state->at_put(reg, interval);
3501   }
3502 }
3503 
3504 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3505   if (reg != LinearScan::any_reg && reg < state_size()) {
3506     if (input_state->at(reg) != interval) {
3507       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3508       return true;
3509     }
3510   }
3511   return false;
3512 }
3513 
3514 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3515   // visit all instructions of the block
3516   LIR_OpVisitState visitor;
3517   bool has_error = false;
3518 
3519   for (int i = 0; i < ops->length(); i++) {
3520     LIR_Op* op = ops->at(i);
3521     visitor.visit(op);
3522 
3523     TRACE_LINEAR_SCAN(4, op->print_on(tty));
3524 
3525     // check if input operands are correct
3526     int j;
3527     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3528     for (j = 0; j < n; j++) {
3529       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3530       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3531         Interval* interval = interval_at(reg_num(opr));
3532         if (op->id() != -1) {
3533           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3534         }
3535 
3536         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3537         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3538 
3539         // When an operand is marked with is_last_use, then the fpu stack allocator
3540         // removes the register from the fpu stack -> the register contains no value
3541         if (opr->is_last_use()) {
3542           state_put(input_state, interval->assigned_reg(),   NULL);
3543           state_put(input_state, interval->assigned_regHi(), NULL);
3544         }
3545       }
3546     }
3547 
3548     // invalidate all caller save registers at calls
3549     if (visitor.has_call()) {
3550       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs; j++) {
3551         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3552       }
3553       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3554         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3555       }
3556 
3557 #ifdef X86
3558       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
3559         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3560       }
3561 #endif
3562     }
3563 
3564     // process xhandler before output and temp operands
3565     XHandlers* xhandlers = visitor.all_xhandler();
3566     n = xhandlers->length();
3567     for (int k = 0; k < n; k++) {
3568       process_xhandler(xhandlers->handler_at(k), input_state);
3569     }
3570 
3571     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3572     n = visitor.opr_count(LIR_OpVisitState::tempMode);
3573     for (j = 0; j < n; j++) {
3574       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3575       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3576         Interval* interval = interval_at(reg_num(opr));
3577         if (op->id() != -1) {
3578           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3579         }
3580 
3581         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3582         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3583       }
3584     }
3585 
3586     // set output operands
3587     n = visitor.opr_count(LIR_OpVisitState::outputMode);
3588     for (j = 0; j < n; j++) {
3589       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3590       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3591         Interval* interval = interval_at(reg_num(opr));
3592         if (op->id() != -1) {
3593           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3594         }
3595 
3596         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3597         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3598       }
3599     }
3600   }
3601   assert(has_error == false, "Error in register allocation");
3602 }
3603 
3604 #endif // ASSERT
3605 
3606 
3607 
3608 // **** Implementation of MoveResolver ******************************
3609 
3610 MoveResolver::MoveResolver(LinearScan* allocator) :
3611   _allocator(allocator),
3612   _multiple_reads_allowed(false),
3613   _mapping_from(8),
3614   _mapping_from_opr(8),
3615   _mapping_to(8),
3616   _insert_list(NULL),
3617   _insert_idx(-1),
3618   _insertion_buffer()
3619 {
3620   for (int i = 0; i < LinearScan::nof_regs; i++) {
3621     _register_blocked[i] = 0;
3622   }
3623   DEBUG_ONLY(check_empty());
3624 }
3625 
3626 
3627 #ifdef ASSERT
3628 
3629 void MoveResolver::check_empty() {
3630   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3631   for (int i = 0; i < LinearScan::nof_regs; i++) {
3632     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3633   }
3634   assert(_multiple_reads_allowed == false, "must have default value");
3635 }
3636 
3637 void MoveResolver::verify_before_resolve() {
3638   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3639   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3640   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3641 
3642   int i, j;
3643   if (!_multiple_reads_allowed) {
3644     for (i = 0; i < _mapping_from.length(); i++) {
3645       for (j = i + 1; j < _mapping_from.length(); j++) {
3646         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3647       }
3648     }
3649   }
3650 
3651   for (i = 0; i < _mapping_to.length(); i++) {
3652     for (j = i + 1; j < _mapping_to.length(); j++) {
3653       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3654     }
3655   }
3656 
3657 
3658   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3659   used_regs.clear();
3660   if (!_multiple_reads_allowed) {
3661     for (i = 0; i < _mapping_from.length(); i++) {
3662       Interval* it = _mapping_from.at(i);
3663       if (it != NULL) {
3664         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3665         used_regs.set_bit(it->assigned_reg());
3666 
3667         if (it->assigned_regHi() != LinearScan::any_reg) {
3668           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3669           used_regs.set_bit(it->assigned_regHi());
3670         }
3671       }
3672     }
3673   }
3674 
3675   used_regs.clear();
3676   for (i = 0; i < _mapping_to.length(); i++) {
3677     Interval* it = _mapping_to.at(i);
3678     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3679     used_regs.set_bit(it->assigned_reg());
3680 
3681     if (it->assigned_regHi() != LinearScan::any_reg) {
3682       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3683       used_regs.set_bit(it->assigned_regHi());
3684     }
3685   }
3686 
3687   used_regs.clear();
3688   for (i = 0; i < _mapping_from.length(); i++) {
3689     Interval* it = _mapping_from.at(i);
3690     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3691       used_regs.set_bit(it->assigned_reg());
3692     }
3693   }
3694   for (i = 0; i < _mapping_to.length(); i++) {
3695     Interval* it = _mapping_to.at(i);
3696     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3697   }
3698 }
3699 
3700 #endif // ASSERT
3701 
3702 
3703 // mark assigned_reg and assigned_regHi of the interval as blocked
3704 void MoveResolver::block_registers(Interval* it) {
3705   int reg = it->assigned_reg();
3706   if (reg < LinearScan::nof_regs) {
3707     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3708     set_register_blocked(reg, 1);
3709   }
3710   reg = it->assigned_regHi();
3711   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3712     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3713     set_register_blocked(reg, 1);
3714   }
3715 }
3716 
3717 // mark assigned_reg and assigned_regHi of the interval as unblocked
3718 void MoveResolver::unblock_registers(Interval* it) {
3719   int reg = it->assigned_reg();
3720   if (reg < LinearScan::nof_regs) {
3721     assert(register_blocked(reg) > 0, "register already marked as unused");
3722     set_register_blocked(reg, -1);
3723   }
3724   reg = it->assigned_regHi();
3725   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3726     assert(register_blocked(reg) > 0, "register already marked as unused");
3727     set_register_blocked(reg, -1);
3728   }
3729 }
3730 
3731 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3732 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3733   int from_reg = -1;
3734   int from_regHi = -1;
3735   if (from != NULL) {
3736     from_reg = from->assigned_reg();
3737     from_regHi = from->assigned_regHi();
3738   }
3739 
3740   int reg = to->assigned_reg();
3741   if (reg < LinearScan::nof_regs) {
3742     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3743       return false;
3744     }
3745   }
3746   reg = to->assigned_regHi();
3747   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3748     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3749       return false;
3750     }
3751   }
3752 
3753   return true;
3754 }
3755 
3756 
3757 void MoveResolver::create_insertion_buffer(LIR_List* list) {
3758   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3759   _insertion_buffer.init(list);
3760 }
3761 
3762 void MoveResolver::append_insertion_buffer() {
3763   if (_insertion_buffer.initialized()) {
3764     _insertion_buffer.lir_list()->append(&_insertion_buffer);
3765   }
3766   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3767 
3768   _insert_list = NULL;
3769   _insert_idx = -1;
3770 }
3771 
3772 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3773   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3774   assert(from_interval->type() == to_interval->type(), "move between different types");
3775   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3776   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3777 
3778   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3779   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3780 
3781   if (!_multiple_reads_allowed) {
3782     // the last_use flag is an optimization for FPU stack allocation. When the same
3783     // input interval is used in more than one move, then it is too difficult to determine
3784     // if this move is really the last use.
3785     from_opr = from_opr->make_last_use();
3786   }
3787   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3788 
3789   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3790 }
3791 
3792 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3793   assert(from_opr->type() == to_interval->type(), "move between different types");
3794   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3795   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3796 
3797   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3798   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3799 
3800   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3801 }
3802 
3803 
3804 void MoveResolver::resolve_mappings() {
3805   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3806   DEBUG_ONLY(verify_before_resolve());
3807 
3808   // Block all registers that are used as input operands of a move.
3809   // When a register is blocked, no move to this register is emitted.
3810   // This is necessary for detecting cycles in moves.
3811   int i;
3812   for (i = _mapping_from.length() - 1; i >= 0; i--) {
3813     Interval* from_interval = _mapping_from.at(i);
3814     if (from_interval != NULL) {
3815       block_registers(from_interval);
3816     }
3817   }
3818 
3819   int spill_candidate = -1;
3820   while (_mapping_from.length() > 0) {
3821     bool processed_interval = false;
3822 
3823     for (i = _mapping_from.length() - 1; i >= 0; i--) {
3824       Interval* from_interval = _mapping_from.at(i);
3825       Interval* to_interval = _mapping_to.at(i);
3826 
3827       if (save_to_process_move(from_interval, to_interval)) {
3828         // this inverval can be processed because target is free
3829         if (from_interval != NULL) {
3830           insert_move(from_interval, to_interval);
3831           unblock_registers(from_interval);
3832         } else {
3833           insert_move(_mapping_from_opr.at(i), to_interval);
3834         }
3835         _mapping_from.remove_at(i);
3836         _mapping_from_opr.remove_at(i);
3837         _mapping_to.remove_at(i);
3838 
3839         processed_interval = true;
3840       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3841         // this interval cannot be processed now because target is not free
3842         // it starts in a register, so it is a possible candidate for spilling
3843         spill_candidate = i;
3844       }
3845     }
3846 
3847     if (!processed_interval) {
3848       // no move could be processed because there is a cycle in the move list
3849       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3850       assert(spill_candidate != -1, "no interval in register for spilling found");
3851 
3852       // create a new spill interval and assign a stack slot to it
3853       Interval* from_interval = _mapping_from.at(spill_candidate);
3854       Interval* spill_interval = new Interval(-1);
3855       spill_interval->set_type(from_interval->type());
3856 
3857       // add a dummy range because real position is difficult to calculate
3858       // Note: this range is a special case when the integrity of the allocation is checked
3859       spill_interval->add_range(1, 2);
3860 
3861       //       do not allocate a new spill slot for temporary interval, but
3862       //       use spill slot assigned to from_interval. Otherwise moves from
3863       //       one stack slot to another can happen (not allowed by LIR_Assembler
3864       int spill_slot = from_interval->canonical_spill_slot();
3865       if (spill_slot < 0) {
3866         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3867         from_interval->set_canonical_spill_slot(spill_slot);
3868       }
3869       spill_interval->assign_reg(spill_slot);
3870       allocator()->append_interval(spill_interval);
3871 
3872       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3873 
3874       // insert a move from register to stack and update the mapping
3875       insert_move(from_interval, spill_interval);
3876       _mapping_from.at_put(spill_candidate, spill_interval);
3877       unblock_registers(from_interval);
3878     }
3879   }
3880 
3881   // reset to default value
3882   _multiple_reads_allowed = false;
3883 
3884   // check that all intervals have been processed
3885   DEBUG_ONLY(check_empty());
3886 }
3887 
3888 
3889 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3890   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3891   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3892 
3893   create_insertion_buffer(insert_list);
3894   _insert_list = insert_list;
3895   _insert_idx = insert_idx;
3896 }
3897 
3898 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
3899   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3900 
3901   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
3902     // insert position changed -> resolve current mappings
3903     resolve_mappings();
3904   }
3905 
3906   if (insert_list != _insert_list) {
3907     // block changed -> append insertion_buffer because it is
3908     // bound to a specific block and create a new insertion_buffer
3909     append_insertion_buffer();
3910     create_insertion_buffer(insert_list);
3911   }
3912 
3913   _insert_list = insert_list;
3914   _insert_idx = insert_idx;
3915 }
3916 
3917 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
3918   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3919 
3920   _mapping_from.append(from_interval);
3921   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
3922   _mapping_to.append(to_interval);
3923 }
3924 
3925 
3926 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
3927   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3928   assert(from_opr->is_constant(), "only for constants");
3929 
3930   _mapping_from.append(NULL);
3931   _mapping_from_opr.append(from_opr);
3932   _mapping_to.append(to_interval);
3933 }
3934 
3935 void MoveResolver::resolve_and_append_moves() {
3936   if (has_mappings()) {
3937     resolve_mappings();
3938   }
3939   append_insertion_buffer();
3940 }
3941 
3942 
3943 
3944 // **** Implementation of Range *************************************
3945 
3946 Range::Range(int from, int to, Range* next) :
3947   _from(from),
3948   _to(to),
3949   _next(next)
3950 {
3951 }
3952 
3953 // initialize sentinel
3954 Range* Range::_end = NULL;
3955 void Range::initialize(Arena* arena) {
3956   _end = new (arena) Range(max_jint, max_jint, NULL);
3957 }
3958 
3959 int Range::intersects_at(Range* r2) const {
3960   const Range* r1 = this;
3961 
3962   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
3963   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
3964 
3965   do {
3966     if (r1->from() < r2->from()) {
3967       if (r1->to() <= r2->from()) {
3968         r1 = r1->next(); if (r1 == _end) return -1;
3969       } else {
3970         return r2->from();
3971       }
3972     } else if (r2->from() < r1->from()) {
3973       if (r2->to() <= r1->from()) {
3974         r2 = r2->next(); if (r2 == _end) return -1;
3975       } else {
3976         return r1->from();
3977       }
3978     } else { // r1->from() == r2->from()
3979       if (r1->from() == r1->to()) {
3980         r1 = r1->next(); if (r1 == _end) return -1;
3981       } else if (r2->from() == r2->to()) {
3982         r2 = r2->next(); if (r2 == _end) return -1;
3983       } else {
3984         return r1->from();
3985       }
3986     }
3987   } while (true);
3988 }
3989 
3990 #ifndef PRODUCT
3991 void Range::print(outputStream* out) const {
3992   out->print("[%d, %d[ ", _from, _to);
3993 }
3994 #endif
3995 
3996 
3997 
3998 // **** Implementation of Interval **********************************
3999 
4000 // initialize sentinel
4001 Interval* Interval::_end = NULL;
4002 void Interval::initialize(Arena* arena) {
4003   Range::initialize(arena);
4004   _end = new (arena) Interval(-1);
4005 }
4006 
4007 Interval::Interval(int reg_num) :
4008   _reg_num(reg_num),
4009   _type(T_ILLEGAL),
4010   _first(Range::end()),
4011   _use_pos_and_kinds(12),
4012   _current(Range::end()),
4013   _next(_end),
4014   _state(invalidState),
4015   _assigned_reg(LinearScan::any_reg),
4016   _assigned_regHi(LinearScan::any_reg),
4017   _cached_to(-1),
4018   _cached_opr(LIR_OprFact::illegalOpr),
4019   _cached_vm_reg(VMRegImpl::Bad()),
4020   _split_children(0),
4021   _canonical_spill_slot(-1),
4022   _insert_move_when_activated(false),
4023   _register_hint(NULL),
4024   _spill_state(noDefinitionFound),
4025   _spill_definition_pos(-1)
4026 {
4027   _split_parent = this;
4028   _current_split_child = this;
4029 }
4030 
4031 int Interval::calc_to() {
4032   assert(_first != Range::end(), "interval has no range");
4033 
4034   Range* r = _first;
4035   while (r->next() != Range::end()) {
4036     r = r->next();
4037   }
4038   return r->to();
4039 }
4040 
4041 
4042 #ifdef ASSERT
4043 // consistency check of split-children
4044 void Interval::check_split_children() {
4045   if (_split_children.length() > 0) {
4046     assert(is_split_parent(), "only split parents can have children");
4047 
4048     for (int i = 0; i < _split_children.length(); i++) {
4049       Interval* i1 = _split_children.at(i);
4050 
4051       assert(i1->split_parent() == this, "not a split child of this interval");
4052       assert(i1->type() == type(), "must be equal for all split children");
4053       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4054 
4055       for (int j = i + 1; j < _split_children.length(); j++) {
4056         Interval* i2 = _split_children.at(j);
4057 
4058         assert(i1->reg_num() != i2->reg_num(), "same register number");
4059 
4060         if (i1->from() < i2->from()) {
4061           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4062         } else {
4063           assert(i2->from() < i1->from(), "intervals start at same op_id");
4064           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4065         }
4066       }
4067     }
4068   }
4069 }
4070 #endif // ASSERT
4071 
4072 Interval* Interval::register_hint(bool search_split_child) const {
4073   if (!search_split_child) {
4074     return _register_hint;
4075   }
4076 
4077   if (_register_hint != NULL) {
4078     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4079 
4080     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4081       return _register_hint;
4082 
4083     } else if (_register_hint->_split_children.length() > 0) {
4084       // search the first split child that has a register assigned
4085       int len = _register_hint->_split_children.length();
4086       for (int i = 0; i < len; i++) {
4087         Interval* cur = _register_hint->_split_children.at(i);
4088 
4089         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4090           return cur;
4091         }
4092       }
4093     }
4094   }
4095 
4096   // no hint interval found that has a register assigned
4097   return NULL;
4098 }
4099 
4100 
4101 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4102   assert(is_split_parent(), "can only be called for split parents");
4103   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4104 
4105   Interval* result;
4106   if (_split_children.length() == 0) {
4107     result = this;
4108   } else {
4109     result = NULL;
4110     int len = _split_children.length();
4111 
4112     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4113     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4114 
4115     int i;
4116     for (i = 0; i < len; i++) {
4117       Interval* cur = _split_children.at(i);
4118       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4119         if (i > 0) {
4120           // exchange current split child to start of list (faster access for next call)
4121           _split_children.at_put(i, _split_children.at(0));
4122           _split_children.at_put(0, cur);
4123         }
4124 
4125         // interval found
4126         result = cur;
4127         break;
4128       }
4129     }
4130 
4131 #ifdef ASSERT
4132     for (i = 0; i < len; i++) {
4133       Interval* tmp = _split_children.at(i);
4134       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4135         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4136         result->print();
4137         tmp->print();
4138         assert(false, "two valid result intervals found");
4139       }
4140     }
4141 #endif
4142   }
4143 
4144   assert(result != NULL, "no matching interval found");
4145   assert(result->covers(op_id, mode), "op_id not covered by interval");
4146 
4147   return result;
4148 }
4149 
4150 
4151 // returns the last split child that ends before the given op_id
4152 Interval* Interval::split_child_before_op_id(int op_id) {
4153   assert(op_id >= 0, "invalid op_id");
4154 
4155   Interval* parent = split_parent();
4156   Interval* result = NULL;
4157 
4158   int len = parent->_split_children.length();
4159   assert(len > 0, "no split children available");
4160 
4161   for (int i = len - 1; i >= 0; i--) {
4162     Interval* cur = parent->_split_children.at(i);
4163     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4164       result = cur;
4165     }
4166   }
4167 
4168   assert(result != NULL, "no split child found");
4169   return result;
4170 }
4171 
4172 
4173 // checks if op_id is covered by any split child
4174 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4175   assert(is_split_parent(), "can only be called for split parents");
4176   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4177 
4178   if (_split_children.length() == 0) {
4179     // simple case if interval was not split
4180     return covers(op_id, mode);
4181 
4182   } else {
4183     // extended case: check all split children
4184     int len = _split_children.length();
4185     for (int i = 0; i < len; i++) {
4186       Interval* cur = _split_children.at(i);
4187       if (cur->covers(op_id, mode)) {
4188         return true;
4189       }
4190     }
4191     return false;
4192   }
4193 }
4194 
4195 
4196 // Note: use positions are sorted descending -> first use has highest index
4197 int Interval::first_usage(IntervalUseKind min_use_kind) const {
4198   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4199 
4200   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4201     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4202       return _use_pos_and_kinds.at(i);
4203     }
4204   }
4205   return max_jint;
4206 }
4207 
4208 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4209   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4210 
4211   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4212     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4213       return _use_pos_and_kinds.at(i);
4214     }
4215   }
4216   return max_jint;
4217 }
4218 
4219 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4220   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4221 
4222   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4223     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4224       return _use_pos_and_kinds.at(i);
4225     }
4226   }
4227   return max_jint;
4228 }
4229 
4230 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4231   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4232 
4233   int prev = 0;
4234   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4235     if (_use_pos_and_kinds.at(i) > from) {
4236       return prev;
4237     }
4238     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4239       prev = _use_pos_and_kinds.at(i);
4240     }
4241   }
4242   return prev;
4243 }
4244 
4245 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4246   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4247 
4248   // do not add use positions for precolored intervals because
4249   // they are never used
4250   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4251 #ifdef ASSERT
4252     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4253     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4254       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4255       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4256       if (i > 0) {
4257         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4258       }
4259     }
4260 #endif
4261 
4262     // Note: add_use is called in descending order, so list gets sorted
4263     //       automatically by just appending new use positions
4264     int len = _use_pos_and_kinds.length();
4265     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4266       _use_pos_and_kinds.append(pos);
4267       _use_pos_and_kinds.append(use_kind);
4268     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4269       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4270       _use_pos_and_kinds.at_put(len - 1, use_kind);
4271     }
4272   }
4273 }
4274 
4275 void Interval::add_range(int from, int to) {
4276   assert(from < to, "invalid range");
4277   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4278   assert(from <= first()->to(), "not inserting at begin of interval");
4279 
4280   if (first()->from() <= to) {
4281     // join intersecting ranges
4282     first()->set_from(MIN2(from, first()->from()));
4283     first()->set_to  (MAX2(to,   first()->to()));
4284   } else {
4285     // insert new range
4286     _first = new Range(from, to, first());
4287   }
4288 }
4289 
4290 Interval* Interval::new_split_child() {
4291   // allocate new interval
4292   Interval* result = new Interval(-1);
4293   result->set_type(type());
4294 
4295   Interval* parent = split_parent();
4296   result->_split_parent = parent;
4297   result->set_register_hint(parent);
4298 
4299   // insert new interval in children-list of parent
4300   if (parent->_split_children.length() == 0) {
4301     assert(is_split_parent(), "list must be initialized at first split");
4302 
4303     parent->_split_children = IntervalList(4);
4304     parent->_split_children.append(this);
4305   }
4306   parent->_split_children.append(result);
4307 
4308   return result;
4309 }
4310 
4311 // split this interval at the specified position and return
4312 // the remainder as a new interval.
4313 //
4314 // when an interval is split, a bi-directional link is established between the original interval
4315 // (the split parent) and the intervals that are split off this interval (the split children)
4316 // When a split child is split again, the new created interval is also a direct child
4317 // of the original parent (there is no tree of split children stored, but a flat list)
4318 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4319 //
4320 // Note: The new interval has no valid reg_num
4321 Interval* Interval::split(int split_pos) {
4322   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4323 
4324   // allocate new interval
4325   Interval* result = new_split_child();
4326 
4327   // split the ranges
4328   Range* prev = NULL;
4329   Range* cur = _first;
4330   while (cur != Range::end() && cur->to() <= split_pos) {
4331     prev = cur;
4332     cur = cur->next();
4333   }
4334   assert(cur != Range::end(), "split interval after end of last range");
4335 
4336   if (cur->from() < split_pos) {
4337     result->_first = new Range(split_pos, cur->to(), cur->next());
4338     cur->set_to(split_pos);
4339     cur->set_next(Range::end());
4340 
4341   } else {
4342     assert(prev != NULL, "split before start of first range");
4343     result->_first = cur;
4344     prev->set_next(Range::end());
4345   }
4346   result->_current = result->_first;
4347   _cached_to = -1; // clear cached value
4348 
4349   // split list of use positions
4350   int total_len = _use_pos_and_kinds.length();
4351   int start_idx = total_len - 2;
4352   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4353     start_idx -= 2;
4354   }
4355 
4356   intStack new_use_pos_and_kinds(total_len - start_idx);
4357   int i;
4358   for (i = start_idx + 2; i < total_len; i++) {
4359     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4360   }
4361 
4362   _use_pos_and_kinds.truncate(start_idx + 2);
4363   result->_use_pos_and_kinds = _use_pos_and_kinds;
4364   _use_pos_and_kinds = new_use_pos_and_kinds;
4365 
4366 #ifdef ASSERT
4367   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4368   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4369   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4370 
4371   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4372     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4373     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4374   }
4375   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4376     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4377     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4378   }
4379 #endif
4380 
4381   return result;
4382 }
4383 
4384 // split this interval at the specified position and return
4385 // the head as a new interval (the original interval is the tail)
4386 //
4387 // Currently, only the first range can be split, and the new interval
4388 // must not have split positions
4389 Interval* Interval::split_from_start(int split_pos) {
4390   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4391   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4392   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4393   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4394 
4395   // allocate new interval
4396   Interval* result = new_split_child();
4397 
4398   // the new created interval has only one range (checked by assertion above),
4399   // so the splitting of the ranges is very simple
4400   result->add_range(_first->from(), split_pos);
4401 
4402   if (split_pos == _first->to()) {
4403     assert(_first->next() != Range::end(), "must not be at end");
4404     _first = _first->next();
4405   } else {
4406     _first->set_from(split_pos);
4407   }
4408 
4409   return result;
4410 }
4411 
4412 
4413 // returns true if the op_id is inside the interval
4414 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4415   Range* cur  = _first;
4416 
4417   while (cur != Range::end() && cur->to() < op_id) {
4418     cur = cur->next();
4419   }
4420   if (cur != Range::end()) {
4421     assert(cur->to() != cur->next()->from(), "ranges not separated");
4422 
4423     if (mode == LIR_OpVisitState::outputMode) {
4424       return cur->from() <= op_id && op_id < cur->to();
4425     } else {
4426       return cur->from() <= op_id && op_id <= cur->to();
4427     }
4428   }
4429   return false;
4430 }
4431 
4432 // returns true if the interval has any hole between hole_from and hole_to
4433 // (even if the hole has only the length 1)
4434 bool Interval::has_hole_between(int hole_from, int hole_to) {
4435   assert(hole_from < hole_to, "check");
4436   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4437 
4438   Range* cur  = _first;
4439   while (cur != Range::end()) {
4440     assert(cur->to() < cur->next()->from(), "no space between ranges");
4441 
4442     // hole-range starts before this range -> hole
4443     if (hole_from < cur->from()) {
4444       return true;
4445 
4446     // hole-range completely inside this range -> no hole
4447     } else if (hole_to <= cur->to()) {
4448       return false;
4449 
4450     // overlapping of hole-range with this range -> hole
4451     } else if (hole_from <= cur->to()) {
4452       return true;
4453     }
4454 
4455     cur = cur->next();
4456   }
4457 
4458   return false;
4459 }
4460 
4461 
4462 #ifndef PRODUCT
4463 void Interval::print(outputStream* out) const {
4464   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4465   const char* UseKind2Name[] = { "N", "L", "S", "M" };
4466 
4467   const char* type_name;
4468   LIR_Opr opr = LIR_OprFact::illegal();
4469   if (reg_num() < LIR_OprDesc::vreg_base) {
4470     type_name = "fixed";
4471     // need a temporary operand for fixed intervals because type() cannot be called
4472     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4473       opr = LIR_OprFact::single_cpu(assigned_reg());
4474     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4475       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4476 #ifdef X86
4477     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
4478       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4479 #endif
4480     } else {
4481       ShouldNotReachHere();
4482     }
4483   } else {
4484     type_name = type2name(type());
4485     if (assigned_reg() != -1) {
4486       opr = LinearScan::calc_operand_for_interval(this);
4487     }
4488   }
4489 
4490   out->print("%d %s ", reg_num(), type_name);
4491   if (opr->is_valid()) {
4492     out->print("\"");
4493     opr->print(out);
4494     out->print("\" ");
4495   }
4496   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4497 
4498   // print ranges
4499   Range* cur = _first;
4500   while (cur != Range::end()) {
4501     cur->print(out);
4502     cur = cur->next();
4503     assert(cur != NULL, "range list not closed with range sentinel");
4504   }
4505 
4506   // print use positions
4507   int prev = 0;
4508   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4509   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4510     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4511     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4512 
4513     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4514     prev = _use_pos_and_kinds.at(i);
4515   }
4516 
4517   out->print(" \"%s\"", SpillState2Name[spill_state()]);
4518   out->cr();
4519 }
4520 #endif
4521 
4522 
4523 
4524 // **** Implementation of IntervalWalker ****************************
4525 
4526 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4527  : _compilation(allocator->compilation())
4528  , _allocator(allocator)
4529 {
4530   _unhandled_first[fixedKind] = unhandled_fixed_first;
4531   _unhandled_first[anyKind]   = unhandled_any_first;
4532   _active_first[fixedKind]    = Interval::end();
4533   _inactive_first[fixedKind]  = Interval::end();
4534   _active_first[anyKind]      = Interval::end();
4535   _inactive_first[anyKind]    = Interval::end();
4536   _current_position = -1;
4537   _current = NULL;
4538   next_interval();
4539 }
4540 
4541 
4542 // append interval at top of list
4543 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4544   interval->set_next(*list); *list = interval;
4545 }
4546 
4547 
4548 // append interval in order of current range from()
4549 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4550   Interval* prev = NULL;
4551   Interval* cur  = *list;
4552   while (cur->current_from() < interval->current_from()) {
4553     prev = cur; cur = cur->next();
4554   }
4555   if (prev == NULL) {
4556     *list = interval;
4557   } else {
4558     prev->set_next(interval);
4559   }
4560   interval->set_next(cur);
4561 }
4562 
4563 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4564   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4565 
4566   Interval* prev = NULL;
4567   Interval* cur  = *list;
4568   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4569     prev = cur; cur = cur->next();
4570   }
4571   if (prev == NULL) {
4572     *list = interval;
4573   } else {
4574     prev->set_next(interval);
4575   }
4576   interval->set_next(cur);
4577 }
4578 
4579 
4580 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4581   while (*list != Interval::end() && *list != i) {
4582     list = (*list)->next_addr();
4583   }
4584   if (*list != Interval::end()) {
4585     assert(*list == i, "check");
4586     *list = (*list)->next();
4587     return true;
4588   } else {
4589     return false;
4590   }
4591 }
4592 
4593 void IntervalWalker::remove_from_list(Interval* i) {
4594   bool deleted;
4595 
4596   if (i->state() == activeState) {
4597     deleted = remove_from_list(active_first_addr(anyKind), i);
4598   } else {
4599     assert(i->state() == inactiveState, "invalid state");
4600     deleted = remove_from_list(inactive_first_addr(anyKind), i);
4601   }
4602 
4603   assert(deleted, "interval has not been found in list");
4604 }
4605 
4606 
4607 void IntervalWalker::walk_to(IntervalState state, int from) {
4608   assert (state == activeState || state == inactiveState, "wrong state");
4609   for_each_interval_kind(kind) {
4610     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4611     Interval* next   = *prev;
4612     while (next->current_from() <= from) {
4613       Interval* cur = next;
4614       next = cur->next();
4615 
4616       bool range_has_changed = false;
4617       while (cur->current_to() <= from) {
4618         cur->next_range();
4619         range_has_changed = true;
4620       }
4621 
4622       // also handle move from inactive list to active list
4623       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4624 
4625       if (range_has_changed) {
4626         // remove cur from list
4627         *prev = next;
4628         if (cur->current_at_end()) {
4629           // move to handled state (not maintained as a list)
4630           cur->set_state(handledState);
4631           interval_moved(cur, kind, state, handledState);
4632         } else if (cur->current_from() <= from){
4633           // sort into active list
4634           append_sorted(active_first_addr(kind), cur);
4635           cur->set_state(activeState);
4636           if (*prev == cur) {
4637             assert(state == activeState, "check");
4638             prev = cur->next_addr();
4639           }
4640           interval_moved(cur, kind, state, activeState);
4641         } else {
4642           // sort into inactive list
4643           append_sorted(inactive_first_addr(kind), cur);
4644           cur->set_state(inactiveState);
4645           if (*prev == cur) {
4646             assert(state == inactiveState, "check");
4647             prev = cur->next_addr();
4648           }
4649           interval_moved(cur, kind, state, inactiveState);
4650         }
4651       } else {
4652         prev = cur->next_addr();
4653         continue;
4654       }
4655     }
4656   }
4657 }
4658 
4659 
4660 void IntervalWalker::next_interval() {
4661   IntervalKind kind;
4662   Interval* any   = _unhandled_first[anyKind];
4663   Interval* fixed = _unhandled_first[fixedKind];
4664 
4665   if (any != Interval::end()) {
4666     // intervals may start at same position -> prefer fixed interval
4667     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4668 
4669     assert (kind == fixedKind && fixed->from() <= any->from() ||
4670             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4671     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4672 
4673   } else if (fixed != Interval::end()) {
4674     kind = fixedKind;
4675   } else {
4676     _current = NULL; return;
4677   }
4678   _current_kind = kind;
4679   _current = _unhandled_first[kind];
4680   _unhandled_first[kind] = _current->next();
4681   _current->set_next(Interval::end());
4682   _current->rewind_range();
4683 }
4684 
4685 
4686 void IntervalWalker::walk_to(int lir_op_id) {
4687   assert(_current_position <= lir_op_id, "can not walk backwards");
4688   while (current() != NULL) {
4689     bool is_active = current()->from() <= lir_op_id;
4690     int id = is_active ? current()->from() : lir_op_id;
4691 
4692     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4693 
4694     // set _current_position prior to call of walk_to
4695     _current_position = id;
4696 
4697     // call walk_to even if _current_position == id
4698     walk_to(activeState, id);
4699     walk_to(inactiveState, id);
4700 
4701     if (is_active) {
4702       current()->set_state(activeState);
4703       if (activate_current()) {
4704         append_sorted(active_first_addr(current_kind()), current());
4705         interval_moved(current(), current_kind(), unhandledState, activeState);
4706       }
4707 
4708       next_interval();
4709     } else {
4710       return;
4711     }
4712   }
4713 }
4714 
4715 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4716 #ifndef PRODUCT
4717   if (TraceLinearScanLevel >= 4) {
4718     #define print_state(state) \
4719     switch(state) {\
4720       case unhandledState: tty->print("unhandled"); break;\
4721       case activeState: tty->print("active"); break;\
4722       case inactiveState: tty->print("inactive"); break;\
4723       case handledState: tty->print("handled"); break;\
4724       default: ShouldNotReachHere(); \
4725     }
4726 
4727     print_state(from); tty->print(" to "); print_state(to);
4728     tty->fill_to(23);
4729     interval->print();
4730 
4731     #undef print_state
4732   }
4733 #endif
4734 }
4735 
4736 
4737 
4738 // **** Implementation of LinearScanWalker **************************
4739 
4740 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4741   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4742   , _move_resolver(allocator)
4743 {
4744   for (int i = 0; i < LinearScan::nof_regs; i++) {
4745     _spill_intervals[i] = new IntervalList(2);
4746   }
4747 }
4748 
4749 
4750 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4751   for (int i = _first_reg; i <= _last_reg; i++) {
4752     _use_pos[i] = max_jint;
4753 
4754     if (!only_process_use_pos) {
4755       _block_pos[i] = max_jint;
4756       _spill_intervals[i]->clear();
4757     }
4758   }
4759 }
4760 
4761 inline void LinearScanWalker::exclude_from_use(int reg) {
4762   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4763   if (reg >= _first_reg && reg <= _last_reg) {
4764     _use_pos[reg] = 0;
4765   }
4766 }
4767 inline void LinearScanWalker::exclude_from_use(Interval* i) {
4768   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4769 
4770   exclude_from_use(i->assigned_reg());
4771   exclude_from_use(i->assigned_regHi());
4772 }
4773 
4774 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4775   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4776 
4777   if (reg >= _first_reg && reg <= _last_reg) {
4778     if (_use_pos[reg] > use_pos) {
4779       _use_pos[reg] = use_pos;
4780     }
4781     if (!only_process_use_pos) {
4782       _spill_intervals[reg]->append(i);
4783     }
4784   }
4785 }
4786 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4787   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4788   if (use_pos != -1) {
4789     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4790     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4791   }
4792 }
4793 
4794 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4795   if (reg >= _first_reg && reg <= _last_reg) {
4796     if (_block_pos[reg] > block_pos) {
4797       _block_pos[reg] = block_pos;
4798     }
4799     if (_use_pos[reg] > block_pos) {
4800       _use_pos[reg] = block_pos;
4801     }
4802   }
4803 }
4804 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4805   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4806   if (block_pos != -1) {
4807     set_block_pos(i->assigned_reg(), i, block_pos);
4808     set_block_pos(i->assigned_regHi(), i, block_pos);
4809   }
4810 }
4811 
4812 
4813 void LinearScanWalker::free_exclude_active_fixed() {
4814   Interval* list = active_first(fixedKind);
4815   while (list != Interval::end()) {
4816     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4817     exclude_from_use(list);
4818     list = list->next();
4819   }
4820 }
4821 
4822 void LinearScanWalker::free_exclude_active_any() {
4823   Interval* list = active_first(anyKind);
4824   while (list != Interval::end()) {
4825     exclude_from_use(list);
4826     list = list->next();
4827   }
4828 }
4829 
4830 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4831   Interval* list = inactive_first(fixedKind);
4832   while (list != Interval::end()) {
4833     if (cur->to() <= list->current_from()) {
4834       assert(list->current_intersects_at(cur) == -1, "must not intersect");
4835       set_use_pos(list, list->current_from(), true);
4836     } else {
4837       set_use_pos(list, list->current_intersects_at(cur), true);
4838     }
4839     list = list->next();
4840   }
4841 }
4842 
4843 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4844   Interval* list = inactive_first(anyKind);
4845   while (list != Interval::end()) {
4846     set_use_pos(list, list->current_intersects_at(cur), true);
4847     list = list->next();
4848   }
4849 }
4850 
4851 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4852   Interval* list = unhandled_first(kind);
4853   while (list != Interval::end()) {
4854     set_use_pos(list, list->intersects_at(cur), true);
4855     if (kind == fixedKind && cur->to() <= list->from()) {
4856       set_use_pos(list, list->from(), true);
4857     }
4858     list = list->next();
4859   }
4860 }
4861 
4862 void LinearScanWalker::spill_exclude_active_fixed() {
4863   Interval* list = active_first(fixedKind);
4864   while (list != Interval::end()) {
4865     exclude_from_use(list);
4866     list = list->next();
4867   }
4868 }
4869 
4870 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4871   Interval* list = unhandled_first(fixedKind);
4872   while (list != Interval::end()) {
4873     set_block_pos(list, list->intersects_at(cur));
4874     list = list->next();
4875   }
4876 }
4877 
4878 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4879   Interval* list = inactive_first(fixedKind);
4880   while (list != Interval::end()) {
4881     if (cur->to() > list->current_from()) {
4882       set_block_pos(list, list->current_intersects_at(cur));
4883     } else {
4884       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4885     }
4886 
4887     list = list->next();
4888   }
4889 }
4890 
4891 void LinearScanWalker::spill_collect_active_any() {
4892   Interval* list = active_first(anyKind);
4893   while (list != Interval::end()) {
4894     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4895     list = list->next();
4896   }
4897 }
4898 
4899 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
4900   Interval* list = inactive_first(anyKind);
4901   while (list != Interval::end()) {
4902     if (list->current_intersects(cur)) {
4903       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4904     }
4905     list = list->next();
4906   }
4907 }
4908 
4909 
4910 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
4911   // output all moves here. When source and target are equal, the move is
4912   // optimized away later in assign_reg_nums
4913 
4914   op_id = (op_id + 1) & ~1;
4915   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
4916   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
4917 
4918   // calculate index of instruction inside instruction list of current block
4919   // the minimal index (for a block with no spill moves) can be calculated because the
4920   // numbering of instructions is known.
4921   // When the block already contains spill moves, the index must be increased until the
4922   // correct index is reached.
4923   LIR_OpList* list = op_block->lir()->instructions_list();
4924   int index = (op_id - list->at(0)->id()) / 2;
4925   assert(list->at(index)->id() <= op_id, "error in calculation");
4926 
4927   while (list->at(index)->id() != op_id) {
4928     index++;
4929     assert(0 <= index && index < list->length(), "index out of bounds");
4930   }
4931   assert(1 <= index && index < list->length(), "index out of bounds");
4932   assert(list->at(index)->id() == op_id, "error in calculation");
4933 
4934   // insert new instruction before instruction at position index
4935   _move_resolver.move_insert_position(op_block->lir(), index - 1);
4936   _move_resolver.add_mapping(src_it, dst_it);
4937 }
4938 
4939 
4940 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
4941   int from_block_nr = min_block->linear_scan_number();
4942   int to_block_nr = max_block->linear_scan_number();
4943 
4944   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
4945   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
4946   assert(from_block_nr < to_block_nr, "must cross block boundary");
4947 
4948   // Try to split at end of max_block. If this would be after
4949   // max_split_pos, then use the begin of max_block
4950   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
4951   if (optimal_split_pos > max_split_pos) {
4952     optimal_split_pos = max_block->first_lir_instruction_id();
4953   }
4954 
4955   int min_loop_depth = max_block->loop_depth();
4956   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
4957     BlockBegin* cur = block_at(i);
4958 
4959     if (cur->loop_depth() < min_loop_depth) {
4960       // block with lower loop-depth found -> split at the end of this block
4961       min_loop_depth = cur->loop_depth();
4962       optimal_split_pos = cur->last_lir_instruction_id() + 2;
4963     }
4964   }
4965   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
4966 
4967   return optimal_split_pos;
4968 }
4969 
4970 
4971 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
4972   int optimal_split_pos = -1;
4973   if (min_split_pos == max_split_pos) {
4974     // trivial case, no optimization of split position possible
4975     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
4976     optimal_split_pos = min_split_pos;
4977 
4978   } else {
4979     assert(min_split_pos < max_split_pos, "must be true then");
4980     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
4981 
4982     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
4983     // beginning of a block, then min_split_pos is also a possible split position.
4984     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
4985     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
4986 
4987     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
4988     // when an interval ends at the end of the last block of the method
4989     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
4990     // block at this op_id)
4991     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
4992 
4993     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
4994     if (min_block == max_block) {
4995       // split position cannot be moved to block boundary, so split as late as possible
4996       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
4997       optimal_split_pos = max_split_pos;
4998 
4999     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5000       // Do not move split position if the interval has a hole before max_split_pos.
5001       // Intervals resulting from Phi-Functions have more than one definition (marked
5002       // as mustHaveRegister) with a hole before each definition. When the register is needed
5003       // for the second definition, an earlier reloading is unnecessary.
5004       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
5005       optimal_split_pos = max_split_pos;
5006 
5007     } else {
5008       // seach optimal block boundary between min_split_pos and max_split_pos
5009       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5010 
5011       if (do_loop_optimization) {
5012         // Loop optimization: if a loop-end marker is found between min- and max-position,
5013         // then split before this loop
5014         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5015         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
5016 
5017         assert(loop_end_pos > min_split_pos, "invalid order");
5018         if (loop_end_pos < max_split_pos) {
5019           // loop-end marker found between min- and max-position
5020           // if it is not the end marker for the same loop as the min-position, then move
5021           // the max-position to this loop block.
5022           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5023           // of the interval (normally, only mustHaveRegister causes a reloading)
5024           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5025 
5026           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5027           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5028 
5029           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5030           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5031             optimal_split_pos = -1;
5032             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
5033           } else {
5034             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
5035           }
5036         }
5037       }
5038 
5039       if (optimal_split_pos == -1) {
5040         // not calculated by loop optimization
5041         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5042       }
5043     }
5044   }
5045   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
5046 
5047   return optimal_split_pos;
5048 }
5049 
5050 
5051 /*
5052   split an interval at the optimal position between min_split_pos and
5053   max_split_pos in two parts:
5054   1) the left part has already a location assigned
5055   2) the right part is sorted into to the unhandled-list
5056 */
5057 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5058   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
5059   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5060 
5061   assert(it->from() < min_split_pos,         "cannot split at start of interval");
5062   assert(current_position() < min_split_pos, "cannot split before current position");
5063   assert(min_split_pos <= max_split_pos,     "invalid order");
5064   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
5065 
5066   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5067 
5068   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5069   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
5070   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5071 
5072   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5073     // the split position would be just before the end of the interval
5074     // -> no split at all necessary
5075     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
5076     return;
5077   }
5078 
5079   // must calculate this before the actual split is performed and before split position is moved to odd op_id
5080   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5081 
5082   if (!allocator()->is_block_begin(optimal_split_pos)) {
5083     // move position before actual instruction (odd op_id)
5084     optimal_split_pos = (optimal_split_pos - 1) | 1;
5085   }
5086 
5087   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5088   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5089   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5090 
5091   Interval* split_part = it->split(optimal_split_pos);
5092 
5093   allocator()->append_interval(split_part);
5094   allocator()->copy_register_flags(it, split_part);
5095   split_part->set_insert_move_when_activated(move_necessary);
5096   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5097 
5098   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5099   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5100   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
5101 }
5102 
5103 /*
5104   split an interval at the optimal position between min_split_pos and
5105   max_split_pos in two parts:
5106   1) the left part has already a location assigned
5107   2) the right part is always on the stack and therefore ignored in further processing
5108 */
5109 void LinearScanWalker::split_for_spilling(Interval* it) {
5110   // calculate allowed range of splitting position
5111   int max_split_pos = current_position();
5112   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5113 
5114   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5115   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5116 
5117   assert(it->state() == activeState,     "why spill interval that is not active?");
5118   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5119   assert(min_split_pos <= max_split_pos, "invalid order");
5120   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5121   assert(current_position() < it->to(),  "interval must not end before current position");
5122 
5123   if (min_split_pos == it->from()) {
5124     // the whole interval is never used, so spill it entirely to memory
5125     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5126     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5127 
5128     allocator()->assign_spill_slot(it);
5129     allocator()->change_spill_state(it, min_split_pos);
5130 
5131     // Also kick parent intervals out of register to memory when they have no use
5132     // position. This avoids short interval in register surrounded by intervals in
5133     // memory -> avoid useless moves from memory to register and back
5134     Interval* parent = it;
5135     while (parent != NULL && parent->is_split_child()) {
5136       parent = parent->split_child_before_op_id(parent->from());
5137 
5138       if (parent->assigned_reg() < LinearScan::nof_regs) {
5139         if (parent->first_usage(shouldHaveRegister) == max_jint) {
5140           // parent is never used, so kick it out of its assigned register
5141           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5142           allocator()->assign_spill_slot(parent);
5143         } else {
5144           // do not go further back because the register is actually used by the interval
5145           parent = NULL;
5146         }
5147       }
5148     }
5149 
5150   } else {
5151     // search optimal split pos, split interval and spill only the right hand part
5152     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5153 
5154     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5155     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5156     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5157 
5158     if (!allocator()->is_block_begin(optimal_split_pos)) {
5159       // move position before actual instruction (odd op_id)
5160       optimal_split_pos = (optimal_split_pos - 1) | 1;
5161     }
5162 
5163     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5164     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5165     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5166 
5167     Interval* spilled_part = it->split(optimal_split_pos);
5168     allocator()->append_interval(spilled_part);
5169     allocator()->assign_spill_slot(spilled_part);
5170     allocator()->change_spill_state(spilled_part, optimal_split_pos);
5171 
5172     if (!allocator()->is_block_begin(optimal_split_pos)) {
5173       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5174       insert_move(optimal_split_pos, it, spilled_part);
5175     }
5176 
5177     // the current_split_child is needed later when moves are inserted for reloading
5178     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5179     spilled_part->make_current_split_child();
5180 
5181     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5182     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5183     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5184   }
5185 }
5186 
5187 
5188 void LinearScanWalker::split_stack_interval(Interval* it) {
5189   int min_split_pos = current_position() + 1;
5190   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5191 
5192   split_before_usage(it, min_split_pos, max_split_pos);
5193 }
5194 
5195 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5196   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5197   int max_split_pos = register_available_until;
5198 
5199   split_before_usage(it, min_split_pos, max_split_pos);
5200 }
5201 
5202 void LinearScanWalker::split_and_spill_interval(Interval* it) {
5203   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5204 
5205   int current_pos = current_position();
5206   if (it->state() == inactiveState) {
5207     // the interval is currently inactive, so no spill slot is needed for now.
5208     // when the split part is activated, the interval has a new chance to get a register,
5209     // so in the best case no stack slot is necessary
5210     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5211     split_before_usage(it, current_pos + 1, current_pos + 1);
5212 
5213   } else {
5214     // search the position where the interval must have a register and split
5215     // at the optimal position before.
5216     // The new created part is added to the unhandled list and will get a register
5217     // when it is activated
5218     int min_split_pos = current_pos + 1;
5219     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5220 
5221     split_before_usage(it, min_split_pos, max_split_pos);
5222 
5223     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5224     split_for_spilling(it);
5225   }
5226 }
5227 
5228 
5229 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5230   int min_full_reg = any_reg;
5231   int max_partial_reg = any_reg;
5232 
5233   for (int i = _first_reg; i <= _last_reg; i++) {
5234     if (i == ignore_reg) {
5235       // this register must be ignored
5236 
5237     } else if (_use_pos[i] >= interval_to) {
5238       // this register is free for the full interval
5239       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5240         min_full_reg = i;
5241       }
5242     } else if (_use_pos[i] > reg_needed_until) {
5243       // this register is at least free until reg_needed_until
5244       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5245         max_partial_reg = i;
5246       }
5247     }
5248   }
5249 
5250   if (min_full_reg != any_reg) {
5251     return min_full_reg;
5252   } else if (max_partial_reg != any_reg) {
5253     *need_split = true;
5254     return max_partial_reg;
5255   } else {
5256     return any_reg;
5257   }
5258 }
5259 
5260 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5261   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5262 
5263   int min_full_reg = any_reg;
5264   int max_partial_reg = any_reg;
5265 
5266   for (int i = _first_reg; i < _last_reg; i+=2) {
5267     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5268       // this register is free for the full interval
5269       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5270         min_full_reg = i;
5271       }
5272     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5273       // this register is at least free until reg_needed_until
5274       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5275         max_partial_reg = i;
5276       }
5277     }
5278   }
5279 
5280   if (min_full_reg != any_reg) {
5281     return min_full_reg;
5282   } else if (max_partial_reg != any_reg) {
5283     *need_split = true;
5284     return max_partial_reg;
5285   } else {
5286     return any_reg;
5287   }
5288 }
5289 
5290 
5291 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5292   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5293 
5294   init_use_lists(true);
5295   free_exclude_active_fixed();
5296   free_exclude_active_any();
5297   free_collect_inactive_fixed(cur);
5298   free_collect_inactive_any(cur);
5299 //  free_collect_unhandled(fixedKind, cur);
5300   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5301 
5302   // _use_pos contains the start of the next interval that has this register assigned
5303   // (either as a fixed register or a normal allocated register in the past)
5304   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5305   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5306   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5307 
5308   int hint_reg, hint_regHi;
5309   Interval* register_hint = cur->register_hint();
5310   if (register_hint != NULL) {
5311     hint_reg = register_hint->assigned_reg();
5312     hint_regHi = register_hint->assigned_regHi();
5313 
5314     if (allocator()->is_precolored_cpu_interval(register_hint)) {
5315       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5316       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5317     }
5318     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5319 
5320   } else {
5321     hint_reg = any_reg;
5322     hint_regHi = any_reg;
5323   }
5324   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5325   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5326 
5327   // the register must be free at least until this position
5328   int reg_needed_until = cur->from() + 1;
5329   int interval_to = cur->to();
5330 
5331   bool need_split = false;
5332   int split_pos = -1;
5333   int reg = any_reg;
5334   int regHi = any_reg;
5335 
5336   if (_adjacent_regs) {
5337     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5338     regHi = reg + 1;
5339     if (reg == any_reg) {
5340       return false;
5341     }
5342     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5343 
5344   } else {
5345     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5346     if (reg == any_reg) {
5347       return false;
5348     }
5349     split_pos = _use_pos[reg];
5350 
5351     if (_num_phys_regs == 2) {
5352       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5353 
5354       if (_use_pos[reg] < interval_to && regHi == any_reg) {
5355         // do not split interval if only one register can be assigned until the split pos
5356         // (when one register is found for the whole interval, split&spill is only
5357         // performed for the hi register)
5358         return false;
5359 
5360       } else if (regHi != any_reg) {
5361         split_pos = MIN2(split_pos, _use_pos[regHi]);
5362 
5363         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5364         if (reg > regHi) {
5365           int temp = reg;
5366           reg = regHi;
5367           regHi = temp;
5368         }
5369       }
5370     }
5371   }
5372 
5373   cur->assign_reg(reg, regHi);
5374   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5375 
5376   assert(split_pos > 0, "invalid split_pos");
5377   if (need_split) {
5378     // register not available for full interval, so split it
5379     split_when_partial_register_available(cur, split_pos);
5380   }
5381 
5382   // only return true if interval is completely assigned
5383   return _num_phys_regs == 1 || regHi != any_reg;
5384 }
5385 
5386 
5387 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5388   int max_reg = any_reg;
5389 
5390   for (int i = _first_reg; i <= _last_reg; i++) {
5391     if (i == ignore_reg) {
5392       // this register must be ignored
5393 
5394     } else if (_use_pos[i] > reg_needed_until) {
5395       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5396         max_reg = i;
5397       }
5398     }
5399   }
5400 
5401   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5402     *need_split = true;
5403   }
5404 
5405   return max_reg;
5406 }
5407 
5408 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5409   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5410 
5411   int max_reg = any_reg;
5412 
5413   for (int i = _first_reg; i < _last_reg; i+=2) {
5414     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5415       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5416         max_reg = i;
5417       }
5418     }
5419   }
5420 
5421   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
5422     *need_split = true;
5423   }
5424 
5425   return max_reg;
5426 }
5427 
5428 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5429   assert(reg != any_reg, "no register assigned");
5430 
5431   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5432     Interval* it = _spill_intervals[reg]->at(i);
5433     remove_from_list(it);
5434     split_and_spill_interval(it);
5435   }
5436 
5437   if (regHi != any_reg) {
5438     IntervalList* processed = _spill_intervals[reg];
5439     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5440       Interval* it = _spill_intervals[regHi]->at(i);
5441       if (processed->index_of(it) == -1) {
5442         remove_from_list(it);
5443         split_and_spill_interval(it);
5444       }
5445     }
5446   }
5447 }
5448 
5449 
5450 // Split an Interval and spill it to memory so that cur can be placed in a register
5451 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5452   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5453 
5454   // collect current usage of registers
5455   init_use_lists(false);
5456   spill_exclude_active_fixed();
5457 //  spill_block_unhandled_fixed(cur);
5458   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5459   spill_block_inactive_fixed(cur);
5460   spill_collect_active_any();
5461   spill_collect_inactive_any(cur);
5462 
5463 #ifndef PRODUCT
5464   if (TraceLinearScanLevel >= 4) {
5465     tty->print_cr("      state of registers:");
5466     for (int i = _first_reg; i <= _last_reg; i++) {
5467       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5468       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5469         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5470       }
5471       tty->cr();
5472     }
5473   }
5474 #endif
5475 
5476   // the register must be free at least until this position
5477   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5478   int interval_to = cur->to();
5479   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5480 
5481   int split_pos = 0;
5482   int use_pos = 0;
5483   bool need_split = false;
5484   int reg, regHi;
5485 
5486   if (_adjacent_regs) {
5487     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5488     regHi = reg + 1;
5489 
5490     if (reg != any_reg) {
5491       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5492       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5493     }
5494   } else {
5495     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5496     regHi = any_reg;
5497 
5498     if (reg != any_reg) {
5499       use_pos = _use_pos[reg];
5500       split_pos = _block_pos[reg];
5501 
5502       if (_num_phys_regs == 2) {
5503         if (cur->assigned_reg() != any_reg) {
5504           regHi = reg;
5505           reg = cur->assigned_reg();
5506         } else {
5507           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5508           if (regHi != any_reg) {
5509             use_pos = MIN2(use_pos, _use_pos[regHi]);
5510             split_pos = MIN2(split_pos, _block_pos[regHi]);
5511           }
5512         }
5513 
5514         if (regHi != any_reg && reg > regHi) {
5515           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5516           int temp = reg;
5517           reg = regHi;
5518           regHi = temp;
5519         }
5520       }
5521     }
5522   }
5523 
5524   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5525     // the first use of cur is later than the spilling position -> spill cur
5526     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5527 
5528     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5529       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5530       // assign a reasonable register and do a bailout in product mode to avoid errors
5531       allocator()->assign_spill_slot(cur);
5532       BAILOUT("LinearScan: no register found");
5533     }
5534 
5535     split_and_spill_interval(cur);
5536   } else {
5537     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5538     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5539     assert(split_pos > 0, "invalid split_pos");
5540     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5541 
5542     cur->assign_reg(reg, regHi);
5543     if (need_split) {
5544       // register not available for full interval, so split it
5545       split_when_partial_register_available(cur, split_pos);
5546     }
5547 
5548     // perform splitting and spilling for all affected intervalls
5549     split_and_spill_intersecting_intervals(reg, regHi);
5550   }
5551 }
5552 
5553 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5554 #ifdef X86
5555   // fast calculation of intervals that can never get a register because the
5556   // the next instruction is a call that blocks all registers
5557   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5558 
5559   // check if this interval is the result of a split operation
5560   // (an interval got a register until this position)
5561   int pos = cur->from();
5562   if ((pos & 1) == 1) {
5563     // the current instruction is a call that blocks all registers
5564     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5565       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5566 
5567       // safety check that there is really no register available
5568       assert(alloc_free_reg(cur) == false, "found a register for this interval");
5569       return true;
5570     }
5571 
5572   }
5573 #endif
5574   return false;
5575 }
5576 
5577 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5578   BasicType type = cur->type();
5579   _num_phys_regs = LinearScan::num_physical_regs(type);
5580   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5581 
5582   if (pd_init_regs_for_alloc(cur)) {
5583     // the appropriate register range was selected.
5584   } else if (type == T_FLOAT || type == T_DOUBLE) {
5585     _first_reg = pd_first_fpu_reg;
5586     _last_reg = pd_last_fpu_reg;
5587   } else {
5588     _first_reg = pd_first_cpu_reg;
5589     _last_reg = pd_last_cpu_reg;
5590   }
5591 
5592   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5593   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5594 }
5595 
5596 
5597 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5598   if (op->code() != lir_move) {
5599     return false;
5600   }
5601   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5602 
5603   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5604   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5605   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5606 }
5607 
5608 // optimization (especially for phi functions of nested loops):
5609 // assign same spill slot to non-intersecting intervals
5610 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5611   if (cur->is_split_child()) {
5612     // optimization is only suitable for split parents
5613     return;
5614   }
5615 
5616   Interval* register_hint = cur->register_hint(false);
5617   if (register_hint == NULL) {
5618     // cur is not the target of a move, otherwise register_hint would be set
5619     return;
5620   }
5621   assert(register_hint->is_split_parent(), "register hint must be split parent");
5622 
5623   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5624     // combining the stack slots for intervals where spill move optimization is applied
5625     // is not benefitial and would cause problems
5626     return;
5627   }
5628 
5629   int begin_pos = cur->from();
5630   int end_pos = cur->to();
5631   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5632     // safety check that lir_op_with_id is allowed
5633     return;
5634   }
5635 
5636   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5637     // cur and register_hint are not connected with two moves
5638     return;
5639   }
5640 
5641   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5642   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5643   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5644     // register_hint must be split, otherwise the re-writing of use positions does not work
5645     return;
5646   }
5647 
5648   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5649   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5650   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5651   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5652 
5653   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5654     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5655     return;
5656   }
5657   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5658 
5659   // modify intervals such that cur gets the same stack slot as register_hint
5660   // delete use positions to prevent the intervals to get a register at beginning
5661   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5662   cur->remove_first_use_pos();
5663   end_hint->remove_first_use_pos();
5664 }
5665 
5666 
5667 // allocate a physical register or memory location to an interval
5668 bool LinearScanWalker::activate_current() {
5669   Interval* cur = current();
5670   bool result = true;
5671 
5672   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5673   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5674 
5675   if (cur->assigned_reg() >= LinearScan::nof_regs) {
5676     // activating an interval that has a stack slot assigned -> split it at first use position
5677     // used for method parameters
5678     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5679 
5680     split_stack_interval(cur);
5681     result = false;
5682 
5683   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5684     // activating an interval that must start in a stack slot, but may get a register later
5685     // used for lir_roundfp: rounding is done by store to stack and reload later
5686     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5687     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5688 
5689     allocator()->assign_spill_slot(cur);
5690     split_stack_interval(cur);
5691     result = false;
5692 
5693   } else if (cur->assigned_reg() == any_reg) {
5694     // interval has not assigned register -> normal allocation
5695     // (this is the normal case for most intervals)
5696     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5697 
5698     // assign same spill slot to non-intersecting intervals
5699     combine_spilled_intervals(cur);
5700 
5701     init_vars_for_alloc(cur);
5702     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5703       // no empty register available.
5704       // split and spill another interval so that this interval gets a register
5705       alloc_locked_reg(cur);
5706     }
5707 
5708     // spilled intervals need not be move to active-list
5709     if (cur->assigned_reg() >= LinearScan::nof_regs) {
5710       result = false;
5711     }
5712   }
5713 
5714   // load spilled values that become active from stack slot to register
5715   if (cur->insert_move_when_activated()) {
5716     assert(cur->is_split_child(), "must be");
5717     assert(cur->current_split_child() != NULL, "must be");
5718     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5719     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5720 
5721     insert_move(cur->from(), cur->current_split_child(), cur);
5722   }
5723   cur->make_current_split_child();
5724 
5725   return result; // true = interval is moved to active list
5726 }
5727 
5728 
5729 // Implementation of EdgeMoveOptimizer
5730 
5731 EdgeMoveOptimizer::EdgeMoveOptimizer() :
5732   _edge_instructions(4),
5733   _edge_instructions_idx(4)
5734 {
5735 }
5736 
5737 void EdgeMoveOptimizer::optimize(BlockList* code) {
5738   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5739 
5740   // ignore the first block in the list (index 0 is not processed)
5741   for (int i = code->length() - 1; i >= 1; i--) {
5742     BlockBegin* block = code->at(i);
5743 
5744     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5745       optimizer.optimize_moves_at_block_end(block);
5746     }
5747     if (block->number_of_sux() == 2) {
5748       optimizer.optimize_moves_at_block_begin(block);
5749     }
5750   }
5751 }
5752 
5753 
5754 // clear all internal data structures
5755 void EdgeMoveOptimizer::init_instructions() {
5756   _edge_instructions.clear();
5757   _edge_instructions_idx.clear();
5758 }
5759 
5760 // append a lir-instruction-list and the index of the current operation in to the list
5761 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5762   _edge_instructions.append(instructions);
5763   _edge_instructions_idx.append(instructions_idx);
5764 }
5765 
5766 // return the current operation of the given edge (predecessor or successor)
5767 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5768   LIR_OpList* instructions = _edge_instructions.at(edge);
5769   int idx = _edge_instructions_idx.at(edge);
5770 
5771   if (idx < instructions->length()) {
5772     return instructions->at(idx);
5773   } else {
5774     return NULL;
5775   }
5776 }
5777 
5778 // removes the current operation of the given edge (predecessor or successor)
5779 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5780   LIR_OpList* instructions = _edge_instructions.at(edge);
5781   int idx = _edge_instructions_idx.at(edge);
5782   instructions->remove_at(idx);
5783 
5784   if (decrement_index) {
5785     _edge_instructions_idx.at_put(edge, idx - 1);
5786   }
5787 }
5788 
5789 
5790 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5791   if (op1 == NULL || op2 == NULL) {
5792     // at least one block is already empty -> no optimization possible
5793     return true;
5794   }
5795 
5796   if (op1->code() == lir_move && op2->code() == lir_move) {
5797     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5798     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5799     LIR_Op1* move1 = (LIR_Op1*)op1;
5800     LIR_Op1* move2 = (LIR_Op1*)op2;
5801     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5802       // these moves are exactly equal and can be optimized
5803       return false;
5804     }
5805 
5806   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5807     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5808     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5809     LIR_Op1* fxch1 = (LIR_Op1*)op1;
5810     LIR_Op1* fxch2 = (LIR_Op1*)op2;
5811     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5812       // equal FPU stack operations can be optimized
5813       return false;
5814     }
5815 
5816   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5817     // equal FPU stack operations can be optimized
5818     return false;
5819   }
5820 
5821   // no optimization possible
5822   return true;
5823 }
5824 
5825 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5826   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5827 
5828   if (block->is_predecessor(block)) {
5829     // currently we can't handle this correctly.
5830     return;
5831   }
5832 
5833   init_instructions();
5834   int num_preds = block->number_of_preds();
5835   assert(num_preds > 1, "do not call otherwise");
5836   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5837 
5838   // setup a list with the lir-instructions of all predecessors
5839   int i;
5840   for (i = 0; i < num_preds; i++) {
5841     BlockBegin* pred = block->pred_at(i);
5842     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5843 
5844     if (pred->number_of_sux() != 1) {
5845       // this can happen with switch-statements where multiple edges are between
5846       // the same blocks.
5847       return;
5848     }
5849 
5850     assert(pred->number_of_sux() == 1, "can handle only one successor");
5851     assert(pred->sux_at(0) == block, "invalid control flow");
5852     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5853     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5854     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5855 
5856     if (pred_instructions->last()->info() != NULL) {
5857       // can not optimize instructions when debug info is needed
5858       return;
5859     }
5860 
5861     // ignore the unconditional branch at the end of the block
5862     append_instructions(pred_instructions, pred_instructions->length() - 2);
5863   }
5864 
5865 
5866   // process lir-instructions while all predecessors end with the same instruction
5867   while (true) {
5868     LIR_Op* op = instruction_at(0);
5869     for (i = 1; i < num_preds; i++) {
5870       if (operations_different(op, instruction_at(i))) {
5871         // these instructions are different and cannot be optimized ->
5872         // no further optimization possible
5873         return;
5874       }
5875     }
5876 
5877     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5878 
5879     // insert the instruction at the beginning of the current block
5880     block->lir()->insert_before(1, op);
5881 
5882     // delete the instruction at the end of all predecessors
5883     for (i = 0; i < num_preds; i++) {
5884       remove_cur_instruction(i, true);
5885     }
5886   }
5887 }
5888 
5889 
5890 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
5891   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
5892 
5893   init_instructions();
5894   int num_sux = block->number_of_sux();
5895 
5896   LIR_OpList* cur_instructions = block->lir()->instructions_list();
5897 
5898   assert(num_sux == 2, "method should not be called otherwise");
5899   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5900   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5901   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5902 
5903   if (cur_instructions->last()->info() != NULL) {
5904     // can no optimize instructions when debug info is needed
5905     return;
5906   }
5907 
5908   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
5909   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
5910     // not a valid case for optimization
5911     // currently, only blocks that end with two branches (conditional branch followed
5912     // by unconditional branch) are optimized
5913     return;
5914   }
5915 
5916   // now it is guaranteed that the block ends with two branch instructions.
5917   // the instructions are inserted at the end of the block before these two branches
5918   int insert_idx = cur_instructions->length() - 2;
5919 
5920   int i;
5921 #ifdef ASSERT
5922   for (i = insert_idx - 1; i >= 0; i--) {
5923     LIR_Op* op = cur_instructions->at(i);
5924     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
5925       assert(false, "block with two successors can have only two branch instructions");
5926     }
5927   }
5928 #endif
5929 
5930   // setup a list with the lir-instructions of all successors
5931   for (i = 0; i < num_sux; i++) {
5932     BlockBegin* sux = block->sux_at(i);
5933     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
5934 
5935     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
5936 
5937     if (sux->number_of_preds() != 1) {
5938       // this can happen with switch-statements where multiple edges are between
5939       // the same blocks.
5940       return;
5941     }
5942     assert(sux->pred_at(0) == block, "invalid control flow");
5943     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5944 
5945     // ignore the label at the beginning of the block
5946     append_instructions(sux_instructions, 1);
5947   }
5948 
5949   // process lir-instructions while all successors begin with the same instruction
5950   while (true) {
5951     LIR_Op* op = instruction_at(0);
5952     for (i = 1; i < num_sux; i++) {
5953       if (operations_different(op, instruction_at(i))) {
5954         // these instructions are different and cannot be optimized ->
5955         // no further optimization possible
5956         return;
5957       }
5958     }
5959 
5960     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
5961 
5962     // insert instruction at end of current block
5963     block->lir()->insert_before(insert_idx, op);
5964     insert_idx++;
5965 
5966     // delete the instructions at the beginning of all successors
5967     for (i = 0; i < num_sux; i++) {
5968       remove_cur_instruction(i, false);
5969     }
5970   }
5971 }
5972 
5973 
5974 // Implementation of ControlFlowOptimizer
5975 
5976 ControlFlowOptimizer::ControlFlowOptimizer() :
5977   _original_preds(4)
5978 {
5979 }
5980 
5981 void ControlFlowOptimizer::optimize(BlockList* code) {
5982   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
5983 
5984   // push the OSR entry block to the end so that we're not jumping over it.
5985   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
5986   if (osr_entry) {
5987     int index = osr_entry->linear_scan_number();
5988     assert(code->at(index) == osr_entry, "wrong index");
5989     code->remove_at(index);
5990     code->append(osr_entry);
5991   }
5992 
5993   optimizer.reorder_short_loops(code);
5994   optimizer.delete_empty_blocks(code);
5995   optimizer.delete_unnecessary_jumps(code);
5996   optimizer.delete_jumps_to_return(code);
5997 }
5998 
5999 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6000   int i = header_idx + 1;
6001   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6002   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6003     i++;
6004   }
6005 
6006   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6007     int end_idx = i - 1;
6008     BlockBegin* end_block = code->at(end_idx);
6009 
6010     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6011       // short loop from header_idx to end_idx found -> reorder blocks such that
6012       // the header_block is the last block instead of the first block of the loop
6013       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6014                                          end_idx - header_idx + 1,
6015                                          header_block->block_id(), end_block->block_id()));
6016 
6017       for (int j = header_idx; j < end_idx; j++) {
6018         code->at_put(j, code->at(j + 1));
6019       }
6020       code->at_put(end_idx, header_block);
6021 
6022       // correct the flags so that any loop alignment occurs in the right place.
6023       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6024       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6025       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6026     }
6027   }
6028 }
6029 
6030 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6031   for (int i = code->length() - 1; i >= 0; i--) {
6032     BlockBegin* block = code->at(i);
6033 
6034     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6035       reorder_short_loop(code, block, i);
6036     }
6037   }
6038 
6039   DEBUG_ONLY(verify(code));
6040 }
6041 
6042 // only blocks with exactly one successor can be deleted. Such blocks
6043 // must always end with an unconditional branch to this successor
6044 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6045   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6046     return false;
6047   }
6048 
6049   LIR_OpList* instructions = block->lir()->instructions_list();
6050 
6051   assert(instructions->length() >= 2, "block must have label and branch");
6052   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6053   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6054   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6055   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6056 
6057   // block must have exactly one successor
6058 
6059   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6060     return true;
6061   }
6062   return false;
6063 }
6064 
6065 // substitute branch targets in all branch-instructions of this blocks
6066 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6067   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6068 
6069   LIR_OpList* instructions = block->lir()->instructions_list();
6070 
6071   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6072   for (int i = instructions->length() - 1; i >= 1; i--) {
6073     LIR_Op* op = instructions->at(i);
6074 
6075     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6076       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6077       LIR_OpBranch* branch = (LIR_OpBranch*)op;
6078 
6079       if (branch->block() == target_from) {
6080         branch->change_block(target_to);
6081       }
6082       if (branch->ublock() == target_from) {
6083         branch->change_ublock(target_to);
6084       }
6085     }
6086   }
6087 }
6088 
6089 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6090   int old_pos = 0;
6091   int new_pos = 0;
6092   int num_blocks = code->length();
6093 
6094   while (old_pos < num_blocks) {
6095     BlockBegin* block = code->at(old_pos);
6096 
6097     if (can_delete_block(block)) {
6098       BlockBegin* new_target = block->sux_at(0);
6099 
6100       // propagate backward branch target flag for correct code alignment
6101       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6102         new_target->set(BlockBegin::backward_branch_target_flag);
6103       }
6104 
6105       // collect a list with all predecessors that contains each predecessor only once
6106       // the predecessors of cur are changed during the substitution, so a copy of the
6107       // predecessor list is necessary
6108       int j;
6109       _original_preds.clear();
6110       for (j = block->number_of_preds() - 1; j >= 0; j--) {
6111         BlockBegin* pred = block->pred_at(j);
6112         if (_original_preds.index_of(pred) == -1) {
6113           _original_preds.append(pred);
6114         }
6115       }
6116 
6117       for (j = _original_preds.length() - 1; j >= 0; j--) {
6118         BlockBegin* pred = _original_preds.at(j);
6119         substitute_branch_target(pred, block, new_target);
6120         pred->substitute_sux(block, new_target);
6121       }
6122     } else {
6123       // adjust position of this block in the block list if blocks before
6124       // have been deleted
6125       if (new_pos != old_pos) {
6126         code->at_put(new_pos, code->at(old_pos));
6127       }
6128       new_pos++;
6129     }
6130     old_pos++;
6131   }
6132   code->truncate(new_pos);
6133 
6134   DEBUG_ONLY(verify(code));
6135 }
6136 
6137 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6138   // skip the last block because there a branch is always necessary
6139   for (int i = code->length() - 2; i >= 0; i--) {
6140     BlockBegin* block = code->at(i);
6141     LIR_OpList* instructions = block->lir()->instructions_list();
6142 
6143     LIR_Op* last_op = instructions->last();
6144     if (last_op->code() == lir_branch) {
6145       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6146       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6147 
6148       assert(last_branch->block() != NULL, "last branch must always have a block as target");
6149       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6150 
6151       if (last_branch->info() == NULL) {
6152         if (last_branch->block() == code->at(i + 1)) {
6153 
6154           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6155 
6156           // delete last branch instruction
6157           instructions->truncate(instructions->length() - 1);
6158 
6159         } else {
6160           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6161           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6162             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6163             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6164 
6165             LIR_Op2* prev_cmp = NULL;
6166 
6167             for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6168               prev_op = instructions->at(j);
6169               if(prev_op->code() == lir_cmp) {
6170                 assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6171                 prev_cmp = (LIR_Op2*)prev_op;
6172                 assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6173               }
6174             }
6175             assert(prev_cmp != NULL, "should have found comp instruction for branch");
6176             if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6177 
6178               TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6179 
6180               // eliminate a conditional branch to the immediate successor
6181               prev_branch->change_block(last_branch->block());
6182               prev_branch->negate_cond();
6183               prev_cmp->set_condition(prev_branch->cond());
6184               instructions->truncate(instructions->length() - 1);
6185             }
6186           }
6187         }
6188       }
6189     }
6190   }
6191 
6192   DEBUG_ONLY(verify(code));
6193 }
6194 
6195 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6196 #ifdef ASSERT
6197   BitMap return_converted(BlockBegin::number_of_blocks());
6198   return_converted.clear();
6199 #endif
6200 
6201   for (int i = code->length() - 1; i >= 0; i--) {
6202     BlockBegin* block = code->at(i);
6203     LIR_OpList* cur_instructions = block->lir()->instructions_list();
6204     LIR_Op*     cur_last_op = cur_instructions->last();
6205 
6206     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6207     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6208       // the block contains only a label and a return
6209       // if a predecessor ends with an unconditional jump to this block, then the jump
6210       // can be replaced with a return instruction
6211       //
6212       // Note: the original block with only a return statement cannot be deleted completely
6213       //       because the predecessors might have other (conditional) jumps to this block
6214       //       -> this may lead to unnecesary return instructions in the final code
6215 
6216       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6217       assert(block->number_of_sux() == 0 ||
6218              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6219              "blocks that end with return must not have successors");
6220 
6221       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6222       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6223 
6224       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6225         BlockBegin* pred = block->pred_at(j);
6226         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6227         LIR_Op*     pred_last_op = pred_instructions->last();
6228 
6229         if (pred_last_op->code() == lir_branch) {
6230           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6231           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6232 
6233           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6234             // replace the jump to a return with a direct return
6235             // Note: currently the edge between the blocks is not deleted
6236             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6237 #ifdef ASSERT
6238             return_converted.set_bit(pred->block_id());
6239 #endif
6240           }
6241         }
6242       }
6243     }
6244   }
6245 }
6246 
6247 
6248 #ifdef ASSERT
6249 void ControlFlowOptimizer::verify(BlockList* code) {
6250   for (int i = 0; i < code->length(); i++) {
6251     BlockBegin* block = code->at(i);
6252     LIR_OpList* instructions = block->lir()->instructions_list();
6253 
6254     int j;
6255     for (j = 0; j < instructions->length(); j++) {
6256       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6257 
6258       if (op_branch != NULL) {
6259         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
6260         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
6261       }
6262     }
6263 
6264     for (j = 0; j < block->number_of_sux() - 1; j++) {
6265       BlockBegin* sux = block->sux_at(j);
6266       assert(code->index_of(sux) != -1, "successor not valid");
6267     }
6268 
6269     for (j = 0; j < block->number_of_preds() - 1; j++) {
6270       BlockBegin* pred = block->pred_at(j);
6271       assert(code->index_of(pred) != -1, "successor not valid");
6272     }
6273   }
6274 }
6275 #endif
6276 
6277 
6278 #ifndef PRODUCT
6279 
6280 // Implementation of LinearStatistic
6281 
6282 const char* LinearScanStatistic::counter_name(int counter_idx) {
6283   switch (counter_idx) {
6284     case counter_method:          return "compiled methods";
6285     case counter_fpu_method:      return "methods using fpu";
6286     case counter_loop_method:     return "methods with loops";
6287     case counter_exception_method:return "methods with xhandler";
6288 
6289     case counter_loop:            return "loops";
6290     case counter_block:           return "blocks";
6291     case counter_loop_block:      return "blocks inside loop";
6292     case counter_exception_block: return "exception handler entries";
6293     case counter_interval:        return "intervals";
6294     case counter_fixed_interval:  return "fixed intervals";
6295     case counter_range:           return "ranges";
6296     case counter_fixed_range:     return "fixed ranges";
6297     case counter_use_pos:         return "use positions";
6298     case counter_fixed_use_pos:   return "fixed use positions";
6299     case counter_spill_slots:     return "spill slots";
6300 
6301     // counter for classes of lir instructions
6302     case counter_instruction:     return "total instructions";
6303     case counter_label:           return "labels";
6304     case counter_entry:           return "method entries";
6305     case counter_return:          return "method returns";
6306     case counter_call:            return "method calls";
6307     case counter_move:            return "moves";
6308     case counter_cmp:             return "compare";
6309     case counter_cond_branch:     return "conditional branches";
6310     case counter_uncond_branch:   return "unconditional branches";
6311     case counter_stub_branch:     return "branches to stub";
6312     case counter_alu:             return "artithmetic + logic";
6313     case counter_alloc:           return "allocations";
6314     case counter_sync:            return "synchronisation";
6315     case counter_throw:           return "throw";
6316     case counter_unwind:          return "unwind";
6317     case counter_typecheck:       return "type+null-checks";
6318     case counter_fpu_stack:       return "fpu-stack";
6319     case counter_misc_inst:       return "other instructions";
6320     case counter_other_inst:      return "misc. instructions";
6321 
6322     // counter for different types of moves
6323     case counter_move_total:      return "total moves";
6324     case counter_move_reg_reg:    return "register->register";
6325     case counter_move_reg_stack:  return "register->stack";
6326     case counter_move_stack_reg:  return "stack->register";
6327     case counter_move_stack_stack:return "stack->stack";
6328     case counter_move_reg_mem:    return "register->memory";
6329     case counter_move_mem_reg:    return "memory->register";
6330     case counter_move_const_any:  return "constant->any";
6331 
6332     case blank_line_1:            return "";
6333     case blank_line_2:            return "";
6334 
6335     default: ShouldNotReachHere(); return "";
6336   }
6337 }
6338 
6339 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6340   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6341     return counter_method;
6342   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6343     return counter_block;
6344   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6345     return counter_instruction;
6346   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6347     return counter_move_total;
6348   }
6349   return invalid_counter;
6350 }
6351 
6352 LinearScanStatistic::LinearScanStatistic() {
6353   for (int i = 0; i < number_of_counters; i++) {
6354     _counters_sum[i] = 0;
6355     _counters_max[i] = -1;
6356   }
6357 
6358 }
6359 
6360 // add the method-local numbers to the total sum
6361 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6362   for (int i = 0; i < number_of_counters; i++) {
6363     _counters_sum[i] += method_statistic._counters_sum[i];
6364     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6365   }
6366 }
6367 
6368 void LinearScanStatistic::print(const char* title) {
6369   if (CountLinearScan || TraceLinearScanLevel > 0) {
6370     tty->cr();
6371     tty->print_cr("***** LinearScan statistic - %s *****", title);
6372 
6373     for (int i = 0; i < number_of_counters; i++) {
6374       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6375         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6376 
6377         if (base_counter(i) != invalid_counter) {
6378           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
6379         } else {
6380           tty->print("           ");
6381         }
6382 
6383         if (_counters_max[i] >= 0) {
6384           tty->print("%8d", _counters_max[i]);
6385         }
6386       }
6387       tty->cr();
6388     }
6389   }
6390 }
6391 
6392 void LinearScanStatistic::collect(LinearScan* allocator) {
6393   inc_counter(counter_method);
6394   if (allocator->has_fpu_registers()) {
6395     inc_counter(counter_fpu_method);
6396   }
6397   if (allocator->num_loops() > 0) {
6398     inc_counter(counter_loop_method);
6399   }
6400   inc_counter(counter_loop, allocator->num_loops());
6401   inc_counter(counter_spill_slots, allocator->max_spills());
6402 
6403   int i;
6404   for (i = 0; i < allocator->interval_count(); i++) {
6405     Interval* cur = allocator->interval_at(i);
6406 
6407     if (cur != NULL) {
6408       inc_counter(counter_interval);
6409       inc_counter(counter_use_pos, cur->num_use_positions());
6410       if (LinearScan::is_precolored_interval(cur)) {
6411         inc_counter(counter_fixed_interval);
6412         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6413       }
6414 
6415       Range* range = cur->first();
6416       while (range != Range::end()) {
6417         inc_counter(counter_range);
6418         if (LinearScan::is_precolored_interval(cur)) {
6419           inc_counter(counter_fixed_range);
6420         }
6421         range = range->next();
6422       }
6423     }
6424   }
6425 
6426   bool has_xhandlers = false;
6427   // Note: only count blocks that are in code-emit order
6428   for (i = 0; i < allocator->ir()->code()->length(); i++) {
6429     BlockBegin* cur = allocator->ir()->code()->at(i);
6430 
6431     inc_counter(counter_block);
6432     if (cur->loop_depth() > 0) {
6433       inc_counter(counter_loop_block);
6434     }
6435     if (cur->is_set(BlockBegin::exception_entry_flag)) {
6436       inc_counter(counter_exception_block);
6437       has_xhandlers = true;
6438     }
6439 
6440     LIR_OpList* instructions = cur->lir()->instructions_list();
6441     for (int j = 0; j < instructions->length(); j++) {
6442       LIR_Op* op = instructions->at(j);
6443 
6444       inc_counter(counter_instruction);
6445 
6446       switch (op->code()) {
6447         case lir_label:           inc_counter(counter_label); break;
6448         case lir_std_entry:
6449         case lir_osr_entry:       inc_counter(counter_entry); break;
6450         case lir_return:          inc_counter(counter_return); break;
6451 
6452         case lir_rtcall:
6453         case lir_static_call:
6454         case lir_optvirtual_call:
6455         case lir_virtual_call:    inc_counter(counter_call); break;
6456 
6457         case lir_move: {
6458           inc_counter(counter_move);
6459           inc_counter(counter_move_total);
6460 
6461           LIR_Opr in = op->as_Op1()->in_opr();
6462           LIR_Opr res = op->as_Op1()->result_opr();
6463           if (in->is_register()) {
6464             if (res->is_register()) {
6465               inc_counter(counter_move_reg_reg);
6466             } else if (res->is_stack()) {
6467               inc_counter(counter_move_reg_stack);
6468             } else if (res->is_address()) {
6469               inc_counter(counter_move_reg_mem);
6470             } else {
6471               ShouldNotReachHere();
6472             }
6473           } else if (in->is_stack()) {
6474             if (res->is_register()) {
6475               inc_counter(counter_move_stack_reg);
6476             } else {
6477               inc_counter(counter_move_stack_stack);
6478             }
6479           } else if (in->is_address()) {
6480             assert(res->is_register(), "must be");
6481             inc_counter(counter_move_mem_reg);
6482           } else if (in->is_constant()) {
6483             inc_counter(counter_move_const_any);
6484           } else {
6485             ShouldNotReachHere();
6486           }
6487           break;
6488         }
6489 
6490         case lir_cmp:             inc_counter(counter_cmp); break;
6491 
6492         case lir_branch:
6493         case lir_cond_float_branch: {
6494           LIR_OpBranch* branch = op->as_OpBranch();
6495           if (branch->block() == NULL) {
6496             inc_counter(counter_stub_branch);
6497           } else if (branch->cond() == lir_cond_always) {
6498             inc_counter(counter_uncond_branch);
6499           } else {
6500             inc_counter(counter_cond_branch);
6501           }
6502           break;
6503         }
6504 
6505         case lir_neg:
6506         case lir_add:
6507         case lir_sub:
6508         case lir_mul:
6509         case lir_mul_strictfp:
6510         case lir_div:
6511         case lir_div_strictfp:
6512         case lir_rem:
6513         case lir_sqrt:
6514         case lir_sin:
6515         case lir_cos:
6516         case lir_abs:
6517         case lir_log10:
6518         case lir_log:
6519         case lir_logic_and:
6520         case lir_logic_or:
6521         case lir_logic_xor:
6522         case lir_shl:
6523         case lir_shr:
6524         case lir_ushr:            inc_counter(counter_alu); break;
6525 
6526         case lir_alloc_object:
6527         case lir_alloc_array:     inc_counter(counter_alloc); break;
6528 
6529         case lir_monaddr:
6530         case lir_lock:
6531         case lir_unlock:          inc_counter(counter_sync); break;
6532 
6533         case lir_throw:           inc_counter(counter_throw); break;
6534 
6535         case lir_unwind:          inc_counter(counter_unwind); break;
6536 
6537         case lir_null_check:
6538         case lir_leal:
6539         case lir_instanceof:
6540         case lir_checkcast:
6541         case lir_store_check:     inc_counter(counter_typecheck); break;
6542 
6543         case lir_fpop_raw:
6544         case lir_fxch:
6545         case lir_fld:             inc_counter(counter_fpu_stack); break;
6546 
6547         case lir_nop:
6548         case lir_push:
6549         case lir_pop:
6550         case lir_convert:
6551         case lir_roundfp:
6552         case lir_cmove:           inc_counter(counter_misc_inst); break;
6553 
6554         default:                  inc_counter(counter_other_inst); break;
6555       }
6556     }
6557   }
6558 
6559   if (has_xhandlers) {
6560     inc_counter(counter_exception_method);
6561   }
6562 }
6563 
6564 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6565   if (CountLinearScan || TraceLinearScanLevel > 0) {
6566 
6567     LinearScanStatistic local_statistic = LinearScanStatistic();
6568 
6569     local_statistic.collect(allocator);
6570     global_statistic.sum_up(local_statistic);
6571 
6572     if (TraceLinearScanLevel > 2) {
6573       local_statistic.print("current local statistic");
6574     }
6575   }
6576 }
6577 
6578 
6579 // Implementation of LinearTimers
6580 
6581 LinearScanTimers::LinearScanTimers() {
6582   for (int i = 0; i < number_of_timers; i++) {
6583     timer(i)->reset();
6584   }
6585 }
6586 
6587 const char* LinearScanTimers::timer_name(int idx) {
6588   switch (idx) {
6589     case timer_do_nothing:               return "Nothing (Time Check)";
6590     case timer_number_instructions:      return "Number Instructions";
6591     case timer_compute_local_live_sets:  return "Local Live Sets";
6592     case timer_compute_global_live_sets: return "Global Live Sets";
6593     case timer_build_intervals:          return "Build Intervals";
6594     case timer_sort_intervals_before:    return "Sort Intervals Before";
6595     case timer_allocate_registers:       return "Allocate Registers";
6596     case timer_resolve_data_flow:        return "Resolve Data Flow";
6597     case timer_sort_intervals_after:     return "Sort Intervals After";
6598     case timer_eliminate_spill_moves:    return "Spill optimization";
6599     case timer_assign_reg_num:           return "Assign Reg Num";
6600     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6601     case timer_optimize_lir:             return "Optimize LIR";
6602     default: ShouldNotReachHere();       return "";
6603   }
6604 }
6605 
6606 void LinearScanTimers::begin_method() {
6607   if (TimeEachLinearScan) {
6608     // reset all timers to measure only current method
6609     for (int i = 0; i < number_of_timers; i++) {
6610       timer(i)->reset();
6611     }
6612   }
6613 }
6614 
6615 void LinearScanTimers::end_method(LinearScan* allocator) {
6616   if (TimeEachLinearScan) {
6617 
6618     double c = timer(timer_do_nothing)->seconds();
6619     double total = 0;
6620     for (int i = 1; i < number_of_timers; i++) {
6621       total += timer(i)->seconds() - c;
6622     }
6623 
6624     if (total >= 0.0005) {
6625       // print all information in one line for automatic processing
6626       tty->print("@"); allocator->compilation()->method()->print_name();
6627 
6628       tty->print("@ %d ", allocator->compilation()->method()->code_size());
6629       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6630       tty->print("@ %d ", allocator->block_count());
6631       tty->print("@ %d ", allocator->num_virtual_regs());
6632       tty->print("@ %d ", allocator->interval_count());
6633       tty->print("@ %d ", allocator->_num_calls);
6634       tty->print("@ %d ", allocator->num_loops());
6635 
6636       tty->print("@ %6.6f ", total);
6637       for (int i = 1; i < number_of_timers; i++) {
6638         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6639       }
6640       tty->cr();
6641     }
6642   }
6643 }
6644 
6645 void LinearScanTimers::print(double total_time) {
6646   if (TimeLinearScan) {
6647     // correction value: sum of dummy-timer that only measures the time that
6648     // is necesary to start and stop itself
6649     double c = timer(timer_do_nothing)->seconds();
6650 
6651     for (int i = 0; i < number_of_timers; i++) {
6652       double t = timer(i)->seconds();
6653       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6654     }
6655   }
6656 }
6657 
6658 #endif // #ifndef PRODUCT