1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
  27 
  28 class BiasedLockingCounters;
  29 
  30 // Contains all the definitions needed for x86 assembly code generation.
  31 
  32 // Calling convention
  33 class Argument VALUE_OBJ_CLASS_SPEC {
  34  public:
  35   enum {
  36 #ifdef _LP64
  37 #ifdef _WIN64
  38     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
  39     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
  40 #else
  41     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
  42     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
  43 #endif // _WIN64
  44     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
  45     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
  46 #else
  47     n_register_parameters = 0   // 0 registers used to pass arguments
  48 #endif // _LP64
  49   };
  50 };
  51 
  52 
  53 #ifdef _LP64
  54 // Symbolically name the register arguments used by the c calling convention.
  55 // Windows is different from linux/solaris. So much for standards...
  56 
  57 #ifdef _WIN64
  58 
  59 REGISTER_DECLARATION(Register, c_rarg0, rcx);
  60 REGISTER_DECLARATION(Register, c_rarg1, rdx);
  61 REGISTER_DECLARATION(Register, c_rarg2, r8);
  62 REGISTER_DECLARATION(Register, c_rarg3, r9);
  63 
  64 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  65 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  66 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  67 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  68 
  69 #else
  70 
  71 REGISTER_DECLARATION(Register, c_rarg0, rdi);
  72 REGISTER_DECLARATION(Register, c_rarg1, rsi);
  73 REGISTER_DECLARATION(Register, c_rarg2, rdx);
  74 REGISTER_DECLARATION(Register, c_rarg3, rcx);
  75 REGISTER_DECLARATION(Register, c_rarg4, r8);
  76 REGISTER_DECLARATION(Register, c_rarg5, r9);
  77 
  78 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  79 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  80 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  81 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  82 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
  83 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
  84 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
  85 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
  86 
  87 #endif // _WIN64
  88 
  89 // Symbolically name the register arguments used by the Java calling convention.
  90 // We have control over the convention for java so we can do what we please.
  91 // What pleases us is to offset the java calling convention so that when
  92 // we call a suitable jni method the arguments are lined up and we don't
  93 // have to do little shuffling. A suitable jni method is non-static and a
  94 // small number of arguments (two fewer args on windows)
  95 //
  96 //        |-------------------------------------------------------|
  97 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
  98 //        |-------------------------------------------------------|
  99 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
 100 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
 101 //        |-------------------------------------------------------|
 102 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
 103 //        |-------------------------------------------------------|
 104 
 105 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
 106 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
 107 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
 108 // Windows runs out of register args here
 109 #ifdef _WIN64
 110 REGISTER_DECLARATION(Register, j_rarg3, rdi);
 111 REGISTER_DECLARATION(Register, j_rarg4, rsi);
 112 #else
 113 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
 114 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
 115 #endif /* _WIN64 */
 116 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
 117 
 118 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
 119 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
 120 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
 121 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
 122 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
 123 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
 124 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
 125 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
 126 
 127 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
 128 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
 129 
 130 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
 131 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
 132 
 133 #else
 134 // rscratch1 will apear in 32bit code that is dead but of course must compile
 135 // Using noreg ensures if the dead code is incorrectly live and executed it
 136 // will cause an assertion failure
 137 #define rscratch1 noreg
 138 #define rscratch2 noreg
 139 
 140 #endif // _LP64
 141 
 142 // JSR 292 fixed register usages:
 143 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
 144 
 145 // Address is an abstraction used to represent a memory location
 146 // using any of the amd64 addressing modes with one object.
 147 //
 148 // Note: A register location is represented via a Register, not
 149 //       via an address for efficiency & simplicity reasons.
 150 
 151 class ArrayAddress;
 152 
 153 class Address VALUE_OBJ_CLASS_SPEC {
 154  public:
 155   enum ScaleFactor {
 156     no_scale = -1,
 157     times_1  =  0,
 158     times_2  =  1,
 159     times_4  =  2,
 160     times_8  =  3,
 161     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
 162   };
 163   static ScaleFactor times(int size) {
 164     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
 165     if (size == 8)  return times_8;
 166     if (size == 4)  return times_4;
 167     if (size == 2)  return times_2;
 168     return times_1;
 169   }
 170   static int scale_size(ScaleFactor scale) {
 171     assert(scale != no_scale, "");
 172     assert(((1 << (int)times_1) == 1 &&
 173             (1 << (int)times_2) == 2 &&
 174             (1 << (int)times_4) == 4 &&
 175             (1 << (int)times_8) == 8), "");
 176     return (1 << (int)scale);
 177   }
 178 
 179  private:
 180   Register         _base;
 181   Register         _index;
 182   ScaleFactor      _scale;
 183   int              _disp;
 184   RelocationHolder _rspec;
 185 
 186   // Easily misused constructors make them private
 187   // %%% can we make these go away?
 188   NOT_LP64(Address(address loc, RelocationHolder spec);)
 189   Address(int disp, address loc, relocInfo::relocType rtype);
 190   Address(int disp, address loc, RelocationHolder spec);
 191 
 192  public:
 193 
 194  int disp() { return _disp; }
 195   // creation
 196   Address()
 197     : _base(noreg),
 198       _index(noreg),
 199       _scale(no_scale),
 200       _disp(0) {
 201   }
 202 
 203   // No default displacement otherwise Register can be implicitly
 204   // converted to 0(Register) which is quite a different animal.
 205 
 206   Address(Register base, int disp)
 207     : _base(base),
 208       _index(noreg),
 209       _scale(no_scale),
 210       _disp(disp) {
 211   }
 212 
 213   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
 214     : _base (base),
 215       _index(index),
 216       _scale(scale),
 217       _disp (disp) {
 218     assert(!index->is_valid() == (scale == Address::no_scale),
 219            "inconsistent address");
 220   }
 221 
 222   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
 223     : _base (base),
 224       _index(index.register_or_noreg()),
 225       _scale(scale),
 226       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
 227     if (!index.is_register())  scale = Address::no_scale;
 228     assert(!_index->is_valid() == (scale == Address::no_scale),
 229            "inconsistent address");
 230   }
 231 
 232   Address plus_disp(int disp) const {
 233     Address a = (*this);
 234     a._disp += disp;
 235     return a;
 236   }
 237 
 238   // The following two overloads are used in connection with the
 239   // ByteSize type (see sizes.hpp).  They simplify the use of
 240   // ByteSize'd arguments in assembly code. Note that their equivalent
 241   // for the optimized build are the member functions with int disp
 242   // argument since ByteSize is mapped to an int type in that case.
 243   //
 244   // Note: DO NOT introduce similar overloaded functions for WordSize
 245   // arguments as in the optimized mode, both ByteSize and WordSize
 246   // are mapped to the same type and thus the compiler cannot make a
 247   // distinction anymore (=> compiler errors).
 248 
 249 #ifdef ASSERT
 250   Address(Register base, ByteSize disp)
 251     : _base(base),
 252       _index(noreg),
 253       _scale(no_scale),
 254       _disp(in_bytes(disp)) {
 255   }
 256 
 257   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
 258     : _base(base),
 259       _index(index),
 260       _scale(scale),
 261       _disp(in_bytes(disp)) {
 262     assert(!index->is_valid() == (scale == Address::no_scale),
 263            "inconsistent address");
 264   }
 265 
 266   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
 267     : _base (base),
 268       _index(index.register_or_noreg()),
 269       _scale(scale),
 270       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
 271     if (!index.is_register())  scale = Address::no_scale;
 272     assert(!_index->is_valid() == (scale == Address::no_scale),
 273            "inconsistent address");
 274   }
 275 
 276 #endif // ASSERT
 277 
 278   // accessors
 279   bool        uses(Register reg) const { return _base == reg || _index == reg; }
 280   Register    base()             const { return _base;  }
 281   Register    index()            const { return _index; }
 282   ScaleFactor scale()            const { return _scale; }
 283   int         disp()             const { return _disp;  }
 284 
 285   // Convert the raw encoding form into the form expected by the constructor for
 286   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 287   // that to noreg for the Address constructor.
 288   static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
 289 
 290   static Address make_array(ArrayAddress);
 291 
 292  private:
 293   bool base_needs_rex() const {
 294     return _base != noreg && _base->encoding() >= 8;
 295   }
 296 
 297   bool index_needs_rex() const {
 298     return _index != noreg &&_index->encoding() >= 8;
 299   }
 300 
 301   relocInfo::relocType reloc() const { return _rspec.type(); }
 302 
 303   friend class Assembler;
 304   friend class MacroAssembler;
 305   friend class LIR_Assembler; // base/index/scale/disp
 306 };
 307 
 308 //
 309 // AddressLiteral has been split out from Address because operands of this type
 310 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
 311 // the few instructions that need to deal with address literals are unique and the
 312 // MacroAssembler does not have to implement every instruction in the Assembler
 313 // in order to search for address literals that may need special handling depending
 314 // on the instruction and the platform. As small step on the way to merging i486/amd64
 315 // directories.
 316 //
 317 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
 318   friend class ArrayAddress;
 319   RelocationHolder _rspec;
 320   // Typically we use AddressLiterals we want to use their rval
 321   // However in some situations we want the lval (effect address) of the item.
 322   // We provide a special factory for making those lvals.
 323   bool _is_lval;
 324 
 325   // If the target is far we'll need to load the ea of this to
 326   // a register to reach it. Otherwise if near we can do rip
 327   // relative addressing.
 328 
 329   address          _target;
 330 
 331  protected:
 332   // creation
 333   AddressLiteral()
 334     : _is_lval(false),
 335       _target(NULL)
 336   {}
 337 
 338   public:
 339 
 340 
 341   AddressLiteral(address target, relocInfo::relocType rtype);
 342 
 343   AddressLiteral(address target, RelocationHolder const& rspec)
 344     : _rspec(rspec),
 345       _is_lval(false),
 346       _target(target)
 347   {}
 348 
 349   AddressLiteral addr() {
 350     AddressLiteral ret = *this;
 351     ret._is_lval = true;
 352     return ret;
 353   }
 354 
 355 
 356  private:
 357 
 358   address target() { return _target; }
 359   bool is_lval() { return _is_lval; }
 360 
 361   relocInfo::relocType reloc() const { return _rspec.type(); }
 362   const RelocationHolder& rspec() const { return _rspec; }
 363 
 364   friend class Assembler;
 365   friend class MacroAssembler;
 366   friend class Address;
 367   friend class LIR_Assembler;
 368 };
 369 
 370 // Convience classes
 371 class RuntimeAddress: public AddressLiteral {
 372 
 373   public:
 374 
 375   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
 376 
 377 };
 378 
 379 class OopAddress: public AddressLiteral {
 380 
 381   public:
 382 
 383   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
 384 
 385 };
 386 
 387 class ExternalAddress: public AddressLiteral {
 388  private:
 389   static relocInfo::relocType reloc_for_target(address target) {
 390     // Sometimes ExternalAddress is used for values which aren't
 391     // exactly addresses, like the card table base.
 392     // external_word_type can't be used for values in the first page
 393     // so just skip the reloc in that case.
 394     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 395   }
 396 
 397  public:
 398 
 399   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
 400 
 401 };
 402 
 403 class InternalAddress: public AddressLiteral {
 404 
 405   public:
 406 
 407   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
 408 
 409 };
 410 
 411 // x86 can do array addressing as a single operation since disp can be an absolute
 412 // address amd64 can't. We create a class that expresses the concept but does extra
 413 // magic on amd64 to get the final result
 414 
 415 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
 416   private:
 417 
 418   AddressLiteral _base;
 419   Address        _index;
 420 
 421   public:
 422 
 423   ArrayAddress() {};
 424   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
 425   AddressLiteral base() { return _base; }
 426   Address index() { return _index; }
 427 
 428 };
 429 
 430 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
 431 
 432 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
 433 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
 434 // is what you get. The Assembler is generating code into a CodeBuffer.
 435 
 436 class Assembler : public AbstractAssembler  {
 437   friend class AbstractAssembler; // for the non-virtual hack
 438   friend class LIR_Assembler; // as_Address()
 439   friend class StubGenerator;
 440 
 441  public:
 442   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
 443     zero          = 0x4,
 444     notZero       = 0x5,
 445     equal         = 0x4,
 446     notEqual      = 0x5,
 447     less          = 0xc,
 448     lessEqual     = 0xe,
 449     greater       = 0xf,
 450     greaterEqual  = 0xd,
 451     below         = 0x2,
 452     belowEqual    = 0x6,
 453     above         = 0x7,
 454     aboveEqual    = 0x3,
 455     overflow      = 0x0,
 456     noOverflow    = 0x1,
 457     carrySet      = 0x2,
 458     carryClear    = 0x3,
 459     negative      = 0x8,
 460     positive      = 0x9,
 461     parity        = 0xa,
 462     noParity      = 0xb
 463   };
 464 
 465   enum Prefix {
 466     // segment overrides
 467     CS_segment = 0x2e,
 468     SS_segment = 0x36,
 469     DS_segment = 0x3e,
 470     ES_segment = 0x26,
 471     FS_segment = 0x64,
 472     GS_segment = 0x65,
 473 
 474     REX        = 0x40,
 475 
 476     REX_B      = 0x41,
 477     REX_X      = 0x42,
 478     REX_XB     = 0x43,
 479     REX_R      = 0x44,
 480     REX_RB     = 0x45,
 481     REX_RX     = 0x46,
 482     REX_RXB    = 0x47,
 483 
 484     REX_W      = 0x48,
 485 
 486     REX_WB     = 0x49,
 487     REX_WX     = 0x4A,
 488     REX_WXB    = 0x4B,
 489     REX_WR     = 0x4C,
 490     REX_WRB    = 0x4D,
 491     REX_WRX    = 0x4E,
 492     REX_WRXB   = 0x4F
 493   };
 494 
 495   enum WhichOperand {
 496     // input to locate_operand, and format code for relocations
 497     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
 498     disp32_operand = 1,          // embedded 32-bit displacement or address
 499     call32_operand = 2,          // embedded 32-bit self-relative displacement
 500 #ifndef _LP64
 501     _WhichOperand_limit = 3
 502 #else
 503      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
 504     _WhichOperand_limit = 4
 505 #endif
 506   };
 507 
 508 
 509 
 510   // NOTE: The general philopsophy of the declarations here is that 64bit versions
 511   // of instructions are freely declared without the need for wrapping them an ifdef.
 512   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
 513   // In the .cpp file the implementations are wrapped so that they are dropped out
 514   // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
 515   // to the size it was prior to merging up the 32bit and 64bit assemblers.
 516   //
 517   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
 518   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
 519 
 520 private:
 521 
 522 
 523   // 64bit prefixes
 524   int prefix_and_encode(int reg_enc, bool byteinst = false);
 525   int prefixq_and_encode(int reg_enc);
 526 
 527   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
 528   int prefixq_and_encode(int dst_enc, int src_enc);
 529 
 530   void prefix(Register reg);
 531   void prefix(Address adr);
 532   void prefixq(Address adr);
 533 
 534   void prefix(Address adr, Register reg,  bool byteinst = false);
 535   void prefixq(Address adr, Register reg);
 536 
 537   void prefix(Address adr, XMMRegister reg);
 538 
 539   void prefetch_prefix(Address src);
 540 
 541   // Helper functions for groups of instructions
 542   void emit_arith_b(int op1, int op2, Register dst, int imm8);
 543 
 544   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
 545   // only 32bit??
 546   void emit_arith(int op1, int op2, Register dst, jobject obj);
 547   void emit_arith(int op1, int op2, Register dst, Register src);
 548 
 549   void emit_operand(Register reg,
 550                     Register base, Register index, Address::ScaleFactor scale,
 551                     int disp,
 552                     RelocationHolder const& rspec,
 553                     int rip_relative_correction = 0);
 554 
 555   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
 556 
 557   // operands that only take the original 32bit registers
 558   void emit_operand32(Register reg, Address adr);
 559 
 560   void emit_operand(XMMRegister reg,
 561                     Register base, Register index, Address::ScaleFactor scale,
 562                     int disp,
 563                     RelocationHolder const& rspec);
 564 
 565   void emit_operand(XMMRegister reg, Address adr);
 566 
 567   void emit_operand(MMXRegister reg, Address adr);
 568 
 569   // workaround gcc (3.2.1-7) bug
 570   void emit_operand(Address adr, MMXRegister reg);
 571 
 572 
 573   // Immediate-to-memory forms
 574   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
 575 
 576   void emit_farith(int b1, int b2, int i);
 577 
 578 
 579  protected:
 580   #ifdef ASSERT
 581   void check_relocation(RelocationHolder const& rspec, int format);
 582   #endif
 583 
 584   inline void emit_long64(jlong x);
 585 
 586   void emit_data(jint data, relocInfo::relocType    rtype, int format);
 587   void emit_data(jint data, RelocationHolder const& rspec, int format);
 588   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
 589   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
 590 
 591   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
 592 
 593   // These are all easily abused and hence protected
 594 
 595   // 32BIT ONLY SECTION
 596 #ifndef _LP64
 597   // Make these disappear in 64bit mode since they would never be correct
 598   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
 599   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 600 
 601   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 602   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
 603 
 604   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
 605 #else
 606   // 64BIT ONLY SECTION
 607   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
 608 
 609   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
 610   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
 611 
 612   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
 613   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
 614 #endif // _LP64
 615 
 616   // These are unique in that we are ensured by the caller that the 32bit
 617   // relative in these instructions will always be able to reach the potentially
 618   // 64bit address described by entry. Since they can take a 64bit address they
 619   // don't have the 32 suffix like the other instructions in this class.
 620 
 621   void call_literal(address entry, RelocationHolder const& rspec);
 622   void jmp_literal(address entry, RelocationHolder const& rspec);
 623 
 624   // Avoid using directly section
 625   // Instructions in this section are actually usable by anyone without danger
 626   // of failure but have performance issues that are addressed my enhanced
 627   // instructions which will do the proper thing base on the particular cpu.
 628   // We protect them because we don't trust you...
 629 
 630   // Don't use next inc() and dec() methods directly. INC & DEC instructions
 631   // could cause a partial flag stall since they don't set CF flag.
 632   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
 633   // which call inc() & dec() or add() & sub() in accordance with
 634   // the product flag UseIncDec value.
 635 
 636   void decl(Register dst);
 637   void decl(Address dst);
 638   void decq(Register dst);
 639   void decq(Address dst);
 640 
 641   void incl(Register dst);
 642   void incl(Address dst);
 643   void incq(Register dst);
 644   void incq(Address dst);
 645 
 646   // New cpus require use of movsd and movss to avoid partial register stall
 647   // when loading from memory. But for old Opteron use movlpd instead of movsd.
 648   // The selection is done in MacroAssembler::movdbl() and movflt().
 649 
 650   // Move Scalar Single-Precision Floating-Point Values
 651   void movss(XMMRegister dst, Address src);
 652   void movss(XMMRegister dst, XMMRegister src);
 653   void movss(Address dst, XMMRegister src);
 654 
 655   // Move Scalar Double-Precision Floating-Point Values
 656   void movsd(XMMRegister dst, Address src);
 657   void movsd(XMMRegister dst, XMMRegister src);
 658   void movsd(Address dst, XMMRegister src);
 659   void movlpd(XMMRegister dst, Address src);
 660 
 661   // New cpus require use of movaps and movapd to avoid partial register stall
 662   // when moving between registers.
 663   void movaps(XMMRegister dst, XMMRegister src);
 664   void movapd(XMMRegister dst, XMMRegister src);
 665 
 666   // End avoid using directly
 667 
 668 
 669   // Instruction prefixes
 670   void prefix(Prefix p);
 671 
 672   public:
 673 
 674   // Creation
 675   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
 676 
 677   // Decoding
 678   static address locate_operand(address inst, WhichOperand which);
 679   static address locate_next_instruction(address inst);
 680 
 681   // Utilities
 682 
 683 #ifdef _LP64
 684  static bool is_simm(int64_t x, int nbits) { return -(CONST64(1) << (nbits-1)) <= x &&
 685                                                     x < (CONST64(1) << (nbits-1)); }
 686  static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
 687 #else
 688  static bool is_simm(int32_t x, int nbits) { return -(1 << (nbits-1)) <= x &&
 689                                                     x < (1 << (nbits-1)); }
 690  static bool is_simm32(int32_t x) { return true; }
 691 #endif // _LP64
 692 
 693   static bool is_polling_page_far() NOT_LP64({ return false;});
 694 
 695   // Generic instructions
 696   // Does 32bit or 64bit as needed for the platform. In some sense these
 697   // belong in macro assembler but there is no need for both varieties to exist
 698 
 699   void lea(Register dst, Address src);
 700 
 701   void mov(Register dst, Register src);
 702 
 703   void pusha();
 704   void popa();
 705 
 706   void pushf();
 707   void popf();
 708 
 709   void push(int32_t imm32);
 710 
 711   void push(Register src);
 712 
 713   void pop(Register dst);
 714 
 715   // These are dummies to prevent surprise implicit conversions to Register
 716   void push(void* v);
 717   void pop(void* v);
 718 
 719   // These do register sized moves/scans
 720   void rep_mov();
 721   void rep_set();
 722   void repne_scan();
 723 #ifdef _LP64
 724   void repne_scanl();
 725 #endif
 726 
 727   // Vanilla instructions in lexical order
 728 
 729   void adcl(Address dst, int32_t imm32);
 730   void adcl(Address dst, Register src);
 731   void adcl(Register dst, int32_t imm32);
 732   void adcl(Register dst, Address src);
 733   void adcl(Register dst, Register src);
 734 
 735   void adcq(Register dst, int32_t imm32);
 736   void adcq(Register dst, Address src);
 737   void adcq(Register dst, Register src);
 738 
 739   void addl(Address dst, int32_t imm32);
 740   void addl(Address dst, Register src);
 741   void addl(Register dst, int32_t imm32);
 742   void addl(Register dst, Address src);
 743   void addl(Register dst, Register src);
 744 
 745   void addq(Address dst, int32_t imm32);
 746   void addq(Address dst, Register src);
 747   void addq(Register dst, int32_t imm32);
 748   void addq(Register dst, Address src);
 749   void addq(Register dst, Register src);
 750 
 751   void addr_nop_4();
 752   void addr_nop_5();
 753   void addr_nop_7();
 754   void addr_nop_8();
 755 
 756   // Add Scalar Double-Precision Floating-Point Values
 757   void addsd(XMMRegister dst, Address src);
 758   void addsd(XMMRegister dst, XMMRegister src);
 759 
 760   // Add Scalar Single-Precision Floating-Point Values
 761   void addss(XMMRegister dst, Address src);
 762   void addss(XMMRegister dst, XMMRegister src);
 763 
 764   void andl(Register dst, int32_t imm32);
 765   void andl(Register dst, Address src);
 766   void andl(Register dst, Register src);
 767 
 768   void andq(Register dst, int32_t imm32);
 769   void andq(Register dst, Address src);
 770   void andq(Register dst, Register src);
 771 
 772   // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
 773   void andpd(XMMRegister dst, Address src);
 774   void andpd(XMMRegister dst, XMMRegister src);
 775 
 776   void bsfl(Register dst, Register src);
 777   void bsrl(Register dst, Register src);
 778 
 779 #ifdef _LP64
 780   void bsfq(Register dst, Register src);
 781   void bsrq(Register dst, Register src);
 782 #endif
 783 
 784   void bswapl(Register reg);
 785 
 786   void bswapq(Register reg);
 787 
 788   void call(Label& L, relocInfo::relocType rtype);
 789   void call(Register reg);  // push pc; pc <- reg
 790   void call(Address adr);   // push pc; pc <- adr
 791 
 792   void cdql();
 793 
 794   void cdqq();
 795 
 796   void cld() { emit_byte(0xfc); }
 797 
 798   void clflush(Address adr);
 799 
 800   void cmovl(Condition cc, Register dst, Register src);
 801   void cmovl(Condition cc, Register dst, Address src);
 802 
 803   void cmovq(Condition cc, Register dst, Register src);
 804   void cmovq(Condition cc, Register dst, Address src);
 805 
 806 
 807   void cmpb(Address dst, int imm8);
 808 
 809   void cmpl(Address dst, int32_t imm32);
 810 
 811   void cmpl(Register dst, int32_t imm32);
 812   void cmpl(Register dst, Register src);
 813   void cmpl(Register dst, Address src);
 814 
 815   void cmpq(Address dst, int32_t imm32);
 816   void cmpq(Address dst, Register src);
 817 
 818   void cmpq(Register dst, int32_t imm32);
 819   void cmpq(Register dst, Register src);
 820   void cmpq(Register dst, Address src);
 821 
 822   // these are dummies used to catch attempting to convert NULL to Register
 823   void cmpl(Register dst, void* junk); // dummy
 824   void cmpq(Register dst, void* junk); // dummy
 825 
 826   void cmpw(Address dst, int imm16);
 827 
 828   void cmpxchg8 (Address adr);
 829 
 830   void cmpxchgl(Register reg, Address adr);
 831 
 832   void cmpxchgq(Register reg, Address adr);
 833 
 834   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
 835   void comisd(XMMRegister dst, Address src);
 836 
 837   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
 838   void comiss(XMMRegister dst, Address src);
 839 
 840   // Identify processor type and features
 841   void cpuid() {
 842     emit_byte(0x0F);
 843     emit_byte(0xA2);
 844   }
 845 
 846   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
 847   void cvtsd2ss(XMMRegister dst, XMMRegister src);
 848 
 849   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
 850   void cvtsi2sdl(XMMRegister dst, Register src);
 851   void cvtsi2sdq(XMMRegister dst, Register src);
 852 
 853   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
 854   void cvtsi2ssl(XMMRegister dst, Register src);
 855   void cvtsi2ssq(XMMRegister dst, Register src);
 856 
 857   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
 858   void cvtdq2pd(XMMRegister dst, XMMRegister src);
 859 
 860   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
 861   void cvtdq2ps(XMMRegister dst, XMMRegister src);
 862 
 863   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
 864   void cvtss2sd(XMMRegister dst, XMMRegister src);
 865 
 866   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
 867   void cvttsd2sil(Register dst, Address src);
 868   void cvttsd2sil(Register dst, XMMRegister src);
 869   void cvttsd2siq(Register dst, XMMRegister src);
 870 
 871   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
 872   void cvttss2sil(Register dst, XMMRegister src);
 873   void cvttss2siq(Register dst, XMMRegister src);
 874 
 875   // Divide Scalar Double-Precision Floating-Point Values
 876   void divsd(XMMRegister dst, Address src);
 877   void divsd(XMMRegister dst, XMMRegister src);
 878 
 879   // Divide Scalar Single-Precision Floating-Point Values
 880   void divss(XMMRegister dst, Address src);
 881   void divss(XMMRegister dst, XMMRegister src);
 882 
 883   void emms();
 884 
 885   void fabs();
 886 
 887   void fadd(int i);
 888 
 889   void fadd_d(Address src);
 890   void fadd_s(Address src);
 891 
 892   // "Alternate" versions of x87 instructions place result down in FPU
 893   // stack instead of on TOS
 894 
 895   void fadda(int i); // "alternate" fadd
 896   void faddp(int i = 1);
 897 
 898   void fchs();
 899 
 900   void fcom(int i);
 901 
 902   void fcomp(int i = 1);
 903   void fcomp_d(Address src);
 904   void fcomp_s(Address src);
 905 
 906   void fcompp();
 907 
 908   void fcos();
 909 
 910   void fdecstp();
 911 
 912   void fdiv(int i);
 913   void fdiv_d(Address src);
 914   void fdivr_s(Address src);
 915   void fdiva(int i);  // "alternate" fdiv
 916   void fdivp(int i = 1);
 917 
 918   void fdivr(int i);
 919   void fdivr_d(Address src);
 920   void fdiv_s(Address src);
 921 
 922   void fdivra(int i); // "alternate" reversed fdiv
 923 
 924   void fdivrp(int i = 1);
 925 
 926   void ffree(int i = 0);
 927 
 928   void fild_d(Address adr);
 929   void fild_s(Address adr);
 930 
 931   void fincstp();
 932 
 933   void finit();
 934 
 935   void fist_s (Address adr);
 936   void fistp_d(Address adr);
 937   void fistp_s(Address adr);
 938 
 939   void fld1();
 940 
 941   void fld_d(Address adr);
 942   void fld_s(Address adr);
 943   void fld_s(int index);
 944   void fld_x(Address adr);  // extended-precision (80-bit) format
 945 
 946   void fldcw(Address src);
 947 
 948   void fldenv(Address src);
 949 
 950   void fldlg2();
 951 
 952   void fldln2();
 953 
 954   void fldz();
 955 
 956   void flog();
 957   void flog10();
 958 
 959   void fmul(int i);
 960 
 961   void fmul_d(Address src);
 962   void fmul_s(Address src);
 963 
 964   void fmula(int i);  // "alternate" fmul
 965 
 966   void fmulp(int i = 1);
 967 
 968   void fnsave(Address dst);
 969 
 970   void fnstcw(Address src);
 971 
 972   void fnstsw_ax();
 973 
 974   void fprem();
 975   void fprem1();
 976 
 977   void frstor(Address src);
 978 
 979   void fsin();
 980 
 981   void fsqrt();
 982 
 983   void fst_d(Address adr);
 984   void fst_s(Address adr);
 985 
 986   void fstp_d(Address adr);
 987   void fstp_d(int index);
 988   void fstp_s(Address adr);
 989   void fstp_x(Address adr); // extended-precision (80-bit) format
 990 
 991   void fsub(int i);
 992   void fsub_d(Address src);
 993   void fsub_s(Address src);
 994 
 995   void fsuba(int i);  // "alternate" fsub
 996 
 997   void fsubp(int i = 1);
 998 
 999   void fsubr(int i);
1000   void fsubr_d(Address src);
1001   void fsubr_s(Address src);
1002 
1003   void fsubra(int i); // "alternate" reversed fsub
1004 
1005   void fsubrp(int i = 1);
1006 
1007   void ftan();
1008 
1009   void ftst();
1010 
1011   void fucomi(int i = 1);
1012   void fucomip(int i = 1);
1013 
1014   void fwait();
1015 
1016   void fxch(int i = 1);
1017 
1018   void fxrstor(Address src);
1019 
1020   void fxsave(Address dst);
1021 
1022   void fyl2x();
1023 
1024   void hlt();
1025 
1026   void idivl(Register src);
1027   void divl(Register src); // Unsigned division
1028 
1029   void idivq(Register src);
1030 
1031   void imull(Register dst, Register src);
1032   void imull(Register dst, Register src, int value);
1033 
1034   void imulq(Register dst, Register src);
1035   void imulq(Register dst, Register src, int value);
1036 
1037 
1038   // jcc is the generic conditional branch generator to run-
1039   // time routines, jcc is used for branches to labels. jcc
1040   // takes a branch opcode (cc) and a label (L) and generates
1041   // either a backward branch or a forward branch and links it
1042   // to the label fixup chain. Usage:
1043   //
1044   // Label L;      // unbound label
1045   // jcc(cc, L);   // forward branch to unbound label
1046   // bind(L);      // bind label to the current pc
1047   // jcc(cc, L);   // backward branch to bound label
1048   // bind(L);      // illegal: a label may be bound only once
1049   //
1050   // Note: The same Label can be used for forward and backward branches
1051   // but it may be bound only once.
1052 
1053   void jcc(Condition cc, Label& L,
1054            relocInfo::relocType rtype = relocInfo::none);
1055 
1056   // Conditional jump to a 8-bit offset to L.
1057   // WARNING: be very careful using this for forward jumps.  If the label is
1058   // not bound within an 8-bit offset of this instruction, a run-time error
1059   // will occur.
1060   void jccb(Condition cc, Label& L);
1061 
1062   void jmp(Address entry);    // pc <- entry
1063 
1064   // Label operations & relative jumps (PPUM Appendix D)
1065   void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
1066 
1067   void jmp(Register entry); // pc <- entry
1068 
1069   // Unconditional 8-bit offset jump to L.
1070   // WARNING: be very careful using this for forward jumps.  If the label is
1071   // not bound within an 8-bit offset of this instruction, a run-time error
1072   // will occur.
1073   void jmpb(Label& L);
1074 
1075   void ldmxcsr( Address src );
1076 
1077   void leal(Register dst, Address src);
1078 
1079   void leaq(Register dst, Address src);
1080 
1081   void lfence() {
1082     emit_byte(0x0F);
1083     emit_byte(0xAE);
1084     emit_byte(0xE8);
1085   }
1086 
1087   void lock();
1088 
1089   void lzcntl(Register dst, Register src);
1090 
1091 #ifdef _LP64
1092   void lzcntq(Register dst, Register src);
1093 #endif
1094 
1095   enum Membar_mask_bits {
1096     StoreStore = 1 << 3,
1097     LoadStore  = 1 << 2,
1098     StoreLoad  = 1 << 1,
1099     LoadLoad   = 1 << 0
1100   };
1101 
1102   // Serializes memory and blows flags
1103   void membar(Membar_mask_bits order_constraint) {
1104     if (os::is_MP()) {
1105       // We only have to handle StoreLoad
1106       if (order_constraint & StoreLoad) {
1107         // All usable chips support "locked" instructions which suffice
1108         // as barriers, and are much faster than the alternative of
1109         // using cpuid instruction. We use here a locked add [esp],0.
1110         // This is conveniently otherwise a no-op except for blowing
1111         // flags.
1112         // Any change to this code may need to revisit other places in
1113         // the code where this idiom is used, in particular the
1114         // orderAccess code.
1115         lock();
1116         addl(Address(rsp, 0), 0);// Assert the lock# signal here
1117       }
1118     }
1119   }
1120 
1121   void mfence();
1122 
1123   // Moves
1124 
1125   void mov64(Register dst, int64_t imm64);
1126 
1127   void movb(Address dst, Register src);
1128   void movb(Address dst, int imm8);
1129   void movb(Register dst, Address src);
1130 
1131   void movdl(XMMRegister dst, Register src);
1132   void movdl(Register dst, XMMRegister src);
1133   void movdl(XMMRegister dst, Address src);
1134 
1135   // Move Double Quadword
1136   void movdq(XMMRegister dst, Register src);
1137   void movdq(Register dst, XMMRegister src);
1138 
1139   // Move Aligned Double Quadword
1140   void movdqa(Address     dst, XMMRegister src);
1141   void movdqa(XMMRegister dst, Address src);
1142   void movdqa(XMMRegister dst, XMMRegister src);
1143 
1144   // Move Unaligned Double Quadword
1145   void movdqu(Address     dst, XMMRegister src);
1146   void movdqu(XMMRegister dst, Address src);
1147   void movdqu(XMMRegister dst, XMMRegister src);
1148 
1149   void movl(Register dst, int32_t imm32);
1150   void movl(Address dst, int32_t imm32);
1151   void movl(Register dst, Register src);
1152   void movl(Register dst, Address src);
1153   void movl(Address dst, Register src);
1154 
1155   // These dummies prevent using movl from converting a zero (like NULL) into Register
1156   // by giving the compiler two choices it can't resolve
1157 
1158   void movl(Address  dst, void* junk);
1159   void movl(Register dst, void* junk);
1160 
1161 #ifdef _LP64
1162   void movq(Register dst, Register src);
1163   void movq(Register dst, Address src);
1164   void movq(Address  dst, Register src);
1165 #endif
1166 
1167   void movq(Address     dst, MMXRegister src );
1168   void movq(MMXRegister dst, Address src );
1169 
1170 #ifdef _LP64
1171   // These dummies prevent using movq from converting a zero (like NULL) into Register
1172   // by giving the compiler two choices it can't resolve
1173 
1174   void movq(Address  dst, void* dummy);
1175   void movq(Register dst, void* dummy);
1176 #endif
1177 
1178   // Move Quadword
1179   void movq(Address     dst, XMMRegister src);
1180   void movq(XMMRegister dst, Address src);
1181 
1182   void movsbl(Register dst, Address src);
1183   void movsbl(Register dst, Register src);
1184 
1185 #ifdef _LP64
1186   void movsbq(Register dst, Address src);
1187   void movsbq(Register dst, Register src);
1188 
1189   // Move signed 32bit immediate to 64bit extending sign
1190   void movslq(Address  dst, int32_t imm64);
1191   void movslq(Register dst, int32_t imm64);
1192 
1193   void movslq(Register dst, Address src);
1194   void movslq(Register dst, Register src);
1195   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1196 #endif
1197 
1198   void movswl(Register dst, Address src);
1199   void movswl(Register dst, Register src);
1200 
1201 #ifdef _LP64
1202   void movswq(Register dst, Address src);
1203   void movswq(Register dst, Register src);
1204 #endif
1205 
1206   void movw(Address dst, int imm16);
1207   void movw(Register dst, Address src);
1208   void movw(Address dst, Register src);
1209 
1210   void movzbl(Register dst, Address src);
1211   void movzbl(Register dst, Register src);
1212 
1213 #ifdef _LP64
1214   void movzbq(Register dst, Address src);
1215   void movzbq(Register dst, Register src);
1216 #endif
1217 
1218   void movzwl(Register dst, Address src);
1219   void movzwl(Register dst, Register src);
1220 
1221 #ifdef _LP64
1222   void movzwq(Register dst, Address src);
1223   void movzwq(Register dst, Register src);
1224 #endif
1225 
1226   void mull(Address src);
1227   void mull(Register src);
1228 
1229   // Multiply Scalar Double-Precision Floating-Point Values
1230   void mulsd(XMMRegister dst, Address src);
1231   void mulsd(XMMRegister dst, XMMRegister src);
1232 
1233   // Multiply Scalar Single-Precision Floating-Point Values
1234   void mulss(XMMRegister dst, Address src);
1235   void mulss(XMMRegister dst, XMMRegister src);
1236 
1237   void negl(Register dst);
1238 
1239 #ifdef _LP64
1240   void negq(Register dst);
1241 #endif
1242 
1243   void nop(int i = 1);
1244 
1245   void notl(Register dst);
1246 
1247 #ifdef _LP64
1248   void notq(Register dst);
1249 #endif
1250 
1251   void orl(Address dst, int32_t imm32);
1252   void orl(Register dst, int32_t imm32);
1253   void orl(Register dst, Address src);
1254   void orl(Register dst, Register src);
1255 
1256   void orq(Address dst, int32_t imm32);
1257   void orq(Register dst, int32_t imm32);
1258   void orq(Register dst, Address src);
1259   void orq(Register dst, Register src);
1260 
1261   // SSE4.2 string instructions
1262   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1263   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1264 
1265 #ifndef _LP64 // no 32bit push/pop on amd64
1266   void popl(Address dst);
1267 #endif
1268 
1269 #ifdef _LP64
1270   void popq(Address dst);
1271 #endif
1272 
1273   void popcntl(Register dst, Address src);
1274   void popcntl(Register dst, Register src);
1275 
1276 #ifdef _LP64
1277   void popcntq(Register dst, Address src);
1278   void popcntq(Register dst, Register src);
1279 #endif
1280 
1281   // Prefetches (SSE, SSE2, 3DNOW only)
1282 
1283   void prefetchnta(Address src);
1284   void prefetchr(Address src);
1285   void prefetcht0(Address src);
1286   void prefetcht1(Address src);
1287   void prefetcht2(Address src);
1288   void prefetchw(Address src);
1289 
1290   // POR - Bitwise logical OR
1291   void por(XMMRegister dst, XMMRegister src);
1292 
1293   // Shuffle Packed Doublewords
1294   void pshufd(XMMRegister dst, XMMRegister src, int mode);
1295   void pshufd(XMMRegister dst, Address src,     int mode);
1296 
1297   // Shuffle Packed Low Words
1298   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1299   void pshuflw(XMMRegister dst, Address src,     int mode);
1300 
1301   // Shift Right by bits Logical Quadword Immediate
1302   void psrlq(XMMRegister dst, int shift);
1303 
1304   // Shift Right by bytes Logical DoubleQuadword Immediate
1305   void psrldq(XMMRegister dst, int shift);
1306 
1307   // Logical Compare Double Quadword
1308   void ptest(XMMRegister dst, XMMRegister src);
1309   void ptest(XMMRegister dst, Address src);
1310 
1311   // Interleave Low Bytes
1312   void punpcklbw(XMMRegister dst, XMMRegister src);
1313 
1314 #ifndef _LP64 // no 32bit push/pop on amd64
1315   void pushl(Address src);
1316 #endif
1317 
1318   void pushq(Address src);
1319 
1320   // Xor Packed Byte Integer Values
1321   void pxor(XMMRegister dst, Address src);
1322   void pxor(XMMRegister dst, XMMRegister src);
1323 
1324   void rcll(Register dst, int imm8);
1325 
1326   void rclq(Register dst, int imm8);
1327 
1328   void ret(int imm16);
1329 
1330   void sahf();
1331 
1332   void sarl(Register dst, int imm8);
1333   void sarl(Register dst);
1334 
1335   void sarq(Register dst, int imm8);
1336   void sarq(Register dst);
1337 
1338   void sbbl(Address dst, int32_t imm32);
1339   void sbbl(Register dst, int32_t imm32);
1340   void sbbl(Register dst, Address src);
1341   void sbbl(Register dst, Register src);
1342 
1343   void sbbq(Address dst, int32_t imm32);
1344   void sbbq(Register dst, int32_t imm32);
1345   void sbbq(Register dst, Address src);
1346   void sbbq(Register dst, Register src);
1347 
1348   void setb(Condition cc, Register dst);
1349 
1350   void shldl(Register dst, Register src);
1351 
1352   void shll(Register dst, int imm8);
1353   void shll(Register dst);
1354 
1355   void shlq(Register dst, int imm8);
1356   void shlq(Register dst);
1357 
1358   void shrdl(Register dst, Register src);
1359 
1360   void shrl(Register dst, int imm8);
1361   void shrl(Register dst);
1362 
1363   void shrq(Register dst, int imm8);
1364   void shrq(Register dst);
1365 
1366   void smovl(); // QQQ generic?
1367 
1368   // Compute Square Root of Scalar Double-Precision Floating-Point Value
1369   void sqrtsd(XMMRegister dst, Address src);
1370   void sqrtsd(XMMRegister dst, XMMRegister src);
1371 
1372   // Compute Square Root of Scalar Single-Precision Floating-Point Value
1373   void sqrtss(XMMRegister dst, Address src);
1374   void sqrtss(XMMRegister dst, XMMRegister src);
1375 
1376   void std() { emit_byte(0xfd); }
1377 
1378   void stmxcsr( Address dst );
1379 
1380   void subl(Address dst, int32_t imm32);
1381   void subl(Address dst, Register src);
1382   void subl(Register dst, int32_t imm32);
1383   void subl(Register dst, Address src);
1384   void subl(Register dst, Register src);
1385 
1386   void subq(Address dst, int32_t imm32);
1387   void subq(Address dst, Register src);
1388   void subq(Register dst, int32_t imm32);
1389   void subq(Register dst, Address src);
1390   void subq(Register dst, Register src);
1391 
1392 
1393   // Subtract Scalar Double-Precision Floating-Point Values
1394   void subsd(XMMRegister dst, Address src);
1395   void subsd(XMMRegister dst, XMMRegister src);
1396 
1397   // Subtract Scalar Single-Precision Floating-Point Values
1398   void subss(XMMRegister dst, Address src);
1399   void subss(XMMRegister dst, XMMRegister src);
1400 
1401   void testb(Register dst, int imm8);
1402 
1403   void testl(Register dst, int32_t imm32);
1404   void testl(Register dst, Register src);
1405   void testl(Register dst, Address src);
1406 
1407   void testq(Register dst, int32_t imm32);
1408   void testq(Register dst, Register src);
1409 
1410 
1411   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1412   void ucomisd(XMMRegister dst, Address src);
1413   void ucomisd(XMMRegister dst, XMMRegister src);
1414 
1415   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1416   void ucomiss(XMMRegister dst, Address src);
1417   void ucomiss(XMMRegister dst, XMMRegister src);
1418 
1419   void xaddl(Address dst, Register src);
1420 
1421   void xaddq(Address dst, Register src);
1422 
1423   void xchgl(Register reg, Address adr);
1424   void xchgl(Register dst, Register src);
1425 
1426   void xchgq(Register reg, Address adr);
1427   void xchgq(Register dst, Register src);
1428 
1429   void xorl(Register dst, int32_t imm32);
1430   void xorl(Register dst, Address src);
1431   void xorl(Register dst, Register src);
1432 
1433   void xorq(Register dst, Address src);
1434   void xorq(Register dst, Register src);
1435 
1436   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1437   void xorpd(XMMRegister dst, Address src);
1438   void xorpd(XMMRegister dst, XMMRegister src);
1439 
1440   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1441   void xorps(XMMRegister dst, Address src);
1442   void xorps(XMMRegister dst, XMMRegister src);
1443 
1444   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1445 };
1446 
1447 
1448 // MacroAssembler extends Assembler by frequently used macros.
1449 //
1450 // Instructions for which a 'better' code sequence exists depending
1451 // on arguments should also go in here.
1452 
1453 class MacroAssembler: public Assembler {
1454   friend class LIR_Assembler;
1455   friend class Runtime1;      // as_Address()
1456  protected:
1457 
1458   Address as_Address(AddressLiteral adr);
1459   Address as_Address(ArrayAddress adr);
1460 
1461   // Support for VM calls
1462   //
1463   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1464   // may customize this version by overriding it for its purposes (e.g., to save/restore
1465   // additional registers when doing a VM call).
1466 #ifdef CC_INTERP
1467   // c++ interpreter never wants to use interp_masm version of call_VM
1468   #define VIRTUAL
1469 #else
1470   #define VIRTUAL virtual
1471 #endif
1472 
1473   VIRTUAL void call_VM_leaf_base(
1474     address entry_point,               // the entry point
1475     int     number_of_arguments        // the number of arguments to pop after the call
1476   );
1477 
1478   // This is the base routine called by the different versions of call_VM. The interpreter
1479   // may customize this version by overriding it for its purposes (e.g., to save/restore
1480   // additional registers when doing a VM call).
1481   //
1482   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
1483   // returns the register which contains the thread upon return. If a thread register has been
1484   // specified, the return value will correspond to that register. If no last_java_sp is specified
1485   // (noreg) than rsp will be used instead.
1486   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
1487     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
1488     Register java_thread,              // the thread if computed before     ; use noreg otherwise
1489     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
1490     address  entry_point,              // the entry point
1491     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
1492     bool     check_exceptions          // whether to check for pending exceptions after return
1493   );
1494 
1495   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1496   // The implementation is only non-empty for the InterpreterMacroAssembler,
1497   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
1498   virtual void check_and_handle_popframe(Register java_thread);
1499   virtual void check_and_handle_earlyret(Register java_thread);
1500 
1501   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
1502 
1503   // helpers for FPU flag access
1504   // tmp is a temporary register, if none is available use noreg
1505   void save_rax   (Register tmp);
1506   void restore_rax(Register tmp);
1507 
1508  public:
1509   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1510 
1511   // Support for NULL-checks
1512   //
1513   // Generates code that causes a NULL OS exception if the content of reg is NULL.
1514   // If the accessed location is M[reg + offset] and the offset is known, provide the
1515   // offset. No explicit code generation is needed if the offset is within a certain
1516   // range (0 <= offset <= page_size).
1517 
1518   void null_check(Register reg, int offset = -1);
1519   static bool needs_explicit_null_check(intptr_t offset);
1520 
1521   // Required platform-specific helpers for Label::patch_instructions.
1522   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
1523   void pd_patch_instruction(address branch, address target);
1524 #ifndef PRODUCT
1525   static void pd_print_patched_instruction(address branch);
1526 #endif
1527 
1528   // The following 4 methods return the offset of the appropriate move instruction
1529 
1530   // Support for fast byte/short loading with zero extension (depending on particular CPU)
1531   int load_unsigned_byte(Register dst, Address src);
1532   int load_unsigned_short(Register dst, Address src);
1533 
1534   // Support for fast byte/short loading with sign extension (depending on particular CPU)
1535   int load_signed_byte(Register dst, Address src);
1536   int load_signed_short(Register dst, Address src);
1537 
1538   // Support for sign-extension (hi:lo = extend_sign(lo))
1539   void extend_sign(Register hi, Register lo);
1540 
1541   // Load and store values by size and signed-ness
1542   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
1543   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
1544 
1545   // Support for inc/dec with optimal instruction selection depending on value
1546 
1547   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
1548   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
1549 
1550   void decrementl(Address dst, int value = 1);
1551   void decrementl(Register reg, int value = 1);
1552 
1553   void decrementq(Register reg, int value = 1);
1554   void decrementq(Address dst, int value = 1);
1555 
1556   void incrementl(Address dst, int value = 1);
1557   void incrementl(Register reg, int value = 1);
1558 
1559   void incrementq(Register reg, int value = 1);
1560   void incrementq(Address dst, int value = 1);
1561 
1562 
1563   // Support optimal SSE move instructions.
1564   void movflt(XMMRegister dst, XMMRegister src) {
1565     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
1566     else                       { movss (dst, src); return; }
1567   }
1568   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
1569   void movflt(XMMRegister dst, AddressLiteral src);
1570   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
1571 
1572   void movdbl(XMMRegister dst, XMMRegister src) {
1573     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
1574     else                       { movsd (dst, src); return; }
1575   }
1576 
1577   void movdbl(XMMRegister dst, AddressLiteral src);
1578 
1579   void movdbl(XMMRegister dst, Address src) {
1580     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
1581     else                         { movlpd(dst, src); return; }
1582   }
1583   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
1584 
1585   void incrementl(AddressLiteral dst);
1586   void incrementl(ArrayAddress dst);
1587 
1588   // Alignment
1589   void align(int modulus);
1590 
1591   // Misc
1592   void fat_nop(); // 5 byte nop
1593 
1594   // Stack frame creation/removal
1595   void enter();
1596   void leave();
1597 
1598   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
1599   // The pointer will be loaded into the thread register.
1600   void get_thread(Register thread);
1601 
1602 
1603   // Support for VM calls
1604   //
1605   // It is imperative that all calls into the VM are handled via the call_VM macros.
1606   // They make sure that the stack linkage is setup correctly. call_VM's correspond
1607   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1608 
1609 
1610   void call_VM(Register oop_result,
1611                address entry_point,
1612                bool check_exceptions = true);
1613   void call_VM(Register oop_result,
1614                address entry_point,
1615                Register arg_1,
1616                bool check_exceptions = true);
1617   void call_VM(Register oop_result,
1618                address entry_point,
1619                Register arg_1, Register arg_2,
1620                bool check_exceptions = true);
1621   void call_VM(Register oop_result,
1622                address entry_point,
1623                Register arg_1, Register arg_2, Register arg_3,
1624                bool check_exceptions = true);
1625 
1626   // Overloadings with last_Java_sp
1627   void call_VM(Register oop_result,
1628                Register last_java_sp,
1629                address entry_point,
1630                int number_of_arguments = 0,
1631                bool check_exceptions = true);
1632   void call_VM(Register oop_result,
1633                Register last_java_sp,
1634                address entry_point,
1635                Register arg_1, bool
1636                check_exceptions = true);
1637   void call_VM(Register oop_result,
1638                Register last_java_sp,
1639                address entry_point,
1640                Register arg_1, Register arg_2,
1641                bool check_exceptions = true);
1642   void call_VM(Register oop_result,
1643                Register last_java_sp,
1644                address entry_point,
1645                Register arg_1, Register arg_2, Register arg_3,
1646                bool check_exceptions = true);
1647 
1648   void call_VM_leaf(address entry_point,
1649                     int number_of_arguments = 0);
1650   void call_VM_leaf(address entry_point,
1651                     Register arg_1);
1652   void call_VM_leaf(address entry_point,
1653                     Register arg_1, Register arg_2);
1654   void call_VM_leaf(address entry_point,
1655                     Register arg_1, Register arg_2, Register arg_3);
1656 
1657   // last Java Frame (fills frame anchor)
1658   void set_last_Java_frame(Register thread,
1659                            Register last_java_sp,
1660                            Register last_java_fp,
1661                            address last_java_pc);
1662 
1663   // thread in the default location (r15_thread on 64bit)
1664   void set_last_Java_frame(Register last_java_sp,
1665                            Register last_java_fp,
1666                            address last_java_pc);
1667 
1668   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
1669 
1670   // thread in the default location (r15_thread on 64bit)
1671   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
1672 
1673   // Stores
1674   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
1675   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
1676 
1677   void g1_write_barrier_pre(Register obj,
1678 #ifndef _LP64
1679                             Register thread,
1680 #endif
1681                             Register tmp,
1682                             Register tmp2,
1683                             bool     tosca_live);
1684   void g1_write_barrier_post(Register store_addr,
1685                              Register new_val,
1686 #ifndef _LP64
1687                              Register thread,
1688 #endif
1689                              Register tmp,
1690                              Register tmp2);
1691 
1692 
1693   // split store_check(Register obj) to enhance instruction interleaving
1694   void store_check_part_1(Register obj);
1695   void store_check_part_2(Register obj);
1696 
1697   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
1698   void c2bool(Register x);
1699 
1700   // C++ bool manipulation
1701 
1702   void movbool(Register dst, Address src);
1703   void movbool(Address dst, bool boolconst);
1704   void movbool(Address dst, Register src);
1705   void testbool(Register dst);
1706 
1707   // oop manipulations
1708   void load_klass(Register dst, Register src);
1709   void store_klass(Register dst, Register src);
1710 
1711   void load_heap_oop(Register dst, Address src);
1712   void load_heap_oop_not_null(Register dst, Address src);
1713   void store_heap_oop(Address dst, Register src);
1714 
1715   // Used for storing NULL. All other oop constants should be
1716   // stored using routines that take a jobject.
1717   void store_heap_oop_null(Address dst);
1718 
1719   void load_prototype_header(Register dst, Register src);
1720 
1721 #ifdef _LP64
1722   void store_klass_gap(Register dst, Register src);
1723 
1724   // This dummy is to prevent a call to store_heap_oop from
1725   // converting a zero (like NULL) into a Register by giving
1726   // the compiler two choices it can't resolve
1727 
1728   void store_heap_oop(Address dst, void* dummy);
1729 
1730   void encode_heap_oop(Register r);
1731   void decode_heap_oop(Register r);
1732   void encode_heap_oop_not_null(Register r);
1733   void decode_heap_oop_not_null(Register r);
1734   void encode_heap_oop_not_null(Register dst, Register src);
1735   void decode_heap_oop_not_null(Register dst, Register src);
1736 
1737   void set_narrow_oop(Register dst, jobject obj);
1738   void set_narrow_oop(Address dst, jobject obj);
1739   void cmp_narrow_oop(Register dst, jobject obj);
1740   void cmp_narrow_oop(Address dst, jobject obj);
1741 
1742   // if heap base register is used - reinit it with the correct value
1743   void reinit_heapbase();
1744 
1745   DEBUG_ONLY(void verify_heapbase(const char* msg);)
1746 
1747 #endif // _LP64
1748 
1749   // Int division/remainder for Java
1750   // (as idivl, but checks for special case as described in JVM spec.)
1751   // returns idivl instruction offset for implicit exception handling
1752   int corrected_idivl(Register reg);
1753 
1754   // Long division/remainder for Java
1755   // (as idivq, but checks for special case as described in JVM spec.)
1756   // returns idivq instruction offset for implicit exception handling
1757   int corrected_idivq(Register reg);
1758 
1759   void int3();
1760 
1761   // Long operation macros for a 32bit cpu
1762   // Long negation for Java
1763   void lneg(Register hi, Register lo);
1764 
1765   // Long multiplication for Java
1766   // (destroys contents of eax, ebx, ecx and edx)
1767   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
1768 
1769   // Long shifts for Java
1770   // (semantics as described in JVM spec.)
1771   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
1772   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
1773 
1774   // Long compare for Java
1775   // (semantics as described in JVM spec.)
1776   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
1777 
1778 
1779   // misc
1780 
1781   // Sign extension
1782   void sign_extend_short(Register reg);
1783   void sign_extend_byte(Register reg);
1784 
1785   // Division by power of 2, rounding towards 0
1786   void division_with_shift(Register reg, int shift_value);
1787 
1788   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
1789   //
1790   // CF (corresponds to C0) if x < y
1791   // PF (corresponds to C2) if unordered
1792   // ZF (corresponds to C3) if x = y
1793   //
1794   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1795   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
1796   void fcmp(Register tmp);
1797   // Variant of the above which allows y to be further down the stack
1798   // and which only pops x and y if specified. If pop_right is
1799   // specified then pop_left must also be specified.
1800   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
1801 
1802   // Floating-point comparison for Java
1803   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
1804   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1805   // (semantics as described in JVM spec.)
1806   void fcmp2int(Register dst, bool unordered_is_less);
1807   // Variant of the above which allows y to be further down the stack
1808   // and which only pops x and y if specified. If pop_right is
1809   // specified then pop_left must also be specified.
1810   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
1811 
1812   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
1813   // tmp is a temporary register, if none is available use noreg
1814   void fremr(Register tmp);
1815 
1816 
1817   // same as fcmp2int, but using SSE2
1818   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
1819   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
1820 
1821   // Inlined sin/cos generator for Java; must not use CPU instruction
1822   // directly on Intel as it does not have high enough precision
1823   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
1824   // number of FPU stack slots in use; all but the topmost will
1825   // require saving if a slow case is necessary. Assumes argument is
1826   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
1827   // this code.
1828   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
1829 
1830   // branch to L if FPU flag C2 is set/not set
1831   // tmp is a temporary register, if none is available use noreg
1832   void jC2 (Register tmp, Label& L);
1833   void jnC2(Register tmp, Label& L);
1834 
1835   // Pop ST (ffree & fincstp combined)
1836   void fpop();
1837 
1838   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1839   void push_fTOS();
1840 
1841   // pops double TOS element from CPU stack and pushes on FPU stack
1842   void pop_fTOS();
1843 
1844   void empty_FPU_stack();
1845 
1846   void push_IU_state();
1847   void pop_IU_state();
1848 
1849   void push_FPU_state();
1850   void pop_FPU_state();
1851 
1852   void push_CPU_state();
1853   void pop_CPU_state();
1854 
1855   // Round up to a power of two
1856   void round_to(Register reg, int modulus);
1857 
1858   // Callee saved registers handling
1859   void push_callee_saved_registers();
1860   void pop_callee_saved_registers();
1861 
1862   // allocation
1863   void eden_allocate(
1864     Register obj,                      // result: pointer to object after successful allocation
1865     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1866     int      con_size_in_bytes,        // object size in bytes if   known at compile time
1867     Register t1,                       // temp register
1868     Label&   slow_case                 // continuation point if fast allocation fails
1869   );
1870   void tlab_allocate(
1871     Register obj,                      // result: pointer to object after successful allocation
1872     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1873     int      con_size_in_bytes,        // object size in bytes if   known at compile time
1874     Register t1,                       // temp register
1875     Register t2,                       // temp register
1876     Label&   slow_case                 // continuation point if fast allocation fails
1877   );
1878   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
1879   void incr_allocated_bytes(Register thread,
1880                             Register var_size_in_bytes, int con_size_in_bytes,
1881                             Register t1 = noreg);
1882 
1883   // interface method calling
1884   void lookup_interface_method(Register recv_klass,
1885                                Register intf_klass,
1886                                RegisterOrConstant itable_index,
1887                                Register method_result,
1888                                Register scan_temp,
1889                                Label& no_such_interface);
1890 
1891   // Test sub_klass against super_klass, with fast and slow paths.
1892 
1893   // The fast path produces a tri-state answer: yes / no / maybe-slow.
1894   // One of the three labels can be NULL, meaning take the fall-through.
1895   // If super_check_offset is -1, the value is loaded up from super_klass.
1896   // No registers are killed, except temp_reg.
1897   void check_klass_subtype_fast_path(Register sub_klass,
1898                                      Register super_klass,
1899                                      Register temp_reg,
1900                                      Label* L_success,
1901                                      Label* L_failure,
1902                                      Label* L_slow_path,
1903                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
1904 
1905   // The rest of the type check; must be wired to a corresponding fast path.
1906   // It does not repeat the fast path logic, so don't use it standalone.
1907   // The temp_reg and temp2_reg can be noreg, if no temps are available.
1908   // Updates the sub's secondary super cache as necessary.
1909   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
1910   void check_klass_subtype_slow_path(Register sub_klass,
1911                                      Register super_klass,
1912                                      Register temp_reg,
1913                                      Register temp2_reg,
1914                                      Label* L_success,
1915                                      Label* L_failure,
1916                                      bool set_cond_codes = false);
1917 
1918   // Simplified, combined version, good for typical uses.
1919   // Falls through on failure.
1920   void check_klass_subtype(Register sub_klass,
1921                            Register super_klass,
1922                            Register temp_reg,
1923                            Label& L_success);
1924 
1925   // method handles (JSR 292)
1926   void check_method_handle_type(Register mtype_reg, Register mh_reg,
1927                                 Register temp_reg,
1928                                 Label& wrong_method_type);
1929   void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
1930                                   Register temp_reg);
1931   void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
1932   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1933 
1934 
1935   //----
1936   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
1937 
1938   // Debugging
1939 
1940   // only if +VerifyOops
1941   void verify_oop(Register reg, const char* s = "broken oop");
1942   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
1943 
1944   // only if +VerifyFPU
1945   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
1946 
1947   // prints msg, dumps registers and stops execution
1948   void stop(const char* msg);
1949 
1950   // prints msg and continues
1951   void warn(const char* msg);
1952 
1953   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
1954   static void debug64(char* msg, int64_t pc, int64_t regs[]);
1955 
1956   void os_breakpoint();
1957 
1958   void untested()                                { stop("untested"); }
1959 
1960   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
1961 
1962   void should_not_reach_here()                   { stop("should not reach here"); }
1963 
1964   void print_CPU_state();
1965 
1966   // Stack overflow checking
1967   void bang_stack_with_offset(int offset) {
1968     // stack grows down, caller passes positive offset
1969     assert(offset > 0, "must bang with negative offset");
1970     movl(Address(rsp, (-offset)), rax);
1971   }
1972 
1973   // Writes to stack successive pages until offset reached to check for
1974   // stack overflow + shadow pages.  Also, clobbers tmp
1975   void bang_stack_size(Register size, Register tmp);
1976 
1977   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
1978                                                 Register tmp,
1979                                                 int offset);
1980 
1981   // Support for serializing memory accesses between threads
1982   void serialize_memory(Register thread, Register tmp);
1983 
1984   void verify_tlab();
1985 
1986   // Biased locking support
1987   // lock_reg and obj_reg must be loaded up with the appropriate values.
1988   // swap_reg must be rax, and is killed.
1989   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
1990   // be killed; if not supplied, push/pop will be used internally to
1991   // allocate a temporary (inefficient, avoid if possible).
1992   // Optional slow case is for implementations (interpreter and C1) which branch to
1993   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
1994   // Returns offset of first potentially-faulting instruction for null
1995   // check info (currently consumed only by C1). If
1996   // swap_reg_contains_mark is true then returns -1 as it is assumed
1997   // the calling code has already passed any potential faults.
1998   int biased_locking_enter(Register lock_reg, Register obj_reg,
1999                            Register swap_reg, Register tmp_reg,
2000                            bool swap_reg_contains_mark,
2001                            Label& done, Label* slow_case = NULL,
2002                            BiasedLockingCounters* counters = NULL);
2003   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
2004 
2005 
2006   Condition negate_condition(Condition cond);
2007 
2008   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
2009   // operands. In general the names are modified to avoid hiding the instruction in Assembler
2010   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
2011   // here in MacroAssembler. The major exception to this rule is call
2012 
2013   // Arithmetics
2014 
2015 
2016   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
2017   void addptr(Address dst, Register src);
2018 
2019   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
2020   void addptr(Register dst, int32_t src);
2021   void addptr(Register dst, Register src);
2022 
2023   void andptr(Register dst, int32_t src);
2024   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
2025 
2026   void cmp8(AddressLiteral src1, int imm);
2027 
2028   // renamed to drag out the casting of address to int32_t/intptr_t
2029   void cmp32(Register src1, int32_t imm);
2030 
2031   void cmp32(AddressLiteral src1, int32_t imm);
2032   // compare reg - mem, or reg - &mem
2033   void cmp32(Register src1, AddressLiteral src2);
2034 
2035   void cmp32(Register src1, Address src2);
2036 
2037 #ifndef _LP64
2038   void cmpoop(Address dst, jobject obj);
2039   void cmpoop(Register dst, jobject obj);
2040 #endif // _LP64
2041 
2042   // NOTE src2 must be the lval. This is NOT an mem-mem compare
2043   void cmpptr(Address src1, AddressLiteral src2);
2044 
2045   void cmpptr(Register src1, AddressLiteral src2);
2046 
2047   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2048   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2049   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2050 
2051   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2052   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2053 
2054   // cmp64 to avoild hiding cmpq
2055   void cmp64(Register src1, AddressLiteral src);
2056 
2057   void cmpxchgptr(Register reg, Address adr);
2058 
2059   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
2060 
2061 
2062   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
2063 
2064 
2065   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
2066 
2067   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
2068 
2069   void shlptr(Register dst, int32_t shift);
2070   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
2071 
2072   void shrptr(Register dst, int32_t shift);
2073   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
2074 
2075   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
2076   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
2077 
2078   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2079 
2080   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2081   void subptr(Register dst, int32_t src);
2082   void subptr(Register dst, Register src);
2083 
2084 
2085   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2086   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2087 
2088   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2089   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2090 
2091   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
2092 
2093 
2094 
2095   // Helper functions for statistics gathering.
2096   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
2097   void cond_inc32(Condition cond, AddressLiteral counter_addr);
2098   // Unconditional atomic increment.
2099   void atomic_incl(AddressLiteral counter_addr);
2100 
2101   void lea(Register dst, AddressLiteral adr);
2102   void lea(Address dst, AddressLiteral adr);
2103   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
2104 
2105   void leal32(Register dst, Address src) { leal(dst, src); }
2106 
2107   // Import other testl() methods from the parent class or else
2108   // they will be hidden by the following overriding declaration.
2109   using Assembler::testl;
2110   void testl(Register dst, AddressLiteral src);
2111 
2112   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2113   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2114   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2115 
2116   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
2117   void testptr(Register src1, Register src2);
2118 
2119   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2120   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2121 
2122   // Calls
2123 
2124   void call(Label& L, relocInfo::relocType rtype);
2125   void call(Register entry);
2126 
2127   // NOTE: this call tranfers to the effective address of entry NOT
2128   // the address contained by entry. This is because this is more natural
2129   // for jumps/calls.
2130   void call(AddressLiteral entry);
2131 
2132   // Jumps
2133 
2134   // NOTE: these jumps tranfer to the effective address of dst NOT
2135   // the address contained by dst. This is because this is more natural
2136   // for jumps/calls.
2137   void jump(AddressLiteral dst);
2138   void jump_cc(Condition cc, AddressLiteral dst);
2139 
2140   // 32bit can do a case table jump in one instruction but we no longer allow the base
2141   // to be installed in the Address class. This jump will tranfers to the address
2142   // contained in the location described by entry (not the address of entry)
2143   void jump(ArrayAddress entry);
2144 
2145   // Floating
2146 
2147   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
2148   void andpd(XMMRegister dst, AddressLiteral src);
2149 
2150   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
2151   void comiss(XMMRegister dst, AddressLiteral src);
2152 
2153   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
2154   void comisd(XMMRegister dst, AddressLiteral src);
2155 
2156   void fadd_s(Address src)        { Assembler::fadd_s(src); }
2157   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
2158 
2159   void fldcw(Address src) { Assembler::fldcw(src); }
2160   void fldcw(AddressLiteral src);
2161 
2162   void fld_s(int index)   { Assembler::fld_s(index); }
2163   void fld_s(Address src) { Assembler::fld_s(src); }
2164   void fld_s(AddressLiteral src);
2165 
2166   void fld_d(Address src) { Assembler::fld_d(src); }
2167   void fld_d(AddressLiteral src);
2168 
2169   void fld_x(Address src) { Assembler::fld_x(src); }
2170   void fld_x(AddressLiteral src);
2171 
2172   void fmul_s(Address src)        { Assembler::fmul_s(src); }
2173   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
2174 
2175   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
2176   void ldmxcsr(AddressLiteral src);
2177 
2178 private:
2179   // these are private because users should be doing movflt/movdbl
2180 
2181   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
2182   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
2183   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
2184   void movss(XMMRegister dst, AddressLiteral src);
2185 
2186   void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
2187   void movlpd(XMMRegister dst, AddressLiteral src);
2188 
2189 public:
2190 
2191   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
2192   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
2193   void addsd(XMMRegister dst, AddressLiteral src) { Assembler::addsd(dst, as_Address(src)); }
2194 
2195   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
2196   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
2197   void addss(XMMRegister dst, AddressLiteral src) { Assembler::addss(dst, as_Address(src)); }
2198 
2199   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
2200   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
2201   void divsd(XMMRegister dst, AddressLiteral src) { Assembler::divsd(dst, as_Address(src)); }
2202 
2203   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
2204   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
2205   void divss(XMMRegister dst, AddressLiteral src) { Assembler::divss(dst, as_Address(src)); }
2206 
2207   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
2208   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
2209   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
2210   void movsd(XMMRegister dst, AddressLiteral src) { Assembler::movsd(dst, as_Address(src)); }
2211 
2212   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
2213   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
2214   void mulsd(XMMRegister dst, AddressLiteral src) { Assembler::mulsd(dst, as_Address(src)); }
2215 
2216   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
2217   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
2218   void mulss(XMMRegister dst, AddressLiteral src) { Assembler::mulss(dst, as_Address(src)); }
2219 
2220   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
2221   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
2222   void sqrtsd(XMMRegister dst, AddressLiteral src) { Assembler::sqrtsd(dst, as_Address(src)); }
2223 
2224   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
2225   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
2226   void sqrtss(XMMRegister dst, AddressLiteral src) { Assembler::sqrtss(dst, as_Address(src)); }
2227 
2228   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
2229   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
2230   void subsd(XMMRegister dst, AddressLiteral src) { Assembler::subsd(dst, as_Address(src)); }
2231 
2232   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
2233   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
2234   void subss(XMMRegister dst, AddressLiteral src) { Assembler::subss(dst, as_Address(src)); }
2235 
2236   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
2237   void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
2238   void ucomiss(XMMRegister dst, AddressLiteral src);
2239 
2240   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
2241   void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
2242   void ucomisd(XMMRegister dst, AddressLiteral src);
2243 
2244   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
2245   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
2246   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
2247   void xorpd(XMMRegister dst, AddressLiteral src);
2248 
2249   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
2250   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
2251   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
2252   void xorps(XMMRegister dst, AddressLiteral src);
2253 
2254   // Data
2255 
2256   void cmov32( Condition cc, Register dst, Address  src);
2257   void cmov32( Condition cc, Register dst, Register src);
2258 
2259   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
2260 
2261   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
2262   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
2263 
2264   void movoop(Register dst, jobject obj);
2265   void movoop(Address dst, jobject obj);
2266 
2267   void movptr(ArrayAddress dst, Register src);
2268   // can this do an lea?
2269   void movptr(Register dst, ArrayAddress src);
2270 
2271   void movptr(Register dst, Address src);
2272 
2273   void movptr(Register dst, AddressLiteral src);
2274 
2275   void movptr(Register dst, intptr_t src);
2276   void movptr(Register dst, Register src);
2277   void movptr(Address dst, intptr_t src);
2278 
2279   void movptr(Address dst, Register src);
2280 
2281 #ifdef _LP64
2282   // Generally the next two are only used for moving NULL
2283   // Although there are situations in initializing the mark word where
2284   // they could be used. They are dangerous.
2285 
2286   // They only exist on LP64 so that int32_t and intptr_t are not the same
2287   // and we have ambiguous declarations.
2288 
2289   void movptr(Address dst, int32_t imm32);
2290   void movptr(Register dst, int32_t imm32);
2291 #endif // _LP64
2292 
2293   // to avoid hiding movl
2294   void mov32(AddressLiteral dst, Register src);
2295   void mov32(Register dst, AddressLiteral src);
2296 
2297   // to avoid hiding movb
2298   void movbyte(ArrayAddress dst, int src);
2299 
2300   // Can push value or effective address
2301   void pushptr(AddressLiteral src);
2302 
2303   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
2304   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
2305 
2306   void pushoop(jobject obj);
2307 
2308   // sign extend as need a l to ptr sized element
2309   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
2310   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
2311 
2312   // IndexOf strings.
2313   // Small strings are loaded through stack if they cross page boundary.
2314   void string_indexof(Register str1, Register str2,
2315                       Register cnt1, Register cnt2,
2316                       int int_cnt2,  Register result,
2317                       XMMRegister vec, Register tmp);
2318 
2319   // IndexOf for constant substrings with size >= 8 elements
2320   // which don't need to be loaded through stack.
2321   void string_indexofC8(Register str1, Register str2,
2322                       Register cnt1, Register cnt2,
2323                       int int_cnt2,  Register result,
2324                       XMMRegister vec, Register tmp);
2325 
2326     // Smallest code: we don't need to load through stack,
2327     // check string tail.
2328 
2329   // Compare strings.
2330   void string_compare(Register str1, Register str2,
2331                       Register cnt1, Register cnt2, Register result,
2332                       XMMRegister vec1);
2333 
2334   // Compare char[] arrays.
2335   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
2336                           Register limit, Register result, Register chr,
2337                           XMMRegister vec1, XMMRegister vec2);
2338 
2339   // Fill primitive arrays
2340   void generate_fill(BasicType t, bool aligned,
2341                      Register to, Register value, Register count,
2342                      Register rtmp, XMMRegister xtmp);
2343 
2344 #undef VIRTUAL
2345 
2346 };
2347 
2348 /**
2349  * class SkipIfEqual:
2350  *
2351  * Instantiating this class will result in assembly code being output that will
2352  * jump around any code emitted between the creation of the instance and it's
2353  * automatic destruction at the end of a scope block, depending on the value of
2354  * the flag passed to the constructor, which will be checked at run-time.
2355  */
2356 class SkipIfEqual {
2357  private:
2358   MacroAssembler* _masm;
2359   Label _label;
2360 
2361  public:
2362    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
2363    ~SkipIfEqual();
2364 };
2365 
2366 #ifdef ASSERT
2367 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
2368 #endif
2369 
2370 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP