1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_x86_32.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "oops/arrayOop.hpp"
  30 #include "oops/markOop.hpp"
  31 #include "oops/methodDataOop.hpp"
  32 #include "oops/methodOop.hpp"
  33 #include "prims/jvmtiExport.hpp"
  34 #include "prims/jvmtiRedefineClassesTrace.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/basicLock.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #ifdef TARGET_OS_FAMILY_linux
  40 # include "thread_linux.inline.hpp"
  41 #endif
  42 #ifdef TARGET_OS_FAMILY_solaris
  43 # include "thread_solaris.inline.hpp"
  44 #endif
  45 #ifdef TARGET_OS_FAMILY_windows
  46 # include "thread_windows.inline.hpp"
  47 #endif
  48 
  49 
  50 // Implementation of InterpreterMacroAssembler
  51 #ifdef CC_INTERP
  52 void InterpreterMacroAssembler::get_method(Register reg) {
  53   movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
  54   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
  55 }
  56 #endif // CC_INTERP
  57 
  58 
  59 #ifndef CC_INTERP
  60 void InterpreterMacroAssembler::call_VM_leaf_base(
  61   address entry_point,
  62   int     number_of_arguments
  63 ) {
  64   // interpreter specific
  65   //
  66   // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
  67   //       since these are callee saved registers and no blocking/
  68   //       GC can happen in leaf calls.
  69   // Further Note: DO NOT save/restore bcp/locals. If a caller has
  70   // already saved them so that it can use rsi/rdi as temporaries
  71   // then a save/restore here will DESTROY the copy the caller
  72   // saved! There used to be a save_bcp() that only happened in
  73   // the ASSERT path (no restore_bcp). Which caused bizarre failures
  74   // when jvm built with ASSERTs.
  75 #ifdef ASSERT
  76   { Label L;
  77     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  78     jcc(Assembler::equal, L);
  79     stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
  80     bind(L);
  81   }
  82 #endif
  83   // super call
  84   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  85   // interpreter specific
  86 
  87   // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
  88   // but since they may not have been saved (and we don't want to
  89   // save them here (see note above) the assert is invalid.
  90 }
  91 
  92 
  93 void InterpreterMacroAssembler::call_VM_base(
  94   Register oop_result,
  95   Register java_thread,
  96   Register last_java_sp,
  97   address  entry_point,
  98   int      number_of_arguments,
  99   bool     check_exceptions
 100 ) {
 101 #ifdef ASSERT
 102   { Label L;
 103     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 104     jcc(Assembler::equal, L);
 105     stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
 106     bind(L);
 107   }
 108 #endif /* ASSERT */
 109   // interpreter specific
 110   //
 111   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
 112   //       really make a difference for these runtime calls, since they are
 113   //       slow anyway. Btw., bcp must be saved/restored since it may change
 114   //       due to GC.
 115   assert(java_thread == noreg , "not expecting a precomputed java thread");
 116   save_bcp();
 117   // super call
 118   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 119   // interpreter specific
 120   restore_bcp();
 121   restore_locals();
 122 }
 123 
 124 
 125 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 126   if (JvmtiExport::can_pop_frame()) {
 127     Label L;
 128     // Initiate popframe handling only if it is not already being processed.  If the flag
 129     // has the popframe_processing bit set, it means that this code is called *during* popframe
 130     // handling - we don't want to reenter.
 131     Register pop_cond = java_thread;  // Not clear if any other register is available...
 132     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
 133     testl(pop_cond, JavaThread::popframe_pending_bit);
 134     jcc(Assembler::zero, L);
 135     testl(pop_cond, JavaThread::popframe_processing_bit);
 136     jcc(Assembler::notZero, L);
 137     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 138     // address of the same-named entrypoint in the generated interpreter code.
 139     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 140     jmp(rax);
 141     bind(L);
 142     get_thread(java_thread);
 143   }
 144 }
 145 
 146 
 147 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 148   get_thread(rcx);
 149   movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
 150   const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
 151   const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
 152   const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
 153   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
 154                              + in_ByteSize(wordSize));
 155   switch (state) {
 156     case atos: movptr(rax, oop_addr);
 157                movptr(oop_addr, NULL_WORD);
 158                verify_oop(rax, state);                break;
 159     case ltos:
 160                movl(rdx, val_addr1);               // fall through
 161     case btos:                                     // fall through
 162     case ctos:                                     // fall through
 163     case stos:                                     // fall through
 164     case itos: movl(rax, val_addr);                   break;
 165     case ftos: fld_s(val_addr);                       break;
 166     case dtos: fld_d(val_addr);                       break;
 167     case vtos: /* nothing to do */                    break;
 168     default  : ShouldNotReachHere();
 169   }
 170   // Clean up tos value in the thread object
 171   movl(tos_addr,  (int32_t) ilgl);
 172   movptr(val_addr,  NULL_WORD);
 173   NOT_LP64(movptr(val_addr1, NULL_WORD));
 174 }
 175 
 176 
 177 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 178   if (JvmtiExport::can_force_early_return()) {
 179     Label L;
 180     Register tmp = java_thread;
 181     movptr(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
 182     testptr(tmp, tmp);
 183     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
 184 
 185     // Initiate earlyret handling only if it is not already being processed.
 186     // If the flag has the earlyret_processing bit set, it means that this code
 187     // is called *during* earlyret handling - we don't want to reenter.
 188     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
 189     cmpl(tmp, JvmtiThreadState::earlyret_pending);
 190     jcc(Assembler::notEqual, L);
 191 
 192     // Call Interpreter::remove_activation_early_entry() to get the address of the
 193     // same-named entrypoint in the generated interpreter code.
 194     get_thread(java_thread);
 195     movptr(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
 196     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 197     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
 198     jmp(rax);
 199     bind(L);
 200     get_thread(java_thread);
 201   }
 202 }
 203 
 204 
 205 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
 206   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 207   movl(reg, Address(rsi, bcp_offset));
 208   bswapl(reg);
 209   shrl(reg, 16);
 210 }
 211 
 212 
 213 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register reg, int bcp_offset, size_t index_size) {
 214   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 215   if (index_size == sizeof(u2)) {
 216     load_unsigned_short(reg, Address(rsi, bcp_offset));
 217   } else if (index_size == sizeof(u4)) {
 218     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 219     movl(reg, Address(rsi, bcp_offset));
 220     // Check if the secondary index definition is still ~x, otherwise
 221     // we have to change the following assembler code to calculate the
 222     // plain index.
 223     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
 224     notl(reg);  // convert to plain index
 225   } else if (index_size == sizeof(u1)) {
 226     assert(EnableInvokeDynamic, "tiny index used only for JSR 292");
 227     load_unsigned_byte(reg, Address(rsi, bcp_offset));
 228   } else {
 229     ShouldNotReachHere();
 230   }
 231 }
 232 
 233 
 234 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index,
 235                                                            int bcp_offset, size_t index_size) {
 236   assert(cache != index, "must use different registers");
 237   get_cache_index_at_bcp(index, bcp_offset, index_size);
 238   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 239   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
 240   shlptr(index, 2); // convert from field index to ConstantPoolCacheEntry index
 241 }
 242 
 243 
 244 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
 245                                                                int bcp_offset, size_t index_size) {
 246   assert(cache != tmp, "must use different register");
 247   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 248   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
 249                                // convert from field index to ConstantPoolCacheEntry index
 250                                // and from word offset to byte offset
 251   shll(tmp, 2 + LogBytesPerWord);
 252   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 253                                // skip past the header
 254   addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
 255   addptr(cache, tmp);            // construct pointer to cache entry
 256 }
 257 
 258 
 259   // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 260   // a subtype of super_klass.  EAX holds the super_klass.  Blows ECX.
 261   // Resets EDI to locals.  Register sub_klass cannot be any of the above.
 262 void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
 263   assert( Rsub_klass != rax, "rax, holds superklass" );
 264   assert( Rsub_klass != rcx, "used as a temp" );
 265   assert( Rsub_klass != rdi, "used as a temp, restored from locals" );
 266 
 267   // Profile the not-null value's klass.
 268   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 269 
 270   // Do the check.
 271   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 272 
 273   // Profile the failure of the check.
 274   profile_typecheck_failed(rcx); // blows rcx
 275 }
 276 
 277 void InterpreterMacroAssembler::f2ieee() {
 278   if (IEEEPrecision) {
 279     fstp_s(Address(rsp, 0));
 280     fld_s(Address(rsp, 0));
 281   }
 282 }
 283 
 284 
 285 void InterpreterMacroAssembler::d2ieee() {
 286   if (IEEEPrecision) {
 287     fstp_d(Address(rsp, 0));
 288     fld_d(Address(rsp, 0));
 289   }
 290 }
 291 
 292 // Java Expression Stack
 293 
 294 void InterpreterMacroAssembler::pop_ptr(Register r) {
 295   pop(r);
 296 }
 297 
 298 void InterpreterMacroAssembler::pop_i(Register r) {
 299   pop(r);
 300 }
 301 
 302 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
 303   pop(lo);
 304   pop(hi);
 305 }
 306 
 307 void InterpreterMacroAssembler::pop_f() {
 308   fld_s(Address(rsp, 0));
 309   addptr(rsp, 1 * wordSize);
 310 }
 311 
 312 void InterpreterMacroAssembler::pop_d() {
 313   fld_d(Address(rsp, 0));
 314   addptr(rsp, 2 * wordSize);
 315 }
 316 
 317 
 318 void InterpreterMacroAssembler::pop(TosState state) {
 319   switch (state) {
 320     case atos: pop_ptr(rax);                                 break;
 321     case btos:                                               // fall through
 322     case ctos:                                               // fall through
 323     case stos:                                               // fall through
 324     case itos: pop_i(rax);                                   break;
 325     case ltos: pop_l(rax, rdx);                              break;
 326     case ftos: pop_f();                                      break;
 327     case dtos: pop_d();                                      break;
 328     case vtos: /* nothing to do */                           break;
 329     default  : ShouldNotReachHere();
 330   }
 331   verify_oop(rax, state);
 332 }
 333 
 334 void InterpreterMacroAssembler::push_ptr(Register r) {
 335   push(r);
 336 }
 337 
 338 void InterpreterMacroAssembler::push_i(Register r) {
 339   push(r);
 340 }
 341 
 342 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
 343   push(hi);
 344   push(lo);
 345 }
 346 
 347 void InterpreterMacroAssembler::push_f() {
 348   // Do not schedule for no AGI! Never write beyond rsp!
 349   subptr(rsp, 1 * wordSize);
 350   fstp_s(Address(rsp, 0));
 351 }
 352 
 353 void InterpreterMacroAssembler::push_d(Register r) {
 354   // Do not schedule for no AGI! Never write beyond rsp!
 355   subptr(rsp, 2 * wordSize);
 356   fstp_d(Address(rsp, 0));
 357 }
 358 
 359 
 360 void InterpreterMacroAssembler::push(TosState state) {
 361   verify_oop(rax, state);
 362   switch (state) {
 363     case atos: push_ptr(rax); break;
 364     case btos:                                               // fall through
 365     case ctos:                                               // fall through
 366     case stos:                                               // fall through
 367     case itos: push_i(rax);                                    break;
 368     case ltos: push_l(rax, rdx);                               break;
 369     case ftos: push_f();                                       break;
 370     case dtos: push_d(rax);                                    break;
 371     case vtos: /* nothing to do */                             break;
 372     default  : ShouldNotReachHere();
 373   }
 374 }
 375 
 376 
 377 // Helpers for swap and dup
 378 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 379   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 380 }
 381 
 382 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 383   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 384 }
 385 
 386 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 387   // set sender sp
 388   lea(rsi, Address(rsp, wordSize));
 389   // record last_sp
 390   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
 391 }
 392 
 393 
 394 // Jump to from_interpreted entry of a call unless single stepping is possible
 395 // in this thread in which case we must call the i2i entry
 396 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 397   prepare_to_jump_from_interpreted();
 398 
 399   if (JvmtiExport::can_post_interpreter_events()) {
 400     Label run_compiled_code;
 401     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 402     // compiled code in threads for which the event is enabled.  Check here for
 403     // interp_only_mode if these events CAN be enabled.
 404     get_thread(temp);
 405     // interp_only is an int, on little endian it is sufficient to test the byte only
 406     // Is a cmpl faster (ce
 407     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
 408     jcc(Assembler::zero, run_compiled_code);
 409     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
 410     bind(run_compiled_code);
 411   }
 412 
 413   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
 414 
 415 }
 416 
 417 
 418 // The following two routines provide a hook so that an implementation
 419 // can schedule the dispatch in two parts.  Intel does not do this.
 420 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 421   // Nothing Intel-specific to be done here.
 422 }
 423 
 424 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 425   dispatch_next(state, step);
 426 }
 427 
 428 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
 429                                               bool verifyoop) {
 430   verify_FPU(1, state);
 431   if (VerifyActivationFrameSize) {
 432     Label L;
 433     mov(rcx, rbp);
 434     subptr(rcx, rsp);
 435     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
 436     cmpptr(rcx, min_frame_size);
 437     jcc(Assembler::greaterEqual, L);
 438     stop("broken stack frame");
 439     bind(L);
 440   }
 441   if (verifyoop) verify_oop(rax, state);
 442   Address index(noreg, rbx, Address::times_ptr);
 443   ExternalAddress tbl((address)table);
 444   ArrayAddress dispatch(tbl, index);
 445   jump(dispatch);
 446 }
 447 
 448 
 449 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 450   dispatch_base(state, Interpreter::dispatch_table(state));
 451 }
 452 
 453 
 454 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 455   dispatch_base(state, Interpreter::normal_table(state));
 456 }
 457 
 458 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 459   dispatch_base(state, Interpreter::normal_table(state), false);
 460 }
 461 
 462 
 463 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 464   // load next bytecode (load before advancing rsi to prevent AGI)
 465   load_unsigned_byte(rbx, Address(rsi, step));
 466   // advance rsi
 467   increment(rsi, step);
 468   dispatch_base(state, Interpreter::dispatch_table(state));
 469 }
 470 
 471 
 472 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 473   // load current bytecode
 474   load_unsigned_byte(rbx, Address(rsi, 0));
 475   dispatch_base(state, table);
 476 }
 477 
 478 // remove activation
 479 //
 480 // Unlock the receiver if this is a synchronized method.
 481 // Unlock any Java monitors from syncronized blocks.
 482 // Remove the activation from the stack.
 483 //
 484 // If there are locked Java monitors
 485 //    If throw_monitor_exception
 486 //       throws IllegalMonitorStateException
 487 //    Else if install_monitor_exception
 488 //       installs IllegalMonitorStateException
 489 //    Else
 490 //       no error processing
 491 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
 492                                                   bool throw_monitor_exception,
 493                                                   bool install_monitor_exception,
 494                                                   bool notify_jvmdi) {
 495   // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
 496   // check if synchronized method
 497   Label unlocked, unlock, no_unlock;
 498 
 499   get_thread(rcx);
 500   const Address do_not_unlock_if_synchronized(rcx,
 501     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 502 
 503   movbool(rbx, do_not_unlock_if_synchronized);
 504   mov(rdi,rbx);
 505   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 506 
 507   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
 508   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
 509 
 510   testl(rcx, JVM_ACC_SYNCHRONIZED);
 511   jcc(Assembler::zero, unlocked);
 512 
 513   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 514   // is set.
 515   mov(rcx,rdi);
 516   testbool(rcx);
 517   jcc(Assembler::notZero, no_unlock);
 518 
 519   // unlock monitor
 520   push(state);                                   // save result
 521 
 522   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
 523   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
 524   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
 525   lea   (rdx, monitor);                          // address of first monitor
 526 
 527   movptr (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
 528   testptr(rax, rax);
 529   jcc    (Assembler::notZero, unlock);
 530 
 531   pop(state);
 532   if (throw_monitor_exception) {
 533     empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
 534 
 535     // Entry already unlocked, need to throw exception
 536     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 537     should_not_reach_here();
 538   } else {
 539     // Monitor already unlocked during a stack unroll.
 540     // If requested, install an illegal_monitor_state_exception.
 541     // Continue with stack unrolling.
 542     if (install_monitor_exception) {
 543       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
 544       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 545     }
 546     jmp(unlocked);
 547   }
 548 
 549   bind(unlock);
 550   unlock_object(rdx);
 551   pop(state);
 552 
 553   // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
 554   bind(unlocked);
 555 
 556   // rax, rdx: Might contain return value
 557 
 558   // Check that all monitors are unlocked
 559   {
 560     Label loop, exception, entry, restart;
 561     const int entry_size               = frame::interpreter_frame_monitor_size()           * wordSize;
 562     const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 563     const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
 564 
 565     bind(restart);
 566     movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
 567     lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
 568     jmp(entry);
 569 
 570     // Entry already locked, need to throw exception
 571     bind(exception);
 572 
 573     if (throw_monitor_exception) {
 574       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
 575 
 576       // Throw exception
 577       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 578       should_not_reach_here();
 579     } else {
 580       // Stack unrolling. Unlock object and install illegal_monitor_exception
 581       // Unlock does not block, so don't have to worry about the frame
 582 
 583       push(state);
 584       mov(rdx, rcx);
 585       unlock_object(rdx);
 586       pop(state);
 587 
 588       if (install_monitor_exception) {
 589         empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
 590         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 591       }
 592 
 593       jmp(restart);
 594     }
 595 
 596     bind(loop);
 597     cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
 598     jcc(Assembler::notEqual, exception);
 599 
 600     addptr(rcx, entry_size);                     // otherwise advance to next entry
 601     bind(entry);
 602     cmpptr(rcx, rbx);                            // check if bottom reached
 603     jcc(Assembler::notEqual, loop);              // if not at bottom then check this entry
 604   }
 605 
 606   bind(no_unlock);
 607 
 608   // jvmti support
 609   if (notify_jvmdi) {
 610     notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
 611   } else {
 612     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 613   }
 614 
 615   // remove activation
 616   movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
 617   leave();                                     // remove frame anchor
 618   pop(ret_addr);                               // get return address
 619   mov(rsp, rbx);                               // set sp to sender sp
 620   if (UseSSE) {
 621     // float and double are returned in xmm register in SSE-mode
 622     if (state == ftos && UseSSE >= 1) {
 623       subptr(rsp, wordSize);
 624       fstp_s(Address(rsp, 0));
 625       movflt(xmm0, Address(rsp, 0));
 626       addptr(rsp, wordSize);
 627     } else if (state == dtos && UseSSE >= 2) {
 628       subptr(rsp, 2*wordSize);
 629       fstp_d(Address(rsp, 0));
 630       movdbl(xmm0, Address(rsp, 0));
 631       addptr(rsp, 2*wordSize);
 632     }
 633   }
 634 }
 635 
 636 #endif /* !CC_INTERP */
 637 
 638 
 639 // Lock object
 640 //
 641 // Argument: rdx : Points to BasicObjectLock to be used for locking. Must
 642 // be initialized with object to lock
 643 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
 644   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
 645 
 646   if (UseHeavyMonitors) {
 647     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
 648   } else {
 649 
 650     Label done;
 651 
 652     const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
 653     const Register obj_reg  = rcx;  // Will contain the oop
 654 
 655     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 656     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 657     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
 658 
 659     Label slow_case;
 660 
 661     // Load object pointer into obj_reg %rcx
 662     movptr(obj_reg, Address(lock_reg, obj_offset));
 663 
 664     if (UseBiasedLocking) {
 665       // Note: we use noreg for the temporary register since it's hard
 666       // to come up with a free register on all incoming code paths
 667       biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
 668     }
 669 
 670     // Load immediate 1 into swap_reg %rax,
 671     movptr(swap_reg, (int32_t)1);
 672 
 673     // Load (object->mark() | 1) into swap_reg %rax,
 674     orptr(swap_reg, Address(obj_reg, 0));
 675 
 676     // Save (object->mark() | 1) into BasicLock's displaced header
 677     movptr(Address(lock_reg, mark_offset), swap_reg);
 678 
 679     assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
 680     if (os::is_MP()) {
 681       lock();
 682     }
 683     cmpxchgptr(lock_reg, Address(obj_reg, 0));
 684     if (PrintBiasedLockingStatistics) {
 685       cond_inc32(Assembler::zero,
 686                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
 687     }
 688     jcc(Assembler::zero, done);
 689 
 690     // Test if the oopMark is an obvious stack pointer, i.e.,
 691     //  1) (mark & 3) == 0, and
 692     //  2) rsp <= mark < mark + os::pagesize()
 693     //
 694     // These 3 tests can be done by evaluating the following
 695     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
 696     // assuming both stack pointer and pagesize have their
 697     // least significant 2 bits clear.
 698     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
 699     subptr(swap_reg, rsp);
 700     andptr(swap_reg, 3 - os::vm_page_size());
 701 
 702     // Save the test result, for recursive case, the result is zero
 703     movptr(Address(lock_reg, mark_offset), swap_reg);
 704 
 705     if (PrintBiasedLockingStatistics) {
 706       cond_inc32(Assembler::zero,
 707                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
 708     }
 709     jcc(Assembler::zero, done);
 710 
 711     bind(slow_case);
 712 
 713     // Call the runtime routine for slow case
 714     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
 715 
 716     bind(done);
 717   }
 718 }
 719 
 720 
 721 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
 722 //
 723 // Argument: rdx : Points to BasicObjectLock structure for lock
 724 // Throw an IllegalMonitorException if object is not locked by current thread
 725 //
 726 // Uses: rax, rbx, rcx, rdx
 727 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
 728   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
 729 
 730   if (UseHeavyMonitors) {
 731     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 732   } else {
 733     Label done;
 734 
 735     const Register swap_reg   = rax;  // Must use rax, for cmpxchg instruction
 736     const Register header_reg = rbx;  // Will contain the old oopMark
 737     const Register obj_reg    = rcx;  // Will contain the oop
 738 
 739     save_bcp(); // Save in case of exception
 740 
 741     // Convert from BasicObjectLock structure to object and BasicLock structure
 742     // Store the BasicLock address into %rax,
 743     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 744 
 745     // Load oop into obj_reg(%rcx)
 746     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
 747 
 748     // Free entry
 749     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
 750 
 751     if (UseBiasedLocking) {
 752       biased_locking_exit(obj_reg, header_reg, done);
 753     }
 754 
 755     // Load the old header from BasicLock structure
 756     movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
 757 
 758     // Test for recursion
 759     testptr(header_reg, header_reg);
 760 
 761     // zero for recursive case
 762     jcc(Assembler::zero, done);
 763 
 764     // Atomic swap back the old header
 765     if (os::is_MP()) lock();
 766     cmpxchgptr(header_reg, Address(obj_reg, 0));
 767 
 768     // zero for recursive case
 769     jcc(Assembler::zero, done);
 770 
 771     // Call the runtime routine for slow case.
 772     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
 773     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 774 
 775     bind(done);
 776 
 777     restore_bcp();
 778   }
 779 }
 780 
 781 
 782 #ifndef CC_INTERP
 783 
 784 // Test ImethodDataPtr.  If it is null, continue at the specified label
 785 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
 786   assert(ProfileInterpreter, "must be profiling interpreter");
 787   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
 788   testptr(mdp, mdp);
 789   jcc(Assembler::zero, zero_continue);
 790 }
 791 
 792 
 793 // Set the method data pointer for the current bcp.
 794 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 795   assert(ProfileInterpreter, "must be profiling interpreter");
 796   Label set_mdp;
 797   push(rax);
 798   push(rbx);
 799 
 800   get_method(rbx);
 801   // Test MDO to avoid the call if it is NULL.
 802   movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
 803   testptr(rax, rax);
 804   jcc(Assembler::zero, set_mdp);
 805   // rbx,: method
 806   // rsi: bcp
 807   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
 808   // rax,: mdi
 809   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 810   movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
 811   addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
 812   addptr(rax, rbx);
 813   bind(set_mdp);
 814   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
 815   pop(rbx);
 816   pop(rax);
 817 }
 818 
 819 void InterpreterMacroAssembler::verify_method_data_pointer() {
 820   assert(ProfileInterpreter, "must be profiling interpreter");
 821 #ifdef ASSERT
 822   Label verify_continue;
 823   push(rax);
 824   push(rbx);
 825   push(rcx);
 826   push(rdx);
 827   test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
 828   get_method(rbx);
 829 
 830   // If the mdp is valid, it will point to a DataLayout header which is
 831   // consistent with the bcp.  The converse is highly probable also.
 832   load_unsigned_short(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
 833   addptr(rdx, Address(rbx, methodOopDesc::const_offset()));
 834   lea(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
 835   cmpptr(rdx, rsi);
 836   jcc(Assembler::equal, verify_continue);
 837   // rbx,: method
 838   // rsi: bcp
 839   // rcx: mdp
 840   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
 841   bind(verify_continue);
 842   pop(rdx);
 843   pop(rcx);
 844   pop(rbx);
 845   pop(rax);
 846 #endif // ASSERT
 847 }
 848 
 849 
 850 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
 851   // %%% this seems to be used to store counter data which is surely 32bits
 852   // however 64bit side stores 64 bits which seems wrong
 853   assert(ProfileInterpreter, "must be profiling interpreter");
 854   Address data(mdp_in, constant);
 855   movptr(data, value);
 856 }
 857 
 858 
 859 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 860                                                       int constant,
 861                                                       bool decrement) {
 862   // Counter address
 863   Address data(mdp_in, constant);
 864 
 865   increment_mdp_data_at(data, decrement);
 866 }
 867 
 868 
 869 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
 870                                                       bool decrement) {
 871 
 872   assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
 873   assert(ProfileInterpreter, "must be profiling interpreter");
 874 
 875   // %%% 64bit treats this as 64 bit which seems unlikely
 876   if (decrement) {
 877     // Decrement the register.  Set condition codes.
 878     addl(data, -DataLayout::counter_increment);
 879     // If the decrement causes the counter to overflow, stay negative
 880     Label L;
 881     jcc(Assembler::negative, L);
 882     addl(data, DataLayout::counter_increment);
 883     bind(L);
 884   } else {
 885     assert(DataLayout::counter_increment == 1,
 886            "flow-free idiom only works with 1");
 887     // Increment the register.  Set carry flag.
 888     addl(data, DataLayout::counter_increment);
 889     // If the increment causes the counter to overflow, pull back by 1.
 890     sbbl(data, 0);
 891   }
 892 }
 893 
 894 
 895 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 896                                                       Register reg,
 897                                                       int constant,
 898                                                       bool decrement) {
 899   Address data(mdp_in, reg, Address::times_1, constant);
 900 
 901   increment_mdp_data_at(data, decrement);
 902 }
 903 
 904 
 905 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
 906   assert(ProfileInterpreter, "must be profiling interpreter");
 907   int header_offset = in_bytes(DataLayout::header_offset());
 908   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
 909   // Set the flag
 910   orl(Address(mdp_in, header_offset), header_bits);
 911 }
 912 
 913 
 914 
 915 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 916                                                  int offset,
 917                                                  Register value,
 918                                                  Register test_value_out,
 919                                                  Label& not_equal_continue) {
 920   assert(ProfileInterpreter, "must be profiling interpreter");
 921   if (test_value_out == noreg) {
 922     cmpptr(value, Address(mdp_in, offset));
 923   } else {
 924     // Put the test value into a register, so caller can use it:
 925     movptr(test_value_out, Address(mdp_in, offset));
 926     cmpptr(test_value_out, value);
 927   }
 928   jcc(Assembler::notEqual, not_equal_continue);
 929 }
 930 
 931 
 932 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
 933   assert(ProfileInterpreter, "must be profiling interpreter");
 934   Address disp_address(mdp_in, offset_of_disp);
 935   addptr(mdp_in,disp_address);
 936   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
 937 }
 938 
 939 
 940 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
 941   assert(ProfileInterpreter, "must be profiling interpreter");
 942   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
 943   addptr(mdp_in, disp_address);
 944   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
 945 }
 946 
 947 
 948 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
 949   assert(ProfileInterpreter, "must be profiling interpreter");
 950   addptr(mdp_in, constant);
 951   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
 952 }
 953 
 954 
 955 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
 956   assert(ProfileInterpreter, "must be profiling interpreter");
 957   push(return_bci);             // save/restore across call_VM
 958   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
 959   pop(return_bci);
 960 }
 961 
 962 
 963 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
 964   if (ProfileInterpreter) {
 965     Label profile_continue;
 966 
 967     // If no method data exists, go to profile_continue.
 968     // Otherwise, assign to mdp
 969     test_method_data_pointer(mdp, profile_continue);
 970 
 971     // We are taking a branch.  Increment the taken count.
 972     // We inline increment_mdp_data_at to return bumped_count in a register
 973     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
 974     Address data(mdp, in_bytes(JumpData::taken_offset()));
 975 
 976     // %%% 64bit treats these cells as 64 bit but they seem to be 32 bit
 977     movl(bumped_count,data);
 978     assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
 979     addl(bumped_count, DataLayout::counter_increment);
 980     sbbl(bumped_count, 0);
 981     movl(data,bumped_count);    // Store back out
 982 
 983     // The method data pointer needs to be updated to reflect the new target.
 984     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
 985     bind (profile_continue);
 986   }
 987 }
 988 
 989 
 990 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
 991   if (ProfileInterpreter) {
 992     Label profile_continue;
 993 
 994     // If no method data exists, go to profile_continue.
 995     test_method_data_pointer(mdp, profile_continue);
 996 
 997     // We are taking a branch.  Increment the not taken count.
 998     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
 999 
1000     // The method data pointer needs to be updated to correspond to the next bytecode
1001     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1002     bind (profile_continue);
1003   }
1004 }
1005 
1006 
1007 void InterpreterMacroAssembler::profile_call(Register mdp) {
1008   if (ProfileInterpreter) {
1009     Label profile_continue;
1010 
1011     // If no method data exists, go to profile_continue.
1012     test_method_data_pointer(mdp, profile_continue);
1013 
1014     // We are making a call.  Increment the count.
1015     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1016 
1017     // The method data pointer needs to be updated to reflect the new target.
1018     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1019     bind (profile_continue);
1020   }
1021 }
1022 
1023 
1024 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1025   if (ProfileInterpreter) {
1026     Label profile_continue;
1027 
1028     // If no method data exists, go to profile_continue.
1029     test_method_data_pointer(mdp, profile_continue);
1030 
1031     // We are making a call.  Increment the count.
1032     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1033 
1034     // The method data pointer needs to be updated to reflect the new target.
1035     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1036     bind (profile_continue);
1037   }
1038 }
1039 
1040 
1041 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp,
1042                                                      Register reg2,
1043                                                      bool receiver_can_be_null) {
1044   if (ProfileInterpreter) {
1045     Label profile_continue;
1046 
1047     // If no method data exists, go to profile_continue.
1048     test_method_data_pointer(mdp, profile_continue);
1049 
1050     Label skip_receiver_profile;
1051     if (receiver_can_be_null) {
1052       Label not_null;
1053       testptr(receiver, receiver);
1054       jccb(Assembler::notZero, not_null);
1055       // We are making a call.  Increment the count for null receiver.
1056       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1057       jmp(skip_receiver_profile);
1058       bind(not_null);
1059     }
1060 
1061     // Record the receiver type.
1062     record_klass_in_profile(receiver, mdp, reg2, true);
1063     bind(skip_receiver_profile);
1064 
1065     // The method data pointer needs to be updated to reflect the new target.
1066     update_mdp_by_constant(mdp,
1067                            in_bytes(VirtualCallData::
1068                                     virtual_call_data_size()));
1069     bind(profile_continue);
1070   }
1071 }
1072 
1073 
1074 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1075                                         Register receiver, Register mdp,
1076                                         Register reg2, int start_row,
1077                                         Label& done, bool is_virtual_call) {
1078   if (TypeProfileWidth == 0) {
1079     if (is_virtual_call) {
1080       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1081     }
1082     return;
1083   }
1084 
1085   int last_row = VirtualCallData::row_limit() - 1;
1086   assert(start_row <= last_row, "must be work left to do");
1087   // Test this row for both the receiver and for null.
1088   // Take any of three different outcomes:
1089   //   1. found receiver => increment count and goto done
1090   //   2. found null => keep looking for case 1, maybe allocate this cell
1091   //   3. found something else => keep looking for cases 1 and 2
1092   // Case 3 is handled by a recursive call.
1093   for (int row = start_row; row <= last_row; row++) {
1094     Label next_test;
1095     bool test_for_null_also = (row == start_row);
1096 
1097     // See if the receiver is receiver[n].
1098     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1099     test_mdp_data_at(mdp, recvr_offset, receiver,
1100                      (test_for_null_also ? reg2 : noreg),
1101                      next_test);
1102     // (Reg2 now contains the receiver from the CallData.)
1103 
1104     // The receiver is receiver[n].  Increment count[n].
1105     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1106     increment_mdp_data_at(mdp, count_offset);
1107     jmp(done);
1108     bind(next_test);
1109 
1110     if (row == start_row) {
1111       Label found_null;
1112       // Failed the equality check on receiver[n]...  Test for null.
1113       testptr(reg2, reg2);
1114       if (start_row == last_row) {
1115         // The only thing left to do is handle the null case.
1116         if (is_virtual_call) {
1117           jccb(Assembler::zero, found_null);
1118           // Receiver did not match any saved receiver and there is no empty row for it.
1119           // Increment total counter to indicate polymorphic case.
1120           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1121           jmp(done);
1122           bind(found_null);
1123         } else {
1124           jcc(Assembler::notZero, done);
1125         }
1126         break;
1127       }
1128       // Since null is rare, make it be the branch-taken case.
1129       jcc(Assembler::zero, found_null);
1130 
1131       // Put all the "Case 3" tests here.
1132       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
1133 
1134       // Found a null.  Keep searching for a matching receiver,
1135       // but remember that this is an empty (unused) slot.
1136       bind(found_null);
1137     }
1138   }
1139 
1140   // In the fall-through case, we found no matching receiver, but we
1141   // observed the receiver[start_row] is NULL.
1142 
1143   // Fill in the receiver field and increment the count.
1144   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1145   set_mdp_data_at(mdp, recvr_offset, receiver);
1146   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1147   movptr(reg2, (int32_t)DataLayout::counter_increment);
1148   set_mdp_data_at(mdp, count_offset, reg2);
1149   if (start_row > 0) {
1150     jmp(done);
1151   }
1152 }
1153 
1154 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1155                                                         Register mdp, Register reg2,
1156                                                         bool is_virtual_call) {
1157   assert(ProfileInterpreter, "must be profiling");
1158   Label done;
1159 
1160   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1161 
1162   bind (done);
1163 }
1164 
1165 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
1166   if (ProfileInterpreter) {
1167     Label profile_continue;
1168     uint row;
1169 
1170     // If no method data exists, go to profile_continue.
1171     test_method_data_pointer(mdp, profile_continue);
1172 
1173     // Update the total ret count.
1174     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1175 
1176     for (row = 0; row < RetData::row_limit(); row++) {
1177       Label next_test;
1178 
1179       // See if return_bci is equal to bci[n]:
1180       test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
1181                        noreg, next_test);
1182 
1183       // return_bci is equal to bci[n].  Increment the count.
1184       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1185 
1186       // The method data pointer needs to be updated to reflect the new target.
1187       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
1188       jmp(profile_continue);
1189       bind(next_test);
1190     }
1191 
1192     update_mdp_for_ret(return_bci);
1193 
1194     bind (profile_continue);
1195   }
1196 }
1197 
1198 
1199 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1200   if (ProfileInterpreter) {
1201     Label profile_continue;
1202 
1203     // If no method data exists, go to profile_continue.
1204     test_method_data_pointer(mdp, profile_continue);
1205 
1206     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1207 
1208     // The method data pointer needs to be updated.
1209     int mdp_delta = in_bytes(BitData::bit_data_size());
1210     if (TypeProfileCasts) {
1211       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1212     }
1213     update_mdp_by_constant(mdp, mdp_delta);
1214 
1215     bind (profile_continue);
1216   }
1217 }
1218 
1219 
1220 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1221   if (ProfileInterpreter && TypeProfileCasts) {
1222     Label profile_continue;
1223 
1224     // If no method data exists, go to profile_continue.
1225     test_method_data_pointer(mdp, profile_continue);
1226 
1227     int count_offset = in_bytes(CounterData::count_offset());
1228     // Back up the address, since we have already bumped the mdp.
1229     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1230 
1231     // *Decrement* the counter.  We expect to see zero or small negatives.
1232     increment_mdp_data_at(mdp, count_offset, true);
1233 
1234     bind (profile_continue);
1235   }
1236 }
1237 
1238 
1239 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
1240 {
1241   if (ProfileInterpreter) {
1242     Label profile_continue;
1243 
1244     // If no method data exists, go to profile_continue.
1245     test_method_data_pointer(mdp, profile_continue);
1246 
1247     // The method data pointer needs to be updated.
1248     int mdp_delta = in_bytes(BitData::bit_data_size());
1249     if (TypeProfileCasts) {
1250       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1251 
1252       // Record the object type.
1253       record_klass_in_profile(klass, mdp, reg2, false);
1254       assert(reg2 == rdi, "we know how to fix this blown reg");
1255       restore_locals();         // Restore EDI
1256     }
1257     update_mdp_by_constant(mdp, mdp_delta);
1258 
1259     bind(profile_continue);
1260   }
1261 }
1262 
1263 
1264 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1265   if (ProfileInterpreter) {
1266     Label profile_continue;
1267 
1268     // If no method data exists, go to profile_continue.
1269     test_method_data_pointer(mdp, profile_continue);
1270 
1271     // Update the default case count
1272     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
1273 
1274     // The method data pointer needs to be updated.
1275     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
1276 
1277     bind (profile_continue);
1278   }
1279 }
1280 
1281 
1282 void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
1283   if (ProfileInterpreter) {
1284     Label profile_continue;
1285 
1286     // If no method data exists, go to profile_continue.
1287     test_method_data_pointer(mdp, profile_continue);
1288 
1289     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1290     movptr(reg2, (int32_t)in_bytes(MultiBranchData::per_case_size()));
1291     // index is positive and so should have correct value if this code were
1292     // used on 64bits
1293     imulptr(index, reg2);
1294     addptr(index, in_bytes(MultiBranchData::case_array_offset()));
1295 
1296     // Update the case count
1297     increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
1298 
1299     // The method data pointer needs to be updated.
1300     update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
1301 
1302     bind (profile_continue);
1303   }
1304 }
1305 
1306 #endif // !CC_INTERP
1307 
1308 
1309 
1310 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1311   if (state == atos) MacroAssembler::verify_oop(reg);
1312 }
1313 
1314 
1315 #ifndef CC_INTERP
1316 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1317   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
1318 }
1319 
1320 #endif /* CC_INTERP */
1321 
1322 
1323 void InterpreterMacroAssembler::notify_method_entry() {
1324   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1325   // track stack depth.  If it is possible to enter interp_only_mode we add
1326   // the code to check if the event should be sent.
1327   if (JvmtiExport::can_post_interpreter_events()) {
1328     Label L;
1329     get_thread(rcx);
1330     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
1331     testl(rcx,rcx);
1332     jcc(Assembler::zero, L);
1333     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
1334     bind(L);
1335   }
1336 
1337   {
1338     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
1339     get_thread(rcx);
1340     get_method(rbx);
1341     call_VM_leaf(
1342       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
1343   }
1344 
1345   // RedefineClasses() tracing support for obsolete method entry
1346   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1347     get_thread(rcx);
1348     get_method(rbx);
1349     call_VM_leaf(
1350       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1351       rcx, rbx);
1352   }
1353 }
1354 
1355 
1356 void InterpreterMacroAssembler::notify_method_exit(
1357     TosState state, NotifyMethodExitMode mode) {
1358   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1359   // track stack depth.  If it is possible to enter interp_only_mode we add
1360   // the code to check if the event should be sent.
1361   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1362     Label L;
1363     // Note: frame::interpreter_frame_result has a dependency on how the
1364     // method result is saved across the call to post_method_exit. If this
1365     // is changed then the interpreter_frame_result implementation will
1366     // need to be updated too.
1367 
1368     // For c++ interpreter the result is always stored at a known location in the frame
1369     // template interpreter will leave it on the top of the stack.
1370     NOT_CC_INTERP(push(state);)
1371     get_thread(rcx);
1372     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
1373     testl(rcx,rcx);
1374     jcc(Assembler::zero, L);
1375     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1376     bind(L);
1377     NOT_CC_INTERP(pop(state);)
1378   }
1379 
1380   {
1381     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
1382     NOT_CC_INTERP(push(state));
1383     get_thread(rbx);
1384     get_method(rcx);
1385     call_VM_leaf(
1386       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1387       rbx, rcx);
1388     NOT_CC_INTERP(pop(state));
1389   }
1390 }
1391 
1392 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1393 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1394                                                         int increment, int mask,
1395                                                         Register scratch, bool preloaded,
1396                                                         Condition cond, Label* where) {
1397   if (!preloaded) {
1398     movl(scratch, counter_addr);
1399   }
1400   incrementl(scratch, increment);
1401   movl(counter_addr, scratch);
1402   andl(scratch, mask);
1403   jcc(cond, *where);
1404 }