/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "code/compiledIC.hpp" #include "code/nmethod.hpp" #include "code/relocInfo.hpp" #include "memory/resourceArea.hpp" #include "runtime/stubCodeGenerator.hpp" #include "utilities/copy.hpp" #ifdef TARGET_ARCH_x86 # include "assembler_x86.inline.hpp" # include "nativeInst_x86.hpp" #endif #ifdef TARGET_ARCH_sparc # include "assembler_sparc.inline.hpp" # include "nativeInst_sparc.hpp" #endif #ifdef TARGET_ARCH_zero # include "assembler_zero.inline.hpp" # include "nativeInst_zero.hpp" #endif #ifdef TARGET_ARCH_arm # include "assembler_arm.inline.hpp" # include "nativeInst_arm.hpp" #endif #ifdef TARGET_ARCH_ppc # include "assembler_ppc.inline.hpp" # include "nativeInst_ppc.hpp" #endif const RelocationHolder RelocationHolder::none; // its type is relocInfo::none // Implementation of relocInfo #ifdef ASSERT relocInfo::relocInfo(relocType t, int off, int f) { assert(t != data_prefix_tag, "cannot build a prefix this way"); assert((t & type_mask) == t, "wrong type"); assert((f & format_mask) == f, "wrong format"); assert(off >= 0 && off < offset_limit(), "offset out off bounds"); assert((off & (offset_unit-1)) == 0, "misaligned offset"); (*this) = relocInfo(t, RAW_BITS, off, f); } #endif void relocInfo::initialize(CodeSection* dest, Relocation* reloc) { relocInfo* data = this+1; // here's where the data might go dest->set_locs_end(data); // sync end: the next call may read dest.locs_end reloc->pack_data_to(dest); // maybe write data into locs, advancing locs_end relocInfo* data_limit = dest->locs_end(); if (data_limit > data) { relocInfo suffix = (*this); data_limit = this->finish_prefix((short*) data_limit); // Finish up with the suffix. (Hack note: pack_data_to might edit this.) *data_limit = suffix; dest->set_locs_end(data_limit+1); } } relocInfo* relocInfo::finish_prefix(short* prefix_limit) { assert(sizeof(relocInfo) == sizeof(short), "change this code"); short* p = (short*)(this+1); assert(prefix_limit >= p, "must be a valid span of data"); int plen = prefix_limit - p; if (plen == 0) { debug_only(_value = 0xFFFF); return this; // no data: remove self completely } if (plen == 1 && fits_into_immediate(p[0])) { (*this) = immediate_relocInfo(p[0]); // move data inside self return this+1; } // cannot compact, so just update the count and return the limit pointer (*this) = prefix_relocInfo(plen); // write new datalen assert(data() + datalen() == prefix_limit, "pointers must line up"); return (relocInfo*)prefix_limit; } void relocInfo::set_type(relocType t) { int old_offset = addr_offset(); int old_format = format(); (*this) = relocInfo(t, old_offset, old_format); assert(type()==(int)t, "sanity check"); assert(addr_offset()==old_offset, "sanity check"); assert(format()==old_format, "sanity check"); } void relocInfo::set_format(int f) { int old_offset = addr_offset(); assert((f & format_mask) == f, "wrong format"); _value = (_value & ~(format_mask << offset_width)) | (f << offset_width); assert(addr_offset()==old_offset, "sanity check"); } void relocInfo::change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type) { bool found = false; while (itr->next() && !found) { if (itr->addr() == pc) { assert(itr->type()==old_type, "wrong relocInfo type found"); itr->current()->set_type(new_type); found=true; } } assert(found, "no relocInfo found for pc"); } void relocInfo::remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type) { change_reloc_info_for_address(itr, pc, old_type, none); } // ---------------------------------------------------------------------------------------------------- // Implementation of RelocIterator void RelocIterator::initialize(nmethod* nm, address begin, address limit) { initialize_misc(); if (nm == NULL && begin != NULL) { // allow nmethod to be deduced from beginning address CodeBlob* cb = CodeCache::find_blob(begin); nm = cb->as_nmethod_or_null(); } assert(nm != NULL, "must be able to deduce nmethod from other arguments"); _code = nm; _current = nm->relocation_begin() - 1; _end = nm->relocation_end(); _addr = nm->content_begin(); // Initialize code sections. _section_start[CodeBuffer::SECT_CONSTS] = nm->consts_begin(); _section_start[CodeBuffer::SECT_INSTS ] = nm->insts_begin() ; _section_start[CodeBuffer::SECT_STUBS ] = nm->stub_begin() ; _section_end [CodeBuffer::SECT_CONSTS] = nm->consts_end() ; _section_end [CodeBuffer::SECT_INSTS ] = nm->insts_end() ; _section_end [CodeBuffer::SECT_STUBS ] = nm->stub_end() ; assert(!has_current(), "just checking"); assert(begin == NULL || begin >= nm->code_begin(), "in bounds"); assert(limit == NULL || limit <= nm->code_end(), "in bounds"); set_limits(begin, limit); } RelocIterator::RelocIterator(CodeSection* cs, address begin, address limit) { initialize_misc(); _current = cs->locs_start()-1; _end = cs->locs_end(); _addr = cs->start(); _code = NULL; // Not cb->blob(); CodeBuffer* cb = cs->outer(); assert((int) SECT_LIMIT == CodeBuffer::SECT_LIMIT, "my copy must be equal"); for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) { CodeSection* cs = cb->code_section(n); _section_start[n] = cs->start(); _section_end [n] = cs->end(); } assert(!has_current(), "just checking"); assert(begin == NULL || begin >= cs->start(), "in bounds"); assert(limit == NULL || limit <= cs->end(), "in bounds"); set_limits(begin, limit); } enum { indexCardSize = 128 }; struct RelocIndexEntry { jint addr_offset; // offset from header_end of an addr() jint reloc_offset; // offset from header_end of a relocInfo (prefix) }; bool RelocIterator::addr_in_const() const { const int n = CodeBuffer::SECT_CONSTS; return section_start(n) <= addr() && addr() < section_end(n); } static inline int num_cards(int code_size) { return (code_size-1) / indexCardSize; } int RelocIterator::locs_and_index_size(int code_size, int locs_size) { if (!UseRelocIndex) return locs_size; // no index code_size = round_to(code_size, oopSize); locs_size = round_to(locs_size, oopSize); int index_size = num_cards(code_size) * sizeof(RelocIndexEntry); // format of indexed relocs: // relocation_begin: relocInfo ... // index: (addr,reloc#) ... // indexSize :relocation_end return locs_size + index_size + BytesPerInt; } void RelocIterator::create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end) { address relocation_begin = (address)dest_begin; address relocation_end = (address)dest_end; int total_size = relocation_end - relocation_begin; int locs_size = dest_count * sizeof(relocInfo); if (!UseRelocIndex) { Copy::fill_to_bytes(relocation_begin + locs_size, total_size-locs_size, 0); return; } int index_size = total_size - locs_size - BytesPerInt; // find out how much space is left int ncards = index_size / sizeof(RelocIndexEntry); assert(total_size == locs_size + index_size + BytesPerInt, "checkin'"); assert(index_size >= 0 && index_size % sizeof(RelocIndexEntry) == 0, "checkin'"); jint* index_size_addr = (jint*)relocation_end - 1; assert(sizeof(jint) == BytesPerInt, "change this code"); *index_size_addr = index_size; if (index_size != 0) { assert(index_size > 0, "checkin'"); RelocIndexEntry* index = (RelocIndexEntry *)(relocation_begin + locs_size); assert(index == (RelocIndexEntry*)index_size_addr - ncards, "checkin'"); // walk over the relocations, and fill in index entries as we go RelocIterator iter; const address initial_addr = NULL; relocInfo* const initial_current = dest_begin - 1; // biased by -1 like elsewhere iter._code = NULL; iter._addr = initial_addr; iter._limit = (address)(intptr_t)(ncards * indexCardSize); iter._current = initial_current; iter._end = dest_begin + dest_count; int i = 0; address next_card_addr = (address)indexCardSize; int addr_offset = 0; int reloc_offset = 0; while (true) { // Checkpoint the iterator before advancing it. addr_offset = iter._addr - initial_addr; reloc_offset = iter._current - initial_current; if (!iter.next()) break; while (iter.addr() >= next_card_addr) { index[i].addr_offset = addr_offset; index[i].reloc_offset = reloc_offset; i++; next_card_addr += indexCardSize; } } while (i < ncards) { index[i].addr_offset = addr_offset; index[i].reloc_offset = reloc_offset; i++; } } } void RelocIterator::set_limits(address begin, address limit) { int index_size = 0; if (UseRelocIndex && _code != NULL) { index_size = ((jint*)_end)[-1]; _end = (relocInfo*)( (address)_end - index_size - BytesPerInt ); } _limit = limit; // the limit affects this next stuff: if (begin != NULL) { #ifdef ASSERT // In ASSERT mode we do not actually use the index, but simply // check that its contents would have led us to the right answer. address addrCheck = _addr; relocInfo* infoCheck = _current; #endif // ASSERT if (index_size > 0) { // skip ahead RelocIndexEntry* index = (RelocIndexEntry*)_end; RelocIndexEntry* index_limit = (RelocIndexEntry*)((address)index + index_size); assert(_addr == _code->code_begin(), "_addr must be unadjusted"); int card = (begin - _addr) / indexCardSize; if (card > 0) { if (index+card-1 < index_limit) index += card-1; else index = index_limit - 1; #ifdef ASSERT addrCheck = _addr + index->addr_offset; infoCheck = _current + index->reloc_offset; #else // Advance the iterator immediately to the last valid state // for the previous card. Calling "next" will then advance // it to the first item on the required card. _addr += index->addr_offset; _current += index->reloc_offset; #endif // ASSERT } } relocInfo* backup; address backup_addr; while (true) { backup = _current; backup_addr = _addr; #ifdef ASSERT if (backup == infoCheck) { assert(backup_addr == addrCheck, "must match"); addrCheck = NULL; infoCheck = NULL; } else { assert(addrCheck == NULL || backup_addr <= addrCheck, "must not pass addrCheck"); } #endif // ASSERT if (!next() || addr() >= begin) break; } assert(addrCheck == NULL || addrCheck == backup_addr, "must have matched addrCheck"); assert(infoCheck == NULL || infoCheck == backup, "must have matched infoCheck"); // At this point, either we are at the first matching record, // or else there is no such record, and !has_current(). // In either case, revert to the immediatly preceding state. _current = backup; _addr = backup_addr; set_has_current(false); } } void RelocIterator::set_limit(address limit) { address code_end = (address)code() + code()->size(); assert(limit == NULL || limit <= code_end, "in bounds"); _limit = limit; } void PatchingRelocIterator:: prepass() { // turn breakpoints off during patching _init_state = (*this); // save cursor while (next()) { if (type() == relocInfo::breakpoint_type) { breakpoint_reloc()->set_active(false); } } (RelocIterator&)(*this) = _init_state; // reset cursor for client } void PatchingRelocIterator:: postpass() { // turn breakpoints back on after patching (RelocIterator&)(*this) = _init_state; // reset cursor again while (next()) { if (type() == relocInfo::breakpoint_type) { breakpoint_Relocation* bpt = breakpoint_reloc(); bpt->set_active(bpt->enabled()); } } } // All the strange bit-encodings are in here. // The idea is to encode relocation data which are small integers // very efficiently (a single extra halfword). Larger chunks of // relocation data need a halfword header to hold their size. void RelocIterator::advance_over_prefix() { if (_current->is_datalen()) { _data = (short*) _current->data(); _datalen = _current->datalen(); _current += _datalen + 1; // skip the embedded data & header } else { _databuf = _current->immediate(); _data = &_databuf; _datalen = 1; _current++; // skip the header } // The client will see the following relocInfo, whatever that is. // It is the reloc to which the preceding data applies. } void RelocIterator::initialize_misc() { set_has_current(false); for (int i = (int) CodeBuffer::SECT_FIRST; i < (int) CodeBuffer::SECT_LIMIT; i++) { _section_start[i] = NULL; // these will be lazily computed, if needed _section_end [i] = NULL; } } Relocation* RelocIterator::reloc() { // (take the "switch" out-of-line) relocInfo::relocType t = type(); if (false) {} #define EACH_TYPE(name) \ else if (t == relocInfo::name##_type) { \ return name##_reloc(); \ } APPLY_TO_RELOCATIONS(EACH_TYPE); #undef EACH_TYPE assert(t == relocInfo::none, "must be padding"); return new(_rh) Relocation(); } //////// Methods for flyweight Relocation types RelocationHolder RelocationHolder::plus(int offset) const { if (offset != 0) { switch (type()) { case relocInfo::none: break; case relocInfo::oop_type: { oop_Relocation* r = (oop_Relocation*)reloc(); return oop_Relocation::spec(r->oop_index(), r->offset() + offset); } default: ShouldNotReachHere(); } } return (*this); } void Relocation::guarantee_size() { guarantee(false, "Make _relocbuf bigger!"); } // some relocations can compute their own values address Relocation::value() { ShouldNotReachHere(); return NULL; } void Relocation::set_value(address x) { ShouldNotReachHere(); } RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) { if (rtype == relocInfo::none) return RelocationHolder::none; relocInfo ri = relocInfo(rtype, 0); RelocIterator itr; itr.set_current(ri); itr.reloc(); return itr._rh; } static inline bool is_index(intptr_t index) { return 0 < index && index < os::vm_page_size(); } int32_t Relocation::runtime_address_to_index(address runtime_address) { assert(!is_index((intptr_t)runtime_address), "must not look like an index"); if (runtime_address == NULL) return 0; StubCodeDesc* p = StubCodeDesc::desc_for(runtime_address); if (p != NULL && p->begin() == runtime_address) { assert(is_index(p->index()), "there must not be too many stubs"); return (int32_t)p->index(); } else { // Known "miscellaneous" non-stub pointers: // os::get_polling_page(), SafepointSynchronize::address_of_state() if (PrintRelocations) { tty->print_cr("random unregistered address in relocInfo: " INTPTR_FORMAT, runtime_address); } #ifndef _LP64 return (int32_t) (intptr_t)runtime_address; #else // didn't fit return non-index return -1; #endif /* _LP64 */ } } address Relocation::index_to_runtime_address(int32_t index) { if (index == 0) return NULL; if (is_index(index)) { StubCodeDesc* p = StubCodeDesc::desc_for_index(index); assert(p != NULL, "there must be a stub for this index"); return p->begin(); } else { #ifndef _LP64 // this only works on 32bit machines return (address) ((intptr_t) index); #else fatal("Relocation::index_to_runtime_address, int32_t not pointer sized"); return NULL; #endif /* _LP64 */ } } address Relocation::old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest) { int sect = dest->section_index_of(newa); guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address"); address ostart = src->code_section(sect)->start(); address nstart = dest->code_section(sect)->start(); return ostart + (newa - nstart); } address Relocation::new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest) { debug_only(const CodeBuffer* src0 = src); int sect = CodeBuffer::SECT_NONE; // Look for olda in the source buffer, and all previous incarnations // if the source buffer has been expanded. for (; src != NULL; src = src->before_expand()) { sect = src->section_index_of(olda); if (sect != CodeBuffer::SECT_NONE) break; } guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address"); address ostart = src->code_section(sect)->start(); address nstart = dest->code_section(sect)->start(); return nstart + (olda - ostart); } void Relocation::normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections) { address addr0 = addr; if (addr0 == NULL || dest->allocates2(addr0)) return; CodeBuffer* cb = dest->outer(); addr = new_addr_for(addr0, cb, cb); assert(allow_other_sections || dest->contains2(addr), "addr must be in required section"); } void CallRelocation::set_destination(address x) { pd_set_call_destination(x); } void CallRelocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { // Usually a self-relative reference to an external routine. // On some platforms, the reference is absolute (not self-relative). // The enhanced use of pd_call_destination sorts this all out. address orig_addr = old_addr_for(addr(), src, dest); address callee = pd_call_destination(orig_addr); // Reassert the callee address, this time in the new copy of the code. pd_set_call_destination(callee); } //// pack/unpack methods void oop_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); p = pack_2_ints_to(p, _oop_index, _offset); dest->set_locs_end((relocInfo*) p); } void oop_Relocation::unpack_data() { unpack_2_ints(_oop_index, _offset); } void virtual_call_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); address point = dest->locs_point(); // Try to make a pointer NULL first. if (_oop_limit >= point && _oop_limit <= point + NativeCall::instruction_size) { _oop_limit = NULL; } // If the _oop_limit is NULL, it "defaults" to the end of the call. // See ic_call_Relocation::oop_limit() below. normalize_address(_first_oop, dest); normalize_address(_oop_limit, dest); jint x0 = scaled_offset_null_special(_first_oop, point); jint x1 = scaled_offset_null_special(_oop_limit, point); p = pack_2_ints_to(p, x0, x1); dest->set_locs_end((relocInfo*) p); } void virtual_call_Relocation::unpack_data() { jint x0, x1; unpack_2_ints(x0, x1); address point = addr(); _first_oop = x0==0? NULL: address_from_scaled_offset(x0, point); _oop_limit = x1==0? NULL: address_from_scaled_offset(x1, point); } void static_stub_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); CodeSection* insts = dest->outer()->insts(); normalize_address(_static_call, insts); p = pack_1_int_to(p, scaled_offset(_static_call, insts->start())); dest->set_locs_end((relocInfo*) p); } void static_stub_Relocation::unpack_data() { address base = binding()->section_start(CodeBuffer::SECT_INSTS); _static_call = address_from_scaled_offset(unpack_1_int(), base); } void external_word_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); int32_t index = runtime_address_to_index(_target); #ifndef _LP64 p = pack_1_int_to(p, index); #else if (is_index(index)) { p = pack_2_ints_to(p, index, 0); } else { jlong t = (jlong) _target; int32_t lo = low(t); int32_t hi = high(t); p = pack_2_ints_to(p, lo, hi); DEBUG_ONLY(jlong t1 = jlong_from(hi, lo)); assert(!is_index(t1) && (address) t1 == _target, "not symmetric"); } #endif /* _LP64 */ dest->set_locs_end((relocInfo*) p); } void external_word_Relocation::unpack_data() { #ifndef _LP64 _target = index_to_runtime_address(unpack_1_int()); #else int32_t lo, hi; unpack_2_ints(lo, hi); jlong t = jlong_from(hi, lo);; if (is_index(t)) { _target = index_to_runtime_address(t); } else { _target = (address) t; } #endif /* _LP64 */ } void internal_word_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); normalize_address(_target, dest, true); // Check whether my target address is valid within this section. // If not, strengthen the relocation type to point to another section. int sindex = _section; if (sindex == CodeBuffer::SECT_NONE && _target != NULL && (!dest->allocates(_target) || _target == dest->locs_point())) { sindex = dest->outer()->section_index_of(_target); guarantee(sindex != CodeBuffer::SECT_NONE, "must belong somewhere"); relocInfo* base = dest->locs_end() - 1; assert(base->type() == this->type(), "sanity"); // Change the written type, to be section_word_type instead. base->set_type(relocInfo::section_word_type); } // Note: An internal_word relocation cannot refer to its own instruction, // because we reserve "0" to mean that the pointer itself is embedded // in the code stream. We use a section_word relocation for such cases. if (sindex == CodeBuffer::SECT_NONE) { assert(type() == relocInfo::internal_word_type, "must be base class"); guarantee(_target == NULL || dest->allocates2(_target), "must be within the given code section"); jint x0 = scaled_offset_null_special(_target, dest->locs_point()); assert(!(x0 == 0 && _target != NULL), "correct encoding of null target"); p = pack_1_int_to(p, x0); } else { assert(_target != NULL, "sanity"); CodeSection* sect = dest->outer()->code_section(sindex); guarantee(sect->allocates2(_target), "must be in correct section"); address base = sect->start(); jint offset = scaled_offset(_target, base); assert((uint)sindex < (uint)CodeBuffer::SECT_LIMIT, "sanity"); assert(CodeBuffer::SECT_LIMIT <= (1 << section_width), "section_width++"); p = pack_1_int_to(p, (offset << section_width) | sindex); } dest->set_locs_end((relocInfo*) p); } void internal_word_Relocation::unpack_data() { jint x0 = unpack_1_int(); _target = x0==0? NULL: address_from_scaled_offset(x0, addr()); _section = CodeBuffer::SECT_NONE; } void section_word_Relocation::unpack_data() { jint x = unpack_1_int(); jint offset = (x >> section_width); int sindex = (x & ((1<section_start(sindex); _section = sindex; _target = address_from_scaled_offset(offset, base); } void breakpoint_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); address point = dest->locs_point(); *p++ = _bits; assert(_target != NULL, "sanity"); if (internal()) normalize_address(_target, dest); jint target_bits = (jint)( internal() ? scaled_offset (_target, point) : runtime_address_to_index(_target) ); if (settable()) { // save space for set_target later p = add_jint(p, target_bits); } else { p = add_var_int(p, target_bits); } for (int i = 0; i < instrlen(); i++) { // put placeholder words until bytes can be saved p = add_short(p, (short)0x7777); } dest->set_locs_end((relocInfo*) p); } void breakpoint_Relocation::unpack_data() { _bits = live_bits(); int targetlen = datalen() - 1 - instrlen(); jint target_bits = 0; if (targetlen == 0) target_bits = 0; else if (targetlen == 1) target_bits = *(data()+1); else if (targetlen == 2) target_bits = relocInfo::jint_from_data(data()+1); else { ShouldNotReachHere(); } _target = internal() ? address_from_scaled_offset(target_bits, addr()) : index_to_runtime_address (target_bits); } //// miscellaneous methods oop* oop_Relocation::oop_addr() { int n = _oop_index; if (n == 0) { // oop is stored in the code stream return (oop*) pd_address_in_code(); } else { // oop is stored in table at nmethod::oops_begin return code()->oop_addr_at(n); } } oop oop_Relocation::oop_value() { oop v = *oop_addr(); // clean inline caches store a special pseudo-null if (v == (oop)Universe::non_oop_word()) v = NULL; return v; } void oop_Relocation::fix_oop_relocation() { if (!oop_is_immediate()) { // get the oop from the pool, and re-insert it into the instruction: set_value(value()); } } void oop_Relocation::verify_oop_relocation() { if (!oop_is_immediate()) { // get the oop from the pool, and re-insert it into the instruction: verify_value(value()); } } RelocIterator virtual_call_Relocation::parse_ic(nmethod* &nm, address &ic_call, address &first_oop, oop* &oop_addr, bool *is_optimized) { assert(ic_call != NULL, "ic_call address must be set"); assert(ic_call != NULL || first_oop != NULL, "must supply a non-null input"); if (nm == NULL) { CodeBlob* code; if (ic_call != NULL) { code = CodeCache::find_blob(ic_call); } else if (first_oop != NULL) { code = CodeCache::find_blob(first_oop); } nm = code->as_nmethod_or_null(); assert(nm != NULL, "address to parse must be in nmethod"); } assert(ic_call == NULL || nm->contains(ic_call), "must be in nmethod"); assert(first_oop == NULL || nm->contains(first_oop), "must be in nmethod"); address oop_limit = NULL; if (ic_call != NULL) { // search for the ic_call at the given address RelocIterator iter(nm, ic_call, ic_call+1); bool ret = iter.next(); assert(ret == true, "relocInfo must exist at this address"); assert(iter.addr() == ic_call, "must find ic_call"); if (iter.type() == relocInfo::virtual_call_type) { virtual_call_Relocation* r = iter.virtual_call_reloc(); first_oop = r->first_oop(); oop_limit = r->oop_limit(); *is_optimized = false; } else { assert(iter.type() == relocInfo::opt_virtual_call_type, "must be a virtual call"); *is_optimized = true; oop_addr = NULL; first_oop = NULL; return iter; } } // search for the first_oop, to get its oop_addr RelocIterator all_oops(nm, first_oop); RelocIterator iter = all_oops; iter.set_limit(first_oop+1); bool found_oop = false; while (iter.next()) { if (iter.type() == relocInfo::oop_type) { assert(iter.addr() == first_oop, "must find first_oop"); oop_addr = iter.oop_reloc()->oop_addr(); found_oop = true; break; } } assert(found_oop, "must find first_oop"); bool did_reset = false; while (ic_call == NULL) { // search forward for the ic_call matching the given first_oop while (iter.next()) { if (iter.type() == relocInfo::virtual_call_type) { virtual_call_Relocation* r = iter.virtual_call_reloc(); if (r->first_oop() == first_oop) { ic_call = r->addr(); oop_limit = r->oop_limit(); break; } } } guarantee(!did_reset, "cannot find ic_call"); iter = RelocIterator(nm); // search the whole nmethod did_reset = true; } assert(oop_limit != NULL && first_oop != NULL && ic_call != NULL, ""); all_oops.set_limit(oop_limit); return all_oops; } address virtual_call_Relocation::first_oop() { assert(_first_oop != NULL && _first_oop < addr(), "must precede ic_call"); return _first_oop; } address virtual_call_Relocation::oop_limit() { if (_oop_limit == NULL) return addr() + NativeCall::instruction_size; else return _oop_limit; } void virtual_call_Relocation::clear_inline_cache() { // No stubs for ICs // Clean IC ResourceMark rm; CompiledIC* icache = CompiledIC_at(this); icache->set_to_clean(); } void opt_virtual_call_Relocation::clear_inline_cache() { // No stubs for ICs // Clean IC ResourceMark rm; CompiledIC* icache = CompiledIC_at(this); icache->set_to_clean(); } address opt_virtual_call_Relocation::static_stub() { // search for the static stub who points back to this static call address static_call_addr = addr(); RelocIterator iter(code()); while (iter.next()) { if (iter.type() == relocInfo::static_stub_type) { if (iter.static_stub_reloc()->static_call() == static_call_addr) { return iter.addr(); } } } return NULL; } void static_call_Relocation::clear_inline_cache() { // Safe call site info CompiledStaticCall* handler = compiledStaticCall_at(this); handler->set_to_clean(); } address static_call_Relocation::static_stub() { // search for the static stub who points back to this static call address static_call_addr = addr(); RelocIterator iter(code()); while (iter.next()) { if (iter.type() == relocInfo::static_stub_type) { if (iter.static_stub_reloc()->static_call() == static_call_addr) { return iter.addr(); } } } return NULL; } void static_stub_Relocation::clear_inline_cache() { // Call stub is only used when calling the interpreted code. // It does not really need to be cleared, except that we want to clean out the methodoop. CompiledStaticCall::set_stub_to_clean(this); } void external_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { address target = _target; if (target == NULL) { // An absolute embedded reference to an external location, // which means there is nothing to fix here. return; } // Probably this reference is absolute, not relative, so the // following is probably a no-op. assert(src->section_index_of(target) == CodeBuffer::SECT_NONE, "sanity"); set_value(target); } address external_word_Relocation::target() { address target = _target; if (target == NULL) { target = pd_get_address_from_code(); } return target; } void internal_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { address target = _target; if (target == NULL) { if (addr_in_const()) { target = new_addr_for(*(address*)addr(), src, dest); } else { target = new_addr_for(pd_get_address_from_code(), src, dest); } } set_value(target); } address internal_word_Relocation::target() { address target = _target; if (target == NULL) { target = pd_get_address_from_code(); } return target; } breakpoint_Relocation::breakpoint_Relocation(int kind, address target, bool internal) { bool active = false; bool enabled = (kind == initialization); bool removable = (kind != safepoint); bool settable = (target == NULL); int bits = kind; if (enabled) bits |= enabled_state; if (internal) bits |= internal_attr; if (removable) bits |= removable_attr; if (settable) bits |= settable_attr; _bits = bits | high_bit; _target = target; assert(this->kind() == kind, "kind encoded"); assert(this->enabled() == enabled, "enabled encoded"); assert(this->active() == active, "active encoded"); assert(this->internal() == internal, "internal encoded"); assert(this->removable() == removable, "removable encoded"); assert(this->settable() == settable, "settable encoded"); } address breakpoint_Relocation::target() const { return _target; } void breakpoint_Relocation::set_target(address x) { assert(settable(), "must be settable"); jint target_bits = (jint)(internal() ? scaled_offset (x, addr()) : runtime_address_to_index(x)); short* p = &live_bits() + 1; p = add_jint(p, target_bits); assert(p == instrs(), "new target must fit"); _target = x; } void breakpoint_Relocation::set_enabled(bool b) { if (enabled() == b) return; if (b) { set_bits(bits() | enabled_state); } else { set_active(false); // remove the actual breakpoint insn, if any set_bits(bits() & ~enabled_state); } } void breakpoint_Relocation::set_active(bool b) { assert(!b || enabled(), "cannot activate a disabled breakpoint"); if (active() == b) return; // %%% should probably seize a lock here (might not be the right lock) //MutexLockerEx ml_patch(Patching_lock, true); //if (active() == b) return; // recheck state after locking if (b) { set_bits(bits() | active_state); if (instrlen() == 0) fatal("breakpoints in original code must be undoable"); pd_swap_in_breakpoint (addr(), instrs(), instrlen()); } else { set_bits(bits() & ~active_state); pd_swap_out_breakpoint(addr(), instrs(), instrlen()); } } //--------------------------------------------------------------------------------- // Non-product code #ifndef PRODUCT static const char* reloc_type_string(relocInfo::relocType t) { switch (t) { #define EACH_CASE(name) \ case relocInfo::name##_type: \ return #name; APPLY_TO_RELOCATIONS(EACH_CASE); #undef EACH_CASE case relocInfo::none: return "none"; case relocInfo::data_prefix_tag: return "prefix"; default: return "UNKNOWN RELOC TYPE"; } } void RelocIterator::print_current() { if (!has_current()) { tty->print_cr("(no relocs)"); return; } tty->print("relocInfo@" INTPTR_FORMAT " [type=%d(%s) addr=" INTPTR_FORMAT " offset=%d", _current, type(), reloc_type_string((relocInfo::relocType) type()), _addr, _current->addr_offset()); if (current()->format() != 0) tty->print(" format=%d", current()->format()); if (datalen() == 1) { tty->print(" data=%d", data()[0]); } else if (datalen() > 0) { tty->print(" data={"); for (int i = 0; i < datalen(); i++) { tty->print("%04x", data()[i] & 0xFFFF); } tty->print("}"); } tty->print("]"); switch (type()) { case relocInfo::oop_type: { oop_Relocation* r = oop_reloc(); oop* oop_addr = NULL; oop raw_oop = NULL; oop oop_value = NULL; if (code() != NULL || r->oop_is_immediate()) { oop_addr = r->oop_addr(); raw_oop = *oop_addr; oop_value = r->oop_value(); } tty->print(" | [oop_addr=" INTPTR_FORMAT " *=" INTPTR_FORMAT " offset=%d]", oop_addr, (address)raw_oop, r->offset()); // Do not print the oop by default--we want this routine to // work even during GC or other inconvenient times. if (WizardMode && oop_value != NULL) { tty->print("oop_value=" INTPTR_FORMAT ": ", (address)oop_value); oop_value->print_value_on(tty); } break; } case relocInfo::external_word_type: case relocInfo::internal_word_type: case relocInfo::section_word_type: { DataRelocation* r = (DataRelocation*) reloc(); tty->print(" | [target=" INTPTR_FORMAT "]", r->value()); //value==target break; } case relocInfo::static_call_type: case relocInfo::runtime_call_type: { CallRelocation* r = (CallRelocation*) reloc(); tty->print(" | [destination=" INTPTR_FORMAT "]", r->destination()); break; } case relocInfo::virtual_call_type: { virtual_call_Relocation* r = (virtual_call_Relocation*) reloc(); tty->print(" | [destination=" INTPTR_FORMAT " first_oop=" INTPTR_FORMAT " oop_limit=" INTPTR_FORMAT "]", r->destination(), r->first_oop(), r->oop_limit()); break; } case relocInfo::static_stub_type: { static_stub_Relocation* r = (static_stub_Relocation*) reloc(); tty->print(" | [static_call=" INTPTR_FORMAT "]", r->static_call()); break; } } tty->cr(); } void RelocIterator::print() { RelocIterator save_this = (*this); relocInfo* scan = _current; if (!has_current()) scan += 1; // nothing to scan here! bool skip_next = has_current(); bool got_next; while (true) { got_next = (skip_next || next()); skip_next = false; tty->print(" @" INTPTR_FORMAT ": ", scan); relocInfo* newscan = _current+1; if (!has_current()) newscan -= 1; // nothing to scan here! while (scan < newscan) { tty->print("%04x", *(short*)scan & 0xFFFF); scan++; } tty->cr(); if (!got_next) break; print_current(); } (*this) = save_this; } // For the debugger: extern "C" void print_blob_locs(nmethod* nm) { nm->print(); RelocIterator iter(nm); iter.print(); } extern "C" void print_buf_locs(CodeBuffer* cb) { FlagSetting fs(PrintRelocations, true); cb->print(); } #endif // !PRODUCT