1 /*
   2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "jvmtifiles/jvmtiEnv.hpp"
  30 #include "oops/instanceMirrorKlass.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "oops/oop.inline2.hpp"
  33 #include "prims/jvmtiEventController.hpp"
  34 #include "prims/jvmtiEventController.inline.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/jvmtiImpl.hpp"
  37 #include "prims/jvmtiTagMap.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/javaCalls.hpp"
  40 #include "runtime/jniHandles.hpp"
  41 #include "runtime/mutex.hpp"
  42 #include "runtime/mutexLocker.hpp"
  43 #include "runtime/reflectionUtils.hpp"
  44 #include "runtime/vframe.hpp"
  45 #include "runtime/vmThread.hpp"
  46 #include "runtime/vm_operations.hpp"
  47 #include "services/serviceUtil.hpp"
  48 #ifndef SERIALGC
  49 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
  50 #endif
  51 
  52 // JvmtiTagHashmapEntry
  53 //
  54 // Each entry encapsulates a reference to the tagged object
  55 // and the tag value. In addition an entry includes a next pointer which
  56 // is used to chain entries together.
  57 
  58 class JvmtiTagHashmapEntry : public CHeapObj {
  59  private:
  60   friend class JvmtiTagMap;
  61 
  62   oop _object;                          // tagged object
  63   jlong _tag;                           // the tag
  64   JvmtiTagHashmapEntry* _next;          // next on the list
  65 
  66   inline void init(oop object, jlong tag) {
  67     _object = object;
  68     _tag = tag;
  69     _next = NULL;
  70   }
  71 
  72   // constructor
  73   JvmtiTagHashmapEntry(oop object, jlong tag)         { init(object, tag); }
  74 
  75  public:
  76 
  77   // accessor methods
  78   inline oop object() const                           { return _object; }
  79   inline oop* object_addr()                           { return &_object; }
  80   inline jlong tag() const                            { return _tag; }
  81 
  82   inline void set_tag(jlong tag) {
  83     assert(tag != 0, "can't be zero");
  84     _tag = tag;
  85   }
  86 
  87   inline JvmtiTagHashmapEntry* next() const             { return _next; }
  88   inline void set_next(JvmtiTagHashmapEntry* next)      { _next = next; }
  89 };
  90 
  91 
  92 // JvmtiTagHashmap
  93 //
  94 // A hashmap is essentially a table of pointers to entries. Entries
  95 // are hashed to a location, or position in the table, and then
  96 // chained from that location. The "key" for hashing is address of
  97 // the object, or oop. The "value" is the tag value.
  98 //
  99 // A hashmap maintains a count of the number entries in the hashmap
 100 // and resizes if the number of entries exceeds a given threshold.
 101 // The threshold is specified as a percentage of the size - for
 102 // example a threshold of 0.75 will trigger the hashmap to resize
 103 // if the number of entries is >75% of table size.
 104 //
 105 // A hashmap provides functions for adding, removing, and finding
 106 // entries. It also provides a function to iterate over all entries
 107 // in the hashmap.
 108 
 109 class JvmtiTagHashmap : public CHeapObj {
 110  private:
 111   friend class JvmtiTagMap;
 112 
 113   enum {
 114     small_trace_threshold  = 10000,                  // threshold for tracing
 115     medium_trace_threshold = 100000,
 116     large_trace_threshold  = 1000000,
 117     initial_trace_threshold = small_trace_threshold
 118   };
 119 
 120   static int _sizes[];                  // array of possible hashmap sizes
 121   int _size;                            // actual size of the table
 122   int _size_index;                      // index into size table
 123 
 124   int _entry_count;                     // number of entries in the hashmap
 125 
 126   float _load_factor;                   // load factor as a % of the size
 127   int _resize_threshold;                // computed threshold to trigger resizing.
 128   bool _resizing_enabled;               // indicates if hashmap can resize
 129 
 130   int _trace_threshold;                 // threshold for trace messages
 131 
 132   JvmtiTagHashmapEntry** _table;        // the table of entries.
 133 
 134   // private accessors
 135   int resize_threshold() const                  { return _resize_threshold; }
 136   int trace_threshold() const                   { return _trace_threshold; }
 137 
 138   // initialize the hashmap
 139   void init(int size_index=0, float load_factor=4.0f) {
 140     int initial_size =  _sizes[size_index];
 141     _size_index = size_index;
 142     _size = initial_size;
 143     _entry_count = 0;
 144     if (TraceJVMTIObjectTagging) {
 145       _trace_threshold = initial_trace_threshold;
 146     } else {
 147       _trace_threshold = -1;
 148     }
 149     _load_factor = load_factor;
 150     _resize_threshold = (int)(_load_factor * _size);
 151     _resizing_enabled = true;
 152     size_t s = initial_size * sizeof(JvmtiTagHashmapEntry*);
 153     _table = (JvmtiTagHashmapEntry**)os::malloc(s);
 154     if (_table == NULL) {
 155       vm_exit_out_of_memory(s, "unable to allocate initial hashtable for jvmti object tags");
 156     }
 157     for (int i=0; i<initial_size; i++) {
 158       _table[i] = NULL;
 159     }
 160   }
 161 
 162   // hash a given key (oop) with the specified size
 163   static unsigned int hash(oop key, int size) {
 164     // shift right to get better distribution (as these bits will be zero
 165     // with aligned addresses)
 166     unsigned int addr = (unsigned int)((intptr_t)key);
 167 #ifdef _LP64
 168     return (addr >> 3) % size;
 169 #else
 170     return (addr >> 2) % size;
 171 #endif
 172   }
 173 
 174   // hash a given key (oop)
 175   unsigned int hash(oop key) {
 176     return hash(key, _size);
 177   }
 178 
 179   // resize the hashmap - allocates a large table and re-hashes
 180   // all entries into the new table.
 181   void resize() {
 182     int new_size_index = _size_index+1;
 183     int new_size = _sizes[new_size_index];
 184     if (new_size < 0) {
 185       // hashmap already at maximum capacity
 186       return;
 187     }
 188 
 189     // allocate new table
 190     size_t s = new_size * sizeof(JvmtiTagHashmapEntry*);
 191     JvmtiTagHashmapEntry** new_table = (JvmtiTagHashmapEntry**)os::malloc(s);
 192     if (new_table == NULL) {
 193       warning("unable to allocate larger hashtable for jvmti object tags");
 194       set_resizing_enabled(false);
 195       return;
 196     }
 197 
 198     // initialize new table
 199     int i;
 200     for (i=0; i<new_size; i++) {
 201       new_table[i] = NULL;
 202     }
 203 
 204     // rehash all entries into the new table
 205     for (i=0; i<_size; i++) {
 206       JvmtiTagHashmapEntry* entry = _table[i];
 207       while (entry != NULL) {
 208         JvmtiTagHashmapEntry* next = entry->next();
 209         oop key = entry->object();
 210         assert(key != NULL, "jni weak reference cleared!!");
 211         unsigned int h = hash(key, new_size);
 212         JvmtiTagHashmapEntry* anchor = new_table[h];
 213         if (anchor == NULL) {
 214           new_table[h] = entry;
 215           entry->set_next(NULL);
 216         } else {
 217           entry->set_next(anchor);
 218           new_table[h] = entry;
 219         }
 220         entry = next;
 221       }
 222     }
 223 
 224     // free old table and update settings.
 225     os::free((void*)_table);
 226     _table = new_table;
 227     _size_index = new_size_index;
 228     _size = new_size;
 229 
 230     // compute new resize threshold
 231     _resize_threshold = (int)(_load_factor * _size);
 232   }
 233 
 234 
 235   // internal remove function - remove an entry at a given position in the
 236   // table.
 237   inline void remove(JvmtiTagHashmapEntry* prev, int pos, JvmtiTagHashmapEntry* entry) {
 238     assert(pos >= 0 && pos < _size, "out of range");
 239     if (prev == NULL) {
 240       _table[pos] = entry->next();
 241     } else {
 242       prev->set_next(entry->next());
 243     }
 244     assert(_entry_count > 0, "checking");
 245     _entry_count--;
 246   }
 247 
 248   // resizing switch
 249   bool is_resizing_enabled() const          { return _resizing_enabled; }
 250   void set_resizing_enabled(bool enable)    { _resizing_enabled = enable; }
 251 
 252   // debugging
 253   void print_memory_usage();
 254   void compute_next_trace_threshold();
 255 
 256  public:
 257 
 258   // create a JvmtiTagHashmap of a preferred size and optionally a load factor.
 259   // The preferred size is rounded down to an actual size.
 260   JvmtiTagHashmap(int size, float load_factor=0.0f) {
 261     int i=0;
 262     while (_sizes[i] < size) {
 263       if (_sizes[i] < 0) {
 264         assert(i > 0, "sanity check");
 265         i--;
 266         break;
 267       }
 268       i++;
 269     }
 270 
 271     // if a load factor is specified then use it, otherwise use default
 272     if (load_factor > 0.01f) {
 273       init(i, load_factor);
 274     } else {
 275       init(i);
 276     }
 277   }
 278 
 279   // create a JvmtiTagHashmap with default settings
 280   JvmtiTagHashmap() {
 281     init();
 282   }
 283 
 284   // release table when JvmtiTagHashmap destroyed
 285   ~JvmtiTagHashmap() {
 286     if (_table != NULL) {
 287       os::free((void*)_table);
 288       _table = NULL;
 289     }
 290   }
 291 
 292   // accessors
 293   int size() const                              { return _size; }
 294   JvmtiTagHashmapEntry** table() const          { return _table; }
 295   int entry_count() const                       { return _entry_count; }
 296 
 297   // find an entry in the hashmap, returns NULL if not found.
 298   inline JvmtiTagHashmapEntry* find(oop key) {
 299     unsigned int h = hash(key);
 300     JvmtiTagHashmapEntry* entry = _table[h];
 301     while (entry != NULL) {
 302       if (entry->object() == key) {
 303          return entry;
 304       }
 305       entry = entry->next();
 306     }
 307     return NULL;
 308   }
 309 
 310 
 311   // add a new entry to hashmap
 312   inline void add(oop key, JvmtiTagHashmapEntry* entry) {
 313     assert(key != NULL, "checking");
 314     assert(find(key) == NULL, "duplicate detected");
 315     unsigned int h = hash(key);
 316     JvmtiTagHashmapEntry* anchor = _table[h];
 317     if (anchor == NULL) {
 318       _table[h] = entry;
 319       entry->set_next(NULL);
 320     } else {
 321       entry->set_next(anchor);
 322       _table[h] = entry;
 323     }
 324 
 325     _entry_count++;
 326     if (trace_threshold() > 0 && entry_count() >= trace_threshold()) {
 327       assert(TraceJVMTIObjectTagging, "should only get here when tracing");
 328       print_memory_usage();
 329       compute_next_trace_threshold();
 330     }
 331 
 332     // if the number of entries exceed the threshold then resize
 333     if (entry_count() > resize_threshold() && is_resizing_enabled()) {
 334       resize();
 335     }
 336   }
 337 
 338   // remove an entry with the given key.
 339   inline JvmtiTagHashmapEntry* remove(oop key) {
 340     unsigned int h = hash(key);
 341     JvmtiTagHashmapEntry* entry = _table[h];
 342     JvmtiTagHashmapEntry* prev = NULL;
 343     while (entry != NULL) {
 344       if (key == entry->object()) {
 345         break;
 346       }
 347       prev = entry;
 348       entry = entry->next();
 349     }
 350     if (entry != NULL) {
 351       remove(prev, h, entry);
 352     }
 353     return entry;
 354   }
 355 
 356   // iterate over all entries in the hashmap
 357   void entry_iterate(JvmtiTagHashmapEntryClosure* closure);
 358 };
 359 
 360 // possible hashmap sizes - odd primes that roughly double in size.
 361 // To avoid excessive resizing the odd primes from 4801-76831 and
 362 // 76831-307261 have been removed. The list must be terminated by -1.
 363 int JvmtiTagHashmap::_sizes[] =  { 4801, 76831, 307261, 614563, 1228891,
 364     2457733, 4915219, 9830479, 19660831, 39321619, 78643219, -1 };
 365 
 366 
 367 // A supporting class for iterating over all entries in Hashmap
 368 class JvmtiTagHashmapEntryClosure {
 369  public:
 370   virtual void do_entry(JvmtiTagHashmapEntry* entry) = 0;
 371 };
 372 
 373 
 374 // iterate over all entries in the hashmap
 375 void JvmtiTagHashmap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
 376   for (int i=0; i<_size; i++) {
 377     JvmtiTagHashmapEntry* entry = _table[i];
 378     JvmtiTagHashmapEntry* prev = NULL;
 379     while (entry != NULL) {
 380       // obtain the next entry before invoking do_entry - this is
 381       // necessary because do_entry may remove the entry from the
 382       // hashmap.
 383       JvmtiTagHashmapEntry* next = entry->next();
 384       closure->do_entry(entry);
 385       entry = next;
 386      }
 387   }
 388 }
 389 
 390 // debugging
 391 void JvmtiTagHashmap::print_memory_usage() {
 392   intptr_t p = (intptr_t)this;
 393   tty->print("[JvmtiTagHashmap @ " INTPTR_FORMAT, p);
 394 
 395   // table + entries in KB
 396   int hashmap_usage = (size()*sizeof(JvmtiTagHashmapEntry*) +
 397     entry_count()*sizeof(JvmtiTagHashmapEntry))/K;
 398 
 399   int weak_globals_usage = (int)(JNIHandles::weak_global_handle_memory_usage()/K);
 400   tty->print_cr(", %d entries (%d KB) <JNI weak globals: %d KB>]",
 401     entry_count(), hashmap_usage, weak_globals_usage);
 402 }
 403 
 404 // compute threshold for the next trace message
 405 void JvmtiTagHashmap::compute_next_trace_threshold() {
 406   if (trace_threshold() < medium_trace_threshold) {
 407     _trace_threshold += small_trace_threshold;
 408   } else {
 409     if (trace_threshold() < large_trace_threshold) {
 410       _trace_threshold += medium_trace_threshold;
 411     } else {
 412       _trace_threshold += large_trace_threshold;
 413     }
 414   }
 415 }
 416 
 417 // create a JvmtiTagMap
 418 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
 419   _env(env),
 420   _lock(Mutex::nonleaf+2, "JvmtiTagMap._lock", false),
 421   _free_entries(NULL),
 422   _free_entries_count(0)
 423 {
 424   assert(JvmtiThreadState_lock->is_locked(), "sanity check");
 425   assert(((JvmtiEnvBase *)env)->tag_map() == NULL, "tag map already exists for environment");
 426 
 427   _hashmap = new JvmtiTagHashmap();
 428 
 429   // finally add us to the environment
 430   ((JvmtiEnvBase *)env)->set_tag_map(this);
 431 }
 432 
 433 
 434 // destroy a JvmtiTagMap
 435 JvmtiTagMap::~JvmtiTagMap() {
 436 
 437   // no lock acquired as we assume the enclosing environment is
 438   // also being destroryed.
 439   ((JvmtiEnvBase *)_env)->set_tag_map(NULL);
 440 
 441   JvmtiTagHashmapEntry** table = _hashmap->table();
 442   for (int j = 0; j < _hashmap->size(); j++) {
 443     JvmtiTagHashmapEntry* entry = table[j];
 444     while (entry != NULL) {
 445       JvmtiTagHashmapEntry* next = entry->next();
 446       delete entry;
 447       entry = next;
 448     }
 449   }
 450 
 451   // finally destroy the hashmap
 452   delete _hashmap;
 453   _hashmap = NULL;
 454 
 455   // remove any entries on the free list
 456   JvmtiTagHashmapEntry* entry = _free_entries;
 457   while (entry != NULL) {
 458     JvmtiTagHashmapEntry* next = entry->next();
 459     delete entry;
 460     entry = next;
 461   }
 462   _free_entries = NULL;
 463 }
 464 
 465 // create a hashmap entry
 466 // - if there's an entry on the (per-environment) free list then this
 467 // is returned. Otherwise an new entry is allocated.
 468 JvmtiTagHashmapEntry* JvmtiTagMap::create_entry(oop ref, jlong tag) {
 469   assert(Thread::current()->is_VM_thread() || is_locked(), "checking");
 470   JvmtiTagHashmapEntry* entry;
 471   if (_free_entries == NULL) {
 472     entry = new JvmtiTagHashmapEntry(ref, tag);
 473   } else {
 474     assert(_free_entries_count > 0, "mismatched _free_entries_count");
 475     _free_entries_count--;
 476     entry = _free_entries;
 477     _free_entries = entry->next();
 478     entry->init(ref, tag);
 479   }
 480   return entry;
 481 }
 482 
 483 // destroy an entry by returning it to the free list
 484 void JvmtiTagMap::destroy_entry(JvmtiTagHashmapEntry* entry) {
 485   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
 486   // limit the size of the free list
 487   if (_free_entries_count >= max_free_entries) {
 488     delete entry;
 489   } else {
 490     entry->set_next(_free_entries);
 491     _free_entries = entry;
 492     _free_entries_count++;
 493   }
 494 }
 495 
 496 // returns the tag map for the given environments. If the tag map
 497 // doesn't exist then it is created.
 498 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
 499   JvmtiTagMap* tag_map = ((JvmtiEnvBase*)env)->tag_map();
 500   if (tag_map == NULL) {
 501     MutexLocker mu(JvmtiThreadState_lock);
 502     tag_map = ((JvmtiEnvBase*)env)->tag_map();
 503     if (tag_map == NULL) {
 504       tag_map = new JvmtiTagMap(env);
 505     }
 506   } else {
 507     CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
 508   }
 509   return tag_map;
 510 }
 511 
 512 // iterate over all entries in the tag map.
 513 void JvmtiTagMap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
 514   hashmap()->entry_iterate(closure);
 515 }
 516 
 517 // returns true if the hashmaps are empty
 518 bool JvmtiTagMap::is_empty() {
 519   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
 520   return hashmap()->entry_count() == 0;
 521 }
 522 
 523 
 524 // Return the tag value for an object, or 0 if the object is
 525 // not tagged
 526 //
 527 static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) {
 528   JvmtiTagHashmapEntry* entry = tag_map->hashmap()->find(o);
 529   if (entry == NULL) {
 530     return 0;
 531   } else {
 532     return entry->tag();
 533   }
 534 }
 535 
 536 // If the object is a java.lang.Class then return the klassOop,
 537 // otherwise return the original object
 538 static inline oop klassOop_if_java_lang_Class(oop o) {
 539   if (o->klass() == SystemDictionary::Class_klass()) {
 540     if (!java_lang_Class::is_primitive(o)) {
 541       o = (oop)java_lang_Class::as_klassOop(o);
 542       assert(o != NULL, "class for non-primitive mirror must exist");
 543     }
 544   }
 545   return o;
 546 }
 547 
 548 // A CallbackWrapper is a support class for querying and tagging an object
 549 // around a callback to a profiler. The constructor does pre-callback
 550 // work to get the tag value, klass tag value, ... and the destructor
 551 // does the post-callback work of tagging or untagging the object.
 552 //
 553 // {
 554 //   CallbackWrapper wrapper(tag_map, o);
 555 //
 556 //   (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
 557 //
 558 // } // wrapper goes out of scope here which results in the destructor
 559 //      checking to see if the object has been tagged, untagged, or the
 560 //      tag value has changed.
 561 //
 562 class CallbackWrapper : public StackObj {
 563  private:
 564   JvmtiTagMap* _tag_map;
 565   JvmtiTagHashmap* _hashmap;
 566   JvmtiTagHashmapEntry* _entry;
 567   oop _o;
 568   jlong _obj_size;
 569   jlong _obj_tag;
 570   klassOop _klass;         // the object's class
 571   jlong _klass_tag;
 572 
 573  protected:
 574   JvmtiTagMap* tag_map() const      { return _tag_map; }
 575 
 576   // invoked post-callback to tag, untag, or update the tag of an object
 577   void inline post_callback_tag_update(oop o, JvmtiTagHashmap* hashmap,
 578                                        JvmtiTagHashmapEntry* entry, jlong obj_tag);
 579  public:
 580   CallbackWrapper(JvmtiTagMap* tag_map, oop o) {
 581     assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
 582            "MT unsafe or must be VM thread");
 583 
 584     // for Classes the klassOop is tagged
 585     _o = klassOop_if_java_lang_Class(o);
 586 
 587     // object size
 588     _obj_size = _o->size() * wordSize;
 589 
 590     // record the context
 591     _tag_map = tag_map;
 592     _hashmap = tag_map->hashmap();
 593     _entry = _hashmap->find(_o);
 594 
 595     // get object tag
 596     _obj_tag = (_entry == NULL) ? 0 : _entry->tag();
 597 
 598     // get the class and the class's tag value
 599     if (_o == o) {
 600       _klass = _o->klass();
 601     } else {
 602       // if the object represents a runtime class then use the
 603       // tag for java.lang.Class
 604       _klass = SystemDictionary::Class_klass();
 605     }
 606     _klass_tag = tag_for(tag_map, _klass);
 607   }
 608 
 609   ~CallbackWrapper() {
 610     post_callback_tag_update(_o, _hashmap, _entry, _obj_tag);
 611   }
 612 
 613   inline jlong* obj_tag_p()                     { return &_obj_tag; }
 614   inline jlong obj_size() const                 { return _obj_size; }
 615   inline jlong obj_tag() const                  { return _obj_tag; }
 616   inline klassOop klass() const                 { return _klass; }
 617   inline jlong klass_tag() const                { return _klass_tag; }
 618 };
 619 
 620 
 621 
 622 // callback post-callback to tag, untag, or update the tag of an object
 623 void inline CallbackWrapper::post_callback_tag_update(oop o,
 624                                                       JvmtiTagHashmap* hashmap,
 625                                                       JvmtiTagHashmapEntry* entry,
 626                                                       jlong obj_tag) {
 627   if (entry == NULL) {
 628     if (obj_tag != 0) {
 629       // callback has tagged the object
 630       assert(Thread::current()->is_VM_thread(), "must be VMThread");
 631       entry = tag_map()->create_entry(o, obj_tag);
 632       hashmap->add(o, entry);
 633     }
 634   } else {
 635     // object was previously tagged - the callback may have untagged
 636     // the object or changed the tag value
 637     if (obj_tag == 0) {
 638 
 639       JvmtiTagHashmapEntry* entry_removed = hashmap->remove(o);
 640       assert(entry_removed == entry, "checking");
 641       tag_map()->destroy_entry(entry);
 642 
 643     } else {
 644       if (obj_tag != entry->tag()) {
 645          entry->set_tag(obj_tag);
 646       }
 647     }
 648   }
 649 }
 650 
 651 // An extended CallbackWrapper used when reporting an object reference
 652 // to the agent.
 653 //
 654 // {
 655 //   TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
 656 //
 657 //   (*callback)(wrapper.klass_tag(),
 658 //               wrapper.obj_size(),
 659 //               wrapper.obj_tag_p()
 660 //               wrapper.referrer_tag_p(), ...)
 661 //
 662 // } // wrapper goes out of scope here which results in the destructor
 663 //      checking to see if the referrer object has been tagged, untagged,
 664 //      or the tag value has changed.
 665 //
 666 class TwoOopCallbackWrapper : public CallbackWrapper {
 667  private:
 668   bool _is_reference_to_self;
 669   JvmtiTagHashmap* _referrer_hashmap;
 670   JvmtiTagHashmapEntry* _referrer_entry;
 671   oop _referrer;
 672   jlong _referrer_obj_tag;
 673   jlong _referrer_klass_tag;
 674   jlong* _referrer_tag_p;
 675 
 676   bool is_reference_to_self() const             { return _is_reference_to_self; }
 677 
 678  public:
 679   TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) :
 680     CallbackWrapper(tag_map, o)
 681   {
 682     // self reference needs to be handled in a special way
 683     _is_reference_to_self = (referrer == o);
 684 
 685     if (_is_reference_to_self) {
 686       _referrer_klass_tag = klass_tag();
 687       _referrer_tag_p = obj_tag_p();
 688     } else {
 689       // for Classes the klassOop is tagged
 690       _referrer = klassOop_if_java_lang_Class(referrer);
 691       // record the context
 692       _referrer_hashmap = tag_map->hashmap();
 693       _referrer_entry = _referrer_hashmap->find(_referrer);
 694 
 695       // get object tag
 696       _referrer_obj_tag = (_referrer_entry == NULL) ? 0 : _referrer_entry->tag();
 697       _referrer_tag_p = &_referrer_obj_tag;
 698 
 699       // get referrer class tag.
 700       klassOop k = (_referrer == referrer) ?  // Check if referrer is a class...
 701           _referrer->klass()                  // No, just get its class
 702          : SystemDictionary::Class_klass();   // Yes, its class is Class
 703       _referrer_klass_tag = tag_for(tag_map, k);
 704     }
 705   }
 706 
 707   ~TwoOopCallbackWrapper() {
 708     if (!is_reference_to_self()){
 709       post_callback_tag_update(_referrer,
 710                                _referrer_hashmap,
 711                                _referrer_entry,
 712                                _referrer_obj_tag);
 713     }
 714   }
 715 
 716   // address of referrer tag
 717   // (for a self reference this will return the same thing as obj_tag_p())
 718   inline jlong* referrer_tag_p()        { return _referrer_tag_p; }
 719 
 720   // referrer's class tag
 721   inline jlong referrer_klass_tag()     { return _referrer_klass_tag; }
 722 };
 723 
 724 // tag an object
 725 //
 726 // This function is performance critical. If many threads attempt to tag objects
 727 // around the same time then it's possible that the Mutex associated with the
 728 // tag map will be a hot lock.
 729 void JvmtiTagMap::set_tag(jobject object, jlong tag) {
 730   MutexLocker ml(lock());
 731 
 732   // resolve the object
 733   oop o = JNIHandles::resolve_non_null(object);
 734 
 735   // for Classes we tag the klassOop
 736   o = klassOop_if_java_lang_Class(o);
 737 
 738   // see if the object is already tagged
 739   JvmtiTagHashmap* hashmap = _hashmap;
 740   JvmtiTagHashmapEntry* entry = hashmap->find(o);
 741 
 742   // if the object is not already tagged then we tag it
 743   if (entry == NULL) {
 744     if (tag != 0) {
 745       entry = create_entry(o, tag);
 746       hashmap->add(o, entry);
 747     } else {
 748       // no-op
 749     }
 750   } else {
 751     // if the object is already tagged then we either update
 752     // the tag (if a new tag value has been provided)
 753     // or remove the object if the new tag value is 0.
 754     if (tag == 0) {
 755       hashmap->remove(o);
 756       destroy_entry(entry);
 757     } else {
 758       entry->set_tag(tag);
 759     }
 760   }
 761 }
 762 
 763 // get the tag for an object
 764 jlong JvmtiTagMap::get_tag(jobject object) {
 765   MutexLocker ml(lock());
 766 
 767   // resolve the object
 768   oop o = JNIHandles::resolve_non_null(object);
 769 
 770   // for Classes get the tag from the klassOop
 771   return tag_for(this, klassOop_if_java_lang_Class(o));
 772 }
 773 
 774 
 775 // Helper class used to describe the static or instance fields of a class.
 776 // For each field it holds the field index (as defined by the JVMTI specification),
 777 // the field type, and the offset.
 778 
 779 class ClassFieldDescriptor: public CHeapObj {
 780  private:
 781   int _field_index;
 782   int _field_offset;
 783   char _field_type;
 784  public:
 785   ClassFieldDescriptor(int index, char type, int offset) :
 786     _field_index(index), _field_type(type), _field_offset(offset) {
 787   }
 788   int field_index()  const  { return _field_index; }
 789   char field_type()  const  { return _field_type; }
 790   int field_offset() const  { return _field_offset; }
 791 };
 792 
 793 class ClassFieldMap: public CHeapObj {
 794  private:
 795   enum {
 796     initial_field_count = 5
 797   };
 798 
 799   // list of field descriptors
 800   GrowableArray<ClassFieldDescriptor*>* _fields;
 801 
 802   // constructor
 803   ClassFieldMap();
 804 
 805   // add a field
 806   void add(int index, char type, int offset);
 807 
 808   // returns the field count for the given class
 809   static int compute_field_count(instanceKlassHandle ikh);
 810 
 811  public:
 812   ~ClassFieldMap();
 813 
 814   // access
 815   int field_count()                     { return _fields->length(); }
 816   ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
 817 
 818   // functions to create maps of static or instance fields
 819   static ClassFieldMap* create_map_of_static_fields(klassOop k);
 820   static ClassFieldMap* create_map_of_instance_fields(oop obj);
 821 };
 822 
 823 ClassFieldMap::ClassFieldMap() {
 824   _fields = new (ResourceObj::C_HEAP) GrowableArray<ClassFieldDescriptor*>(initial_field_count, true);
 825 }
 826 
 827 ClassFieldMap::~ClassFieldMap() {
 828   for (int i=0; i<_fields->length(); i++) {
 829     delete _fields->at(i);
 830   }
 831   delete _fields;
 832 }
 833 
 834 void ClassFieldMap::add(int index, char type, int offset) {
 835   ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset);
 836   _fields->append(field);
 837 }
 838 
 839 // Returns a heap allocated ClassFieldMap to describe the static fields
 840 // of the given class.
 841 //
 842 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(klassOop k) {
 843   HandleMark hm;
 844   instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), k);
 845 
 846   // create the field map
 847   ClassFieldMap* field_map = new ClassFieldMap();
 848 
 849   FilteredFieldStream f(ikh, false, false);
 850   int max_field_index = f.field_count()-1;
 851 
 852   int index = 0;
 853   for (FilteredFieldStream fld(ikh, true, true); !fld.eos(); fld.next(), index++) {
 854     // ignore instance fields
 855     if (!fld.access_flags().is_static()) {
 856       continue;
 857     }
 858     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
 859   }
 860   return field_map;
 861 }
 862 
 863 // Returns a heap allocated ClassFieldMap to describe the instance fields
 864 // of the given class. All instance fields are included (this means public
 865 // and private fields declared in superclasses and superinterfaces too).
 866 //
 867 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) {
 868   HandleMark hm;
 869   instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), obj->klass());
 870 
 871   // create the field map
 872   ClassFieldMap* field_map = new ClassFieldMap();
 873 
 874   FilteredFieldStream f(ikh, false, false);
 875 
 876   int max_field_index = f.field_count()-1;
 877 
 878   int index = 0;
 879   for (FilteredFieldStream fld(ikh, false, false); !fld.eos(); fld.next(), index++) {
 880     // ignore static fields
 881     if (fld.access_flags().is_static()) {
 882       continue;
 883     }
 884     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
 885   }
 886 
 887   return field_map;
 888 }
 889 
 890 // Helper class used to cache a ClassFileMap for the instance fields of
 891 // a cache. A JvmtiCachedClassFieldMap can be cached by an instanceKlass during
 892 // heap iteration and avoid creating a field map for each object in the heap
 893 // (only need to create the map when the first instance of a class is encountered).
 894 //
 895 class JvmtiCachedClassFieldMap : public CHeapObj {
 896  private:
 897    enum {
 898      initial_class_count = 200
 899    };
 900   ClassFieldMap* _field_map;
 901 
 902   ClassFieldMap* field_map() const          { return _field_map; }
 903 
 904   JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
 905   ~JvmtiCachedClassFieldMap();
 906 
 907   static GrowableArray<instanceKlass*>* _class_list;
 908   static void add_to_class_list(instanceKlass* ik);
 909 
 910  public:
 911   // returns the field map for a given object (returning map cached
 912   // by instanceKlass if possible
 913   static ClassFieldMap* get_map_of_instance_fields(oop obj);
 914 
 915   // removes the field map from all instanceKlasses - should be
 916   // called before VM operation completes
 917   static void clear_cache();
 918 
 919   // returns the number of ClassFieldMap cached by instanceKlasses
 920   static int cached_field_map_count();
 921 };
 922 
 923 GrowableArray<instanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
 924 
 925 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
 926   _field_map = field_map;
 927 }
 928 
 929 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
 930   if (_field_map != NULL) {
 931     delete _field_map;
 932   }
 933 }
 934 
 935 // Marker class to ensure that the class file map cache is only used in a defined
 936 // scope.
 937 class ClassFieldMapCacheMark : public StackObj {
 938  private:
 939    static bool _is_active;
 940  public:
 941    ClassFieldMapCacheMark() {
 942      assert(Thread::current()->is_VM_thread(), "must be VMThread");
 943      assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
 944      assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
 945      _is_active = true;
 946    }
 947    ~ClassFieldMapCacheMark() {
 948      JvmtiCachedClassFieldMap::clear_cache();
 949      _is_active = false;
 950    }
 951    static bool is_active() { return _is_active; }
 952 };
 953 
 954 bool ClassFieldMapCacheMark::_is_active;
 955 
 956 
 957 // record that the given instanceKlass is caching a field map
 958 void JvmtiCachedClassFieldMap::add_to_class_list(instanceKlass* ik) {
 959   if (_class_list == NULL) {
 960     _class_list = new (ResourceObj::C_HEAP) GrowableArray<instanceKlass*>(initial_class_count, true);
 961   }
 962   _class_list->push(ik);
 963 }
 964 
 965 // returns the instance field map for the given object
 966 // (returns field map cached by the instanceKlass if possible)
 967 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) {
 968   assert(Thread::current()->is_VM_thread(), "must be VMThread");
 969   assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
 970 
 971   klassOop k = obj->klass();
 972   instanceKlass* ik = instanceKlass::cast(k);
 973 
 974   // return cached map if possible
 975   JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
 976   if (cached_map != NULL) {
 977     assert(cached_map->field_map() != NULL, "missing field list");
 978     return cached_map->field_map();
 979   } else {
 980     ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj);
 981     cached_map = new JvmtiCachedClassFieldMap(field_map);
 982     ik->set_jvmti_cached_class_field_map(cached_map);
 983     add_to_class_list(ik);
 984     return field_map;
 985   }
 986 }
 987 
 988 // remove the fields maps cached from all instanceKlasses
 989 void JvmtiCachedClassFieldMap::clear_cache() {
 990   assert(Thread::current()->is_VM_thread(), "must be VMThread");
 991   if (_class_list != NULL) {
 992     for (int i = 0; i < _class_list->length(); i++) {
 993       instanceKlass* ik = _class_list->at(i);
 994       JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
 995       assert(cached_map != NULL, "should not be NULL");
 996       ik->set_jvmti_cached_class_field_map(NULL);
 997       delete cached_map;  // deletes the encapsulated field map
 998     }
 999     delete _class_list;
1000     _class_list = NULL;
1001   }
1002 }
1003 
1004 // returns the number of ClassFieldMap cached by instanceKlasses
1005 int JvmtiCachedClassFieldMap::cached_field_map_count() {
1006   return (_class_list == NULL) ? 0 : _class_list->length();
1007 }
1008 
1009 // helper function to indicate if an object is filtered by its tag or class tag
1010 static inline bool is_filtered_by_heap_filter(jlong obj_tag,
1011                                               jlong klass_tag,
1012                                               int heap_filter) {
1013   // apply the heap filter
1014   if (obj_tag != 0) {
1015     // filter out tagged objects
1016     if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
1017   } else {
1018     // filter out untagged objects
1019     if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
1020   }
1021   if (klass_tag != 0) {
1022     // filter out objects with tagged classes
1023     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
1024   } else {
1025     // filter out objects with untagged classes.
1026     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
1027   }
1028   return false;
1029 }
1030 
1031 // helper function to indicate if an object is filtered by a klass filter
1032 static inline bool is_filtered_by_klass_filter(oop obj, KlassHandle klass_filter) {
1033   if (!klass_filter.is_null()) {
1034     if (obj->klass() != klass_filter()) {
1035       return true;
1036     }
1037   }
1038   return false;
1039 }
1040 
1041 // helper function to tell if a field is a primitive field or not
1042 static inline bool is_primitive_field_type(char type) {
1043   return (type != 'L' && type != '[');
1044 }
1045 
1046 // helper function to copy the value from location addr to jvalue.
1047 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
1048   switch (value_type) {
1049     case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
1050     case JVMTI_PRIMITIVE_TYPE_BYTE    : { v->b = *(jbyte*)addr;    break; }
1051     case JVMTI_PRIMITIVE_TYPE_CHAR    : { v->c = *(jchar*)addr;    break; }
1052     case JVMTI_PRIMITIVE_TYPE_SHORT   : { v->s = *(jshort*)addr;   break; }
1053     case JVMTI_PRIMITIVE_TYPE_INT     : { v->i = *(jint*)addr;     break; }
1054     case JVMTI_PRIMITIVE_TYPE_LONG    : { v->j = *(jlong*)addr;    break; }
1055     case JVMTI_PRIMITIVE_TYPE_FLOAT   : { v->f = *(jfloat*)addr;   break; }
1056     case JVMTI_PRIMITIVE_TYPE_DOUBLE  : { v->d = *(jdouble*)addr;  break; }
1057     default: ShouldNotReachHere();
1058   }
1059 }
1060 
1061 // helper function to invoke string primitive value callback
1062 // returns visit control flags
1063 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
1064                                          CallbackWrapper* wrapper,
1065                                          oop str,
1066                                          void* user_data)
1067 {
1068   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
1069 
1070   // get the string value and length
1071   // (string value may be offset from the base)
1072   int s_len = java_lang_String::length(str);
1073   typeArrayOop s_value = java_lang_String::value(str);
1074   int s_offset = java_lang_String::offset(str);
1075   jchar* value;
1076   if (s_len > 0) {
1077     value = s_value->char_at_addr(s_offset);
1078   } else {
1079     value = (jchar*) s_value->base(T_CHAR);
1080   }
1081 
1082   // invoke the callback
1083   return (*cb)(wrapper->klass_tag(),
1084                wrapper->obj_size(),
1085                wrapper->obj_tag_p(),
1086                value,
1087                (jint)s_len,
1088                user_data);
1089 }
1090 
1091 // helper function to invoke string primitive value callback
1092 // returns visit control flags
1093 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
1094                                                   CallbackWrapper* wrapper,
1095                                                   oop obj,
1096                                                   void* user_data)
1097 {
1098   assert(obj->is_typeArray(), "not a primitive array");
1099 
1100   // get base address of first element
1101   typeArrayOop array = typeArrayOop(obj);
1102   BasicType type = typeArrayKlass::cast(array->klass())->element_type();
1103   void* elements = array->base(type);
1104 
1105   // jvmtiPrimitiveType is defined so this mapping is always correct
1106   jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
1107 
1108   return (*cb)(wrapper->klass_tag(),
1109                wrapper->obj_size(),
1110                wrapper->obj_tag_p(),
1111                (jint)array->length(),
1112                elem_type,
1113                elements,
1114                user_data);
1115 }
1116 
1117 // helper function to invoke the primitive field callback for all static fields
1118 // of a given class
1119 static jint invoke_primitive_field_callback_for_static_fields
1120   (CallbackWrapper* wrapper,
1121    oop obj,
1122    jvmtiPrimitiveFieldCallback cb,
1123    void* user_data)
1124 {
1125   // for static fields only the index will be set
1126   static jvmtiHeapReferenceInfo reference_info = { 0 };
1127 
1128   assert(obj->klass() == SystemDictionary::Class_klass(), "not a class");
1129   if (java_lang_Class::is_primitive(obj)) {
1130     return 0;
1131   }
1132   klassOop k = java_lang_Class::as_klassOop(obj);
1133   Klass* klass = k->klass_part();
1134 
1135   // ignore classes for object and type arrays
1136   if (!klass->oop_is_instance()) {
1137     return 0;
1138   }
1139 
1140   // ignore classes which aren't linked yet
1141   instanceKlass* ik = instanceKlass::cast(k);
1142   if (!ik->is_linked()) {
1143     return 0;
1144   }
1145 
1146   // get the field map
1147   ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(k);
1148 
1149   // invoke the callback for each static primitive field
1150   for (int i=0; i<field_map->field_count(); i++) {
1151     ClassFieldDescriptor* field = field_map->field_at(i);
1152 
1153     // ignore non-primitive fields
1154     char type = field->field_type();
1155     if (!is_primitive_field_type(type)) {
1156       continue;
1157     }
1158     // one-to-one mapping
1159     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1160 
1161     // get offset and field value
1162     int offset = field->field_offset();
1163     address addr = (address)k + offset;
1164     jvalue value;
1165     copy_to_jvalue(&value, addr, value_type);
1166 
1167     // field index
1168     reference_info.field.index = field->field_index();
1169 
1170     // invoke the callback
1171     jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
1172                      &reference_info,
1173                      wrapper->klass_tag(),
1174                      wrapper->obj_tag_p(),
1175                      value,
1176                      value_type,
1177                      user_data);
1178     if (res & JVMTI_VISIT_ABORT) {
1179       delete field_map;
1180       return res;
1181     }
1182   }
1183 
1184   delete field_map;
1185   return 0;
1186 }
1187 
1188 // helper function to invoke the primitive field callback for all instance fields
1189 // of a given object
1190 static jint invoke_primitive_field_callback_for_instance_fields(
1191   CallbackWrapper* wrapper,
1192   oop obj,
1193   jvmtiPrimitiveFieldCallback cb,
1194   void* user_data)
1195 {
1196   // for instance fields only the index will be set
1197   static jvmtiHeapReferenceInfo reference_info = { 0 };
1198 
1199   // get the map of the instance fields
1200   ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj);
1201 
1202   // invoke the callback for each instance primitive field
1203   for (int i=0; i<fields->field_count(); i++) {
1204     ClassFieldDescriptor* field = fields->field_at(i);
1205 
1206     // ignore non-primitive fields
1207     char type = field->field_type();
1208     if (!is_primitive_field_type(type)) {
1209       continue;
1210     }
1211     // one-to-one mapping
1212     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1213 
1214     // get offset and field value
1215     int offset = field->field_offset();
1216     address addr = (address)obj + offset;
1217     jvalue value;
1218     copy_to_jvalue(&value, addr, value_type);
1219 
1220     // field index
1221     reference_info.field.index = field->field_index();
1222 
1223     // invoke the callback
1224     jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
1225                      &reference_info,
1226                      wrapper->klass_tag(),
1227                      wrapper->obj_tag_p(),
1228                      value,
1229                      value_type,
1230                      user_data);
1231     if (res & JVMTI_VISIT_ABORT) {
1232       return res;
1233     }
1234   }
1235   return 0;
1236 }
1237 
1238 
1239 // VM operation to iterate over all objects in the heap (both reachable
1240 // and unreachable)
1241 class VM_HeapIterateOperation: public VM_Operation {
1242  private:
1243   ObjectClosure* _blk;
1244  public:
1245   VM_HeapIterateOperation(ObjectClosure* blk) { _blk = blk; }
1246 
1247   VMOp_Type type() const { return VMOp_HeapIterateOperation; }
1248   void doit() {
1249     // allows class files maps to be cached during iteration
1250     ClassFieldMapCacheMark cm;
1251 
1252     // make sure that heap is parsable (fills TLABs with filler objects)
1253     Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
1254 
1255     // Verify heap before iteration - if the heap gets corrupted then
1256     // JVMTI's IterateOverHeap will crash.
1257     if (VerifyBeforeIteration) {
1258       Universe::verify();
1259     }
1260 
1261     // do the iteration
1262     // If this operation encounters a bad object when using CMS,
1263     // consider using safe_object_iterate() which avoids perm gen
1264     // objects that may contain bad references.
1265     Universe::heap()->object_iterate(_blk);
1266 
1267     // when sharing is enabled we must iterate over the shared spaces
1268     if (UseSharedSpaces) {
1269       GenCollectedHeap* gch = GenCollectedHeap::heap();
1270       CompactingPermGenGen* gen = (CompactingPermGenGen*)gch->perm_gen();
1271       gen->ro_space()->object_iterate(_blk);
1272       gen->rw_space()->object_iterate(_blk);
1273     }
1274   }
1275 
1276 };
1277 
1278 
1279 // An ObjectClosure used to support the deprecated IterateOverHeap and
1280 // IterateOverInstancesOfClass functions
1281 class IterateOverHeapObjectClosure: public ObjectClosure {
1282  private:
1283   JvmtiTagMap* _tag_map;
1284   KlassHandle _klass;
1285   jvmtiHeapObjectFilter _object_filter;
1286   jvmtiHeapObjectCallback _heap_object_callback;
1287   const void* _user_data;
1288 
1289   // accessors
1290   JvmtiTagMap* tag_map() const                    { return _tag_map; }
1291   jvmtiHeapObjectFilter object_filter() const     { return _object_filter; }
1292   jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
1293   KlassHandle klass() const                       { return _klass; }
1294   const void* user_data() const                   { return _user_data; }
1295 
1296   // indicates if iteration has been aborted
1297   bool _iteration_aborted;
1298   bool is_iteration_aborted() const               { return _iteration_aborted; }
1299   void set_iteration_aborted(bool aborted)        { _iteration_aborted = aborted; }
1300 
1301  public:
1302   IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
1303                                KlassHandle klass,
1304                                jvmtiHeapObjectFilter object_filter,
1305                                jvmtiHeapObjectCallback heap_object_callback,
1306                                const void* user_data) :
1307     _tag_map(tag_map),
1308     _klass(klass),
1309     _object_filter(object_filter),
1310     _heap_object_callback(heap_object_callback),
1311     _user_data(user_data),
1312     _iteration_aborted(false)
1313   {
1314   }
1315 
1316   void do_object(oop o);
1317 };
1318 
1319 // invoked for each object in the heap
1320 void IterateOverHeapObjectClosure::do_object(oop o) {
1321   // check if iteration has been halted
1322   if (is_iteration_aborted()) return;
1323 
1324   // ignore any objects that aren't visible to profiler
1325   if (!ServiceUtil::visible_oop(o)) return;
1326 
1327   // instanceof check when filtering by klass
1328   if (!klass().is_null() && !o->is_a(klass()())) {
1329     return;
1330   }
1331   // prepare for the calllback
1332   CallbackWrapper wrapper(tag_map(), o);
1333 
1334   // if the object is tagged and we're only interested in untagged objects
1335   // then don't invoke the callback. Similiarly, if the object is untagged
1336   // and we're only interested in tagged objects we skip the callback.
1337   if (wrapper.obj_tag() != 0) {
1338     if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
1339   } else {
1340     if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
1341   }
1342 
1343   // invoke the agent's callback
1344   jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
1345                                                        wrapper.obj_size(),
1346                                                        wrapper.obj_tag_p(),
1347                                                        (void*)user_data());
1348   if (control == JVMTI_ITERATION_ABORT) {
1349     set_iteration_aborted(true);
1350   }
1351 }
1352 
1353 // An ObjectClosure used to support the IterateThroughHeap function
1354 class IterateThroughHeapObjectClosure: public ObjectClosure {
1355  private:
1356   JvmtiTagMap* _tag_map;
1357   KlassHandle _klass;
1358   int _heap_filter;
1359   const jvmtiHeapCallbacks* _callbacks;
1360   const void* _user_data;
1361 
1362   // accessor functions
1363   JvmtiTagMap* tag_map() const                     { return _tag_map; }
1364   int heap_filter() const                          { return _heap_filter; }
1365   const jvmtiHeapCallbacks* callbacks() const      { return _callbacks; }
1366   KlassHandle klass() const                        { return _klass; }
1367   const void* user_data() const                    { return _user_data; }
1368 
1369   // indicates if the iteration has been aborted
1370   bool _iteration_aborted;
1371   bool is_iteration_aborted() const                { return _iteration_aborted; }
1372 
1373   // used to check the visit control flags. If the abort flag is set
1374   // then we set the iteration aborted flag so that the iteration completes
1375   // without processing any further objects
1376   bool check_flags_for_abort(jint flags) {
1377     bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
1378     if (is_abort) {
1379       _iteration_aborted = true;
1380     }
1381     return is_abort;
1382   }
1383 
1384  public:
1385   IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
1386                                   KlassHandle klass,
1387                                   int heap_filter,
1388                                   const jvmtiHeapCallbacks* heap_callbacks,
1389                                   const void* user_data) :
1390     _tag_map(tag_map),
1391     _klass(klass),
1392     _heap_filter(heap_filter),
1393     _callbacks(heap_callbacks),
1394     _user_data(user_data),
1395     _iteration_aborted(false)
1396   {
1397   }
1398 
1399   void do_object(oop o);
1400 };
1401 
1402 // invoked for each object in the heap
1403 void IterateThroughHeapObjectClosure::do_object(oop obj) {
1404   // check if iteration has been halted
1405   if (is_iteration_aborted()) return;
1406 
1407   // ignore any objects that aren't visible to profiler
1408   if (!ServiceUtil::visible_oop(obj)) return;
1409 
1410   // apply class filter
1411   if (is_filtered_by_klass_filter(obj, klass())) return;
1412 
1413   // prepare for callback
1414   CallbackWrapper wrapper(tag_map(), obj);
1415 
1416   // check if filtered by the heap filter
1417   if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
1418     return;
1419   }
1420 
1421   // for arrays we need the length, otherwise -1
1422   bool is_array = obj->is_array();
1423   int len = is_array ? arrayOop(obj)->length() : -1;
1424 
1425   // invoke the object callback (if callback is provided)
1426   if (callbacks()->heap_iteration_callback != NULL) {
1427     jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
1428     jint res = (*cb)(wrapper.klass_tag(),
1429                      wrapper.obj_size(),
1430                      wrapper.obj_tag_p(),
1431                      (jint)len,
1432                      (void*)user_data());
1433     if (check_flags_for_abort(res)) return;
1434   }
1435 
1436   // for objects and classes we report primitive fields if callback provided
1437   if (callbacks()->primitive_field_callback != NULL && obj->is_instance()) {
1438     jint res;
1439     jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
1440     if (obj->klass() == SystemDictionary::Class_klass()) {
1441       res = invoke_primitive_field_callback_for_static_fields(&wrapper,
1442                                                                     obj,
1443                                                                     cb,
1444                                                                     (void*)user_data());
1445     } else {
1446       res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
1447                                                                       obj,
1448                                                                       cb,
1449                                                                       (void*)user_data());
1450     }
1451     if (check_flags_for_abort(res)) return;
1452   }
1453 
1454   // string callback
1455   if (!is_array &&
1456       callbacks()->string_primitive_value_callback != NULL &&
1457       obj->klass() == SystemDictionary::String_klass()) {
1458     jint res = invoke_string_value_callback(
1459                 callbacks()->string_primitive_value_callback,
1460                 &wrapper,
1461                 obj,
1462                 (void*)user_data() );
1463     if (check_flags_for_abort(res)) return;
1464   }
1465 
1466   // array callback
1467   if (is_array &&
1468       callbacks()->array_primitive_value_callback != NULL &&
1469       obj->is_typeArray()) {
1470     jint res = invoke_array_primitive_value_callback(
1471                callbacks()->array_primitive_value_callback,
1472                &wrapper,
1473                obj,
1474                (void*)user_data() );
1475     if (check_flags_for_abort(res)) return;
1476   }
1477 };
1478 
1479 
1480 // Deprecated function to iterate over all objects in the heap
1481 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
1482                                     KlassHandle klass,
1483                                     jvmtiHeapObjectCallback heap_object_callback,
1484                                     const void* user_data)
1485 {
1486   MutexLocker ml(Heap_lock);
1487   IterateOverHeapObjectClosure blk(this,
1488                                    klass,
1489                                    object_filter,
1490                                    heap_object_callback,
1491                                    user_data);
1492   VM_HeapIterateOperation op(&blk);
1493   VMThread::execute(&op);
1494 }
1495 
1496 
1497 // Iterates over all objects in the heap
1498 void JvmtiTagMap::iterate_through_heap(jint heap_filter,
1499                                        KlassHandle klass,
1500                                        const jvmtiHeapCallbacks* callbacks,
1501                                        const void* user_data)
1502 {
1503   MutexLocker ml(Heap_lock);
1504   IterateThroughHeapObjectClosure blk(this,
1505                                       klass,
1506                                       heap_filter,
1507                                       callbacks,
1508                                       user_data);
1509   VM_HeapIterateOperation op(&blk);
1510   VMThread::execute(&op);
1511 }
1512 
1513 // support class for get_objects_with_tags
1514 
1515 class TagObjectCollector : public JvmtiTagHashmapEntryClosure {
1516  private:
1517   JvmtiEnv* _env;
1518   jlong* _tags;
1519   jint _tag_count;
1520 
1521   GrowableArray<jobject>* _object_results;  // collected objects (JNI weak refs)
1522   GrowableArray<uint64_t>* _tag_results;    // collected tags
1523 
1524  public:
1525   TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) {
1526     _env = env;
1527     _tags = (jlong*)tags;
1528     _tag_count = tag_count;
1529     _object_results = new (ResourceObj::C_HEAP) GrowableArray<jobject>(1,true);
1530     _tag_results = new (ResourceObj::C_HEAP) GrowableArray<uint64_t>(1,true);
1531   }
1532 
1533   ~TagObjectCollector() {
1534     delete _object_results;
1535     delete _tag_results;
1536   }
1537 
1538   // for each tagged object check if the tag value matches
1539   // - if it matches then we create a JNI local reference to the object
1540   // and record the reference and tag value.
1541   //
1542   void do_entry(JvmtiTagHashmapEntry* entry) {
1543     for (int i=0; i<_tag_count; i++) {
1544       if (_tags[i] == entry->tag()) {
1545         oop o = entry->object();
1546         assert(o != NULL, "sanity check");
1547 
1548         // the mirror is tagged
1549         if (o->is_klass()) {
1550           klassOop k = (klassOop)o;
1551           o = Klass::cast(k)->java_mirror();
1552         }
1553 
1554         jobject ref = JNIHandles::make_local(JavaThread::current(), o);
1555         _object_results->append(ref);
1556         _tag_results->append((uint64_t)entry->tag());
1557       }
1558     }
1559   }
1560 
1561   // return the results from the collection
1562   //
1563   jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1564     jvmtiError error;
1565     int count = _object_results->length();
1566     assert(count >= 0, "sanity check");
1567 
1568     // if object_result_ptr is not NULL then allocate the result and copy
1569     // in the object references.
1570     if (object_result_ptr != NULL) {
1571       error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
1572       if (error != JVMTI_ERROR_NONE) {
1573         return error;
1574       }
1575       for (int i=0; i<count; i++) {
1576         (*object_result_ptr)[i] = _object_results->at(i);
1577       }
1578     }
1579 
1580     // if tag_result_ptr is not NULL then allocate the result and copy
1581     // in the tag values.
1582     if (tag_result_ptr != NULL) {
1583       error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
1584       if (error != JVMTI_ERROR_NONE) {
1585         if (object_result_ptr != NULL) {
1586           _env->Deallocate((unsigned char*)object_result_ptr);
1587         }
1588         return error;
1589       }
1590       for (int i=0; i<count; i++) {
1591         (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
1592       }
1593     }
1594 
1595     *count_ptr = count;
1596     return JVMTI_ERROR_NONE;
1597   }
1598 };
1599 
1600 // return the list of objects with the specified tags
1601 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
1602   jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1603 
1604   TagObjectCollector collector(env(), tags, count);
1605   {
1606     // iterate over all tagged objects
1607     MutexLocker ml(lock());
1608     entry_iterate(&collector);
1609   }
1610   return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
1611 }
1612 
1613 
1614 // ObjectMarker is used to support the marking objects when walking the
1615 // heap.
1616 //
1617 // This implementation uses the existing mark bits in an object for
1618 // marking. Objects that are marked must later have their headers restored.
1619 // As most objects are unlocked and don't have their identity hash computed
1620 // we don't have to save their headers. Instead we save the headers that
1621 // are "interesting". Later when the headers are restored this implementation
1622 // restores all headers to their initial value and then restores the few
1623 // objects that had interesting headers.
1624 //
1625 // Future work: This implementation currently uses growable arrays to save
1626 // the oop and header of interesting objects. As an optimization we could
1627 // use the same technique as the GC and make use of the unused area
1628 // between top() and end().
1629 //
1630 
1631 // An ObjectClosure used to restore the mark bits of an object
1632 class RestoreMarksClosure : public ObjectClosure {
1633  public:
1634   void do_object(oop o) {
1635     if (o != NULL) {
1636       markOop mark = o->mark();
1637       if (mark->is_marked()) {
1638         o->init_mark();
1639       }
1640     }
1641   }
1642 };
1643 
1644 // ObjectMarker provides the mark and visited functions
1645 class ObjectMarker : AllStatic {
1646  private:
1647   // saved headers
1648   static GrowableArray<oop>* _saved_oop_stack;
1649   static GrowableArray<markOop>* _saved_mark_stack;
1650 
1651  public:
1652   static void init();                       // initialize
1653   static void done();                       // clean-up
1654 
1655   static inline void mark(oop o);           // mark an object
1656   static inline bool visited(oop o);        // check if object has been visited
1657 };
1658 
1659 GrowableArray<oop>* ObjectMarker::_saved_oop_stack = NULL;
1660 GrowableArray<markOop>* ObjectMarker::_saved_mark_stack = NULL;
1661 
1662 // initialize ObjectMarker - prepares for object marking
1663 void ObjectMarker::init() {
1664   assert(Thread::current()->is_VM_thread(), "must be VMThread");
1665 
1666   // prepare heap for iteration
1667   Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
1668 
1669   // create stacks for interesting headers
1670   _saved_mark_stack = new (ResourceObj::C_HEAP) GrowableArray<markOop>(4000, true);
1671   _saved_oop_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(4000, true);
1672 
1673   if (UseBiasedLocking) {
1674     BiasedLocking::preserve_marks();
1675   }
1676 }
1677 
1678 // Object marking is done so restore object headers
1679 void ObjectMarker::done() {
1680   // iterate over all objects and restore the mark bits to
1681   // their initial value
1682   RestoreMarksClosure blk;
1683   Universe::heap()->object_iterate(&blk);
1684 
1685   // When sharing is enabled we need to restore the headers of the objects
1686   // in the readwrite space too.
1687   if (UseSharedSpaces) {
1688     GenCollectedHeap* gch = GenCollectedHeap::heap();
1689     CompactingPermGenGen* gen = (CompactingPermGenGen*)gch->perm_gen();
1690     gen->rw_space()->object_iterate(&blk);
1691   }
1692 
1693   // now restore the interesting headers
1694   for (int i = 0; i < _saved_oop_stack->length(); i++) {
1695     oop o = _saved_oop_stack->at(i);
1696     markOop mark = _saved_mark_stack->at(i);
1697     o->set_mark(mark);
1698   }
1699 
1700   if (UseBiasedLocking) {
1701     BiasedLocking::restore_marks();
1702   }
1703 
1704   // free the stacks
1705   delete _saved_oop_stack;
1706   delete _saved_mark_stack;
1707 }
1708 
1709 // mark an object
1710 inline void ObjectMarker::mark(oop o) {
1711   assert(Universe::heap()->is_in(o), "sanity check");
1712   assert(!o->mark()->is_marked(), "should only mark an object once");
1713 
1714   // object's mark word
1715   markOop mark = o->mark();
1716 
1717   if (mark->must_be_preserved(o)) {
1718     _saved_mark_stack->push(mark);
1719     _saved_oop_stack->push(o);
1720   }
1721 
1722   // mark the object
1723   o->set_mark(markOopDesc::prototype()->set_marked());
1724 }
1725 
1726 // return true if object is marked
1727 inline bool ObjectMarker::visited(oop o) {
1728   return o->mark()->is_marked();
1729 }
1730 
1731 // Stack allocated class to help ensure that ObjectMarker is used
1732 // correctly. Constructor initializes ObjectMarker, destructor calls
1733 // ObjectMarker's done() function to restore object headers.
1734 class ObjectMarkerController : public StackObj {
1735  public:
1736   ObjectMarkerController() {
1737     ObjectMarker::init();
1738   }
1739   ~ObjectMarkerController() {
1740     ObjectMarker::done();
1741   }
1742 };
1743 
1744 
1745 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
1746 // (not performance critical as only used for roots)
1747 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
1748   switch (kind) {
1749     case JVMTI_HEAP_REFERENCE_JNI_GLOBAL:   return JVMTI_HEAP_ROOT_JNI_GLOBAL;
1750     case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
1751     case JVMTI_HEAP_REFERENCE_MONITOR:      return JVMTI_HEAP_ROOT_MONITOR;
1752     case JVMTI_HEAP_REFERENCE_STACK_LOCAL:  return JVMTI_HEAP_ROOT_STACK_LOCAL;
1753     case JVMTI_HEAP_REFERENCE_JNI_LOCAL:    return JVMTI_HEAP_ROOT_JNI_LOCAL;
1754     case JVMTI_HEAP_REFERENCE_THREAD:       return JVMTI_HEAP_ROOT_THREAD;
1755     case JVMTI_HEAP_REFERENCE_OTHER:        return JVMTI_HEAP_ROOT_OTHER;
1756     default: ShouldNotReachHere();          return JVMTI_HEAP_ROOT_OTHER;
1757   }
1758 }
1759 
1760 // Base class for all heap walk contexts. The base class maintains a flag
1761 // to indicate if the context is valid or not.
1762 class HeapWalkContext VALUE_OBJ_CLASS_SPEC {
1763  private:
1764   bool _valid;
1765  public:
1766   HeapWalkContext(bool valid)                   { _valid = valid; }
1767   void invalidate()                             { _valid = false; }
1768   bool is_valid() const                         { return _valid; }
1769 };
1770 
1771 // A basic heap walk context for the deprecated heap walking functions.
1772 // The context for a basic heap walk are the callbacks and fields used by
1773 // the referrer caching scheme.
1774 class BasicHeapWalkContext: public HeapWalkContext {
1775  private:
1776   jvmtiHeapRootCallback _heap_root_callback;
1777   jvmtiStackReferenceCallback _stack_ref_callback;
1778   jvmtiObjectReferenceCallback _object_ref_callback;
1779 
1780   // used for caching
1781   oop _last_referrer;
1782   jlong _last_referrer_tag;
1783 
1784  public:
1785   BasicHeapWalkContext() : HeapWalkContext(false) { }
1786 
1787   BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
1788                        jvmtiStackReferenceCallback stack_ref_callback,
1789                        jvmtiObjectReferenceCallback object_ref_callback) :
1790     HeapWalkContext(true),
1791     _heap_root_callback(heap_root_callback),
1792     _stack_ref_callback(stack_ref_callback),
1793     _object_ref_callback(object_ref_callback),
1794     _last_referrer(NULL),
1795     _last_referrer_tag(0) {
1796   }
1797 
1798   // accessors
1799   jvmtiHeapRootCallback heap_root_callback() const         { return _heap_root_callback; }
1800   jvmtiStackReferenceCallback stack_ref_callback() const   { return _stack_ref_callback; }
1801   jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback;  }
1802 
1803   oop last_referrer() const               { return _last_referrer; }
1804   void set_last_referrer(oop referrer)    { _last_referrer = referrer; }
1805   jlong last_referrer_tag() const         { return _last_referrer_tag; }
1806   void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
1807 };
1808 
1809 // The advanced heap walk context for the FollowReferences functions.
1810 // The context is the callbacks, and the fields used for filtering.
1811 class AdvancedHeapWalkContext: public HeapWalkContext {
1812  private:
1813   jint _heap_filter;
1814   KlassHandle _klass_filter;
1815   const jvmtiHeapCallbacks* _heap_callbacks;
1816 
1817  public:
1818   AdvancedHeapWalkContext() : HeapWalkContext(false) { }
1819 
1820   AdvancedHeapWalkContext(jint heap_filter,
1821                            KlassHandle klass_filter,
1822                            const jvmtiHeapCallbacks* heap_callbacks) :
1823     HeapWalkContext(true),
1824     _heap_filter(heap_filter),
1825     _klass_filter(klass_filter),
1826     _heap_callbacks(heap_callbacks) {
1827   }
1828 
1829   // accessors
1830   jint heap_filter() const         { return _heap_filter; }
1831   KlassHandle klass_filter() const { return _klass_filter; }
1832 
1833   const jvmtiHeapReferenceCallback heap_reference_callback() const {
1834     return _heap_callbacks->heap_reference_callback;
1835   };
1836   const jvmtiPrimitiveFieldCallback primitive_field_callback() const {
1837     return _heap_callbacks->primitive_field_callback;
1838   }
1839   const jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
1840     return _heap_callbacks->array_primitive_value_callback;
1841   }
1842   const jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
1843     return _heap_callbacks->string_primitive_value_callback;
1844   }
1845 };
1846 
1847 // The CallbackInvoker is a class with static functions that the heap walk can call
1848 // into to invoke callbacks. It works in one of two modes. The "basic" mode is
1849 // used for the deprecated IterateOverReachableObjects functions. The "advanced"
1850 // mode is for the newer FollowReferences function which supports a lot of
1851 // additional callbacks.
1852 class CallbackInvoker : AllStatic {
1853  private:
1854   // heap walk styles
1855   enum { basic, advanced };
1856   static int _heap_walk_type;
1857   static bool is_basic_heap_walk()           { return _heap_walk_type == basic; }
1858   static bool is_advanced_heap_walk()        { return _heap_walk_type == advanced; }
1859 
1860   // context for basic style heap walk
1861   static BasicHeapWalkContext _basic_context;
1862   static BasicHeapWalkContext* basic_context() {
1863     assert(_basic_context.is_valid(), "invalid");
1864     return &_basic_context;
1865   }
1866 
1867   // context for advanced style heap walk
1868   static AdvancedHeapWalkContext _advanced_context;
1869   static AdvancedHeapWalkContext* advanced_context() {
1870     assert(_advanced_context.is_valid(), "invalid");
1871     return &_advanced_context;
1872   }
1873 
1874   // context needed for all heap walks
1875   static JvmtiTagMap* _tag_map;
1876   static const void* _user_data;
1877   static GrowableArray<oop>* _visit_stack;
1878 
1879   // accessors
1880   static JvmtiTagMap* tag_map()                        { return _tag_map; }
1881   static const void* user_data()                       { return _user_data; }
1882   static GrowableArray<oop>* visit_stack()             { return _visit_stack; }
1883 
1884   // if the object hasn't been visited then push it onto the visit stack
1885   // so that it will be visited later
1886   static inline bool check_for_visit(oop obj) {
1887     if (!ObjectMarker::visited(obj)) visit_stack()->push(obj);
1888     return true;
1889   }
1890 
1891   // invoke basic style callbacks
1892   static inline bool invoke_basic_heap_root_callback
1893     (jvmtiHeapRootKind root_kind, oop obj);
1894   static inline bool invoke_basic_stack_ref_callback
1895     (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
1896      int slot, oop obj);
1897   static inline bool invoke_basic_object_reference_callback
1898     (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index);
1899 
1900   // invoke advanced style callbacks
1901   static inline bool invoke_advanced_heap_root_callback
1902     (jvmtiHeapReferenceKind ref_kind, oop obj);
1903   static inline bool invoke_advanced_stack_ref_callback
1904     (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
1905      jmethodID method, jlocation bci, jint slot, oop obj);
1906   static inline bool invoke_advanced_object_reference_callback
1907     (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index);
1908 
1909   // used to report the value of primitive fields
1910   static inline bool report_primitive_field
1911     (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type);
1912 
1913  public:
1914   // initialize for basic mode
1915   static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1916                                              GrowableArray<oop>* visit_stack,
1917                                              const void* user_data,
1918                                              BasicHeapWalkContext context);
1919 
1920   // initialize for advanced mode
1921   static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1922                                                 GrowableArray<oop>* visit_stack,
1923                                                 const void* user_data,
1924                                                 AdvancedHeapWalkContext context);
1925 
1926    // functions to report roots
1927   static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o);
1928   static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
1929     jmethodID m, oop o);
1930   static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
1931     jmethodID method, jlocation bci, jint slot, oop o);
1932 
1933   // functions to report references
1934   static inline bool report_array_element_reference(oop referrer, oop referree, jint index);
1935   static inline bool report_class_reference(oop referrer, oop referree);
1936   static inline bool report_class_loader_reference(oop referrer, oop referree);
1937   static inline bool report_signers_reference(oop referrer, oop referree);
1938   static inline bool report_protection_domain_reference(oop referrer, oop referree);
1939   static inline bool report_superclass_reference(oop referrer, oop referree);
1940   static inline bool report_interface_reference(oop referrer, oop referree);
1941   static inline bool report_static_field_reference(oop referrer, oop referree, jint slot);
1942   static inline bool report_field_reference(oop referrer, oop referree, jint slot);
1943   static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index);
1944   static inline bool report_primitive_array_values(oop array);
1945   static inline bool report_string_value(oop str);
1946   static inline bool report_primitive_instance_field(oop o, jint index, address value, char type);
1947   static inline bool report_primitive_static_field(oop o, jint index, address value, char type);
1948 };
1949 
1950 // statics
1951 int CallbackInvoker::_heap_walk_type;
1952 BasicHeapWalkContext CallbackInvoker::_basic_context;
1953 AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
1954 JvmtiTagMap* CallbackInvoker::_tag_map;
1955 const void* CallbackInvoker::_user_data;
1956 GrowableArray<oop>* CallbackInvoker::_visit_stack;
1957 
1958 // initialize for basic heap walk (IterateOverReachableObjects et al)
1959 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1960                                                      GrowableArray<oop>* visit_stack,
1961                                                      const void* user_data,
1962                                                      BasicHeapWalkContext context) {
1963   _tag_map = tag_map;
1964   _visit_stack = visit_stack;
1965   _user_data = user_data;
1966   _basic_context = context;
1967   _advanced_context.invalidate();       // will trigger assertion if used
1968   _heap_walk_type = basic;
1969 }
1970 
1971 // initialize for advanced heap walk (FollowReferences)
1972 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1973                                                         GrowableArray<oop>* visit_stack,
1974                                                         const void* user_data,
1975                                                         AdvancedHeapWalkContext context) {
1976   _tag_map = tag_map;
1977   _visit_stack = visit_stack;
1978   _user_data = user_data;
1979   _advanced_context = context;
1980   _basic_context.invalidate();      // will trigger assertion if used
1981   _heap_walk_type = advanced;
1982 }
1983 
1984 
1985 // invoke basic style heap root callback
1986 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) {
1987   assert(ServiceUtil::visible_oop(obj), "checking");
1988 
1989   // if we heap roots should be reported
1990   jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
1991   if (cb == NULL) {
1992     return check_for_visit(obj);
1993   }
1994 
1995   CallbackWrapper wrapper(tag_map(), obj);
1996   jvmtiIterationControl control = (*cb)(root_kind,
1997                                         wrapper.klass_tag(),
1998                                         wrapper.obj_size(),
1999                                         wrapper.obj_tag_p(),
2000                                         (void*)user_data());
2001   // push root to visit stack when following references
2002   if (control == JVMTI_ITERATION_CONTINUE &&
2003       basic_context()->object_ref_callback() != NULL) {
2004     visit_stack()->push(obj);
2005   }
2006   return control != JVMTI_ITERATION_ABORT;
2007 }
2008 
2009 // invoke basic style stack ref callback
2010 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
2011                                                              jlong thread_tag,
2012                                                              jint depth,
2013                                                              jmethodID method,
2014                                                              jint slot,
2015                                                              oop obj) {
2016   assert(ServiceUtil::visible_oop(obj), "checking");
2017 
2018   // if we stack refs should be reported
2019   jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
2020   if (cb == NULL) {
2021     return check_for_visit(obj);
2022   }
2023 
2024   CallbackWrapper wrapper(tag_map(), obj);
2025   jvmtiIterationControl control = (*cb)(root_kind,
2026                                         wrapper.klass_tag(),
2027                                         wrapper.obj_size(),
2028                                         wrapper.obj_tag_p(),
2029                                         thread_tag,
2030                                         depth,
2031                                         method,
2032                                         slot,
2033                                         (void*)user_data());
2034   // push root to visit stack when following references
2035   if (control == JVMTI_ITERATION_CONTINUE &&
2036       basic_context()->object_ref_callback() != NULL) {
2037     visit_stack()->push(obj);
2038   }
2039   return control != JVMTI_ITERATION_ABORT;
2040 }
2041 
2042 // invoke basic style object reference callback
2043 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
2044                                                                     oop referrer,
2045                                                                     oop referree,
2046                                                                     jint index) {
2047 
2048   assert(ServiceUtil::visible_oop(referrer), "checking");
2049   assert(ServiceUtil::visible_oop(referree), "checking");
2050 
2051   BasicHeapWalkContext* context = basic_context();
2052 
2053   // callback requires the referrer's tag. If it's the same referrer
2054   // as the last call then we use the cached value.
2055   jlong referrer_tag;
2056   if (referrer == context->last_referrer()) {
2057     referrer_tag = context->last_referrer_tag();
2058   } else {
2059     referrer_tag = tag_for(tag_map(), klassOop_if_java_lang_Class(referrer));
2060   }
2061 
2062   // do the callback
2063   CallbackWrapper wrapper(tag_map(), referree);
2064   jvmtiObjectReferenceCallback cb = context->object_ref_callback();
2065   jvmtiIterationControl control = (*cb)(ref_kind,
2066                                         wrapper.klass_tag(),
2067                                         wrapper.obj_size(),
2068                                         wrapper.obj_tag_p(),
2069                                         referrer_tag,
2070                                         index,
2071                                         (void*)user_data());
2072 
2073   // record referrer and referrer tag. For self-references record the
2074   // tag value from the callback as this might differ from referrer_tag.
2075   context->set_last_referrer(referrer);
2076   if (referrer == referree) {
2077     context->set_last_referrer_tag(*wrapper.obj_tag_p());
2078   } else {
2079     context->set_last_referrer_tag(referrer_tag);
2080   }
2081 
2082   if (control == JVMTI_ITERATION_CONTINUE) {
2083     return check_for_visit(referree);
2084   } else {
2085     return control != JVMTI_ITERATION_ABORT;
2086   }
2087 }
2088 
2089 // invoke advanced style heap root callback
2090 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
2091                                                                 oop obj) {
2092   assert(ServiceUtil::visible_oop(obj), "checking");
2093 
2094   AdvancedHeapWalkContext* context = advanced_context();
2095 
2096   // check that callback is provided
2097   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2098   if (cb == NULL) {
2099     return check_for_visit(obj);
2100   }
2101 
2102   // apply class filter
2103   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2104     return check_for_visit(obj);
2105   }
2106 
2107   // setup the callback wrapper
2108   CallbackWrapper wrapper(tag_map(), obj);
2109 
2110   // apply tag filter
2111   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2112                                  wrapper.klass_tag(),
2113                                  context->heap_filter())) {
2114     return check_for_visit(obj);
2115   }
2116 
2117   // for arrays we need the length, otherwise -1
2118   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2119 
2120   // invoke the callback
2121   jint res  = (*cb)(ref_kind,
2122                     NULL, // referrer info
2123                     wrapper.klass_tag(),
2124                     0,    // referrer_class_tag is 0 for heap root
2125                     wrapper.obj_size(),
2126                     wrapper.obj_tag_p(),
2127                     NULL, // referrer_tag_p
2128                     len,
2129                     (void*)user_data());
2130   if (res & JVMTI_VISIT_ABORT) {
2131     return false;// referrer class tag
2132   }
2133   if (res & JVMTI_VISIT_OBJECTS) {
2134     check_for_visit(obj);
2135   }
2136   return true;
2137 }
2138 
2139 // report a reference from a thread stack to an object
2140 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
2141                                                                 jlong thread_tag,
2142                                                                 jlong tid,
2143                                                                 int depth,
2144                                                                 jmethodID method,
2145                                                                 jlocation bci,
2146                                                                 jint slot,
2147                                                                 oop obj) {
2148   assert(ServiceUtil::visible_oop(obj), "checking");
2149 
2150   AdvancedHeapWalkContext* context = advanced_context();
2151 
2152   // check that callback is provider
2153   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2154   if (cb == NULL) {
2155     return check_for_visit(obj);
2156   }
2157 
2158   // apply class filter
2159   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2160     return check_for_visit(obj);
2161   }
2162 
2163   // setup the callback wrapper
2164   CallbackWrapper wrapper(tag_map(), obj);
2165 
2166   // apply tag filter
2167   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2168                                  wrapper.klass_tag(),
2169                                  context->heap_filter())) {
2170     return check_for_visit(obj);
2171   }
2172 
2173   // setup the referrer info
2174   jvmtiHeapReferenceInfo reference_info;
2175   reference_info.stack_local.thread_tag = thread_tag;
2176   reference_info.stack_local.thread_id = tid;
2177   reference_info.stack_local.depth = depth;
2178   reference_info.stack_local.method = method;
2179   reference_info.stack_local.location = bci;
2180   reference_info.stack_local.slot = slot;
2181 
2182   // for arrays we need the length, otherwise -1
2183   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2184 
2185   // call into the agent
2186   int res = (*cb)(ref_kind,
2187                   &reference_info,
2188                   wrapper.klass_tag(),
2189                   0,    // referrer_class_tag is 0 for heap root (stack)
2190                   wrapper.obj_size(),
2191                   wrapper.obj_tag_p(),
2192                   NULL, // referrer_tag is 0 for root
2193                   len,
2194                   (void*)user_data());
2195 
2196   if (res & JVMTI_VISIT_ABORT) {
2197     return false;
2198   }
2199   if (res & JVMTI_VISIT_OBJECTS) {
2200     check_for_visit(obj);
2201   }
2202   return true;
2203 }
2204 
2205 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
2206 // only for ref_kinds defined by the JVM TI spec. Otherwise, NULL is passed.
2207 #define REF_INFO_MASK  ((1 << JVMTI_HEAP_REFERENCE_FIELD)         \
2208                       | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD)  \
2209                       | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
2210                       | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
2211                       | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL)   \
2212                       | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
2213 
2214 // invoke the object reference callback to report a reference
2215 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
2216                                                                        oop referrer,
2217                                                                        oop obj,
2218                                                                        jint index)
2219 {
2220   // field index is only valid field in reference_info
2221   static jvmtiHeapReferenceInfo reference_info = { 0 };
2222 
2223   assert(ServiceUtil::visible_oop(referrer), "checking");
2224   assert(ServiceUtil::visible_oop(obj), "checking");
2225 
2226   AdvancedHeapWalkContext* context = advanced_context();
2227 
2228   // check that callback is provider
2229   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2230   if (cb == NULL) {
2231     return check_for_visit(obj);
2232   }
2233 
2234   // apply class filter
2235   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2236     return check_for_visit(obj);
2237   }
2238 
2239   // setup the callback wrapper
2240   TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
2241 
2242   // apply tag filter
2243   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2244                                  wrapper.klass_tag(),
2245                                  context->heap_filter())) {
2246     return check_for_visit(obj);
2247   }
2248 
2249   // field index is only valid field in reference_info
2250   reference_info.field.index = index;
2251 
2252   // for arrays we need the length, otherwise -1
2253   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2254 
2255   // invoke the callback
2256   int res = (*cb)(ref_kind,
2257                   (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : NULL,
2258                   wrapper.klass_tag(),
2259                   wrapper.referrer_klass_tag(),
2260                   wrapper.obj_size(),
2261                   wrapper.obj_tag_p(),
2262                   wrapper.referrer_tag_p(),
2263                   len,
2264                   (void*)user_data());
2265 
2266   if (res & JVMTI_VISIT_ABORT) {
2267     return false;
2268   }
2269   if (res & JVMTI_VISIT_OBJECTS) {
2270     check_for_visit(obj);
2271   }
2272   return true;
2273 }
2274 
2275 // report a "simple root"
2276 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) {
2277   assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
2278          kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
2279   assert(ServiceUtil::visible_oop(obj), "checking");
2280 
2281   if (is_basic_heap_walk()) {
2282     // map to old style root kind
2283     jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
2284     return invoke_basic_heap_root_callback(root_kind, obj);
2285   } else {
2286     assert(is_advanced_heap_walk(), "wrong heap walk type");
2287     return invoke_advanced_heap_root_callback(kind, obj);
2288   }
2289 }
2290 
2291 
2292 // invoke the primitive array values
2293 inline bool CallbackInvoker::report_primitive_array_values(oop obj) {
2294   assert(obj->is_typeArray(), "not a primitive array");
2295 
2296   AdvancedHeapWalkContext* context = advanced_context();
2297   assert(context->array_primitive_value_callback() != NULL, "no callback");
2298 
2299   // apply class filter
2300   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2301     return true;
2302   }
2303 
2304   CallbackWrapper wrapper(tag_map(), obj);
2305 
2306   // apply tag filter
2307   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2308                                  wrapper.klass_tag(),
2309                                  context->heap_filter())) {
2310     return true;
2311   }
2312 
2313   // invoke the callback
2314   int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
2315                                                   &wrapper,
2316                                                   obj,
2317                                                   (void*)user_data());
2318   return (!(res & JVMTI_VISIT_ABORT));
2319 }
2320 
2321 // invoke the string value callback
2322 inline bool CallbackInvoker::report_string_value(oop str) {
2323   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
2324 
2325   AdvancedHeapWalkContext* context = advanced_context();
2326   assert(context->string_primitive_value_callback() != NULL, "no callback");
2327 
2328   // apply class filter
2329   if (is_filtered_by_klass_filter(str, context->klass_filter())) {
2330     return true;
2331   }
2332 
2333   CallbackWrapper wrapper(tag_map(), str);
2334 
2335   // apply tag filter
2336   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2337                                  wrapper.klass_tag(),
2338                                  context->heap_filter())) {
2339     return true;
2340   }
2341 
2342   // invoke the callback
2343   int res = invoke_string_value_callback(context->string_primitive_value_callback(),
2344                                          &wrapper,
2345                                          str,
2346                                          (void*)user_data());
2347   return (!(res & JVMTI_VISIT_ABORT));
2348 }
2349 
2350 // invoke the primitive field callback
2351 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
2352                                                     oop obj,
2353                                                     jint index,
2354                                                     address addr,
2355                                                     char type)
2356 {
2357   // for primitive fields only the index will be set
2358   static jvmtiHeapReferenceInfo reference_info = { 0 };
2359 
2360   AdvancedHeapWalkContext* context = advanced_context();
2361   assert(context->primitive_field_callback() != NULL, "no callback");
2362 
2363   // apply class filter
2364   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2365     return true;
2366   }
2367 
2368   CallbackWrapper wrapper(tag_map(), obj);
2369 
2370   // apply tag filter
2371   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2372                                  wrapper.klass_tag(),
2373                                  context->heap_filter())) {
2374     return true;
2375   }
2376 
2377   // the field index in the referrer
2378   reference_info.field.index = index;
2379 
2380   // map the type
2381   jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
2382 
2383   // setup the jvalue
2384   jvalue value;
2385   copy_to_jvalue(&value, addr, value_type);
2386 
2387   jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
2388   int res = (*cb)(ref_kind,
2389                   &reference_info,
2390                   wrapper.klass_tag(),
2391                   wrapper.obj_tag_p(),
2392                   value,
2393                   value_type,
2394                   (void*)user_data());
2395   return (!(res & JVMTI_VISIT_ABORT));
2396 }
2397 
2398 
2399 // instance field
2400 inline bool CallbackInvoker::report_primitive_instance_field(oop obj,
2401                                                              jint index,
2402                                                              address value,
2403                                                              char type) {
2404   return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
2405                                 obj,
2406                                 index,
2407                                 value,
2408                                 type);
2409 }
2410 
2411 // static field
2412 inline bool CallbackInvoker::report_primitive_static_field(oop obj,
2413                                                            jint index,
2414                                                            address value,
2415                                                            char type) {
2416   return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
2417                                 obj,
2418                                 index,
2419                                 value,
2420                                 type);
2421 }
2422 
2423 // report a JNI local (root object) to the profiler
2424 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) {
2425   if (is_basic_heap_walk()) {
2426     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
2427                                            thread_tag,
2428                                            depth,
2429                                            m,
2430                                            -1,
2431                                            obj);
2432   } else {
2433     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
2434                                               thread_tag, tid,
2435                                               depth,
2436                                               m,
2437                                               (jlocation)-1,
2438                                               -1,
2439                                               obj);
2440   }
2441 }
2442 
2443 
2444 // report a local (stack reference, root object)
2445 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
2446                                                    jlong tid,
2447                                                    jint depth,
2448                                                    jmethodID method,
2449                                                    jlocation bci,
2450                                                    jint slot,
2451                                                    oop obj) {
2452   if (is_basic_heap_walk()) {
2453     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
2454                                            thread_tag,
2455                                            depth,
2456                                            method,
2457                                            slot,
2458                                            obj);
2459   } else {
2460     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
2461                                               thread_tag,
2462                                               tid,
2463                                               depth,
2464                                               method,
2465                                               bci,
2466                                               slot,
2467                                               obj);
2468   }
2469 }
2470 
2471 // report an object referencing a class.
2472 inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) {
2473   if (is_basic_heap_walk()) {
2474     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2475   } else {
2476     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
2477   }
2478 }
2479 
2480 // report a class referencing its class loader.
2481 inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) {
2482   if (is_basic_heap_walk()) {
2483     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2484   } else {
2485     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2486   }
2487 }
2488 
2489 // report a class referencing its signers.
2490 inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) {
2491   if (is_basic_heap_walk()) {
2492     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
2493   } else {
2494     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
2495   }
2496 }
2497 
2498 // report a class referencing its protection domain..
2499 inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) {
2500   if (is_basic_heap_walk()) {
2501     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2502   } else {
2503     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2504   }
2505 }
2506 
2507 // report a class referencing its superclass.
2508 inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) {
2509   if (is_basic_heap_walk()) {
2510     // Send this to be consistent with past implementation
2511     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2512   } else {
2513     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
2514   }
2515 }
2516 
2517 // report a class referencing one of its interfaces.
2518 inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) {
2519   if (is_basic_heap_walk()) {
2520     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
2521   } else {
2522     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
2523   }
2524 }
2525 
2526 // report a class referencing one of its static fields.
2527 inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) {
2528   if (is_basic_heap_walk()) {
2529     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2530   } else {
2531     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2532   }
2533 }
2534 
2535 // report an array referencing an element object
2536 inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) {
2537   if (is_basic_heap_walk()) {
2538     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2539   } else {
2540     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2541   }
2542 }
2543 
2544 // report an object referencing an instance field object
2545 inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) {
2546   if (is_basic_heap_walk()) {
2547     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
2548   } else {
2549     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
2550   }
2551 }
2552 
2553 // report an array referencing an element object
2554 inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) {
2555   if (is_basic_heap_walk()) {
2556     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2557   } else {
2558     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2559   }
2560 }
2561 
2562 // A supporting closure used to process simple roots
2563 class SimpleRootsClosure : public OopClosure {
2564  private:
2565   jvmtiHeapReferenceKind _kind;
2566   bool _continue;
2567 
2568   jvmtiHeapReferenceKind root_kind()    { return _kind; }
2569 
2570  public:
2571   void set_kind(jvmtiHeapReferenceKind kind) {
2572     _kind = kind;
2573     _continue = true;
2574   }
2575 
2576   inline bool stopped() {
2577     return !_continue;
2578   }
2579 
2580   void do_oop(oop* obj_p) {
2581     // iteration has terminated
2582     if (stopped()) {
2583       return;
2584     }
2585 
2586     // ignore null or deleted handles
2587     oop o = *obj_p;
2588     if (o == NULL || o == JNIHandles::deleted_handle()) {
2589       return;
2590     }
2591 
2592     jvmtiHeapReferenceKind kind = root_kind();
2593 
2594     // many roots are Klasses so we use the java mirror
2595     if (o->is_klass()) {
2596       klassOop k = (klassOop)o;
2597       o = Klass::cast(k)->java_mirror();
2598       if (o == NULL) {
2599         // Classes without mirrors don't correspond to real Java
2600         // classes so just ignore them.
2601         return;
2602       }
2603     } else {
2604 
2605       // SystemDictionary::always_strong_oops_do reports the application
2606       // class loader as a root. We want this root to be reported as
2607       // a root kind of "OTHER" rather than "SYSTEM_CLASS".
2608       if (o->is_instance() && root_kind() == JVMTI_HEAP_REFERENCE_SYSTEM_CLASS) {
2609         kind = JVMTI_HEAP_REFERENCE_OTHER;
2610       }
2611     }
2612 
2613     // some objects are ignored - in the case of simple
2614     // roots it's mostly Symbol*s that we are skipping
2615     // here.
2616     if (!ServiceUtil::visible_oop(o)) {
2617       return;
2618     }
2619 
2620     // invoke the callback
2621     _continue = CallbackInvoker::report_simple_root(kind, o);
2622 
2623   }
2624   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2625 };
2626 
2627 // A supporting closure used to process JNI locals
2628 class JNILocalRootsClosure : public OopClosure {
2629  private:
2630   jlong _thread_tag;
2631   jlong _tid;
2632   jint _depth;
2633   jmethodID _method;
2634   bool _continue;
2635  public:
2636   void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
2637     _thread_tag = thread_tag;
2638     _tid = tid;
2639     _depth = depth;
2640     _method = method;
2641     _continue = true;
2642   }
2643 
2644   inline bool stopped() {
2645     return !_continue;
2646   }
2647 
2648   void do_oop(oop* obj_p) {
2649     // iteration has terminated
2650     if (stopped()) {
2651       return;
2652     }
2653 
2654     // ignore null or deleted handles
2655     oop o = *obj_p;
2656     if (o == NULL || o == JNIHandles::deleted_handle()) {
2657       return;
2658     }
2659 
2660     if (!ServiceUtil::visible_oop(o)) {
2661       return;
2662     }
2663 
2664     // invoke the callback
2665     _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
2666   }
2667   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2668 };
2669 
2670 
2671 // A VM operation to iterate over objects that are reachable from
2672 // a set of roots or an initial object.
2673 //
2674 // For VM_HeapWalkOperation the set of roots used is :-
2675 //
2676 // - All JNI global references
2677 // - All inflated monitors
2678 // - All classes loaded by the boot class loader (or all classes
2679 //     in the event that class unloading is disabled)
2680 // - All java threads
2681 // - For each java thread then all locals and JNI local references
2682 //      on the thread's execution stack
2683 // - All visible/explainable objects from Universes::oops_do
2684 //
2685 class VM_HeapWalkOperation: public VM_Operation {
2686  private:
2687   enum {
2688     initial_visit_stack_size = 4000
2689   };
2690 
2691   bool _is_advanced_heap_walk;                      // indicates FollowReferences
2692   JvmtiTagMap* _tag_map;
2693   Handle _initial_object;
2694   GrowableArray<oop>* _visit_stack;                 // the visit stack
2695 
2696   bool _collecting_heap_roots;                      // are we collecting roots
2697   bool _following_object_refs;                      // are we following object references
2698 
2699   bool _reporting_primitive_fields;                 // optional reporting
2700   bool _reporting_primitive_array_values;
2701   bool _reporting_string_values;
2702 
2703   GrowableArray<oop>* create_visit_stack() {
2704     return new (ResourceObj::C_HEAP) GrowableArray<oop>(initial_visit_stack_size, true);
2705   }
2706 
2707   // accessors
2708   bool is_advanced_heap_walk() const               { return _is_advanced_heap_walk; }
2709   JvmtiTagMap* tag_map() const                     { return _tag_map; }
2710   Handle initial_object() const                    { return _initial_object; }
2711 
2712   bool is_following_references() const             { return _following_object_refs; }
2713 
2714   bool is_reporting_primitive_fields()  const      { return _reporting_primitive_fields; }
2715   bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
2716   bool is_reporting_string_values() const          { return _reporting_string_values; }
2717 
2718   GrowableArray<oop>* visit_stack() const          { return _visit_stack; }
2719 
2720   // iterate over the various object types
2721   inline bool iterate_over_array(oop o);
2722   inline bool iterate_over_type_array(oop o);
2723   inline bool iterate_over_class(klassOop o);
2724   inline bool iterate_over_object(oop o);
2725 
2726   // root collection
2727   inline bool collect_simple_roots();
2728   inline bool collect_stack_roots();
2729   inline bool collect_stack_roots(JavaThread* java_thread, JNILocalRootsClosure* blk);
2730 
2731   // visit an object
2732   inline bool visit(oop o);
2733 
2734  public:
2735   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2736                        Handle initial_object,
2737                        BasicHeapWalkContext callbacks,
2738                        const void* user_data);
2739 
2740   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2741                        Handle initial_object,
2742                        AdvancedHeapWalkContext callbacks,
2743                        const void* user_data);
2744 
2745   ~VM_HeapWalkOperation();
2746 
2747   VMOp_Type type() const { return VMOp_HeapWalkOperation; }
2748   void doit();
2749 };
2750 
2751 
2752 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2753                                            Handle initial_object,
2754                                            BasicHeapWalkContext callbacks,
2755                                            const void* user_data) {
2756   _is_advanced_heap_walk = false;
2757   _tag_map = tag_map;
2758   _initial_object = initial_object;
2759   _following_object_refs = (callbacks.object_ref_callback() != NULL);
2760   _reporting_primitive_fields = false;
2761   _reporting_primitive_array_values = false;
2762   _reporting_string_values = false;
2763   _visit_stack = create_visit_stack();
2764 
2765 
2766   CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks);
2767 }
2768 
2769 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2770                                            Handle initial_object,
2771                                            AdvancedHeapWalkContext callbacks,
2772                                            const void* user_data) {
2773   _is_advanced_heap_walk = true;
2774   _tag_map = tag_map;
2775   _initial_object = initial_object;
2776   _following_object_refs = true;
2777   _reporting_primitive_fields = (callbacks.primitive_field_callback() != NULL);;
2778   _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != NULL);;
2779   _reporting_string_values = (callbacks.string_primitive_value_callback() != NULL);;
2780   _visit_stack = create_visit_stack();
2781 
2782   CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks);
2783 }
2784 
2785 VM_HeapWalkOperation::~VM_HeapWalkOperation() {
2786   if (_following_object_refs) {
2787     assert(_visit_stack != NULL, "checking");
2788     delete _visit_stack;
2789     _visit_stack = NULL;
2790   }
2791 }
2792 
2793 // an array references its class and has a reference to
2794 // each element in the array
2795 inline bool VM_HeapWalkOperation::iterate_over_array(oop o) {
2796   objArrayOop array = objArrayOop(o);
2797   if (array->klass() == Universe::systemObjArrayKlassObj()) {
2798     // filtered out
2799     return true;
2800   }
2801 
2802   // array reference to its class
2803   oop mirror = objArrayKlass::cast(array->klass())->java_mirror();
2804   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2805     return false;
2806   }
2807 
2808   // iterate over the array and report each reference to a
2809   // non-null element
2810   for (int index=0; index<array->length(); index++) {
2811     oop elem = array->obj_at(index);
2812     if (elem == NULL) {
2813       continue;
2814     }
2815 
2816     // report the array reference o[index] = elem
2817     if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
2818       return false;
2819     }
2820   }
2821   return true;
2822 }
2823 
2824 // a type array references its class
2825 inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) {
2826   klassOop k = o->klass();
2827   oop mirror = Klass::cast(k)->java_mirror();
2828   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2829     return false;
2830   }
2831 
2832   // report the array contents if required
2833   if (is_reporting_primitive_array_values()) {
2834     if (!CallbackInvoker::report_primitive_array_values(o)) {
2835       return false;
2836     }
2837   }
2838   return true;
2839 }
2840 
2841 // verify that a static oop field is in range
2842 static inline bool verify_static_oop(instanceKlass* ik,
2843                                      oop mirror, int offset) {
2844   address obj_p = (address)mirror + offset;
2845   address start = (address)instanceMirrorKlass::start_of_static_fields(mirror);
2846   address end = start + (java_lang_Class::static_oop_field_count(mirror) * heapOopSize);
2847   assert(end >= start, "sanity check");
2848 
2849   if (obj_p >= start && obj_p < end) {
2850     return true;
2851   } else {
2852     return false;
2853   }
2854 }
2855 
2856 // a class references its super class, interfaces, class loader, ...
2857 // and finally its static fields
2858 inline bool VM_HeapWalkOperation::iterate_over_class(klassOop k) {
2859   int i;
2860   Klass* klass = klassOop(k)->klass_part();
2861 
2862   if (klass->oop_is_instance()) {
2863     instanceKlass* ik = instanceKlass::cast(k);
2864 
2865     // ignore the class if it's has been initialized yet
2866     if (!ik->is_linked()) {
2867       return true;
2868     }
2869 
2870     // get the java mirror
2871     oop mirror = klass->java_mirror();
2872 
2873     // super (only if something more interesting than java.lang.Object)
2874     klassOop java_super = ik->java_super();
2875     if (java_super != NULL && java_super != SystemDictionary::Object_klass()) {
2876       oop super = Klass::cast(java_super)->java_mirror();
2877       if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
2878         return false;
2879       }
2880     }
2881 
2882     // class loader
2883     oop cl = ik->class_loader();
2884     if (cl != NULL) {
2885       if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
2886         return false;
2887       }
2888     }
2889 
2890     // protection domain
2891     oop pd = ik->protection_domain();
2892     if (pd != NULL) {
2893       if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
2894         return false;
2895       }
2896     }
2897 
2898     // signers
2899     oop signers = ik->signers();
2900     if (signers != NULL) {
2901       if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
2902         return false;
2903       }
2904     }
2905 
2906     // references from the constant pool
2907     {
2908       const constantPoolOop pool = ik->constants();
2909       for (int i = 1; i < pool->length(); i++) {
2910         constantTag tag = pool->tag_at(i).value();
2911         if (tag.is_string() || tag.is_klass()) {
2912           oop entry;
2913           if (tag.is_string()) {
2914             entry = pool->resolved_string_at(i);
2915             assert(java_lang_String::is_instance(entry), "must be string");
2916           } else {
2917             entry = Klass::cast(pool->resolved_klass_at(i))->java_mirror();
2918           }
2919           if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
2920             return false;
2921           }
2922         }
2923       }
2924     }
2925 
2926     // interfaces
2927     // (These will already have been reported as references from the constant pool
2928     //  but are specified by IterateOverReachableObjects and must be reported).
2929     objArrayOop interfaces = ik->local_interfaces();
2930     for (i = 0; i < interfaces->length(); i++) {
2931       oop interf = Klass::cast((klassOop)interfaces->obj_at(i))->java_mirror();
2932       if (interf == NULL) {
2933         continue;
2934       }
2935       if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
2936         return false;
2937       }
2938     }
2939 
2940     // iterate over the static fields
2941 
2942     ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(k);
2943     for (i=0; i<field_map->field_count(); i++) {
2944       ClassFieldDescriptor* field = field_map->field_at(i);
2945       char type = field->field_type();
2946       if (!is_primitive_field_type(type)) {
2947         oop fld_o = mirror->obj_field(field->field_offset());
2948         assert(verify_static_oop(ik, mirror, field->field_offset()), "sanity check");
2949         if (fld_o != NULL) {
2950           int slot = field->field_index();
2951           if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
2952             delete field_map;
2953             return false;
2954           }
2955         }
2956       } else {
2957          if (is_reporting_primitive_fields()) {
2958            address addr = (address)mirror + field->field_offset();
2959            int slot = field->field_index();
2960            if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
2961              delete field_map;
2962              return false;
2963           }
2964         }
2965       }
2966     }
2967     delete field_map;
2968 
2969     return true;
2970   }
2971 
2972   return true;
2973 }
2974 
2975 // an object references a class and its instance fields
2976 // (static fields are ignored here as we report these as
2977 // references from the class).
2978 inline bool VM_HeapWalkOperation::iterate_over_object(oop o) {
2979   // reference to the class
2980   if (!CallbackInvoker::report_class_reference(o, Klass::cast(o->klass())->java_mirror())) {
2981     return false;
2982   }
2983 
2984   // iterate over instance fields
2985   ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o);
2986   for (int i=0; i<field_map->field_count(); i++) {
2987     ClassFieldDescriptor* field = field_map->field_at(i);
2988     char type = field->field_type();
2989     if (!is_primitive_field_type(type)) {
2990       oop fld_o = o->obj_field(field->field_offset());
2991       if (fld_o != NULL) {
2992         // reflection code may have a reference to a klassOop.
2993         // - see sun.reflect.UnsafeStaticFieldAccessorImpl and sun.misc.Unsafe
2994         if (fld_o->is_klass()) {
2995           klassOop k = (klassOop)fld_o;
2996           fld_o = Klass::cast(k)->java_mirror();
2997         }
2998         int slot = field->field_index();
2999         if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
3000           return false;
3001         }
3002       }
3003     } else {
3004       if (is_reporting_primitive_fields()) {
3005         // primitive instance field
3006         address addr = (address)o + field->field_offset();
3007         int slot = field->field_index();
3008         if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
3009           return false;
3010         }
3011       }
3012     }
3013   }
3014 
3015   // if the object is a java.lang.String
3016   if (is_reporting_string_values() &&
3017       o->klass() == SystemDictionary::String_klass()) {
3018     if (!CallbackInvoker::report_string_value(o)) {
3019       return false;
3020     }
3021   }
3022   return true;
3023 }
3024 
3025 
3026 // collects all simple (non-stack) roots.
3027 // if there's a heap root callback provided then the callback is
3028 // invoked for each simple root.
3029 // if an object reference callback is provided then all simple
3030 // roots are pushed onto the marking stack so that they can be
3031 // processed later
3032 //
3033 inline bool VM_HeapWalkOperation::collect_simple_roots() {
3034   SimpleRootsClosure blk;
3035 
3036   // JNI globals
3037   blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
3038   JNIHandles::oops_do(&blk);
3039   if (blk.stopped()) {
3040     return false;
3041   }
3042 
3043   // Preloaded classes and loader from the system dictionary
3044   blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
3045   SystemDictionary::always_strong_oops_do(&blk);
3046   if (blk.stopped()) {
3047     return false;
3048   }
3049 
3050   // Inflated monitors
3051   blk.set_kind(JVMTI_HEAP_REFERENCE_MONITOR);
3052   ObjectSynchronizer::oops_do(&blk);
3053   if (blk.stopped()) {
3054     return false;
3055   }
3056 
3057   // Threads
3058   for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
3059     oop threadObj = thread->threadObj();
3060     if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
3061       bool cont = CallbackInvoker::report_simple_root(JVMTI_HEAP_REFERENCE_THREAD, threadObj);
3062       if (!cont) {
3063         return false;
3064       }
3065     }
3066   }
3067 
3068   // Other kinds of roots maintained by HotSpot
3069   // Many of these won't be visible but others (such as instances of important
3070   // exceptions) will be visible.
3071   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
3072   Universe::oops_do(&blk);
3073 
3074   // If there are any non-perm roots in the code cache, visit them.
3075   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
3076   CodeBlobToOopClosure look_in_blobs(&blk, false);
3077   CodeCache::scavenge_root_nmethods_do(&look_in_blobs);
3078 
3079   return true;
3080 }
3081 
3082 // Walk the stack of a given thread and find all references (locals
3083 // and JNI calls) and report these as stack references
3084 inline bool VM_HeapWalkOperation::collect_stack_roots(JavaThread* java_thread,
3085                                                       JNILocalRootsClosure* blk)
3086 {
3087   oop threadObj = java_thread->threadObj();
3088   assert(threadObj != NULL, "sanity check");
3089 
3090   // only need to get the thread's tag once per thread
3091   jlong thread_tag = tag_for(_tag_map, threadObj);
3092 
3093   // also need the thread id
3094   jlong tid = java_lang_Thread::thread_id(threadObj);
3095 
3096 
3097   if (java_thread->has_last_Java_frame()) {
3098 
3099     // vframes are resource allocated
3100     Thread* current_thread = Thread::current();
3101     ResourceMark rm(current_thread);
3102     HandleMark hm(current_thread);
3103 
3104     RegisterMap reg_map(java_thread);
3105     frame f = java_thread->last_frame();
3106     vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
3107 
3108     bool is_top_frame = true;
3109     int depth = 0;
3110     frame* last_entry_frame = NULL;
3111 
3112     while (vf != NULL) {
3113       if (vf->is_java_frame()) {
3114 
3115         // java frame (interpreted, compiled, ...)
3116         javaVFrame *jvf = javaVFrame::cast(vf);
3117 
3118         // the jmethodID
3119         jmethodID method = jvf->method()->jmethod_id();
3120 
3121         if (!(jvf->method()->is_native())) {
3122           jlocation bci = (jlocation)jvf->bci();
3123           StackValueCollection* locals = jvf->locals();
3124           for (int slot=0; slot<locals->size(); slot++) {
3125             if (locals->at(slot)->type() == T_OBJECT) {
3126               oop o = locals->obj_at(slot)();
3127               if (o == NULL) {
3128                 continue;
3129               }
3130 
3131               // stack reference
3132               if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
3133                                                    bci, slot, o)) {
3134                 return false;
3135               }
3136             }
3137           }
3138         } else {
3139           blk->set_context(thread_tag, tid, depth, method);
3140           if (is_top_frame) {
3141             // JNI locals for the top frame.
3142             java_thread->active_handles()->oops_do(blk);
3143           } else {
3144             if (last_entry_frame != NULL) {
3145               // JNI locals for the entry frame
3146               assert(last_entry_frame->is_entry_frame(), "checking");
3147               last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(blk);
3148             }
3149           }
3150         }
3151         last_entry_frame = NULL;
3152         depth++;
3153       } else {
3154         // externalVFrame - for an entry frame then we report the JNI locals
3155         // when we find the corresponding javaVFrame
3156         frame* fr = vf->frame_pointer();
3157         assert(fr != NULL, "sanity check");
3158         if (fr->is_entry_frame()) {
3159           last_entry_frame = fr;
3160         }
3161       }
3162 
3163       vf = vf->sender();
3164       is_top_frame = false;
3165     }
3166   } else {
3167     // no last java frame but there may be JNI locals
3168     blk->set_context(thread_tag, tid, 0, (jmethodID)NULL);
3169     java_thread->active_handles()->oops_do(blk);
3170   }
3171   return true;
3172 }
3173 
3174 
3175 // collects all stack roots - for each thread it walks the execution
3176 // stack to find all references and local JNI refs.
3177 inline bool VM_HeapWalkOperation::collect_stack_roots() {
3178   JNILocalRootsClosure blk;
3179   for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
3180     oop threadObj = thread->threadObj();
3181     if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
3182       if (!collect_stack_roots(thread, &blk)) {
3183         return false;
3184       }
3185     }
3186   }
3187   return true;
3188 }
3189 
3190 // visit an object
3191 // first mark the object as visited
3192 // second get all the outbound references from this object (in other words, all
3193 // the objects referenced by this object).
3194 //
3195 bool VM_HeapWalkOperation::visit(oop o) {
3196   // mark object as visited
3197   assert(!ObjectMarker::visited(o), "can't visit same object more than once");
3198   ObjectMarker::mark(o);
3199 
3200   // instance
3201   if (o->is_instance()) {
3202     if (o->klass() == SystemDictionary::Class_klass()) {
3203       o = klassOop_if_java_lang_Class(o);
3204       if (o->is_klass()) {
3205         // a java.lang.Class
3206         return iterate_over_class(klassOop(o));
3207       }
3208     } else {
3209       return iterate_over_object(o);
3210     }
3211   }
3212 
3213   // object array
3214   if (o->is_objArray()) {
3215     return iterate_over_array(o);
3216   }
3217 
3218   // type array
3219   if (o->is_typeArray()) {
3220     return iterate_over_type_array(o);
3221   }
3222 
3223   return true;
3224 }
3225 
3226 void VM_HeapWalkOperation::doit() {
3227   ResourceMark rm;
3228   ObjectMarkerController marker;
3229   ClassFieldMapCacheMark cm;
3230 
3231   assert(visit_stack()->is_empty(), "visit stack must be empty");
3232 
3233   // the heap walk starts with an initial object or the heap roots
3234   if (initial_object().is_null()) {
3235     if (!collect_simple_roots()) return;
3236     if (!collect_stack_roots()) return;
3237   } else {
3238     visit_stack()->push(initial_object()());
3239   }
3240 
3241   // object references required
3242   if (is_following_references()) {
3243 
3244     // visit each object until all reachable objects have been
3245     // visited or the callback asked to terminate the iteration.
3246     while (!visit_stack()->is_empty()) {
3247       oop o = visit_stack()->pop();
3248       if (!ObjectMarker::visited(o)) {
3249         if (!visit(o)) {
3250           break;
3251         }
3252       }
3253     }
3254   }
3255 }
3256 
3257 // iterate over all objects that are reachable from a set of roots
3258 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
3259                                                  jvmtiStackReferenceCallback stack_ref_callback,
3260                                                  jvmtiObjectReferenceCallback object_ref_callback,
3261                                                  const void* user_data) {
3262   MutexLocker ml(Heap_lock);
3263   BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
3264   VM_HeapWalkOperation op(this, Handle(), context, user_data);
3265   VMThread::execute(&op);
3266 }
3267 
3268 // iterate over all objects that are reachable from a given object
3269 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
3270                                                              jvmtiObjectReferenceCallback object_ref_callback,
3271                                                              const void* user_data) {
3272   oop obj = JNIHandles::resolve(object);
3273   Handle initial_object(Thread::current(), obj);
3274 
3275   MutexLocker ml(Heap_lock);
3276   BasicHeapWalkContext context(NULL, NULL, object_ref_callback);
3277   VM_HeapWalkOperation op(this, initial_object, context, user_data);
3278   VMThread::execute(&op);
3279 }
3280 
3281 // follow references from an initial object or the GC roots
3282 void JvmtiTagMap::follow_references(jint heap_filter,
3283                                     KlassHandle klass,
3284                                     jobject object,
3285                                     const jvmtiHeapCallbacks* callbacks,
3286                                     const void* user_data)
3287 {
3288   oop obj = JNIHandles::resolve(object);
3289   Handle initial_object(Thread::current(), obj);
3290 
3291   MutexLocker ml(Heap_lock);
3292   AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
3293   VM_HeapWalkOperation op(this, initial_object, context, user_data);
3294   VMThread::execute(&op);
3295 }
3296 
3297 
3298 void JvmtiTagMap::weak_oops_do(BoolObjectClosure* is_alive, OopClosure* f) {
3299   // No locks during VM bring-up (0 threads) and no safepoints after main
3300   // thread creation and before VMThread creation (1 thread); initial GC
3301   // verification can happen in that window which gets to here.
3302   assert(Threads::number_of_threads() <= 1 ||
3303          SafepointSynchronize::is_at_safepoint(),
3304          "must be executed at a safepoint");
3305   if (JvmtiEnv::environments_might_exist()) {
3306     JvmtiEnvIterator it;
3307     for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
3308       JvmtiTagMap* tag_map = env->tag_map();
3309       if (tag_map != NULL && !tag_map->is_empty()) {
3310         tag_map->do_weak_oops(is_alive, f);
3311       }
3312     }
3313   }
3314 }
3315 
3316 void JvmtiTagMap::do_weak_oops(BoolObjectClosure* is_alive, OopClosure* f) {
3317 
3318   // does this environment have the OBJECT_FREE event enabled
3319   bool post_object_free = env()->is_enabled(JVMTI_EVENT_OBJECT_FREE);
3320 
3321   // counters used for trace message
3322   int freed = 0;
3323   int moved = 0;
3324 
3325   JvmtiTagHashmap* hashmap = this->hashmap();
3326 
3327   // reenable sizing (if disabled)
3328   hashmap->set_resizing_enabled(true);
3329 
3330   // if the hashmap is empty then we can skip it
3331   if (hashmap->_entry_count == 0) {
3332     return;
3333   }
3334 
3335   // now iterate through each entry in the table
3336 
3337   JvmtiTagHashmapEntry** table = hashmap->table();
3338   int size = hashmap->size();
3339 
3340   JvmtiTagHashmapEntry* delayed_add = NULL;
3341 
3342   for (int pos = 0; pos < size; ++pos) {
3343     JvmtiTagHashmapEntry* entry = table[pos];
3344     JvmtiTagHashmapEntry* prev = NULL;
3345 
3346     while (entry != NULL) {
3347       JvmtiTagHashmapEntry* next = entry->next();
3348 
3349       oop* obj = entry->object_addr();
3350 
3351       // has object been GC'ed
3352       if (!is_alive->do_object_b(entry->object())) {
3353         // grab the tag
3354         jlong tag = entry->tag();
3355         guarantee(tag != 0, "checking");
3356 
3357         // remove GC'ed entry from hashmap and return the
3358         // entry to the free list
3359         hashmap->remove(prev, pos, entry);
3360         destroy_entry(entry);
3361 
3362         // post the event to the profiler
3363         if (post_object_free) {
3364           JvmtiExport::post_object_free(env(), tag);
3365         }
3366 
3367         ++freed;
3368       } else {
3369         f->do_oop(entry->object_addr());
3370         oop new_oop = entry->object();
3371 
3372         // if the object has moved then re-hash it and move its
3373         // entry to its new location.
3374         unsigned int new_pos = JvmtiTagHashmap::hash(new_oop, size);
3375         if (new_pos != (unsigned int)pos) {
3376           if (prev == NULL) {
3377             table[pos] = next;
3378           } else {
3379             prev->set_next(next);
3380           }
3381           if (new_pos < (unsigned int)pos) {
3382             entry->set_next(table[new_pos]);
3383             table[new_pos] = entry;
3384           } else {
3385             // Delay adding this entry to it's new position as we'd end up
3386             // hitting it again during this iteration.
3387             entry->set_next(delayed_add);
3388             delayed_add = entry;
3389           }
3390           moved++;
3391         } else {
3392           // object didn't move
3393           prev = entry;
3394         }
3395       }
3396 
3397       entry = next;
3398     }
3399   }
3400 
3401   // Re-add all the entries which were kept aside
3402   while (delayed_add != NULL) {
3403     JvmtiTagHashmapEntry* next = delayed_add->next();
3404     unsigned int pos = JvmtiTagHashmap::hash(delayed_add->object(), size);
3405     delayed_add->set_next(table[pos]);
3406     table[pos] = delayed_add;
3407     delayed_add = next;
3408   }
3409 
3410   // stats
3411   if (TraceJVMTIObjectTagging) {
3412     int post_total = hashmap->_entry_count;
3413     int pre_total = post_total + freed;
3414 
3415     tty->print_cr("(%d->%d, %d freed, %d total moves)",
3416         pre_total, post_total, freed, moved);
3417   }
3418 }