1 /*
   2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_x86.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "oops/compiledICHolderOop.hpp"
  33 #include "prims/jvmtiRedefineClassesTrace.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/vframeArray.hpp"
  36 #include "vmreg_x86.inline.hpp"
  37 #ifdef COMPILER1
  38 #include "c1/c1_Runtime1.hpp"
  39 #endif
  40 #ifdef COMPILER2
  41 #include "opto/runtime.hpp"
  42 #endif
  43 
  44 #define __ masm->
  45 
  46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  47 
  48 class RegisterSaver {
  49   enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
  50   // Capture info about frame layout
  51   enum layout {
  52                 fpu_state_off = 0,
  53                 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
  54                 st0_off, st0H_off,
  55                 st1_off, st1H_off,
  56                 st2_off, st2H_off,
  57                 st3_off, st3H_off,
  58                 st4_off, st4H_off,
  59                 st5_off, st5H_off,
  60                 st6_off, st6H_off,
  61                 st7_off, st7H_off,
  62 
  63                 xmm0_off, xmm0H_off,
  64                 xmm1_off, xmm1H_off,
  65                 xmm2_off, xmm2H_off,
  66                 xmm3_off, xmm3H_off,
  67                 xmm4_off, xmm4H_off,
  68                 xmm5_off, xmm5H_off,
  69                 xmm6_off, xmm6H_off,
  70                 xmm7_off, xmm7H_off,
  71                 flags_off,
  72                 rdi_off,
  73                 rsi_off,
  74                 ignore_off,  // extra copy of rbp,
  75                 rsp_off,
  76                 rbx_off,
  77                 rdx_off,
  78                 rcx_off,
  79                 rax_off,
  80                 // The frame sender code expects that rbp will be in the "natural" place and
  81                 // will override any oopMap setting for it. We must therefore force the layout
  82                 // so that it agrees with the frame sender code.
  83                 rbp_off,
  84                 return_off,      // slot for return address
  85                 reg_save_size };
  86 
  87 
  88   public:
  89 
  90   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
  91                                      int* total_frame_words, bool verify_fpu = true);
  92   static void restore_live_registers(MacroAssembler* masm);
  93 
  94   static int rax_offset() { return rax_off; }
  95   static int rbx_offset() { return rbx_off; }
  96 
  97   // Offsets into the register save area
  98   // Used by deoptimization when it is managing result register
  99   // values on its own
 100 
 101   static int raxOffset(void) { return rax_off; }
 102   static int rdxOffset(void) { return rdx_off; }
 103   static int rbxOffset(void) { return rbx_off; }
 104   static int xmm0Offset(void) { return xmm0_off; }
 105   // This really returns a slot in the fp save area, which one is not important
 106   static int fpResultOffset(void) { return st0_off; }
 107 
 108   // During deoptimization only the result register need to be restored
 109   // all the other values have already been extracted.
 110 
 111   static void restore_result_registers(MacroAssembler* masm);
 112 
 113 };
 114 
 115 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 116                                            int* total_frame_words, bool verify_fpu) {
 117 
 118   int frame_size_in_bytes =  (reg_save_size + additional_frame_words) * wordSize;
 119   int frame_words = frame_size_in_bytes / wordSize;
 120   *total_frame_words = frame_words;
 121 
 122   assert(FPUStateSizeInWords == 27, "update stack layout");
 123 
 124   // save registers, fpu state, and flags
 125   // We assume caller has already has return address slot on the stack
 126   // We push epb twice in this sequence because we want the real rbp,
 127   // to be under the return like a normal enter and we want to use pusha
 128   // We push by hand instead of pusing push
 129   __ enter();
 130   __ pusha();
 131   __ pushf();
 132   __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
 133   __ push_FPU_state();          // Save FPU state & init
 134 
 135   if (verify_fpu) {
 136     // Some stubs may have non standard FPU control word settings so
 137     // only check and reset the value when it required to be the
 138     // standard value.  The safepoint blob in particular can be used
 139     // in methods which are using the 24 bit control word for
 140     // optimized float math.
 141 
 142 #ifdef ASSERT
 143     // Make sure the control word has the expected value
 144     Label ok;
 145     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 146     __ jccb(Assembler::equal, ok);
 147     __ stop("corrupted control word detected");
 148     __ bind(ok);
 149 #endif
 150 
 151     // Reset the control word to guard against exceptions being unmasked
 152     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 153     // into the on stack copy and then reload that to make sure that the
 154     // current and future values are correct.
 155     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 156   }
 157 
 158   __ frstor(Address(rsp, 0));
 159   if (!verify_fpu) {
 160     // Set the control word so that exceptions are masked for the
 161     // following code.
 162     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 163   }
 164 
 165   // Save the FPU registers in de-opt-able form
 166 
 167   __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
 168   __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
 169   __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
 170   __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
 171   __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
 172   __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
 173   __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
 174   __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
 175 
 176   if( UseSSE == 1 ) {           // Save the XMM state
 177     __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
 178     __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
 179     __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
 180     __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
 181     __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
 182     __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
 183     __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
 184     __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
 185   } else if( UseSSE >= 2 ) {
 186     __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
 187     __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
 188     __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
 189     __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
 190     __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
 191     __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
 192     __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
 193     __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
 194   }
 195 
 196   // Set an oopmap for the call site.  This oopmap will map all
 197   // oop-registers and debug-info registers as callee-saved.  This
 198   // will allow deoptimization at this safepoint to find all possible
 199   // debug-info recordings, as well as let GC find all oops.
 200 
 201   OopMapSet *oop_maps = new OopMapSet();
 202   OopMap* map =  new OopMap( frame_words, 0 );
 203 
 204 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 205 
 206   map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
 207   map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
 208   map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
 209   map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
 210   // rbp, location is known implicitly, no oopMap
 211   map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
 212   map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
 213   map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
 214   map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
 215   map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
 216   map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
 217   map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
 218   map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
 219   map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
 220   map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
 221   map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
 222   map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
 223   map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
 224   map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
 225   map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
 226   map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
 227   map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
 228   map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
 229   // %%% This is really a waste but we'll keep things as they were for now
 230   if (true) {
 231 #define NEXTREG(x) (x)->as_VMReg()->next()
 232     map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
 233     map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
 234     map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
 235     map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
 236     map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
 237     map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
 238     map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
 239     map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
 240     map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
 241     map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
 242     map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
 243     map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
 244     map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
 245     map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
 246     map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
 247     map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
 248 #undef NEXTREG
 249 #undef STACK_OFFSET
 250   }
 251 
 252   return map;
 253 
 254 }
 255 
 256 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 257 
 258   // Recover XMM & FPU state
 259   if( UseSSE == 1 ) {
 260     __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
 261     __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
 262     __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
 263     __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
 264     __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
 265     __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
 266     __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
 267     __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
 268   } else if( UseSSE >= 2 ) {
 269     __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
 270     __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
 271     __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
 272     __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
 273     __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
 274     __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
 275     __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
 276     __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
 277   }
 278   __ pop_FPU_state();
 279   __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
 280 
 281   __ popf();
 282   __ popa();
 283   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 284   __ pop(rbp);
 285 
 286 }
 287 
 288 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 289 
 290   // Just restore result register. Only used by deoptimization. By
 291   // now any callee save register that needs to be restore to a c2
 292   // caller of the deoptee has been extracted into the vframeArray
 293   // and will be stuffed into the c2i adapter we create for later
 294   // restoration so only result registers need to be restored here.
 295   //
 296 
 297   __ frstor(Address(rsp, 0));      // Restore fpu state
 298 
 299   // Recover XMM & FPU state
 300   if( UseSSE == 1 ) {
 301     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 302   } else if( UseSSE >= 2 ) {
 303     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 304   }
 305   __ movptr(rax, Address(rsp, rax_off*wordSize));
 306   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 307   // Pop all of the register save are off the stack except the return address
 308   __ addptr(rsp, return_off * wordSize);
 309 }
 310 
 311 // The java_calling_convention describes stack locations as ideal slots on
 312 // a frame with no abi restrictions. Since we must observe abi restrictions
 313 // (like the placement of the register window) the slots must be biased by
 314 // the following value.
 315 static int reg2offset_in(VMReg r) {
 316   // Account for saved rbp, and return address
 317   // This should really be in_preserve_stack_slots
 318   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 319 }
 320 
 321 static int reg2offset_out(VMReg r) {
 322   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 323 }
 324 
 325 // ---------------------------------------------------------------------------
 326 // Read the array of BasicTypes from a signature, and compute where the
 327 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 328 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 329 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 330 // as framesizes are fixed.
 331 // VMRegImpl::stack0 refers to the first slot 0(sp).
 332 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 333 // up to RegisterImpl::number_of_registers) are the 32-bit
 334 // integer registers.
 335 
 336 // Pass first two oop/int args in registers ECX and EDX.
 337 // Pass first two float/double args in registers XMM0 and XMM1.
 338 // Doubles have precedence, so if you pass a mix of floats and doubles
 339 // the doubles will grab the registers before the floats will.
 340 
 341 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 342 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 343 // units regardless of build. Of course for i486 there is no 64 bit build
 344 
 345 
 346 // ---------------------------------------------------------------------------
 347 // The compiled Java calling convention.
 348 // Pass first two oop/int args in registers ECX and EDX.
 349 // Pass first two float/double args in registers XMM0 and XMM1.
 350 // Doubles have precedence, so if you pass a mix of floats and doubles
 351 // the doubles will grab the registers before the floats will.
 352 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 353                                            VMRegPair *regs,
 354                                            int total_args_passed,
 355                                            int is_outgoing) {
 356   uint    stack = 0;          // Starting stack position for args on stack
 357 
 358 
 359   // Pass first two oop/int args in registers ECX and EDX.
 360   uint reg_arg0 = 9999;
 361   uint reg_arg1 = 9999;
 362 
 363   // Pass first two float/double args in registers XMM0 and XMM1.
 364   // Doubles have precedence, so if you pass a mix of floats and doubles
 365   // the doubles will grab the registers before the floats will.
 366   // CNC - TURNED OFF FOR non-SSE.
 367   //       On Intel we have to round all doubles (and most floats) at
 368   //       call sites by storing to the stack in any case.
 369   // UseSSE=0 ==> Don't Use ==> 9999+0
 370   // UseSSE=1 ==> Floats only ==> 9999+1
 371   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 372   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 373   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 374   uint freg_arg0 = 9999+fargs;
 375   uint freg_arg1 = 9999+fargs;
 376 
 377   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 378   int i;
 379   for( i = 0; i < total_args_passed; i++) {
 380     if( sig_bt[i] == T_DOUBLE ) {
 381       // first 2 doubles go in registers
 382       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 383       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 384       else // Else double is passed low on the stack to be aligned.
 385         stack += 2;
 386     } else if( sig_bt[i] == T_LONG ) {
 387       stack += 2;
 388     }
 389   }
 390   int dstack = 0;             // Separate counter for placing doubles
 391 
 392   // Now pick where all else goes.
 393   for( i = 0; i < total_args_passed; i++) {
 394     // From the type and the argument number (count) compute the location
 395     switch( sig_bt[i] ) {
 396     case T_SHORT:
 397     case T_CHAR:
 398     case T_BYTE:
 399     case T_BOOLEAN:
 400     case T_INT:
 401     case T_ARRAY:
 402     case T_OBJECT:
 403     case T_ADDRESS:
 404       if( reg_arg0 == 9999 )  {
 405         reg_arg0 = i;
 406         regs[i].set1(rcx->as_VMReg());
 407       } else if( reg_arg1 == 9999 )  {
 408         reg_arg1 = i;
 409         regs[i].set1(rdx->as_VMReg());
 410       } else {
 411         regs[i].set1(VMRegImpl::stack2reg(stack++));
 412       }
 413       break;
 414     case T_FLOAT:
 415       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 416         freg_arg0 = i;
 417         regs[i].set1(xmm0->as_VMReg());
 418       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 419         freg_arg1 = i;
 420         regs[i].set1(xmm1->as_VMReg());
 421       } else {
 422         regs[i].set1(VMRegImpl::stack2reg(stack++));
 423       }
 424       break;
 425     case T_LONG:
 426       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 427       regs[i].set2(VMRegImpl::stack2reg(dstack));
 428       dstack += 2;
 429       break;
 430     case T_DOUBLE:
 431       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 432       if( freg_arg0 == (uint)i ) {
 433         regs[i].set2(xmm0->as_VMReg());
 434       } else if( freg_arg1 == (uint)i ) {
 435         regs[i].set2(xmm1->as_VMReg());
 436       } else {
 437         regs[i].set2(VMRegImpl::stack2reg(dstack));
 438         dstack += 2;
 439       }
 440       break;
 441     case T_VOID: regs[i].set_bad(); break;
 442       break;
 443     default:
 444       ShouldNotReachHere();
 445       break;
 446     }
 447   }
 448 
 449   // return value can be odd number of VMRegImpl stack slots make multiple of 2
 450   return round_to(stack, 2);
 451 }
 452 
 453 // Patch the callers callsite with entry to compiled code if it exists.
 454 static void patch_callers_callsite(MacroAssembler *masm) {
 455   Label L;
 456   __ verify_oop(rbx);
 457   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 458   __ jcc(Assembler::equal, L);
 459   // Schedule the branch target address early.
 460   // Call into the VM to patch the caller, then jump to compiled callee
 461   // rax, isn't live so capture return address while we easily can
 462   __ movptr(rax, Address(rsp, 0));
 463   __ pusha();
 464   __ pushf();
 465 
 466   if (UseSSE == 1) {
 467     __ subptr(rsp, 2*wordSize);
 468     __ movflt(Address(rsp, 0), xmm0);
 469     __ movflt(Address(rsp, wordSize), xmm1);
 470   }
 471   if (UseSSE >= 2) {
 472     __ subptr(rsp, 4*wordSize);
 473     __ movdbl(Address(rsp, 0), xmm0);
 474     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 475   }
 476 #ifdef COMPILER2
 477   // C2 may leave the stack dirty if not in SSE2+ mode
 478   if (UseSSE >= 2) {
 479     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 480   } else {
 481     __ empty_FPU_stack();
 482   }
 483 #endif /* COMPILER2 */
 484 
 485   // VM needs caller's callsite
 486   __ push(rax);
 487   // VM needs target method
 488   __ push(rbx);
 489   __ verify_oop(rbx);
 490   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 491   __ addptr(rsp, 2*wordSize);
 492 
 493   if (UseSSE == 1) {
 494     __ movflt(xmm0, Address(rsp, 0));
 495     __ movflt(xmm1, Address(rsp, wordSize));
 496     __ addptr(rsp, 2*wordSize);
 497   }
 498   if (UseSSE >= 2) {
 499     __ movdbl(xmm0, Address(rsp, 0));
 500     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 501     __ addptr(rsp, 4*wordSize);
 502   }
 503 
 504   __ popf();
 505   __ popa();
 506   __ bind(L);
 507 }
 508 
 509 
 510 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 511   int next_off = st_off - Interpreter::stackElementSize;
 512   __ movdbl(Address(rsp, next_off), r);
 513 }
 514 
 515 static void gen_c2i_adapter(MacroAssembler *masm,
 516                             int total_args_passed,
 517                             int comp_args_on_stack,
 518                             const BasicType *sig_bt,
 519                             const VMRegPair *regs,
 520                             Label& skip_fixup) {
 521   // Before we get into the guts of the C2I adapter, see if we should be here
 522   // at all.  We've come from compiled code and are attempting to jump to the
 523   // interpreter, which means the caller made a static call to get here
 524   // (vcalls always get a compiled target if there is one).  Check for a
 525   // compiled target.  If there is one, we need to patch the caller's call.
 526   patch_callers_callsite(masm);
 527 
 528   __ bind(skip_fixup);
 529 
 530 #ifdef COMPILER2
 531   // C2 may leave the stack dirty if not in SSE2+ mode
 532   if (UseSSE >= 2) {
 533     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 534   } else {
 535     __ empty_FPU_stack();
 536   }
 537 #endif /* COMPILER2 */
 538 
 539   // Since all args are passed on the stack, total_args_passed * interpreter_
 540   // stack_element_size  is the
 541   // space we need.
 542   int extraspace = total_args_passed * Interpreter::stackElementSize;
 543 
 544   // Get return address
 545   __ pop(rax);
 546 
 547   // set senderSP value
 548   __ movptr(rsi, rsp);
 549 
 550   __ subptr(rsp, extraspace);
 551 
 552   // Now write the args into the outgoing interpreter space
 553   for (int i = 0; i < total_args_passed; i++) {
 554     if (sig_bt[i] == T_VOID) {
 555       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 556       continue;
 557     }
 558 
 559     // st_off points to lowest address on stack.
 560     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
 561     int next_off = st_off - Interpreter::stackElementSize;
 562 
 563     // Say 4 args:
 564     // i   st_off
 565     // 0   12 T_LONG
 566     // 1    8 T_VOID
 567     // 2    4 T_OBJECT
 568     // 3    0 T_BOOL
 569     VMReg r_1 = regs[i].first();
 570     VMReg r_2 = regs[i].second();
 571     if (!r_1->is_valid()) {
 572       assert(!r_2->is_valid(), "");
 573       continue;
 574     }
 575 
 576     if (r_1->is_stack()) {
 577       // memory to memory use fpu stack top
 578       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 579 
 580       if (!r_2->is_valid()) {
 581         __ movl(rdi, Address(rsp, ld_off));
 582         __ movptr(Address(rsp, st_off), rdi);
 583       } else {
 584 
 585         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 586         // st_off == MSW, st_off-wordSize == LSW
 587 
 588         __ movptr(rdi, Address(rsp, ld_off));
 589         __ movptr(Address(rsp, next_off), rdi);
 590 #ifndef _LP64
 591         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 592         __ movptr(Address(rsp, st_off), rdi);
 593 #else
 594 #ifdef ASSERT
 595         // Overwrite the unused slot with known junk
 596         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 597         __ movptr(Address(rsp, st_off), rax);
 598 #endif /* ASSERT */
 599 #endif // _LP64
 600       }
 601     } else if (r_1->is_Register()) {
 602       Register r = r_1->as_Register();
 603       if (!r_2->is_valid()) {
 604         __ movl(Address(rsp, st_off), r);
 605       } else {
 606         // long/double in gpr
 607         NOT_LP64(ShouldNotReachHere());
 608         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 609         // T_DOUBLE and T_LONG use two slots in the interpreter
 610         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 611           // long/double in gpr
 612 #ifdef ASSERT
 613           // Overwrite the unused slot with known junk
 614           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
 615           __ movptr(Address(rsp, st_off), rax);
 616 #endif /* ASSERT */
 617           __ movptr(Address(rsp, next_off), r);
 618         } else {
 619           __ movptr(Address(rsp, st_off), r);
 620         }
 621       }
 622     } else {
 623       assert(r_1->is_XMMRegister(), "");
 624       if (!r_2->is_valid()) {
 625         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 626       } else {
 627         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
 628         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 629       }
 630     }
 631   }
 632 
 633   // Schedule the branch target address early.
 634   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
 635   // And repush original return address
 636   __ push(rax);
 637   __ jmp(rcx);
 638 }
 639 
 640 
 641 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 642   int next_val_off = ld_off - Interpreter::stackElementSize;
 643   __ movdbl(r, Address(saved_sp, next_val_off));
 644 }
 645 
 646 static void gen_i2c_adapter(MacroAssembler *masm,
 647                             int total_args_passed,
 648                             int comp_args_on_stack,
 649                             const BasicType *sig_bt,
 650                             const VMRegPair *regs) {
 651 
 652   // Note: rsi contains the senderSP on entry. We must preserve it since
 653   // we may do a i2c -> c2i transition if we lose a race where compiled
 654   // code goes non-entrant while we get args ready.
 655 
 656   // Pick up the return address
 657   __ movptr(rax, Address(rsp, 0));
 658 
 659   // Must preserve original SP for loading incoming arguments because
 660   // we need to align the outgoing SP for compiled code.
 661   __ movptr(rdi, rsp);
 662 
 663   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 664   // in registers, we will occasionally have no stack args.
 665   int comp_words_on_stack = 0;
 666   if (comp_args_on_stack) {
 667     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 668     // registers are below.  By subtracting stack0, we either get a negative
 669     // number (all values in registers) or the maximum stack slot accessed.
 670     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 671     // Convert 4-byte stack slots to words.
 672     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 673     // Round up to miminum stack alignment, in wordSize
 674     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 675     __ subptr(rsp, comp_words_on_stack * wordSize);
 676   }
 677 
 678   // Align the outgoing SP
 679   __ andptr(rsp, -(StackAlignmentInBytes));
 680 
 681   // push the return address on the stack (note that pushing, rather
 682   // than storing it, yields the correct frame alignment for the callee)
 683   __ push(rax);
 684 
 685   // Put saved SP in another register
 686   const Register saved_sp = rax;
 687   __ movptr(saved_sp, rdi);
 688 
 689 
 690   // Will jump to the compiled code just as if compiled code was doing it.
 691   // Pre-load the register-jump target early, to schedule it better.
 692   __ movptr(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
 693 
 694   // Now generate the shuffle code.  Pick up all register args and move the
 695   // rest through the floating point stack top.
 696   for (int i = 0; i < total_args_passed; i++) {
 697     if (sig_bt[i] == T_VOID) {
 698       // Longs and doubles are passed in native word order, but misaligned
 699       // in the 32-bit build.
 700       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 701       continue;
 702     }
 703 
 704     // Pick up 0, 1 or 2 words from SP+offset.
 705 
 706     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 707             "scrambled load targets?");
 708     // Load in argument order going down.
 709     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
 710     // Point to interpreter value (vs. tag)
 711     int next_off = ld_off - Interpreter::stackElementSize;
 712     //
 713     //
 714     //
 715     VMReg r_1 = regs[i].first();
 716     VMReg r_2 = regs[i].second();
 717     if (!r_1->is_valid()) {
 718       assert(!r_2->is_valid(), "");
 719       continue;
 720     }
 721     if (r_1->is_stack()) {
 722       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 723       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 724 
 725       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 726       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 727       // we be generated.
 728       if (!r_2->is_valid()) {
 729         // __ fld_s(Address(saved_sp, ld_off));
 730         // __ fstp_s(Address(rsp, st_off));
 731         __ movl(rsi, Address(saved_sp, ld_off));
 732         __ movptr(Address(rsp, st_off), rsi);
 733       } else {
 734         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 735         // are accessed as negative so LSW is at LOW address
 736 
 737         // ld_off is MSW so get LSW
 738         // st_off is LSW (i.e. reg.first())
 739         // __ fld_d(Address(saved_sp, next_off));
 740         // __ fstp_d(Address(rsp, st_off));
 741         //
 742         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 743         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 744         // So we must adjust where to pick up the data to match the interpreter.
 745         //
 746         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 747         // are accessed as negative so LSW is at LOW address
 748 
 749         // ld_off is MSW so get LSW
 750         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 751                            next_off : ld_off;
 752         __ movptr(rsi, Address(saved_sp, offset));
 753         __ movptr(Address(rsp, st_off), rsi);
 754 #ifndef _LP64
 755         __ movptr(rsi, Address(saved_sp, ld_off));
 756         __ movptr(Address(rsp, st_off + wordSize), rsi);
 757 #endif // _LP64
 758       }
 759     } else if (r_1->is_Register()) {  // Register argument
 760       Register r = r_1->as_Register();
 761       assert(r != rax, "must be different");
 762       if (r_2->is_valid()) {
 763         //
 764         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 765         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 766         // So we must adjust where to pick up the data to match the interpreter.
 767 
 768         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 769                            next_off : ld_off;
 770 
 771         // this can be a misaligned move
 772         __ movptr(r, Address(saved_sp, offset));
 773 #ifndef _LP64
 774         assert(r_2->as_Register() != rax, "need another temporary register");
 775         // Remember r_1 is low address (and LSB on x86)
 776         // So r_2 gets loaded from high address regardless of the platform
 777         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 778 #endif // _LP64
 779       } else {
 780         __ movl(r, Address(saved_sp, ld_off));
 781       }
 782     } else {
 783       assert(r_1->is_XMMRegister(), "");
 784       if (!r_2->is_valid()) {
 785         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 786       } else {
 787         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 788       }
 789     }
 790   }
 791 
 792   // 6243940 We might end up in handle_wrong_method if
 793   // the callee is deoptimized as we race thru here. If that
 794   // happens we don't want to take a safepoint because the
 795   // caller frame will look interpreted and arguments are now
 796   // "compiled" so it is much better to make this transition
 797   // invisible to the stack walking code. Unfortunately if
 798   // we try and find the callee by normal means a safepoint
 799   // is possible. So we stash the desired callee in the thread
 800   // and the vm will find there should this case occur.
 801 
 802   __ get_thread(rax);
 803   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 804 
 805   // move methodOop to rax, in case we end up in an c2i adapter.
 806   // the c2i adapters expect methodOop in rax, (c2) because c2's
 807   // resolve stubs return the result (the method) in rax,.
 808   // I'd love to fix this.
 809   __ mov(rax, rbx);
 810 
 811   __ jmp(rdi);
 812 }
 813 
 814 // ---------------------------------------------------------------
 815 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 816                                                             int total_args_passed,
 817                                                             int comp_args_on_stack,
 818                                                             const BasicType *sig_bt,
 819                                                             const VMRegPair *regs,
 820                                                             AdapterFingerPrint* fingerprint) {
 821   address i2c_entry = __ pc();
 822 
 823   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 824 
 825   // -------------------------------------------------------------------------
 826   // Generate a C2I adapter.  On entry we know rbx, holds the methodOop during calls
 827   // to the interpreter.  The args start out packed in the compiled layout.  They
 828   // need to be unpacked into the interpreter layout.  This will almost always
 829   // require some stack space.  We grow the current (compiled) stack, then repack
 830   // the args.  We  finally end in a jump to the generic interpreter entry point.
 831   // On exit from the interpreter, the interpreter will restore our SP (lest the
 832   // compiled code, which relys solely on SP and not EBP, get sick).
 833 
 834   address c2i_unverified_entry = __ pc();
 835   Label skip_fixup;
 836 
 837   Register holder = rax;
 838   Register receiver = rcx;
 839   Register temp = rbx;
 840 
 841   {
 842 
 843     Label missed;
 844 
 845     __ verify_oop(holder);
 846     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 847     __ verify_oop(temp);
 848 
 849     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
 850     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
 851     __ jcc(Assembler::notEqual, missed);
 852     // Method might have been compiled since the call site was patched to
 853     // interpreted if that is the case treat it as a miss so we can get
 854     // the call site corrected.
 855     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 856     __ jcc(Assembler::equal, skip_fixup);
 857 
 858     __ bind(missed);
 859     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 860   }
 861 
 862   address c2i_entry = __ pc();
 863 
 864   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 865 
 866   __ flush();
 867   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 868 }
 869 
 870 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 871                                          VMRegPair *regs,
 872                                          int total_args_passed) {
 873 // We return the amount of VMRegImpl stack slots we need to reserve for all
 874 // the arguments NOT counting out_preserve_stack_slots.
 875 
 876   uint    stack = 0;        // All arguments on stack
 877 
 878   for( int i = 0; i < total_args_passed; i++) {
 879     // From the type and the argument number (count) compute the location
 880     switch( sig_bt[i] ) {
 881     case T_BOOLEAN:
 882     case T_CHAR:
 883     case T_FLOAT:
 884     case T_BYTE:
 885     case T_SHORT:
 886     case T_INT:
 887     case T_OBJECT:
 888     case T_ARRAY:
 889     case T_ADDRESS:
 890       regs[i].set1(VMRegImpl::stack2reg(stack++));
 891       break;
 892     case T_LONG:
 893     case T_DOUBLE: // The stack numbering is reversed from Java
 894       // Since C arguments do not get reversed, the ordering for
 895       // doubles on the stack must be opposite the Java convention
 896       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 897       regs[i].set2(VMRegImpl::stack2reg(stack));
 898       stack += 2;
 899       break;
 900     case T_VOID: regs[i].set_bad(); break;
 901     default:
 902       ShouldNotReachHere();
 903       break;
 904     }
 905   }
 906   return stack;
 907 }
 908 
 909 // A simple move of integer like type
 910 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
 911   if (src.first()->is_stack()) {
 912     if (dst.first()->is_stack()) {
 913       // stack to stack
 914       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
 915       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
 916       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
 917       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
 918     } else {
 919       // stack to reg
 920       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
 921     }
 922   } else if (dst.first()->is_stack()) {
 923     // reg to stack
 924     // no need to sign extend on 64bit
 925     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 926   } else {
 927     if (dst.first() != src.first()) {
 928       __ mov(dst.first()->as_Register(), src.first()->as_Register());
 929     }
 930   }
 931 }
 932 
 933 // An oop arg. Must pass a handle not the oop itself
 934 static void object_move(MacroAssembler* masm,
 935                         OopMap* map,
 936                         int oop_handle_offset,
 937                         int framesize_in_slots,
 938                         VMRegPair src,
 939                         VMRegPair dst,
 940                         bool is_receiver,
 941                         int* receiver_offset) {
 942 
 943   // Because of the calling conventions we know that src can be a
 944   // register or a stack location. dst can only be a stack location.
 945 
 946   assert(dst.first()->is_stack(), "must be stack");
 947   // must pass a handle. First figure out the location we use as a handle
 948 
 949   if (src.first()->is_stack()) {
 950     // Oop is already on the stack as an argument
 951     Register rHandle = rax;
 952     Label nil;
 953     __ xorptr(rHandle, rHandle);
 954     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
 955     __ jcc(Assembler::equal, nil);
 956     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
 957     __ bind(nil);
 958     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
 959 
 960     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 961     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
 962     if (is_receiver) {
 963       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
 964     }
 965   } else {
 966     // Oop is in an a register we must store it to the space we reserve
 967     // on the stack for oop_handles
 968     const Register rOop = src.first()->as_Register();
 969     const Register rHandle = rax;
 970     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
 971     int offset = oop_slot*VMRegImpl::stack_slot_size;
 972     Label skip;
 973     __ movptr(Address(rsp, offset), rOop);
 974     map->set_oop(VMRegImpl::stack2reg(oop_slot));
 975     __ xorptr(rHandle, rHandle);
 976     __ cmpptr(rOop, (int32_t)NULL_WORD);
 977     __ jcc(Assembler::equal, skip);
 978     __ lea(rHandle, Address(rsp, offset));
 979     __ bind(skip);
 980     // Store the handle parameter
 981     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
 982     if (is_receiver) {
 983       *receiver_offset = offset;
 984     }
 985   }
 986 }
 987 
 988 // A float arg may have to do float reg int reg conversion
 989 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
 990   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
 991 
 992   // Because of the calling convention we know that src is either a stack location
 993   // or an xmm register. dst can only be a stack location.
 994 
 995   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
 996 
 997   if (src.first()->is_stack()) {
 998     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
 999     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1000   } else {
1001     // reg to stack
1002     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1003   }
1004 }
1005 
1006 // A long move
1007 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1008 
1009   // The only legal possibility for a long_move VMRegPair is:
1010   // 1: two stack slots (possibly unaligned)
1011   // as neither the java  or C calling convention will use registers
1012   // for longs.
1013 
1014   if (src.first()->is_stack() && dst.first()->is_stack()) {
1015     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1016     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1017     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1018     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1019     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1020   } else {
1021     ShouldNotReachHere();
1022   }
1023 }
1024 
1025 // A double move
1026 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1027 
1028   // The only legal possibilities for a double_move VMRegPair are:
1029   // The painful thing here is that like long_move a VMRegPair might be
1030 
1031   // Because of the calling convention we know that src is either
1032   //   1: a single physical register (xmm registers only)
1033   //   2: two stack slots (possibly unaligned)
1034   // dst can only be a pair of stack slots.
1035 
1036   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1037 
1038   if (src.first()->is_stack()) {
1039     // source is all stack
1040     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1041     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1042     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1043     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1044   } else {
1045     // reg to stack
1046     // No worries about stack alignment
1047     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1048   }
1049 }
1050 
1051 
1052 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1053   // We always ignore the frame_slots arg and just use the space just below frame pointer
1054   // which by this time is free to use
1055   switch (ret_type) {
1056   case T_FLOAT:
1057     __ fstp_s(Address(rbp, -wordSize));
1058     break;
1059   case T_DOUBLE:
1060     __ fstp_d(Address(rbp, -2*wordSize));
1061     break;
1062   case T_VOID:  break;
1063   case T_LONG:
1064     __ movptr(Address(rbp, -wordSize), rax);
1065     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
1066     break;
1067   default: {
1068     __ movptr(Address(rbp, -wordSize), rax);
1069     }
1070   }
1071 }
1072 
1073 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1074   // We always ignore the frame_slots arg and just use the space just below frame pointer
1075   // which by this time is free to use
1076   switch (ret_type) {
1077   case T_FLOAT:
1078     __ fld_s(Address(rbp, -wordSize));
1079     break;
1080   case T_DOUBLE:
1081     __ fld_d(Address(rbp, -2*wordSize));
1082     break;
1083   case T_LONG:
1084     __ movptr(rax, Address(rbp, -wordSize));
1085     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
1086     break;
1087   case T_VOID:  break;
1088   default: {
1089     __ movptr(rax, Address(rbp, -wordSize));
1090     }
1091   }
1092 }
1093 
1094 // ---------------------------------------------------------------------------
1095 // Generate a native wrapper for a given method.  The method takes arguments
1096 // in the Java compiled code convention, marshals them to the native
1097 // convention (handlizes oops, etc), transitions to native, makes the call,
1098 // returns to java state (possibly blocking), unhandlizes any result and
1099 // returns.
1100 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
1101                                                 methodHandle method,
1102                                                 int compile_id,
1103                                                 int total_in_args,
1104                                                 int comp_args_on_stack,
1105                                                 BasicType *in_sig_bt,
1106                                                 VMRegPair *in_regs,
1107                                                 BasicType ret_type) {
1108 
1109   // An OopMap for lock (and class if static)
1110   OopMapSet *oop_maps = new OopMapSet();
1111 
1112   // We have received a description of where all the java arg are located
1113   // on entry to the wrapper. We need to convert these args to where
1114   // the jni function will expect them. To figure out where they go
1115   // we convert the java signature to a C signature by inserting
1116   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1117 
1118   int total_c_args = total_in_args + 1;
1119   if (method->is_static()) {
1120     total_c_args++;
1121   }
1122 
1123   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1124   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
1125 
1126   int argc = 0;
1127   out_sig_bt[argc++] = T_ADDRESS;
1128   if (method->is_static()) {
1129     out_sig_bt[argc++] = T_OBJECT;
1130   }
1131 
1132   int i;
1133   for (i = 0; i < total_in_args ; i++ ) {
1134     out_sig_bt[argc++] = in_sig_bt[i];
1135   }
1136 
1137 
1138   // Now figure out where the args must be stored and how much stack space
1139   // they require (neglecting out_preserve_stack_slots but space for storing
1140   // the 1st six register arguments). It's weird see int_stk_helper.
1141   //
1142   int out_arg_slots;
1143   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1144 
1145   // Compute framesize for the wrapper.  We need to handlize all oops in
1146   // registers a max of 2 on x86.
1147 
1148   // Calculate the total number of stack slots we will need.
1149 
1150   // First count the abi requirement plus all of the outgoing args
1151   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1152 
1153   // Now the space for the inbound oop handle area
1154 
1155   int oop_handle_offset = stack_slots;
1156   stack_slots += 2*VMRegImpl::slots_per_word;
1157 
1158   // Now any space we need for handlizing a klass if static method
1159 
1160   int klass_slot_offset = 0;
1161   int klass_offset = -1;
1162   int lock_slot_offset = 0;
1163   bool is_static = false;
1164   int oop_temp_slot_offset = 0;
1165 
1166   if (method->is_static()) {
1167     klass_slot_offset = stack_slots;
1168     stack_slots += VMRegImpl::slots_per_word;
1169     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1170     is_static = true;
1171   }
1172 
1173   // Plus a lock if needed
1174 
1175   if (method->is_synchronized()) {
1176     lock_slot_offset = stack_slots;
1177     stack_slots += VMRegImpl::slots_per_word;
1178   }
1179 
1180   // Now a place (+2) to save return values or temp during shuffling
1181   // + 2 for return address (which we own) and saved rbp,
1182   stack_slots += 4;
1183 
1184   // Ok The space we have allocated will look like:
1185   //
1186   //
1187   // FP-> |                     |
1188   //      |---------------------|
1189   //      | 2 slots for moves   |
1190   //      |---------------------|
1191   //      | lock box (if sync)  |
1192   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1193   //      | klass (if static)   |
1194   //      |---------------------| <- klass_slot_offset
1195   //      | oopHandle area      |
1196   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1197   //      | outbound memory     |
1198   //      | based arguments     |
1199   //      |                     |
1200   //      |---------------------|
1201   //      |                     |
1202   // SP-> | out_preserved_slots |
1203   //
1204   //
1205   // ****************************************************************************
1206   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1207   // arguments off of the stack after the jni call. Before the call we can use
1208   // instructions that are SP relative. After the jni call we switch to FP
1209   // relative instructions instead of re-adjusting the stack on windows.
1210   // ****************************************************************************
1211 
1212 
1213   // Now compute actual number of stack words we need rounding to make
1214   // stack properly aligned.
1215   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1216 
1217   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1218 
1219   intptr_t start = (intptr_t)__ pc();
1220 
1221   // First thing make an ic check to see if we should even be here
1222 
1223   // We are free to use all registers as temps without saving them and
1224   // restoring them except rbp,. rbp, is the only callee save register
1225   // as far as the interpreter and the compiler(s) are concerned.
1226 
1227 
1228   const Register ic_reg = rax;
1229   const Register receiver = rcx;
1230   Label hit;
1231   Label exception_pending;
1232 
1233 
1234   __ verify_oop(receiver);
1235   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1236   __ jcc(Assembler::equal, hit);
1237 
1238   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1239 
1240   // verified entry must be aligned for code patching.
1241   // and the first 5 bytes must be in the same cache line
1242   // if we align at 8 then we will be sure 5 bytes are in the same line
1243   __ align(8);
1244 
1245   __ bind(hit);
1246 
1247   int vep_offset = ((intptr_t)__ pc()) - start;
1248 
1249 #ifdef COMPILER1
1250   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1251     // Object.hashCode can pull the hashCode from the header word
1252     // instead of doing a full VM transition once it's been computed.
1253     // Since hashCode is usually polymorphic at call sites we can't do
1254     // this optimization at the call site without a lot of work.
1255     Label slowCase;
1256     Register receiver = rcx;
1257     Register result = rax;
1258     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
1259 
1260     // check if locked
1261     __ testptr(result, markOopDesc::unlocked_value);
1262     __ jcc (Assembler::zero, slowCase);
1263 
1264     if (UseBiasedLocking) {
1265       // Check if biased and fall through to runtime if so
1266       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
1267       __ jcc (Assembler::notZero, slowCase);
1268     }
1269 
1270     // get hash
1271     __ andptr(result, markOopDesc::hash_mask_in_place);
1272     // test if hashCode exists
1273     __ jcc  (Assembler::zero, slowCase);
1274     __ shrptr(result, markOopDesc::hash_shift);
1275     __ ret(0);
1276     __ bind (slowCase);
1277   }
1278 #endif // COMPILER1
1279 
1280   // The instruction at the verified entry point must be 5 bytes or longer
1281   // because it can be patched on the fly by make_non_entrant. The stack bang
1282   // instruction fits that requirement.
1283 
1284   // Generate stack overflow check
1285 
1286   if (UseStackBanging) {
1287     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
1288   } else {
1289     // need a 5 byte instruction to allow MT safe patching to non-entrant
1290     __ fat_nop();
1291   }
1292 
1293   // Generate a new frame for the wrapper.
1294   __ enter();
1295   // -2 because return address is already present and so is saved rbp,
1296   __ subptr(rsp, stack_size - 2*wordSize);
1297 
1298   // Frame is now completed as far a size and linkage.
1299 
1300   int frame_complete = ((intptr_t)__ pc()) - start;
1301 
1302   // Calculate the difference between rsp and rbp,. We need to know it
1303   // after the native call because on windows Java Natives will pop
1304   // the arguments and it is painful to do rsp relative addressing
1305   // in a platform independent way. So after the call we switch to
1306   // rbp, relative addressing.
1307 
1308   int fp_adjustment = stack_size - 2*wordSize;
1309 
1310 #ifdef COMPILER2
1311   // C2 may leave the stack dirty if not in SSE2+ mode
1312   if (UseSSE >= 2) {
1313     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1314   } else {
1315     __ empty_FPU_stack();
1316   }
1317 #endif /* COMPILER2 */
1318 
1319   // Compute the rbp, offset for any slots used after the jni call
1320 
1321   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1322   int oop_temp_slot_rbp_offset = (oop_temp_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1323 
1324   // We use rdi as a thread pointer because it is callee save and
1325   // if we load it once it is usable thru the entire wrapper
1326   const Register thread = rdi;
1327 
1328   // We use rsi as the oop handle for the receiver/klass
1329   // It is callee save so it survives the call to native
1330 
1331   const Register oop_handle_reg = rsi;
1332 
1333   __ get_thread(thread);
1334 
1335 
1336   //
1337   // We immediately shuffle the arguments so that any vm call we have to
1338   // make from here on out (sync slow path, jvmti, etc.) we will have
1339   // captured the oops from our caller and have a valid oopMap for
1340   // them.
1341 
1342   // -----------------
1343   // The Grand Shuffle
1344   //
1345   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1346   // and, if static, the class mirror instead of a receiver.  This pretty much
1347   // guarantees that register layout will not match (and x86 doesn't use reg
1348   // parms though amd does).  Since the native abi doesn't use register args
1349   // and the java conventions does we don't have to worry about collisions.
1350   // All of our moved are reg->stack or stack->stack.
1351   // We ignore the extra arguments during the shuffle and handle them at the
1352   // last moment. The shuffle is described by the two calling convention
1353   // vectors we have in our possession. We simply walk the java vector to
1354   // get the source locations and the c vector to get the destinations.
1355 
1356   int c_arg = method->is_static() ? 2 : 1 ;
1357 
1358   // Record rsp-based slot for receiver on stack for non-static methods
1359   int receiver_offset = -1;
1360 
1361   // This is a trick. We double the stack slots so we can claim
1362   // the oops in the caller's frame. Since we are sure to have
1363   // more args than the caller doubling is enough to make
1364   // sure we can capture all the incoming oop args from the
1365   // caller.
1366   //
1367   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1368 
1369   // Mark location of rbp,
1370   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1371 
1372   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1373   // Are free to temporaries if we have to do  stack to steck moves.
1374   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1375 
1376   for (i = 0; i < total_in_args ; i++, c_arg++ ) {
1377     switch (in_sig_bt[i]) {
1378       case T_ARRAY:
1379       case T_OBJECT:
1380         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1381                     ((i == 0) && (!is_static)),
1382                     &receiver_offset);
1383         break;
1384       case T_VOID:
1385         break;
1386 
1387       case T_FLOAT:
1388         float_move(masm, in_regs[i], out_regs[c_arg]);
1389           break;
1390 
1391       case T_DOUBLE:
1392         assert( i + 1 < total_in_args &&
1393                 in_sig_bt[i + 1] == T_VOID &&
1394                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1395         double_move(masm, in_regs[i], out_regs[c_arg]);
1396         break;
1397 
1398       case T_LONG :
1399         long_move(masm, in_regs[i], out_regs[c_arg]);
1400         break;
1401 
1402       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1403 
1404       default:
1405         simple_move32(masm, in_regs[i], out_regs[c_arg]);
1406     }
1407   }
1408 
1409   // Pre-load a static method's oop into rsi.  Used both by locking code and
1410   // the normal JNI call code.
1411   if (method->is_static()) {
1412 
1413     //  load opp into a register
1414     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
1415 
1416     // Now handlize the static class mirror it's known not-null.
1417     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1418     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1419 
1420     // Now get the handle
1421     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1422     // store the klass handle as second argument
1423     __ movptr(Address(rsp, wordSize), oop_handle_reg);
1424   }
1425 
1426   // Change state to native (we save the return address in the thread, since it might not
1427   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1428   // points into the right code segment. It does not have to be the correct return pc.
1429   // We use the same pc/oopMap repeatedly when we call out
1430 
1431   intptr_t the_pc = (intptr_t) __ pc();
1432   oop_maps->add_gc_map(the_pc - start, map);
1433 
1434   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
1435 
1436 
1437   // We have all of the arguments setup at this point. We must not touch any register
1438   // argument registers at this point (what if we save/restore them there are no oop?
1439 
1440   {
1441     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1442     __ movoop(rax, JNIHandles::make_local(method()));
1443     __ call_VM_leaf(
1444          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1445          thread, rax);
1446   }
1447 
1448   // RedefineClasses() tracing support for obsolete method entry
1449   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1450     __ movoop(rax, JNIHandles::make_local(method()));
1451     __ call_VM_leaf(
1452          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1453          thread, rax);
1454   }
1455 
1456   // These are register definitions we need for locking/unlocking
1457   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1458   const Register obj_reg  = rcx;  // Will contain the oop
1459   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1460 
1461   Label slow_path_lock;
1462   Label lock_done;
1463 
1464   // Lock a synchronized method
1465   if (method->is_synchronized()) {
1466 
1467 
1468     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1469 
1470     // Get the handle (the 2nd argument)
1471     __ movptr(oop_handle_reg, Address(rsp, wordSize));
1472 
1473     // Get address of the box
1474 
1475     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1476 
1477     // Load the oop from the handle
1478     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1479 
1480     if (UseBiasedLocking) {
1481       // Note that oop_handle_reg is trashed during this call
1482       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
1483     }
1484 
1485     // Load immediate 1 into swap_reg %rax,
1486     __ movptr(swap_reg, 1);
1487 
1488     // Load (object->mark() | 1) into swap_reg %rax,
1489     __ orptr(swap_reg, Address(obj_reg, 0));
1490 
1491     // Save (object->mark() | 1) into BasicLock's displaced header
1492     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1493 
1494     if (os::is_MP()) {
1495       __ lock();
1496     }
1497 
1498     // src -> dest iff dest == rax, else rax, <- dest
1499     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
1500     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
1501     __ jcc(Assembler::equal, lock_done);
1502 
1503     // Test if the oopMark is an obvious stack pointer, i.e.,
1504     //  1) (mark & 3) == 0, and
1505     //  2) rsp <= mark < mark + os::pagesize()
1506     // These 3 tests can be done by evaluating the following
1507     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1508     // assuming both stack pointer and pagesize have their
1509     // least significant 2 bits clear.
1510     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
1511 
1512     __ subptr(swap_reg, rsp);
1513     __ andptr(swap_reg, 3 - os::vm_page_size());
1514 
1515     // Save the test result, for recursive case, the result is zero
1516     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1517     __ jcc(Assembler::notEqual, slow_path_lock);
1518     // Slow path will re-enter here
1519     __ bind(lock_done);
1520 
1521     if (UseBiasedLocking) {
1522       // Re-fetch oop_handle_reg as we trashed it above
1523       __ movptr(oop_handle_reg, Address(rsp, wordSize));
1524     }
1525   }
1526 
1527 
1528   // Finally just about ready to make the JNI call
1529 
1530 
1531   // get JNIEnv* which is first argument to native
1532 
1533   __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
1534   __ movptr(Address(rsp, 0), rdx);
1535 
1536   // Now set thread in native
1537   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1538 
1539   __ call(RuntimeAddress(method->native_function()));
1540 
1541   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1542   // arguments off of the stack. We could just re-adjust the stack pointer here
1543   // and continue to do SP relative addressing but we instead switch to FP
1544   // relative addressing.
1545 
1546   // Unpack native results.
1547   switch (ret_type) {
1548   case T_BOOLEAN: __ c2bool(rax);            break;
1549   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
1550   case T_BYTE   : __ sign_extend_byte (rax); break;
1551   case T_SHORT  : __ sign_extend_short(rax); break;
1552   case T_INT    : /* nothing to do */        break;
1553   case T_DOUBLE :
1554   case T_FLOAT  :
1555     // Result is in st0 we'll save as needed
1556     break;
1557   case T_ARRAY:                 // Really a handle
1558   case T_OBJECT:                // Really a handle
1559       break; // can't de-handlize until after safepoint check
1560   case T_VOID: break;
1561   case T_LONG: break;
1562   default       : ShouldNotReachHere();
1563   }
1564 
1565   // Switch thread to "native transition" state before reading the synchronization state.
1566   // This additional state is necessary because reading and testing the synchronization
1567   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1568   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1569   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1570   //     Thread A is resumed to finish this native method, but doesn't block here since it
1571   //     didn't see any synchronization is progress, and escapes.
1572   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1573 
1574   if(os::is_MP()) {
1575     if (UseMembar) {
1576       // Force this write out before the read below
1577       __ membar(Assembler::Membar_mask_bits(
1578            Assembler::LoadLoad | Assembler::LoadStore |
1579            Assembler::StoreLoad | Assembler::StoreStore));
1580     } else {
1581       // Write serialization page so VM thread can do a pseudo remote membar.
1582       // We use the current thread pointer to calculate a thread specific
1583       // offset to write to within the page. This minimizes bus traffic
1584       // due to cache line collision.
1585       __ serialize_memory(thread, rcx);
1586     }
1587   }
1588 
1589   if (AlwaysRestoreFPU) {
1590     // Make sure the control word is correct.
1591     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1592   }
1593 
1594   // check for safepoint operation in progress and/or pending suspend requests
1595   { Label Continue;
1596 
1597     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
1598              SafepointSynchronize::_not_synchronized);
1599 
1600     Label L;
1601     __ jcc(Assembler::notEqual, L);
1602     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1603     __ jcc(Assembler::equal, Continue);
1604     __ bind(L);
1605 
1606     // Don't use call_VM as it will see a possible pending exception and forward it
1607     // and never return here preventing us from clearing _last_native_pc down below.
1608     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1609     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1610     // by hand.
1611     //
1612     save_native_result(masm, ret_type, stack_slots);
1613     __ push(thread);
1614     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1615                                             JavaThread::check_special_condition_for_native_trans)));
1616     __ increment(rsp, wordSize);
1617     // Restore any method result value
1618     restore_native_result(masm, ret_type, stack_slots);
1619 
1620     __ bind(Continue);
1621   }
1622 
1623   // change thread state
1624   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1625 
1626   Label reguard;
1627   Label reguard_done;
1628   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1629   __ jcc(Assembler::equal, reguard);
1630 
1631   // slow path reguard  re-enters here
1632   __ bind(reguard_done);
1633 
1634   // Handle possible exception (will unlock if necessary)
1635 
1636   // native result if any is live
1637 
1638   // Unlock
1639   Label slow_path_unlock;
1640   Label unlock_done;
1641   if (method->is_synchronized()) {
1642 
1643     Label done;
1644 
1645     // Get locked oop from the handle we passed to jni
1646     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1647 
1648     if (UseBiasedLocking) {
1649       __ biased_locking_exit(obj_reg, rbx, done);
1650     }
1651 
1652     // Simple recursive lock?
1653 
1654     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
1655     __ jcc(Assembler::equal, done);
1656 
1657     // Must save rax, if if it is live now because cmpxchg must use it
1658     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1659       save_native_result(masm, ret_type, stack_slots);
1660     }
1661 
1662     //  get old displaced header
1663     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
1664 
1665     // get address of the stack lock
1666     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1667 
1668     // Atomic swap old header if oop still contains the stack lock
1669     if (os::is_MP()) {
1670     __ lock();
1671     }
1672 
1673     // src -> dest iff dest == rax, else rax, <- dest
1674     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
1675     __ cmpxchgptr(rbx, Address(obj_reg, 0));
1676     __ jcc(Assembler::notEqual, slow_path_unlock);
1677 
1678     // slow path re-enters here
1679     __ bind(unlock_done);
1680     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1681       restore_native_result(masm, ret_type, stack_slots);
1682     }
1683 
1684     __ bind(done);
1685 
1686   }
1687 
1688   {
1689     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1690     // Tell dtrace about this method exit
1691     save_native_result(masm, ret_type, stack_slots);
1692     __ movoop(rax, JNIHandles::make_local(method()));
1693     __ call_VM_leaf(
1694          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1695          thread, rax);
1696     restore_native_result(masm, ret_type, stack_slots);
1697   }
1698 
1699   // We can finally stop using that last_Java_frame we setup ages ago
1700 
1701   __ reset_last_Java_frame(thread, false, true);
1702 
1703   // Unpack oop result
1704   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
1705       Label L;
1706       __ cmpptr(rax, (int32_t)NULL_WORD);
1707       __ jcc(Assembler::equal, L);
1708       __ movptr(rax, Address(rax, 0));
1709       __ bind(L);
1710       __ verify_oop(rax);
1711   }
1712 
1713   // reset handle block
1714   __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
1715 
1716   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
1717 
1718   // Any exception pending?
1719   __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1720   __ jcc(Assembler::notEqual, exception_pending);
1721 
1722 
1723   // no exception, we're almost done
1724 
1725   // check that only result value is on FPU stack
1726   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
1727 
1728   // Fixup floating pointer results so that result looks like a return from a compiled method
1729   if (ret_type == T_FLOAT) {
1730     if (UseSSE >= 1) {
1731       // Pop st0 and store as float and reload into xmm register
1732       __ fstp_s(Address(rbp, -4));
1733       __ movflt(xmm0, Address(rbp, -4));
1734     }
1735   } else if (ret_type == T_DOUBLE) {
1736     if (UseSSE >= 2) {
1737       // Pop st0 and store as double and reload into xmm register
1738       __ fstp_d(Address(rbp, -8));
1739       __ movdbl(xmm0, Address(rbp, -8));
1740     }
1741   }
1742 
1743   // Return
1744 
1745   __ leave();
1746   __ ret(0);
1747 
1748   // Unexpected paths are out of line and go here
1749 
1750   // Slow path locking & unlocking
1751   if (method->is_synchronized()) {
1752 
1753     // BEGIN Slow path lock
1754 
1755     __ bind(slow_path_lock);
1756 
1757     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1758     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1759     __ push(thread);
1760     __ push(lock_reg);
1761     __ push(obj_reg);
1762     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
1763     __ addptr(rsp, 3*wordSize);
1764 
1765 #ifdef ASSERT
1766     { Label L;
1767     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
1768     __ jcc(Assembler::equal, L);
1769     __ stop("no pending exception allowed on exit from monitorenter");
1770     __ bind(L);
1771     }
1772 #endif
1773     __ jmp(lock_done);
1774 
1775     // END Slow path lock
1776 
1777     // BEGIN Slow path unlock
1778     __ bind(slow_path_unlock);
1779 
1780     // Slow path unlock
1781 
1782     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1783       save_native_result(masm, ret_type, stack_slots);
1784     }
1785     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1786 
1787     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1788     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1789 
1790 
1791     // should be a peal
1792     // +wordSize because of the push above
1793     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1794     __ push(rax);
1795 
1796     __ push(obj_reg);
1797     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
1798     __ addptr(rsp, 2*wordSize);
1799 #ifdef ASSERT
1800     {
1801       Label L;
1802       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1803       __ jcc(Assembler::equal, L);
1804       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
1805       __ bind(L);
1806     }
1807 #endif /* ASSERT */
1808 
1809     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1810 
1811     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1812       restore_native_result(masm, ret_type, stack_slots);
1813     }
1814     __ jmp(unlock_done);
1815     // END Slow path unlock
1816 
1817   }
1818 
1819   // SLOW PATH Reguard the stack if needed
1820 
1821   __ bind(reguard);
1822   save_native_result(masm, ret_type, stack_slots);
1823   {
1824     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1825   }
1826   restore_native_result(masm, ret_type, stack_slots);
1827   __ jmp(reguard_done);
1828 
1829 
1830   // BEGIN EXCEPTION PROCESSING
1831 
1832   // Forward  the exception
1833   __ bind(exception_pending);
1834 
1835   // remove possible return value from FPU register stack
1836   __ empty_FPU_stack();
1837 
1838   // pop our frame
1839   __ leave();
1840   // and forward the exception
1841   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1842 
1843   __ flush();
1844 
1845   nmethod *nm = nmethod::new_native_nmethod(method,
1846                                             compile_id,
1847                                             masm->code(),
1848                                             vep_offset,
1849                                             frame_complete,
1850                                             stack_slots / VMRegImpl::slots_per_word,
1851                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
1852                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
1853                                             oop_maps);
1854   return nm;
1855 
1856 }
1857 
1858 #ifdef HAVE_DTRACE_H
1859 // ---------------------------------------------------------------------------
1860 // Generate a dtrace nmethod for a given signature.  The method takes arguments
1861 // in the Java compiled code convention, marshals them to the native
1862 // abi and then leaves nops at the position you would expect to call a native
1863 // function. When the probe is enabled the nops are replaced with a trap
1864 // instruction that dtrace inserts and the trace will cause a notification
1865 // to dtrace.
1866 //
1867 // The probes are only able to take primitive types and java/lang/String as
1868 // arguments.  No other java types are allowed. Strings are converted to utf8
1869 // strings so that from dtrace point of view java strings are converted to C
1870 // strings. There is an arbitrary fixed limit on the total space that a method
1871 // can use for converting the strings. (256 chars per string in the signature).
1872 // So any java string larger then this is truncated.
1873 
1874 nmethod *SharedRuntime::generate_dtrace_nmethod(
1875     MacroAssembler *masm, methodHandle method) {
1876 
1877   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
1878   // be single threaded in this method.
1879   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
1880 
1881   // Fill in the signature array, for the calling-convention call.
1882   int total_args_passed = method->size_of_parameters();
1883 
1884   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
1885   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
1886 
1887   // The signature we are going to use for the trap that dtrace will see
1888   // java/lang/String is converted. We drop "this" and any other object
1889   // is converted to NULL.  (A one-slot java/lang/Long object reference
1890   // is converted to a two-slot long, which is why we double the allocation).
1891   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
1892   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
1893 
1894   int i=0;
1895   int total_strings = 0;
1896   int first_arg_to_pass = 0;
1897   int total_c_args = 0;
1898 
1899   if( !method->is_static() ) {  // Pass in receiver first
1900     in_sig_bt[i++] = T_OBJECT;
1901     first_arg_to_pass = 1;
1902   }
1903 
1904   // We need to convert the java args to where a native (non-jni) function
1905   // would expect them. To figure out where they go we convert the java
1906   // signature to a C signature.
1907 
1908   SignatureStream ss(method->signature());
1909   for ( ; !ss.at_return_type(); ss.next()) {
1910     BasicType bt = ss.type();
1911     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
1912     out_sig_bt[total_c_args++] = bt;
1913     if( bt == T_OBJECT) {
1914       Symbol* s = ss.as_symbol_or_null();   // symbol is created
1915       if (s == vmSymbols::java_lang_String()) {
1916         total_strings++;
1917         out_sig_bt[total_c_args-1] = T_ADDRESS;
1918       } else if (s == vmSymbols::java_lang_Boolean() ||
1919                  s == vmSymbols::java_lang_Character() ||
1920                  s == vmSymbols::java_lang_Byte() ||
1921                  s == vmSymbols::java_lang_Short() ||
1922                  s == vmSymbols::java_lang_Integer() ||
1923                  s == vmSymbols::java_lang_Float()) {
1924         out_sig_bt[total_c_args-1] = T_INT;
1925       } else if (s == vmSymbols::java_lang_Long() ||
1926                  s == vmSymbols::java_lang_Double()) {
1927         out_sig_bt[total_c_args-1] = T_LONG;
1928         out_sig_bt[total_c_args++] = T_VOID;
1929       }
1930     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
1931       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
1932       out_sig_bt[total_c_args++] = T_VOID;
1933     }
1934   }
1935 
1936   assert(i==total_args_passed, "validly parsed signature");
1937 
1938   // Now get the compiled-Java layout as input arguments
1939   int comp_args_on_stack;
1940   comp_args_on_stack = SharedRuntime::java_calling_convention(
1941       in_sig_bt, in_regs, total_args_passed, false);
1942 
1943   // Now figure out where the args must be stored and how much stack space
1944   // they require (neglecting out_preserve_stack_slots).
1945 
1946   int out_arg_slots;
1947   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1948 
1949   // Calculate the total number of stack slots we will need.
1950 
1951   // First count the abi requirement plus all of the outgoing args
1952   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1953 
1954   // Now space for the string(s) we must convert
1955 
1956   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
1957   for (i = 0; i < total_strings ; i++) {
1958     string_locs[i] = stack_slots;
1959     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
1960   }
1961 
1962   // + 2 for return address (which we own) and saved rbp,
1963 
1964   stack_slots += 2;
1965 
1966   // Ok The space we have allocated will look like:
1967   //
1968   //
1969   // FP-> |                     |
1970   //      |---------------------|
1971   //      | string[n]           |
1972   //      |---------------------| <- string_locs[n]
1973   //      | string[n-1]         |
1974   //      |---------------------| <- string_locs[n-1]
1975   //      | ...                 |
1976   //      | ...                 |
1977   //      |---------------------| <- string_locs[1]
1978   //      | string[0]           |
1979   //      |---------------------| <- string_locs[0]
1980   //      | outbound memory     |
1981   //      | based arguments     |
1982   //      |                     |
1983   //      |---------------------|
1984   //      |                     |
1985   // SP-> | out_preserved_slots |
1986   //
1987   //
1988 
1989   // Now compute actual number of stack words we need rounding to make
1990   // stack properly aligned.
1991   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
1992 
1993   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1994 
1995   intptr_t start = (intptr_t)__ pc();
1996 
1997   // First thing make an ic check to see if we should even be here
1998 
1999   // We are free to use all registers as temps without saving them and
2000   // restoring them except rbp. rbp, is the only callee save register
2001   // as far as the interpreter and the compiler(s) are concerned.
2002 
2003   const Register ic_reg = rax;
2004   const Register receiver = rcx;
2005   Label hit;
2006   Label exception_pending;
2007 
2008 
2009   __ verify_oop(receiver);
2010   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2011   __ jcc(Assembler::equal, hit);
2012 
2013   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2014 
2015   // verified entry must be aligned for code patching.
2016   // and the first 5 bytes must be in the same cache line
2017   // if we align at 8 then we will be sure 5 bytes are in the same line
2018   __ align(8);
2019 
2020   __ bind(hit);
2021 
2022   int vep_offset = ((intptr_t)__ pc()) - start;
2023 
2024 
2025   // The instruction at the verified entry point must be 5 bytes or longer
2026   // because it can be patched on the fly by make_non_entrant. The stack bang
2027   // instruction fits that requirement.
2028 
2029   // Generate stack overflow check
2030 
2031 
2032   if (UseStackBanging) {
2033     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2034       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2035     } else {
2036       __ movl(rax, stack_size);
2037       __ bang_stack_size(rax, rbx);
2038     }
2039   } else {
2040     // need a 5 byte instruction to allow MT safe patching to non-entrant
2041     __ fat_nop();
2042   }
2043 
2044   assert(((int)__ pc() - start - vep_offset) >= 5,
2045          "valid size for make_non_entrant");
2046 
2047   // Generate a new frame for the wrapper.
2048   __ enter();
2049 
2050   // -2 because return address is already present and so is saved rbp,
2051   if (stack_size - 2*wordSize != 0) {
2052     __ subl(rsp, stack_size - 2*wordSize);
2053   }
2054 
2055   // Frame is now completed as far a size and linkage.
2056 
2057   int frame_complete = ((intptr_t)__ pc()) - start;
2058 
2059   // First thing we do store all the args as if we are doing the call.
2060   // Since the C calling convention is stack based that ensures that
2061   // all the Java register args are stored before we need to convert any
2062   // string we might have.
2063 
2064   int sid = 0;
2065   int c_arg, j_arg;
2066   int string_reg = 0;
2067 
2068   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2069        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2070 
2071     VMRegPair src = in_regs[j_arg];
2072     VMRegPair dst = out_regs[c_arg];
2073     assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
2074            "stack based abi assumed");
2075 
2076     switch (in_sig_bt[j_arg]) {
2077 
2078       case T_ARRAY:
2079       case T_OBJECT:
2080         if (out_sig_bt[c_arg] == T_ADDRESS) {
2081           // Any register based arg for a java string after the first
2082           // will be destroyed by the call to get_utf so we store
2083           // the original value in the location the utf string address
2084           // will eventually be stored.
2085           if (src.first()->is_reg()) {
2086             if (string_reg++ != 0) {
2087               simple_move32(masm, src, dst);
2088             }
2089           }
2090         } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2091           // need to unbox a one-word value
2092           Register in_reg = rax;
2093           if ( src.first()->is_reg() ) {
2094             in_reg = src.first()->as_Register();
2095           } else {
2096             simple_move32(masm, src, in_reg->as_VMReg());
2097           }
2098           Label skipUnbox;
2099           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
2100           if ( out_sig_bt[c_arg] == T_LONG ) {
2101             __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
2102           }
2103           __ testl(in_reg, in_reg);
2104           __ jcc(Assembler::zero, skipUnbox);
2105           assert(dst.first()->is_stack() &&
2106                  (!dst.second()->is_valid() || dst.second()->is_stack()),
2107                  "value(s) must go into stack slots");
2108 
2109           BasicType bt = out_sig_bt[c_arg];
2110           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2111           if ( bt == T_LONG ) {
2112             __ movl(rbx, Address(in_reg,
2113                                  box_offset + VMRegImpl::stack_slot_size));
2114             __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
2115           }
2116           __ movl(in_reg,  Address(in_reg, box_offset));
2117           __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
2118           __ bind(skipUnbox);
2119         } else {
2120           // Convert the arg to NULL
2121           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
2122         }
2123         if (out_sig_bt[c_arg] == T_LONG) {
2124           assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2125           ++c_arg; // Move over the T_VOID To keep the loop indices in sync
2126         }
2127         break;
2128 
2129       case T_VOID:
2130         break;
2131 
2132       case T_FLOAT:
2133         float_move(masm, src, dst);
2134         break;
2135 
2136       case T_DOUBLE:
2137         assert( j_arg + 1 < total_args_passed &&
2138                 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
2139         double_move(masm, src, dst);
2140         break;
2141 
2142       case T_LONG :
2143         long_move(masm, src, dst);
2144         break;
2145 
2146       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2147 
2148       default:
2149         simple_move32(masm, src, dst);
2150     }
2151   }
2152 
2153   // Now we must convert any string we have to utf8
2154   //
2155 
2156   for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
2157        sid < total_strings ; j_arg++, c_arg++ ) {
2158 
2159     if (out_sig_bt[c_arg] == T_ADDRESS) {
2160 
2161       Address utf8_addr = Address(
2162           rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2163       __ leal(rax, utf8_addr);
2164 
2165       // The first string we find might still be in the original java arg
2166       // register
2167       VMReg orig_loc = in_regs[j_arg].first();
2168       Register string_oop;
2169 
2170       // This is where the argument will eventually reside
2171       Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
2172 
2173       if (sid == 1 && orig_loc->is_reg()) {
2174         string_oop = orig_loc->as_Register();
2175         assert(string_oop != rax, "smashed arg");
2176       } else {
2177 
2178         if (orig_loc->is_reg()) {
2179           // Get the copy of the jls object
2180           __ movl(rcx, dest);
2181         } else {
2182           // arg is still in the original location
2183           __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
2184         }
2185         string_oop = rcx;
2186 
2187       }
2188       Label nullString;
2189       __ movl(dest, NULL_WORD);
2190       __ testl(string_oop, string_oop);
2191       __ jcc(Assembler::zero, nullString);
2192 
2193       // Now we can store the address of the utf string as the argument
2194       __ movl(dest, rax);
2195 
2196       // And do the conversion
2197       __ call_VM_leaf(CAST_FROM_FN_PTR(
2198              address, SharedRuntime::get_utf), string_oop, rax);
2199       __ bind(nullString);
2200     }
2201 
2202     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2203       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2204       ++c_arg; // Move over the T_VOID To keep the loop indices in sync
2205     }
2206   }
2207 
2208 
2209   // Ok now we are done. Need to place the nop that dtrace wants in order to
2210   // patch in the trap
2211 
2212   int patch_offset = ((intptr_t)__ pc()) - start;
2213 
2214   __ nop();
2215 
2216 
2217   // Return
2218 
2219   __ leave();
2220   __ ret(0);
2221 
2222   __ flush();
2223 
2224   nmethod *nm = nmethod::new_dtrace_nmethod(
2225       method, masm->code(), vep_offset, patch_offset, frame_complete,
2226       stack_slots / VMRegImpl::slots_per_word);
2227   return nm;
2228 
2229 }
2230 
2231 #endif // HAVE_DTRACE_H
2232 
2233 // this function returns the adjust size (in number of words) to a c2i adapter
2234 // activation for use during deoptimization
2235 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2236   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2237 }
2238 
2239 
2240 uint SharedRuntime::out_preserve_stack_slots() {
2241   return 0;
2242 }
2243 
2244 
2245 //------------------------------generate_deopt_blob----------------------------
2246 void SharedRuntime::generate_deopt_blob() {
2247   // allocate space for the code
2248   ResourceMark rm;
2249   // setup code generation tools
2250   CodeBuffer   buffer("deopt_blob", 1024, 1024);
2251   MacroAssembler* masm = new MacroAssembler(&buffer);
2252   int frame_size_in_words;
2253   OopMap* map = NULL;
2254   // Account for the extra args we place on the stack
2255   // by the time we call fetch_unroll_info
2256   const int additional_words = 2; // deopt kind, thread
2257 
2258   OopMapSet *oop_maps = new OopMapSet();
2259 
2260   // -------------
2261   // This code enters when returning to a de-optimized nmethod.  A return
2262   // address has been pushed on the the stack, and return values are in
2263   // registers.
2264   // If we are doing a normal deopt then we were called from the patched
2265   // nmethod from the point we returned to the nmethod. So the return
2266   // address on the stack is wrong by NativeCall::instruction_size
2267   // We will adjust the value to it looks like we have the original return
2268   // address on the stack (like when we eagerly deoptimized).
2269   // In the case of an exception pending with deoptimized then we enter
2270   // with a return address on the stack that points after the call we patched
2271   // into the exception handler. We have the following register state:
2272   //    rax,: exception
2273   //    rbx,: exception handler
2274   //    rdx: throwing pc
2275   // So in this case we simply jam rdx into the useless return address and
2276   // the stack looks just like we want.
2277   //
2278   // At this point we need to de-opt.  We save the argument return
2279   // registers.  We call the first C routine, fetch_unroll_info().  This
2280   // routine captures the return values and returns a structure which
2281   // describes the current frame size and the sizes of all replacement frames.
2282   // The current frame is compiled code and may contain many inlined
2283   // functions, each with their own JVM state.  We pop the current frame, then
2284   // push all the new frames.  Then we call the C routine unpack_frames() to
2285   // populate these frames.  Finally unpack_frames() returns us the new target
2286   // address.  Notice that callee-save registers are BLOWN here; they have
2287   // already been captured in the vframeArray at the time the return PC was
2288   // patched.
2289   address start = __ pc();
2290   Label cont;
2291 
2292   // Prolog for non exception case!
2293 
2294   // Save everything in sight.
2295 
2296   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2297   // Normal deoptimization
2298   __ push(Deoptimization::Unpack_deopt);
2299   __ jmp(cont);
2300 
2301   int reexecute_offset = __ pc() - start;
2302 
2303   // Reexecute case
2304   // return address is the pc describes what bci to do re-execute at
2305 
2306   // No need to update map as each call to save_live_registers will produce identical oopmap
2307   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2308 
2309   __ push(Deoptimization::Unpack_reexecute);
2310   __ jmp(cont);
2311 
2312   int exception_offset = __ pc() - start;
2313 
2314   // Prolog for exception case
2315 
2316   // all registers are dead at this entry point, except for rax, and
2317   // rdx which contain the exception oop and exception pc
2318   // respectively.  Set them in TLS and fall thru to the
2319   // unpack_with_exception_in_tls entry point.
2320 
2321   __ get_thread(rdi);
2322   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2323   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2324 
2325   int exception_in_tls_offset = __ pc() - start;
2326 
2327   // new implementation because exception oop is now passed in JavaThread
2328 
2329   // Prolog for exception case
2330   // All registers must be preserved because they might be used by LinearScan
2331   // Exceptiop oop and throwing PC are passed in JavaThread
2332   // tos: stack at point of call to method that threw the exception (i.e. only
2333   // args are on the stack, no return address)
2334 
2335   // make room on stack for the return address
2336   // It will be patched later with the throwing pc. The correct value is not
2337   // available now because loading it from memory would destroy registers.
2338   __ push(0);
2339 
2340   // Save everything in sight.
2341 
2342   // No need to update map as each call to save_live_registers will produce identical oopmap
2343   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2344 
2345   // Now it is safe to overwrite any register
2346 
2347   // store the correct deoptimization type
2348   __ push(Deoptimization::Unpack_exception);
2349 
2350   // load throwing pc from JavaThread and patch it as the return address
2351   // of the current frame. Then clear the field in JavaThread
2352   __ get_thread(rdi);
2353   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2354   __ movptr(Address(rbp, wordSize), rdx);
2355   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2356 
2357 #ifdef ASSERT
2358   // verify that there is really an exception oop in JavaThread
2359   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2360   __ verify_oop(rax);
2361 
2362   // verify that there is no pending exception
2363   Label no_pending_exception;
2364   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2365   __ testptr(rax, rax);
2366   __ jcc(Assembler::zero, no_pending_exception);
2367   __ stop("must not have pending exception here");
2368   __ bind(no_pending_exception);
2369 #endif
2370 
2371   __ bind(cont);
2372 
2373   // Compiled code leaves the floating point stack dirty, empty it.
2374   __ empty_FPU_stack();
2375 
2376 
2377   // Call C code.  Need thread and this frame, but NOT official VM entry
2378   // crud.  We cannot block on this call, no GC can happen.
2379   __ get_thread(rcx);
2380   __ push(rcx);
2381   // fetch_unroll_info needs to call last_java_frame()
2382   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
2383 
2384   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2385 
2386   // Need to have an oopmap that tells fetch_unroll_info where to
2387   // find any register it might need.
2388 
2389   oop_maps->add_gc_map( __ pc()-start, map);
2390 
2391   // Discard arg to fetch_unroll_info
2392   __ pop(rcx);
2393 
2394   __ get_thread(rcx);
2395   __ reset_last_Java_frame(rcx, false, false);
2396 
2397   // Load UnrollBlock into EDI
2398   __ mov(rdi, rax);
2399 
2400   // Move the unpack kind to a safe place in the UnrollBlock because
2401   // we are very short of registers
2402 
2403   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
2404   // retrieve the deopt kind from where we left it.
2405   __ pop(rax);
2406   __ movl(unpack_kind, rax);                      // save the unpack_kind value
2407 
2408    Label noException;
2409   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2410   __ jcc(Assembler::notEqual, noException);
2411   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2412   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2413   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2414   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2415 
2416   __ verify_oop(rax);
2417 
2418   // Overwrite the result registers with the exception results.
2419   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2420   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2421 
2422   __ bind(noException);
2423 
2424   // Stack is back to only having register save data on the stack.
2425   // Now restore the result registers. Everything else is either dead or captured
2426   // in the vframeArray.
2427 
2428   RegisterSaver::restore_result_registers(masm);
2429 
2430   // Non standard control word may be leaked out through a safepoint blob, and we can
2431   // deopt at a poll point with the non standard control word. However, we should make
2432   // sure the control word is correct after restore_result_registers.
2433   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2434 
2435   // All of the register save area has been popped of the stack. Only the
2436   // return address remains.
2437 
2438   // Pop all the frames we must move/replace.
2439   //
2440   // Frame picture (youngest to oldest)
2441   // 1: self-frame (no frame link)
2442   // 2: deopting frame  (no frame link)
2443   // 3: caller of deopting frame (could be compiled/interpreted).
2444   //
2445   // Note: by leaving the return address of self-frame on the stack
2446   // and using the size of frame 2 to adjust the stack
2447   // when we are done the return to frame 3 will still be on the stack.
2448 
2449   // Pop deoptimized frame
2450   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2451 
2452   // sp should be pointing at the return address to the caller (3)
2453 
2454   // Stack bang to make sure there's enough room for these interpreter frames.
2455   if (UseStackBanging) {
2456     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2457     __ bang_stack_size(rbx, rcx);
2458   }
2459 
2460   // Load array of frame pcs into ECX
2461   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2462 
2463   __ pop(rsi); // trash the old pc
2464 
2465   // Load array of frame sizes into ESI
2466   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2467 
2468   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2469 
2470   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2471   __ movl(counter, rbx);
2472 
2473   // Pick up the initial fp we should save
2474   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2475 
2476   // Now adjust the caller's stack to make up for the extra locals
2477   // but record the original sp so that we can save it in the skeletal interpreter
2478   // frame and the stack walking of interpreter_sender will get the unextended sp
2479   // value and not the "real" sp value.
2480 
2481   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2482   __ movptr(sp_temp, rsp);
2483   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2484   __ subptr(rsp, rbx);
2485 
2486   // Push interpreter frames in a loop
2487   Label loop;
2488   __ bind(loop);
2489   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2490 #ifdef CC_INTERP
2491   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2492 #ifdef ASSERT
2493   __ push(0xDEADDEAD);                  // Make a recognizable pattern
2494   __ push(0xDEADDEAD);
2495 #else /* ASSERT */
2496   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2497 #endif /* ASSERT */
2498 #else /* CC_INTERP */
2499   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2500 #endif /* CC_INTERP */
2501   __ pushptr(Address(rcx, 0));          // save return address
2502   __ enter();                           // save old & set new rbp,
2503   __ subptr(rsp, rbx);                  // Prolog!
2504   __ movptr(rbx, sp_temp);              // sender's sp
2505 #ifdef CC_INTERP
2506   __ movptr(Address(rbp,
2507                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2508           rbx); // Make it walkable
2509 #else /* CC_INTERP */
2510   // This value is corrected by layout_activation_impl
2511   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2512   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2513 #endif /* CC_INTERP */
2514   __ movptr(sp_temp, rsp);              // pass to next frame
2515   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2516   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2517   __ decrementl(counter);             // decrement counter
2518   __ jcc(Assembler::notZero, loop);
2519   __ pushptr(Address(rcx, 0));          // save final return address
2520 
2521   // Re-push self-frame
2522   __ enter();                           // save old & set new rbp,
2523 
2524   //  Return address and rbp, are in place
2525   // We'll push additional args later. Just allocate a full sized
2526   // register save area
2527   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2528 
2529   // Restore frame locals after moving the frame
2530   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2531   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2532   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2533   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2534   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2535 
2536   // Set up the args to unpack_frame
2537 
2538   __ pushl(unpack_kind);                     // get the unpack_kind value
2539   __ get_thread(rcx);
2540   __ push(rcx);
2541 
2542   // set last_Java_sp, last_Java_fp
2543   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
2544 
2545   // Call C code.  Need thread but NOT official VM entry
2546   // crud.  We cannot block on this call, no GC can happen.  Call should
2547   // restore return values to their stack-slots with the new SP.
2548   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2549   // Set an oopmap for the call site
2550   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2551 
2552   // rax, contains the return result type
2553   __ push(rax);
2554 
2555   __ get_thread(rcx);
2556   __ reset_last_Java_frame(rcx, false, false);
2557 
2558   // Collect return values
2559   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2560   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2561 
2562   // Clear floating point stack before returning to interpreter
2563   __ empty_FPU_stack();
2564 
2565   // Check if we should push the float or double return value.
2566   Label results_done, yes_double_value;
2567   __ cmpl(Address(rsp, 0), T_DOUBLE);
2568   __ jcc (Assembler::zero, yes_double_value);
2569   __ cmpl(Address(rsp, 0), T_FLOAT);
2570   __ jcc (Assembler::notZero, results_done);
2571 
2572   // return float value as expected by interpreter
2573   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2574   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2575   __ jmp(results_done);
2576 
2577   // return double value as expected by interpreter
2578   __ bind(yes_double_value);
2579   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2580   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2581 
2582   __ bind(results_done);
2583 
2584   // Pop self-frame.
2585   __ leave();                              // Epilog!
2586 
2587   // Jump to interpreter
2588   __ ret(0);
2589 
2590   // -------------
2591   // make sure all code is generated
2592   masm->flush();
2593 
2594   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2595   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2596 }
2597 
2598 
2599 #ifdef COMPILER2
2600 //------------------------------generate_uncommon_trap_blob--------------------
2601 void SharedRuntime::generate_uncommon_trap_blob() {
2602   // allocate space for the code
2603   ResourceMark rm;
2604   // setup code generation tools
2605   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
2606   MacroAssembler* masm = new MacroAssembler(&buffer);
2607 
2608   enum frame_layout {
2609     arg0_off,      // thread                     sp + 0 // Arg location for
2610     arg1_off,      // unloaded_class_index       sp + 1 // calling C
2611     // The frame sender code expects that rbp will be in the "natural" place and
2612     // will override any oopMap setting for it. We must therefore force the layout
2613     // so that it agrees with the frame sender code.
2614     rbp_off,       // callee saved register      sp + 2
2615     return_off,    // slot for return address    sp + 3
2616     framesize
2617   };
2618 
2619   address start = __ pc();
2620   // Push self-frame.
2621   __ subptr(rsp, return_off*wordSize);     // Epilog!
2622 
2623   // rbp, is an implicitly saved callee saved register (i.e. the calling
2624   // convention will save restore it in prolog/epilog) Other than that
2625   // there are no callee save registers no that adapter frames are gone.
2626   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
2627 
2628   // Clear the floating point exception stack
2629   __ empty_FPU_stack();
2630 
2631   // set last_Java_sp
2632   __ get_thread(rdx);
2633   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
2634 
2635   // Call C code.  Need thread but NOT official VM entry
2636   // crud.  We cannot block on this call, no GC can happen.  Call should
2637   // capture callee-saved registers as well as return values.
2638   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
2639   // argument already in ECX
2640   __ movl(Address(rsp, arg1_off*wordSize),rcx);
2641   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2642 
2643   // Set an oopmap for the call site
2644   OopMapSet *oop_maps = new OopMapSet();
2645   OopMap* map =  new OopMap( framesize, 0 );
2646   // No oopMap for rbp, it is known implicitly
2647 
2648   oop_maps->add_gc_map( __ pc()-start, map);
2649 
2650   __ get_thread(rcx);
2651 
2652   __ reset_last_Java_frame(rcx, false, false);
2653 
2654   // Load UnrollBlock into EDI
2655   __ movptr(rdi, rax);
2656 
2657   // Pop all the frames we must move/replace.
2658   //
2659   // Frame picture (youngest to oldest)
2660   // 1: self-frame (no frame link)
2661   // 2: deopting frame  (no frame link)
2662   // 3: caller of deopting frame (could be compiled/interpreted).
2663 
2664   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
2665   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
2666 
2667   // Pop deoptimized frame
2668   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2669   __ addptr(rsp, rcx);
2670 
2671   // sp should be pointing at the return address to the caller (3)
2672 
2673   // Stack bang to make sure there's enough room for these interpreter frames.
2674   if (UseStackBanging) {
2675     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2676     __ bang_stack_size(rbx, rcx);
2677   }
2678 
2679 
2680   // Load array of frame pcs into ECX
2681   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2682 
2683   __ pop(rsi); // trash the pc
2684 
2685   // Load array of frame sizes into ESI
2686   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2687 
2688   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2689 
2690   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2691   __ movl(counter, rbx);
2692 
2693   // Pick up the initial fp we should save
2694   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2695 
2696   // Now adjust the caller's stack to make up for the extra locals
2697   // but record the original sp so that we can save it in the skeletal interpreter
2698   // frame and the stack walking of interpreter_sender will get the unextended sp
2699   // value and not the "real" sp value.
2700 
2701   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2702   __ movptr(sp_temp, rsp);
2703   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2704   __ subptr(rsp, rbx);
2705 
2706   // Push interpreter frames in a loop
2707   Label loop;
2708   __ bind(loop);
2709   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2710 #ifdef CC_INTERP
2711   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2712 #ifdef ASSERT
2713   __ push(0xDEADDEAD);                  // Make a recognizable pattern
2714   __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
2715 #else /* ASSERT */
2716   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2717 #endif /* ASSERT */
2718 #else /* CC_INTERP */
2719   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2720 #endif /* CC_INTERP */
2721   __ pushptr(Address(rcx, 0));          // save return address
2722   __ enter();                           // save old & set new rbp,
2723   __ subptr(rsp, rbx);                  // Prolog!
2724   __ movptr(rbx, sp_temp);              // sender's sp
2725 #ifdef CC_INTERP
2726   __ movptr(Address(rbp,
2727                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2728           rbx); // Make it walkable
2729 #else /* CC_INTERP */
2730   // This value is corrected by layout_activation_impl
2731   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
2732   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2733 #endif /* CC_INTERP */
2734   __ movptr(sp_temp, rsp);              // pass to next frame
2735   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2736   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2737   __ decrementl(counter);             // decrement counter
2738   __ jcc(Assembler::notZero, loop);
2739   __ pushptr(Address(rcx, 0));            // save final return address
2740 
2741   // Re-push self-frame
2742   __ enter();                           // save old & set new rbp,
2743   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
2744 
2745 
2746   // set last_Java_sp, last_Java_fp
2747   __ get_thread(rdi);
2748   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
2749 
2750   // Call C code.  Need thread but NOT official VM entry
2751   // crud.  We cannot block on this call, no GC can happen.  Call should
2752   // restore return values to their stack-slots with the new SP.
2753   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
2754   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2755   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2756   // Set an oopmap for the call site
2757   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
2758 
2759   __ get_thread(rdi);
2760   __ reset_last_Java_frame(rdi, true, false);
2761 
2762   // Pop self-frame.
2763   __ leave();     // Epilog!
2764 
2765   // Jump to interpreter
2766   __ ret(0);
2767 
2768   // -------------
2769   // make sure all code is generated
2770   masm->flush();
2771 
2772    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
2773 }
2774 #endif // COMPILER2
2775 
2776 //------------------------------generate_handler_blob------
2777 //
2778 // Generate a special Compile2Runtime blob that saves all registers,
2779 // setup oopmap, and calls safepoint code to stop the compiled code for
2780 // a safepoint.
2781 //
2782 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
2783 
2784   // Account for thread arg in our frame
2785   const int additional_words = 1;
2786   int frame_size_in_words;
2787 
2788   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2789 
2790   ResourceMark rm;
2791   OopMapSet *oop_maps = new OopMapSet();
2792   OopMap* map;
2793 
2794   // allocate space for the code
2795   // setup code generation tools
2796   CodeBuffer   buffer("handler_blob", 1024, 512);
2797   MacroAssembler* masm = new MacroAssembler(&buffer);
2798 
2799   const Register java_thread = rdi; // callee-saved for VC++
2800   address start   = __ pc();
2801   address call_pc = NULL;
2802 
2803   // If cause_return is true we are at a poll_return and there is
2804   // the return address on the stack to the caller on the nmethod
2805   // that is safepoint. We can leave this return on the stack and
2806   // effectively complete the return and safepoint in the caller.
2807   // Otherwise we push space for a return address that the safepoint
2808   // handler will install later to make the stack walking sensible.
2809   if( !cause_return )
2810     __ push(rbx);                // Make room for return address (or push it again)
2811 
2812   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2813 
2814   // The following is basically a call_VM. However, we need the precise
2815   // address of the call in order to generate an oopmap. Hence, we do all the
2816   // work ourselves.
2817 
2818   // Push thread argument and setup last_Java_sp
2819   __ get_thread(java_thread);
2820   __ push(java_thread);
2821   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
2822 
2823   // if this was not a poll_return then we need to correct the return address now.
2824   if( !cause_return ) {
2825     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
2826     __ movptr(Address(rbp, wordSize), rax);
2827   }
2828 
2829   // do the call
2830   __ call(RuntimeAddress(call_ptr));
2831 
2832   // Set an oopmap for the call site.  This oopmap will map all
2833   // oop-registers and debug-info registers as callee-saved.  This
2834   // will allow deoptimization at this safepoint to find all possible
2835   // debug-info recordings, as well as let GC find all oops.
2836 
2837   oop_maps->add_gc_map( __ pc() - start, map);
2838 
2839   // Discard arg
2840   __ pop(rcx);
2841 
2842   Label noException;
2843 
2844   // Clear last_Java_sp again
2845   __ get_thread(java_thread);
2846   __ reset_last_Java_frame(java_thread, false, false);
2847 
2848   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2849   __ jcc(Assembler::equal, noException);
2850 
2851   // Exception pending
2852 
2853   RegisterSaver::restore_live_registers(masm);
2854 
2855   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2856 
2857   __ bind(noException);
2858 
2859   // Normal exit, register restoring and exit
2860   RegisterSaver::restore_live_registers(masm);
2861 
2862   __ ret(0);
2863 
2864   // make sure all code is generated
2865   masm->flush();
2866 
2867   // Fill-out other meta info
2868   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2869 }
2870 
2871 //
2872 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2873 //
2874 // Generate a stub that calls into vm to find out the proper destination
2875 // of a java call. All the argument registers are live at this point
2876 // but since this is generic code we don't know what they are and the caller
2877 // must do any gc of the args.
2878 //
2879 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
2880   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2881 
2882   // allocate space for the code
2883   ResourceMark rm;
2884 
2885   CodeBuffer buffer(name, 1000, 512);
2886   MacroAssembler* masm                = new MacroAssembler(&buffer);
2887 
2888   int frame_size_words;
2889   enum frame_layout {
2890                 thread_off,
2891                 extra_words };
2892 
2893   OopMapSet *oop_maps = new OopMapSet();
2894   OopMap* map = NULL;
2895 
2896   int start = __ offset();
2897 
2898   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
2899 
2900   int frame_complete = __ offset();
2901 
2902   const Register thread = rdi;
2903   __ get_thread(rdi);
2904 
2905   __ push(thread);
2906   __ set_last_Java_frame(thread, noreg, rbp, NULL);
2907 
2908   __ call(RuntimeAddress(destination));
2909 
2910 
2911   // Set an oopmap for the call site.
2912   // We need this not only for callee-saved registers, but also for volatile
2913   // registers that the compiler might be keeping live across a safepoint.
2914 
2915   oop_maps->add_gc_map( __ offset() - start, map);
2916 
2917   // rax, contains the address we are going to jump to assuming no exception got installed
2918 
2919   __ addptr(rsp, wordSize);
2920 
2921   // clear last_Java_sp
2922   __ reset_last_Java_frame(thread, true, false);
2923   // check for pending exceptions
2924   Label pending;
2925   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2926   __ jcc(Assembler::notEqual, pending);
2927 
2928   // get the returned methodOop
2929   __ movptr(rbx, Address(thread, JavaThread::vm_result_offset()));
2930   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
2931 
2932   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
2933 
2934   RegisterSaver::restore_live_registers(masm);
2935 
2936   // We are back the the original state on entry and ready to go.
2937 
2938   __ jmp(rax);
2939 
2940   // Pending exception after the safepoint
2941 
2942   __ bind(pending);
2943 
2944   RegisterSaver::restore_live_registers(masm);
2945 
2946   // exception pending => remove activation and forward to exception handler
2947 
2948   __ get_thread(thread);
2949   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
2950   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
2951   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2952 
2953   // -------------
2954   // make sure all code is generated
2955   masm->flush();
2956 
2957   // return the  blob
2958   // frame_size_words or bytes??
2959   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
2960 }