1 /*
   2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc_implementation/g1/heapRegion.hpp"
  39 #include "gc_interface/collectedHeap.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "memory/barrierSet.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/callnode.hpp"
  50 #include "opto/cfgnode.hpp"
  51 #include "opto/connode.hpp"
  52 #include "opto/graphKit.hpp"
  53 #include "opto/machnode.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/runtime.hpp"
  58 #include "opto/subnode.hpp"
  59 #include "runtime/fprofiler.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/interfaceSupport.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vframe_hp.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/preserveException.hpp"
  71 #ifdef TARGET_ARCH_MODEL_x86_32
  72 # include "adfiles/ad_x86_32.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_sparc
  78 # include "adfiles/ad_sparc.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_zero
  81 # include "adfiles/ad_zero.hpp"
  82 #endif
  83 #ifdef TARGET_ARCH_MODEL_arm
  84 # include "adfiles/ad_arm.hpp"
  85 #endif
  86 #ifdef TARGET_ARCH_MODEL_ppc
  87 # include "adfiles/ad_ppc.hpp"
  88 #endif
  89 
  90 
  91 // For debugging purposes:
  92 //  To force FullGCALot inside a runtime function, add the following two lines
  93 //
  94 //  Universe::release_fullgc_alot_dummy();
  95 //  MarkSweep::invoke(0, "Debugging");
  96 //
  97 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  98 
  99 
 100 
 101 
 102 // Compiled code entry points
 103 address OptoRuntime::_new_instance_Java                           = NULL;
 104 address OptoRuntime::_new_array_Java                              = NULL;
 105 address OptoRuntime::_multianewarray2_Java                        = NULL;
 106 address OptoRuntime::_multianewarray3_Java                        = NULL;
 107 address OptoRuntime::_multianewarray4_Java                        = NULL;
 108 address OptoRuntime::_multianewarray5_Java                        = NULL;
 109 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
 110 address OptoRuntime::_g1_wb_post_Java                             = NULL;
 111 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 112 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 113 address OptoRuntime::_rethrow_Java                                = NULL;
 114 
 115 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 116 address OptoRuntime::_register_finalizer_Java                     = NULL;
 117 
 118 # ifdef ENABLE_ZAP_DEAD_LOCALS
 119 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 120 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 121 # endif
 122 
 123 
 124 // This should be called in an assertion at the start of OptoRuntime routines
 125 // which are entered from compiled code (all of them)
 126 #ifndef PRODUCT
 127 static bool check_compiled_frame(JavaThread* thread) {
 128   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 129 #ifdef ASSERT
 130   RegisterMap map(thread, false);
 131   frame caller = thread->last_frame().sender(&map);
 132   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 133 #endif  /* ASSERT */
 134   return true;
 135 }
 136 #endif
 137 
 138 
 139 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 140   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
 141 
 142 void OptoRuntime::generate(ciEnv* env) {
 143 
 144   generate_exception_blob();
 145 
 146   // Note: tls: Means fetching the return oop out of the thread-local storage
 147   //
 148   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 149   // -------------------------------------------------------------------------------------------------------------------------------
 150   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 151   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 152   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 153   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 154   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 155   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 156   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 157   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 158   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
 159   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 160 
 161   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 162   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 163 
 164 # ifdef ENABLE_ZAP_DEAD_LOCALS
 165   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 166   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 167 # endif
 168 
 169 }
 170 
 171 #undef gen
 172 
 173 
 174 // Helper method to do generation of RunTimeStub's
 175 address OptoRuntime::generate_stub( ciEnv* env,
 176                                     TypeFunc_generator gen, address C_function,
 177                                     const char *name, int is_fancy_jump,
 178                                     bool pass_tls,
 179                                     bool save_argument_registers,
 180                                     bool return_pc ) {
 181   ResourceMark rm;
 182   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 183   return  C.stub_entry_point();
 184 }
 185 
 186 const char* OptoRuntime::stub_name(address entry) {
 187 #ifndef PRODUCT
 188   CodeBlob* cb = CodeCache::find_blob(entry);
 189   RuntimeStub* rs =(RuntimeStub *)cb;
 190   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 191   return rs->name();
 192 #else
 193   // Fast implementation for product mode (maybe it should be inlined too)
 194   return "runtime stub";
 195 #endif
 196 }
 197 
 198 
 199 //=============================================================================
 200 // Opto compiler runtime routines
 201 //=============================================================================
 202 
 203 
 204 //=============================allocation======================================
 205 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 206 // and try allocation again.
 207 
 208 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 209   // After any safepoint, just before going back to compiled code,
 210   // we inform the GC that we will be doing initializing writes to
 211   // this object in the future without emitting card-marks, so
 212   // GC may take any compensating steps.
 213   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 214 
 215   oop new_obj = thread->vm_result();
 216   if (new_obj == NULL)  return;
 217 
 218   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 219          "compiler must check this first");
 220   // GC may decide to give back a safer copy of new_obj.
 221   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 222   thread->set_vm_result(new_obj);
 223 }
 224 
 225 // object allocation
 226 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread))
 227   JRT_BLOCK;
 228 #ifndef PRODUCT
 229   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 230 #endif
 231   assert(check_compiled_frame(thread), "incorrect caller");
 232 
 233   // These checks are cheap to make and support reflective allocation.
 234   int lh = Klass::cast(klass)->layout_helper();
 235   if (Klass::layout_helper_needs_slow_path(lh)
 236       || !instanceKlass::cast(klass)->is_initialized()) {
 237     KlassHandle kh(THREAD, klass);
 238     kh->check_valid_for_instantiation(false, THREAD);
 239     if (!HAS_PENDING_EXCEPTION) {
 240       instanceKlass::cast(kh())->initialize(THREAD);
 241     }
 242     if (!HAS_PENDING_EXCEPTION) {
 243       klass = kh();
 244     } else {
 245       klass = NULL;
 246     }
 247   }
 248 
 249   if (klass != NULL) {
 250     // Scavenge and allocate an instance.
 251     oop result = instanceKlass::cast(klass)->allocate_instance(THREAD);
 252     thread->set_vm_result(result);
 253 
 254     // Pass oops back through thread local storage.  Our apparent type to Java
 255     // is that we return an oop, but we can block on exit from this routine and
 256     // a GC can trash the oop in C's return register.  The generated stub will
 257     // fetch the oop from TLS after any possible GC.
 258   }
 259 
 260   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 261   JRT_BLOCK_END;
 262 
 263   if (GraphKit::use_ReduceInitialCardMarks()) {
 264     // inform GC that we won't do card marks for initializing writes.
 265     new_store_pre_barrier(thread);
 266   }
 267 JRT_END
 268 
 269 
 270 // array allocation
 271 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread))
 272   JRT_BLOCK;
 273 #ifndef PRODUCT
 274   SharedRuntime::_new_array_ctr++;            // new array requires GC
 275 #endif
 276   assert(check_compiled_frame(thread), "incorrect caller");
 277 
 278   // Scavenge and allocate an instance.
 279   oop result;
 280 
 281   if (Klass::cast(array_type)->oop_is_typeArray()) {
 282     // The oopFactory likes to work with the element type.
 283     // (We could bypass the oopFactory, since it doesn't add much value.)
 284     BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
 285     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 286   } else {
 287     // Although the oopFactory likes to work with the elem_type,
 288     // the compiler prefers the array_type, since it must already have
 289     // that latter value in hand for the fast path.
 290     klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass();
 291     result = oopFactory::new_objArray(elem_type, len, THREAD);
 292   }
 293 
 294   // Pass oops back through thread local storage.  Our apparent type to Java
 295   // is that we return an oop, but we can block on exit from this routine and
 296   // a GC can trash the oop in C's return register.  The generated stub will
 297   // fetch the oop from TLS after any possible GC.
 298   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 299   thread->set_vm_result(result);
 300   JRT_BLOCK_END;
 301 
 302   if (GraphKit::use_ReduceInitialCardMarks()) {
 303     // inform GC that we won't do card marks for initializing writes.
 304     new_store_pre_barrier(thread);
 305   }
 306 JRT_END
 307 
 308 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 309 
 310 // multianewarray for 2 dimensions
 311 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread))
 312 #ifndef PRODUCT
 313   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 314 #endif
 315   assert(check_compiled_frame(thread), "incorrect caller");
 316   assert(oop(elem_type)->is_klass(), "not a class");
 317   jint dims[2];
 318   dims[0] = len1;
 319   dims[1] = len2;
 320   oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 321   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 322   thread->set_vm_result(obj);
 323 JRT_END
 324 
 325 // multianewarray for 3 dimensions
 326 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread))
 327 #ifndef PRODUCT
 328   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 329 #endif
 330   assert(check_compiled_frame(thread), "incorrect caller");
 331   assert(oop(elem_type)->is_klass(), "not a class");
 332   jint dims[3];
 333   dims[0] = len1;
 334   dims[1] = len2;
 335   dims[2] = len3;
 336   oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 337   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 338   thread->set_vm_result(obj);
 339 JRT_END
 340 
 341 // multianewarray for 4 dimensions
 342 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 343 #ifndef PRODUCT
 344   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 345 #endif
 346   assert(check_compiled_frame(thread), "incorrect caller");
 347   assert(oop(elem_type)->is_klass(), "not a class");
 348   jint dims[4];
 349   dims[0] = len1;
 350   dims[1] = len2;
 351   dims[2] = len3;
 352   dims[3] = len4;
 353   oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 354   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 355   thread->set_vm_result(obj);
 356 JRT_END
 357 
 358 // multianewarray for 5 dimensions
 359 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 360 #ifndef PRODUCT
 361   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 362 #endif
 363   assert(check_compiled_frame(thread), "incorrect caller");
 364   assert(oop(elem_type)->is_klass(), "not a class");
 365   jint dims[5];
 366   dims[0] = len1;
 367   dims[1] = len2;
 368   dims[2] = len3;
 369   dims[3] = len4;
 370   dims[4] = len5;
 371   oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 372   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 373   thread->set_vm_result(obj);
 374 JRT_END
 375 
 376 const TypeFunc *OptoRuntime::new_instance_Type() {
 377   // create input type (domain)
 378   const Type **fields = TypeTuple::fields(1);
 379   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 380   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 381 
 382   // create result type (range)
 383   fields = TypeTuple::fields(1);
 384   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 385 
 386   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 387 
 388   return TypeFunc::make(domain, range);
 389 }
 390 
 391 
 392 const TypeFunc *OptoRuntime::athrow_Type() {
 393   // create input type (domain)
 394   const Type **fields = TypeTuple::fields(1);
 395   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 396   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 397 
 398   // create result type (range)
 399   fields = TypeTuple::fields(0);
 400 
 401   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 402 
 403   return TypeFunc::make(domain, range);
 404 }
 405 
 406 
 407 const TypeFunc *OptoRuntime::new_array_Type() {
 408   // create input type (domain)
 409   const Type **fields = TypeTuple::fields(2);
 410   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 411   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 412   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 413 
 414   // create result type (range)
 415   fields = TypeTuple::fields(1);
 416   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 417 
 418   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 419 
 420   return TypeFunc::make(domain, range);
 421 }
 422 
 423 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 424   // create input type (domain)
 425   const int nargs = ndim + 1;
 426   const Type **fields = TypeTuple::fields(nargs);
 427   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 428   for( int i = 1; i < nargs; i++ )
 429     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 430   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 431 
 432   // create result type (range)
 433   fields = TypeTuple::fields(1);
 434   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 435   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 436 
 437   return TypeFunc::make(domain, range);
 438 }
 439 
 440 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 441   return multianewarray_Type(2);
 442 }
 443 
 444 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 445   return multianewarray_Type(3);
 446 }
 447 
 448 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 449   return multianewarray_Type(4);
 450 }
 451 
 452 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 453   return multianewarray_Type(5);
 454 }
 455 
 456 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 457   const Type **fields = TypeTuple::fields(2);
 458   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 459   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 460   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 461 
 462   // create result type (range)
 463   fields = TypeTuple::fields(0);
 464   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 465 
 466   return TypeFunc::make(domain, range);
 467 }
 468 
 469 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 470 
 471   const Type **fields = TypeTuple::fields(2);
 472   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 473   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 474   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 475 
 476   // create result type (range)
 477   fields = TypeTuple::fields(0);
 478   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 479 
 480   return TypeFunc::make(domain, range);
 481 }
 482 
 483 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 484   // create input type (domain)
 485   const Type **fields = TypeTuple::fields(1);
 486   // Symbol* name of class to be loaded
 487   fields[TypeFunc::Parms+0] = TypeInt::INT;
 488   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 489 
 490   // create result type (range)
 491   fields = TypeTuple::fields(0);
 492   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 493 
 494   return TypeFunc::make(domain, range);
 495 }
 496 
 497 # ifdef ENABLE_ZAP_DEAD_LOCALS
 498 // Type used for stub generation for zap_dead_locals.
 499 // No inputs or outputs
 500 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 501   // create input type (domain)
 502   const Type **fields = TypeTuple::fields(0);
 503   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 504 
 505   // create result type (range)
 506   fields = TypeTuple::fields(0);
 507   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 508 
 509   return TypeFunc::make(domain,range);
 510 }
 511 # endif
 512 
 513 
 514 //-----------------------------------------------------------------------------
 515 // Monitor Handling
 516 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 517   // create input type (domain)
 518   const Type **fields = TypeTuple::fields(2);
 519   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 520   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 521   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 522 
 523   // create result type (range)
 524   fields = TypeTuple::fields(0);
 525 
 526   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 527 
 528   return TypeFunc::make(domain,range);
 529 }
 530 
 531 
 532 //-----------------------------------------------------------------------------
 533 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 534   // create input type (domain)
 535   const Type **fields = TypeTuple::fields(2);
 536   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 537   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 538   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 539 
 540   // create result type (range)
 541   fields = TypeTuple::fields(0);
 542 
 543   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 544 
 545   return TypeFunc::make(domain,range);
 546 }
 547 
 548 const TypeFunc* OptoRuntime::flush_windows_Type() {
 549   // create input type (domain)
 550   const Type** fields = TypeTuple::fields(1);
 551   fields[TypeFunc::Parms+0] = NULL; // void
 552   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 553 
 554   // create result type
 555   fields = TypeTuple::fields(1);
 556   fields[TypeFunc::Parms+0] = NULL; // void
 557   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 558 
 559   return TypeFunc::make(domain, range);
 560 }
 561 
 562 const TypeFunc* OptoRuntime::l2f_Type() {
 563   // create input type (domain)
 564   const Type **fields = TypeTuple::fields(2);
 565   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 566   fields[TypeFunc::Parms+1] = Type::HALF;
 567   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 568 
 569   // create result type (range)
 570   fields = TypeTuple::fields(1);
 571   fields[TypeFunc::Parms+0] = Type::FLOAT;
 572   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 573 
 574   return TypeFunc::make(domain, range);
 575 }
 576 
 577 const TypeFunc* OptoRuntime::modf_Type() {
 578   const Type **fields = TypeTuple::fields(2);
 579   fields[TypeFunc::Parms+0] = Type::FLOAT;
 580   fields[TypeFunc::Parms+1] = Type::FLOAT;
 581   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 582 
 583   // create result type (range)
 584   fields = TypeTuple::fields(1);
 585   fields[TypeFunc::Parms+0] = Type::FLOAT;
 586 
 587   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 588 
 589   return TypeFunc::make(domain, range);
 590 }
 591 
 592 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 593   // create input type (domain)
 594   const Type **fields = TypeTuple::fields(2);
 595   // Symbol* name of class to be loaded
 596   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 597   fields[TypeFunc::Parms+1] = Type::HALF;
 598   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 599 
 600   // create result type (range)
 601   fields = TypeTuple::fields(2);
 602   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 603   fields[TypeFunc::Parms+1] = Type::HALF;
 604   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 605 
 606   return TypeFunc::make(domain, range);
 607 }
 608 
 609 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 610   const Type **fields = TypeTuple::fields(4);
 611   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 612   fields[TypeFunc::Parms+1] = Type::HALF;
 613   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 614   fields[TypeFunc::Parms+3] = Type::HALF;
 615   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 616 
 617   // create result type (range)
 618   fields = TypeTuple::fields(2);
 619   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 620   fields[TypeFunc::Parms+1] = Type::HALF;
 621   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 622 
 623   return TypeFunc::make(domain, range);
 624 }
 625 
 626 //-------------- currentTimeMillis
 627 
 628 const TypeFunc* OptoRuntime::current_time_millis_Type() {
 629   // create input type (domain)
 630   const Type **fields = TypeTuple::fields(0);
 631   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 632 
 633   // create result type (range)
 634   fields = TypeTuple::fields(2);
 635   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 636   fields[TypeFunc::Parms+1] = Type::HALF;
 637   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 638 
 639   return TypeFunc::make(domain, range);
 640 }
 641 
 642 // arraycopy stub variations:
 643 enum ArrayCopyType {
 644   ac_fast,                      // void(ptr, ptr, size_t)
 645   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 646   ac_slow,                      // void(ptr, int, ptr, int, int)
 647   ac_generic                    //  int(ptr, int, ptr, int, int)
 648 };
 649 
 650 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 651   // create input type (domain)
 652   int num_args      = (act == ac_fast ? 3 : 5);
 653   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 654   int argcnt = num_args;
 655   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 656   const Type** fields = TypeTuple::fields(argcnt);
 657   int argp = TypeFunc::Parms;
 658   fields[argp++] = TypePtr::NOTNULL;    // src
 659   if (num_size_args == 0) {
 660     fields[argp++] = TypeInt::INT;      // src_pos
 661   }
 662   fields[argp++] = TypePtr::NOTNULL;    // dest
 663   if (num_size_args == 0) {
 664     fields[argp++] = TypeInt::INT;      // dest_pos
 665     fields[argp++] = TypeInt::INT;      // length
 666   }
 667   while (num_size_args-- > 0) {
 668     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 669     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 670   }
 671   if (act == ac_checkcast) {
 672     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 673   }
 674   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 675   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 676 
 677   // create result type if needed
 678   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 679   fields = TypeTuple::fields(1);
 680   if (retcnt == 0)
 681     fields[TypeFunc::Parms+0] = NULL; // void
 682   else
 683     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 684   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 685   return TypeFunc::make(domain, range);
 686 }
 687 
 688 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 689   // This signature is simple:  Two base pointers and a size_t.
 690   return make_arraycopy_Type(ac_fast);
 691 }
 692 
 693 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 694   // An extension of fast_arraycopy_Type which adds type checking.
 695   return make_arraycopy_Type(ac_checkcast);
 696 }
 697 
 698 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 699   // This signature is exactly the same as System.arraycopy.
 700   // There are no intptr_t (int/long) arguments.
 701   return make_arraycopy_Type(ac_slow);
 702 }
 703 
 704 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 705   // This signature is like System.arraycopy, except that it returns status.
 706   return make_arraycopy_Type(ac_generic);
 707 }
 708 
 709 
 710 const TypeFunc* OptoRuntime::array_fill_Type() {
 711   // create input type (domain): pointer, int, size_t
 712   const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 713   int argp = TypeFunc::Parms;
 714   fields[argp++] = TypePtr::NOTNULL;
 715   fields[argp++] = TypeInt::INT;
 716   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 717   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 718   const TypeTuple *domain = TypeTuple::make(argp, fields);
 719 
 720   // create result type
 721   fields = TypeTuple::fields(1);
 722   fields[TypeFunc::Parms+0] = NULL; // void
 723   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 724 
 725   return TypeFunc::make(domain, range);
 726 }
 727 
 728 //------------- Interpreter state access for on stack replacement
 729 const TypeFunc* OptoRuntime::osr_end_Type() {
 730   // create input type (domain)
 731   const Type **fields = TypeTuple::fields(1);
 732   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
 733   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 734 
 735   // create result type
 736   fields = TypeTuple::fields(1);
 737   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
 738   fields[TypeFunc::Parms+0] = NULL; // void
 739   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 740   return TypeFunc::make(domain, range);
 741 }
 742 
 743 //-------------- methodData update helpers
 744 
 745 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
 746   // create input type (domain)
 747   const Type **fields = TypeTuple::fields(2);
 748   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
 749   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
 750   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 751 
 752   // create result type
 753   fields = TypeTuple::fields(1);
 754   fields[TypeFunc::Parms+0] = NULL; // void
 755   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 756   return TypeFunc::make(domain,range);
 757 }
 758 
 759 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
 760   if (receiver == NULL) return;
 761   klassOop receiver_klass = receiver->klass();
 762 
 763   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
 764   int empty_row = -1;           // free row, if any is encountered
 765 
 766   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
 767   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
 768     // if (vc->receiver(row) == receiver_klass)
 769     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
 770     intptr_t row_recv = *(mdp + receiver_off);
 771     if (row_recv == (intptr_t) receiver_klass) {
 772       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
 773       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
 774       *(mdp + count_off) += DataLayout::counter_increment;
 775       return;
 776     } else if (row_recv == 0) {
 777       // else if (vc->receiver(row) == NULL)
 778       empty_row = (int) row;
 779     }
 780   }
 781 
 782   if (empty_row != -1) {
 783     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
 784     // vc->set_receiver(empty_row, receiver_klass);
 785     *(mdp + receiver_off) = (intptr_t) receiver_klass;
 786     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
 787     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
 788     *(mdp + count_off) = DataLayout::counter_increment;
 789   } else {
 790     // Receiver did not match any saved receiver and there is no empty row for it.
 791     // Increment total counter to indicate polymorphic case.
 792     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
 793     *count_p += DataLayout::counter_increment;
 794   }
 795 JRT_END
 796 
 797 //-----------------------------------------------------------------------------
 798 // implicit exception support.
 799 
 800 static void report_null_exception_in_code_cache(address exception_pc) {
 801   ResourceMark rm;
 802   CodeBlob* n = CodeCache::find_blob(exception_pc);
 803   if (n != NULL) {
 804     tty->print_cr("#");
 805     tty->print_cr("# HotSpot Runtime Error, null exception in generated code");
 806     tty->print_cr("#");
 807     tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc);
 808 
 809     if (n->is_nmethod()) {
 810       methodOop method = ((nmethod*)n)->method();
 811       tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string());
 812       tty->print_cr("#");
 813       if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) {
 814         const char* title    = "HotSpot Runtime Error";
 815         const char* question = "Do you want to exclude compilation of this method in future runs?";
 816         if (os::message_box(title, question)) {
 817           CompilerOracle::append_comment_to_file("");
 818           CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude");
 819           CompilerOracle::append_comment_to_file("");
 820           CompilerOracle::append_exclude_to_file(method);
 821           tty->print_cr("#");
 822           tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile);
 823           tty->print_cr("#");
 824         }
 825       }
 826       fatal("Implicit null exception happened in compiled method");
 827     } else {
 828       n->print();
 829       fatal("Implicit null exception happened in generated stub");
 830     }
 831   }
 832   fatal("Implicit null exception at wrong place");
 833 }
 834 
 835 
 836 //-------------------------------------------------------------------------------------
 837 // register policy
 838 
 839 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
 840   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
 841   switch (register_save_policy[reg]) {
 842     case 'C': return false; //SOC
 843     case 'E': return true ; //SOE
 844     case 'N': return false; //NS
 845     case 'A': return false; //AS
 846   }
 847   ShouldNotReachHere();
 848   return false;
 849 }
 850 
 851 //-----------------------------------------------------------------------
 852 // Exceptions
 853 //
 854 
 855 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
 856 
 857 // The method is an entry that is always called by a C++ method not
 858 // directly from compiled code. Compiled code will call the C++ method following.
 859 // We can't allow async exception to be installed during  exception processing.
 860 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
 861 
 862   // Do not confuse exception_oop with pending_exception. The exception_oop
 863   // is only used to pass arguments into the method. Not for general
 864   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
 865   // the runtime stubs checks this on exit.
 866   assert(thread->exception_oop() != NULL, "exception oop is found");
 867   address handler_address = NULL;
 868 
 869   Handle exception(thread, thread->exception_oop());
 870 
 871   if (TraceExceptions) {
 872     trace_exception(exception(), thread->exception_pc(), "");
 873   }
 874   // for AbortVMOnException flag
 875   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
 876 
 877   #ifdef ASSERT
 878     if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 879       // should throw an exception here
 880       ShouldNotReachHere();
 881     }
 882   #endif
 883 
 884 
 885   // new exception handling: this method is entered only from adapters
 886   // exceptions from compiled java methods are handled in compiled code
 887   // using rethrow node
 888 
 889   address pc = thread->exception_pc();
 890   nm = CodeCache::find_nmethod(pc);
 891   assert(nm != NULL, "No NMethod found");
 892   if (nm->is_native_method()) {
 893     fatal("Native mathod should not have path to exception handling");
 894   } else {
 895     // we are switching to old paradigm: search for exception handler in caller_frame
 896     // instead in exception handler of caller_frame.sender()
 897 
 898     if (JvmtiExport::can_post_on_exceptions()) {
 899       // "Full-speed catching" is not necessary here,
 900       // since we're notifying the VM on every catch.
 901       // Force deoptimization and the rest of the lookup
 902       // will be fine.
 903       deoptimize_caller_frame(thread, true);
 904     }
 905 
 906     // Check the stack guard pages.  If enabled, look for handler in this frame;
 907     // otherwise, forcibly unwind the frame.
 908     //
 909     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
 910     bool force_unwind = !thread->reguard_stack();
 911     bool deopting = false;
 912     if (nm->is_deopt_pc(pc)) {
 913       deopting = true;
 914       RegisterMap map(thread, false);
 915       frame deoptee = thread->last_frame().sender(&map);
 916       assert(deoptee.is_deoptimized_frame(), "must be deopted");
 917       // Adjust the pc back to the original throwing pc
 918       pc = deoptee.pc();
 919     }
 920 
 921     // If we are forcing an unwind because of stack overflow then deopt is
 922     // irrelevant sice we are throwing the frame away anyway.
 923 
 924     if (deopting && !force_unwind) {
 925       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
 926     } else {
 927 
 928       handler_address =
 929         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
 930 
 931       if (handler_address == NULL) {
 932         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
 933         assert (handler_address != NULL, "must have compiled handler");
 934         // Update the exception cache only when the unwind was not forced.
 935         if (!force_unwind) {
 936           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
 937         }
 938       } else {
 939         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
 940       }
 941     }
 942 
 943     thread->set_exception_pc(pc);
 944     thread->set_exception_handler_pc(handler_address);
 945     thread->set_exception_stack_size(0);
 946 
 947     // Check if the exception PC is a MethodHandle call site.
 948     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 949   }
 950 
 951   // Restore correct return pc.  Was saved above.
 952   thread->set_exception_oop(exception());
 953   return handler_address;
 954 
 955 JRT_END
 956 
 957 // We are entering here from exception_blob
 958 // If there is a compiled exception handler in this method, we will continue there;
 959 // otherwise we will unwind the stack and continue at the caller of top frame method
 960 // Note we enter without the usual JRT wrapper. We will call a helper routine that
 961 // will do the normal VM entry. We do it this way so that we can see if the nmethod
 962 // we looked up the handler for has been deoptimized in the meantime. If it has been
 963 // we must not use the handler and instread return the deopt blob.
 964 address OptoRuntime::handle_exception_C(JavaThread* thread) {
 965 //
 966 // We are in Java not VM and in debug mode we have a NoHandleMark
 967 //
 968 #ifndef PRODUCT
 969   SharedRuntime::_find_handler_ctr++;          // find exception handler
 970 #endif
 971   debug_only(NoHandleMark __hm;)
 972   nmethod* nm = NULL;
 973   address handler_address = NULL;
 974   {
 975     // Enter the VM
 976 
 977     ResetNoHandleMark rnhm;
 978     handler_address = handle_exception_C_helper(thread, nm);
 979   }
 980 
 981   // Back in java: Use no oops, DON'T safepoint
 982 
 983   // Now check to see if the handler we are returning is in a now
 984   // deoptimized frame
 985 
 986   if (nm != NULL) {
 987     RegisterMap map(thread, false);
 988     frame caller = thread->last_frame().sender(&map);
 989 #ifdef ASSERT
 990     assert(caller.is_compiled_frame(), "must be");
 991 #endif // ASSERT
 992     if (caller.is_deoptimized_frame()) {
 993       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
 994     }
 995   }
 996   return handler_address;
 997 }
 998 
 999 //------------------------------rethrow----------------------------------------
1000 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1001 // is either throwing or rethrowing an exception.  The callee-save registers
1002 // have been restored, synchronized objects have been unlocked and the callee
1003 // stack frame has been removed.  The return address was passed in.
1004 // Exception oop is passed as the 1st argument.  This routine is then called
1005 // from the stub.  On exit, we know where to jump in the caller's code.
1006 // After this C code exits, the stub will pop his frame and end in a jump
1007 // (instead of a return).  We enter the caller's default handler.
1008 //
1009 // This must be JRT_LEAF:
1010 //     - caller will not change its state as we cannot block on exit,
1011 //       therefore raw_exception_handler_for_return_address is all it takes
1012 //       to handle deoptimized blobs
1013 //
1014 // However, there needs to be a safepoint check in the middle!  So compiled
1015 // safepoints are completely watertight.
1016 //
1017 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1018 //
1019 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1020 //
1021 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1022 #ifndef PRODUCT
1023   SharedRuntime::_rethrow_ctr++;               // count rethrows
1024 #endif
1025   assert (exception != NULL, "should have thrown a NULLPointerException");
1026 #ifdef ASSERT
1027   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1028     // should throw an exception here
1029     ShouldNotReachHere();
1030   }
1031 #endif
1032 
1033   thread->set_vm_result(exception);
1034   // Frame not compiled (handles deoptimization blob)
1035   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1036 }
1037 
1038 
1039 const TypeFunc *OptoRuntime::rethrow_Type() {
1040   // create input type (domain)
1041   const Type **fields = TypeTuple::fields(1);
1042   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1043   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1044 
1045   // create result type (range)
1046   fields = TypeTuple::fields(1);
1047   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1048   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1049 
1050   return TypeFunc::make(domain, range);
1051 }
1052 
1053 
1054 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1055   // Deoptimize frame
1056   if (doit) {
1057     // Called from within the owner thread, so no need for safepoint
1058     RegisterMap reg_map(thread);
1059     frame stub_frame = thread->last_frame();
1060     assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1061     frame caller_frame = stub_frame.sender(&reg_map);
1062 
1063     // bypass VM_DeoptimizeFrame and deoptimize the frame directly
1064     Deoptimization::deoptimize_frame(thread, caller_frame.id());
1065   }
1066 }
1067 
1068 
1069 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1070   // create input type (domain)
1071   const Type **fields = TypeTuple::fields(1);
1072   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1073   // // The JavaThread* is passed to each routine as the last argument
1074   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1075   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1076 
1077   // create result type (range)
1078   fields = TypeTuple::fields(0);
1079 
1080   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1081 
1082   return TypeFunc::make(domain,range);
1083 }
1084 
1085 
1086 //-----------------------------------------------------------------------------
1087 // Dtrace support.  entry and exit probes have the same signature
1088 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1089   // create input type (domain)
1090   const Type **fields = TypeTuple::fields(2);
1091   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1092   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // methodOop;    Method we are entering
1093   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1094 
1095   // create result type (range)
1096   fields = TypeTuple::fields(0);
1097 
1098   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1099 
1100   return TypeFunc::make(domain,range);
1101 }
1102 
1103 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1104   // create input type (domain)
1105   const Type **fields = TypeTuple::fields(2);
1106   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1107   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1108 
1109   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1110 
1111   // create result type (range)
1112   fields = TypeTuple::fields(0);
1113 
1114   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1115 
1116   return TypeFunc::make(domain,range);
1117 }
1118 
1119 
1120 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1121   assert(obj->is_oop(), "must be a valid oop");
1122   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
1123   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
1124 JRT_END
1125 
1126 //-----------------------------------------------------------------------------
1127 
1128 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1129 
1130 //
1131 // dump the collected NamedCounters.
1132 //
1133 void OptoRuntime::print_named_counters() {
1134   int total_lock_count = 0;
1135   int eliminated_lock_count = 0;
1136 
1137   NamedCounter* c = _named_counters;
1138   while (c) {
1139     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1140       int count = c->count();
1141       if (count > 0) {
1142         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1143         if (Verbose) {
1144           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1145         }
1146         total_lock_count += count;
1147         if (eliminated) {
1148           eliminated_lock_count += count;
1149         }
1150       }
1151     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1152       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1153       if (blc->nonzero()) {
1154         tty->print_cr("%s", c->name());
1155         blc->print_on(tty);
1156       }
1157     }
1158     c = c->next();
1159   }
1160   if (total_lock_count > 0) {
1161     tty->print_cr("dynamic locks: %d", total_lock_count);
1162     if (eliminated_lock_count) {
1163       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1164                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1165     }
1166   }
1167 }
1168 
1169 //
1170 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1171 //  name which consists of method@line for the inlining tree.
1172 //
1173 
1174 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1175   int max_depth = youngest_jvms->depth();
1176 
1177   // Visit scopes from youngest to oldest.
1178   bool first = true;
1179   stringStream st;
1180   for (int depth = max_depth; depth >= 1; depth--) {
1181     JVMState* jvms = youngest_jvms->of_depth(depth);
1182     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1183     if (!first) {
1184       st.print(" ");
1185     } else {
1186       first = false;
1187     }
1188     int bci = jvms->bci();
1189     if (bci < 0) bci = 0;
1190     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1191     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1192   }
1193   NamedCounter* c;
1194   if (tag == NamedCounter::BiasedLockingCounter) {
1195     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1196   } else {
1197     c = new NamedCounter(strdup(st.as_string()), tag);
1198   }
1199 
1200   // atomically add the new counter to the head of the list.  We only
1201   // add counters so this is safe.
1202   NamedCounter* head;
1203   do {
1204     head = _named_counters;
1205     c->set_next(head);
1206   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1207   return c;
1208 }
1209 
1210 //-----------------------------------------------------------------------------
1211 // Non-product code
1212 #ifndef PRODUCT
1213 
1214 int trace_exception_counter = 0;
1215 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1216   ttyLocker ttyl;
1217   trace_exception_counter++;
1218   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1219   exception_oop->print_value();
1220   tty->print(" in ");
1221   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1222   if (blob->is_nmethod()) {
1223     ((nmethod*)blob)->method()->print_value();
1224   } else if (blob->is_runtime_stub()) {
1225     tty->print("<runtime-stub>");
1226   } else {
1227     tty->print("<unknown>");
1228   }
1229   tty->print(" at " INTPTR_FORMAT,  exception_pc);
1230   tty->print_cr("]");
1231 }
1232 
1233 #endif  // PRODUCT
1234 
1235 
1236 # ifdef ENABLE_ZAP_DEAD_LOCALS
1237 // Called from call sites in compiled code with oop maps (actually safepoints)
1238 // Zaps dead locals in first java frame.
1239 // Is entry because may need to lock to generate oop maps
1240 // Currently, only used for compiler frames, but someday may be used
1241 // for interpreter frames, too.
1242 
1243 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1244 
1245 // avoid pointers to member funcs with these helpers
1246 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1247 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1248 
1249 
1250 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1251                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1252   assert(JavaThread::current() == thread, "is this needed?");
1253 
1254   if ( !ZapDeadCompiledLocals )  return;
1255 
1256   bool skip = false;
1257 
1258        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1259   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1260   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1261     warning("starting zapping after skipping");
1262 
1263        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1264   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1265   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1266     warning("about to zap last zap");
1267 
1268   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1269 
1270   if ( skip )  return;
1271 
1272   // find java frame and zap it
1273 
1274   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1275     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1276       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1277       return;
1278     }
1279   }
1280   warning("no frame found to zap in zap_dead_Java_locals_C");
1281 }
1282 
1283 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1284   zap_dead_java_or_native_locals(thread, is_java_frame);
1285 JRT_END
1286 
1287 // The following does not work because for one thing, the
1288 // thread state is wrong; it expects java, but it is native.
1289 // Also, the invariants in a native stub are different and
1290 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1291 // in there.
1292 // So for now, we do not zap in native stubs.
1293 
1294 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1295   zap_dead_java_or_native_locals(thread, is_native_frame);
1296 JRT_END
1297 
1298 # endif