1 /*
   2  * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "prims/methodHandles.hpp"
  29 
  30 #define __ _masm->
  31 
  32 #ifdef PRODUCT
  33 #define BLOCK_COMMENT(str) /* nothing */
  34 #else
  35 #define BLOCK_COMMENT(str) __ block_comment(str)
  36 #endif
  37 
  38 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  39 
  40 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
  41                                                 address interpreted_entry) {
  42   // Just before the actual machine code entry point, allocate space
  43   // for a MethodHandleEntry::Data record, so that we can manage everything
  44   // from one base pointer.
  45   __ align(wordSize);
  46   address target = __ pc() + sizeof(Data);
  47   while (__ pc() < target) {
  48     __ nop();
  49     __ align(wordSize);
  50   }
  51 
  52   MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
  53   me->set_end_address(__ pc());         // set a temporary end_address
  54   me->set_from_interpreted_entry(interpreted_entry);
  55   me->set_type_checking_entry(NULL);
  56 
  57   return (address) me;
  58 }
  59 
  60 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
  61                                                 address start_addr) {
  62   MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
  63   assert(me->end_address() == start_addr, "valid ME");
  64 
  65   // Fill in the real end_address:
  66   __ align(wordSize);
  67   me->set_end_address(__ pc());
  68 
  69   return me;
  70 }
  71 
  72 // stack walking support
  73 
  74 frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) {
  75   //RicochetFrame* f = RicochetFrame::from_frame(fr);
  76   // Cf. is_interpreted_frame path of frame::sender
  77   intptr_t* younger_sp = fr.sp();
  78   intptr_t* sp         = fr.sender_sp();
  79   map->make_integer_regs_unsaved();
  80   map->shift_window(sp, younger_sp);
  81   bool this_frame_adjusted_stack = true;  // I5_savedSP is live in this RF
  82   return frame(sp, younger_sp, this_frame_adjusted_stack);
  83 }
  84 
  85 void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) {
  86   ResourceMark rm;
  87   RicochetFrame* f = RicochetFrame::from_frame(fr);
  88 
  89   // pick up the argument type descriptor:
  90   Thread* thread = Thread::current();
  91   Handle cookie(thread, f->compute_saved_args_layout(true, true));
  92 
  93   // process fixed part
  94   blk->do_oop((oop*)f->saved_target_addr());
  95   blk->do_oop((oop*)f->saved_args_layout_addr());
  96 
  97   // process variable arguments:
  98   if (cookie.is_null())  return;  // no arguments to describe
  99 
 100   // the cookie is actually the invokeExact method for my target
 101   // his argument signature is what I'm interested in
 102   assert(cookie->is_method(), "");
 103   methodHandle invoker(thread, methodOop(cookie()));
 104   assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method");
 105   assert(!invoker->is_static(), "must have MH argument");
 106   int slot_count = invoker->size_of_parameters();
 107   assert(slot_count >= 1, "must include 'this'");
 108   intptr_t* base = f->saved_args_base();
 109   intptr_t* retval = NULL;
 110   if (f->has_return_value_slot())
 111     retval = f->return_value_slot_addr();
 112   int slot_num = slot_count - 1;
 113   intptr_t* loc = &base[slot_num];
 114   //blk->do_oop((oop*) loc);   // original target, which is irrelevant
 115   int arg_num = 0;
 116   for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) {
 117     if (ss.at_return_type())  continue;
 118     BasicType ptype = ss.type();
 119     if (ptype == T_ARRAY)  ptype = T_OBJECT; // fold all refs to T_OBJECT
 120     assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void");
 121     slot_num -= type2size[ptype];
 122     loc = &base[slot_num];
 123     bool is_oop = (ptype == T_OBJECT && loc != retval);
 124     if (is_oop)  blk->do_oop((oop*)loc);
 125     arg_num += 1;
 126   }
 127   assert(slot_num == 0, "must have processed all the arguments");
 128 }
 129 
 130 // Ricochet Frames
 131 const Register MethodHandles::RicochetFrame::L1_continuation      = L1;
 132 const Register MethodHandles::RicochetFrame::L2_saved_target      = L2;
 133 const Register MethodHandles::RicochetFrame::L3_saved_args_layout = L3;
 134 const Register MethodHandles::RicochetFrame::L4_saved_args_base   = L4; // cf. Gargs = G4
 135 const Register MethodHandles::RicochetFrame::L5_conversion        = L5;
 136 #ifdef ASSERT
 137 const Register MethodHandles::RicochetFrame::L0_magic_number_1    = L0;
 138 #endif //ASSERT
 139 
 140 oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) {
 141   if (read_cache) {
 142     oop cookie = saved_args_layout();
 143     if (cookie != NULL)  return cookie;
 144   }
 145   oop target = saved_target();
 146   oop mtype  = java_lang_invoke_MethodHandle::type(target);
 147   oop mtform = java_lang_invoke_MethodType::form(mtype);
 148   oop cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform);
 149   if (write_cache)  {
 150     (*saved_args_layout_addr()) = cookie;
 151   }
 152   return cookie;
 153 }
 154 
 155 void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm,
 156                                                           // output params:
 157                                                           int* bounce_offset,
 158                                                           int* exception_offset,
 159                                                           int* frame_size_in_words) {
 160   (*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize;
 161 
 162   address start = __ pc();
 163 
 164 #ifdef ASSERT
 165   __ illtrap(0); __ illtrap(0); __ illtrap(0);
 166   // here's a hint of something special:
 167   __ set(MAGIC_NUMBER_1, G0);
 168   __ set(MAGIC_NUMBER_2, G0);
 169 #endif //ASSERT
 170   __ illtrap(0);  // not reached
 171 
 172   // Return values are in registers.
 173   // L1_continuation contains a cleanup continuation we must return
 174   // to.
 175 
 176   (*bounce_offset) = __ pc() - start;
 177   BLOCK_COMMENT("ricochet_blob.bounce");
 178 
 179   if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
 180   trace_method_handle(_masm, "ricochet_blob.bounce");
 181 
 182   __ JMP(L1_continuation, 0);
 183   __ delayed()->nop();
 184   __ illtrap(0);
 185 
 186   DEBUG_ONLY(__ set(MAGIC_NUMBER_2, G0));
 187 
 188   (*exception_offset) = __ pc() - start;
 189   BLOCK_COMMENT("ricochet_blob.exception");
 190 
 191   // compare this to Interpreter::rethrow_exception_entry, which is parallel code
 192   // for example, see TemplateInterpreterGenerator::generate_throw_exception
 193   // Live registers in:
 194   //   Oexception  (O0): exception
 195   //   Oissuing_pc (O1): return address/pc that threw exception (ignored, always equal to bounce addr)
 196   __ verify_oop(Oexception);
 197 
 198   // Take down the frame.
 199 
 200   // Cf. InterpreterMacroAssembler::remove_activation.
 201   leave_ricochet_frame(_masm, /*recv_reg=*/ noreg, I5_savedSP, I7);
 202 
 203   // We are done with this activation frame; find out where to go next.
 204   // The continuation point will be an exception handler, which expects
 205   // the following registers set up:
 206   //
 207   // Oexception: exception
 208   // Oissuing_pc: the local call that threw exception
 209   // Other On: garbage
 210   // In/Ln:  the contents of the caller's register window
 211   //
 212   // We do the required restore at the last possible moment, because we
 213   // need to preserve some state across a runtime call.
 214   // (Remember that the caller activation is unknown--it might not be
 215   // interpreted, so things like Lscratch are useless in the caller.)
 216   __ mov(Oexception,  Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
 217   __ add(I7, frame::pc_return_offset, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
 218   __ call_VM_leaf(L7_thread_cache,
 219                   CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
 220                   G2_thread, Oissuing_pc->after_save());
 221 
 222   // The caller's SP was adjusted upon method entry to accomodate
 223   // the callee's non-argument locals. Undo that adjustment.
 224   __ JMP(O0, 0);                         // return exception handler in caller
 225   __ delayed()->restore(I5_savedSP, G0, SP);
 226 
 227   // (same old exception object is already in Oexception; see above)
 228   // Note that an "issuing PC" is actually the next PC after the call
 229 }
 230 
 231 void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm,
 232                                                         Register recv_reg,
 233                                                         Register argv_reg,
 234                                                         address return_handler) {
 235   // does not include the __ save()
 236   assert(argv_reg == Gargs, "");
 237   Address G3_mh_vmtarget(   recv_reg, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes());
 238   Address G3_amh_conversion(recv_reg, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
 239 
 240   // Create the RicochetFrame.
 241   // Unlike on x86 we can store all required information in local
 242   // registers.
 243   BLOCK_COMMENT("push RicochetFrame {");
 244   __ set(ExternalAddress(return_handler),          L1_continuation);
 245   __ load_heap_oop(G3_mh_vmtarget,                 L2_saved_target);
 246   __ mov(G0,                                       L3_saved_args_layout);
 247   __ mov(Gargs,                                    L4_saved_args_base);
 248   __ lduw(G3_amh_conversion,                       L5_conversion);  // 32-bit field
 249   // I5, I6, I7 are already set up
 250   DEBUG_ONLY(__ set((int32_t) MAGIC_NUMBER_1,      L0_magic_number_1));
 251   BLOCK_COMMENT("} RicochetFrame");
 252 }
 253 
 254 void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm,
 255                                                         Register recv_reg,
 256                                                         Register new_sp_reg,
 257                                                         Register sender_pc_reg) {
 258   assert(new_sp_reg == I5_savedSP, "exact_sender_sp already in place");
 259   assert(sender_pc_reg == I7, "in a fixed place");
 260   // does not include the __ ret() & __ restore()
 261   assert_different_registers(recv_reg, new_sp_reg, sender_pc_reg);
 262   // Take down the frame.
 263   // Cf. InterpreterMacroAssembler::remove_activation.
 264   BLOCK_COMMENT("end_ricochet_frame {");
 265   if (recv_reg->is_valid())
 266     __ mov(L2_saved_target, recv_reg);
 267   BLOCK_COMMENT("} end_ricochet_frame");
 268 }
 269 
 270 // Emit code to verify that FP is pointing at a valid ricochet frame.
 271 #ifdef ASSERT
 272 enum {
 273   ARG_LIMIT = 255, SLOP = 45,
 274   // use this parameter for checking for garbage stack movements:
 275   UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP)
 276   // the slop defends against false alarms due to fencepost errors
 277 };
 278 
 279 void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) {
 280   // The stack should look like this:
 281   //    ... keep1 | dest=42 | keep2 | magic | handler | magic | recursive args | [RF]
 282   // Check various invariants.
 283 
 284   Register O7_temp = O7, O5_temp = O5;
 285 
 286   Label L_ok_1, L_ok_2, L_ok_3, L_ok_4;
 287   BLOCK_COMMENT("verify_clean {");
 288   // Magic numbers must check out:
 289   __ set((int32_t) MAGIC_NUMBER_1, O7_temp);
 290   __ cmp(O7_temp, L0_magic_number_1);
 291   __ br(Assembler::equal, false, Assembler::pt, L_ok_1);
 292   __ delayed()->nop();
 293   __ stop("damaged ricochet frame: MAGIC_NUMBER_1 not found");
 294 
 295   __ BIND(L_ok_1);
 296 
 297   // Arguments pointer must look reasonable:
 298 #ifdef _LP64
 299   Register FP_temp = O5_temp;
 300   __ add(FP, STACK_BIAS, FP_temp);
 301 #else
 302   Register FP_temp = FP;
 303 #endif
 304   __ cmp(L4_saved_args_base, FP_temp);
 305   __ br(Assembler::greaterEqualUnsigned, false, Assembler::pt, L_ok_2);
 306   __ delayed()->nop();
 307   __ stop("damaged ricochet frame: L4 < FP");
 308 
 309   __ BIND(L_ok_2);
 310   __ sub(L4_saved_args_base, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize, O7_temp);
 311   __ cmp(O7_temp, FP_temp);
 312   __ br(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok_3);
 313   __ delayed()->nop();
 314   __ stop("damaged ricochet frame: (L4 - UNREASONABLE_STACK_MOVE) > FP");
 315 
 316   __ BIND(L_ok_3);
 317   extract_conversion_dest_type(_masm, L5_conversion, O7_temp);
 318   __ cmp(O7_temp, T_VOID);
 319   __ br(Assembler::equal, false, Assembler::pt, L_ok_4);
 320   __ delayed()->nop();
 321   extract_conversion_vminfo(_masm, L5_conversion, O5_temp);
 322   __ ld_ptr(L4_saved_args_base, __ argument_offset(O5_temp, O5_temp), O7_temp);
 323   assert(__ is_simm13(RETURN_VALUE_PLACEHOLDER), "must be simm13");
 324   __ cmp(O7_temp, (int32_t) RETURN_VALUE_PLACEHOLDER);
 325   __ brx(Assembler::equal, false, Assembler::pt, L_ok_4);
 326   __ delayed()->nop();
 327   __ stop("damaged ricochet frame: RETURN_VALUE_PLACEHOLDER not found");
 328   __ BIND(L_ok_4);
 329   BLOCK_COMMENT("} verify_clean");
 330 }
 331 #endif //ASSERT
 332 
 333 void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg, Register temp_reg, Register temp2_reg) {
 334   if (VerifyMethodHandles)
 335     verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(), temp_reg, temp2_reg,
 336                  "AMH argument is a Class");
 337   __ load_heap_oop(Address(klass_reg, java_lang_Class::klass_offset_in_bytes()), klass_reg);
 338 }
 339 
 340 void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Address conversion_field_addr, Register reg) {
 341   assert(CONV_VMINFO_SHIFT == 0, "preshifted");
 342   assert(CONV_VMINFO_MASK == right_n_bits(BitsPerByte), "else change type of following load");
 343   __ ldub(conversion_field_addr.plus_disp(BytesPerInt - 1), reg);
 344 }
 345 
 346 void MethodHandles::extract_conversion_vminfo(MacroAssembler* _masm, Register conversion_field_reg, Register reg) {
 347   assert(CONV_VMINFO_SHIFT == 0, "preshifted");
 348   __ and3(conversion_field_reg, CONV_VMINFO_MASK, reg);
 349 }
 350 
 351 void MethodHandles::extract_conversion_dest_type(MacroAssembler* _masm, Register conversion_field_reg, Register reg) {
 352   __ srl(conversion_field_reg, CONV_DEST_TYPE_SHIFT, reg);
 353   __ and3(reg, 0x0F, reg);
 354 }
 355 
 356 void MethodHandles::load_stack_move(MacroAssembler* _masm,
 357                                     Address G3_amh_conversion,
 358                                     Register stack_move_reg) {
 359   BLOCK_COMMENT("load_stack_move {");
 360   __ ldsw(G3_amh_conversion, stack_move_reg);
 361   __ sra(stack_move_reg, CONV_STACK_MOVE_SHIFT, stack_move_reg);
 362   if (VerifyMethodHandles) {
 363     Label L_ok, L_bad;
 364     int32_t stack_move_limit = 0x0800;  // extra-large
 365     __ cmp(stack_move_reg, stack_move_limit);
 366     __ br(Assembler::greaterEqual, false, Assembler::pn, L_bad);
 367     __ delayed()->nop();
 368     __ cmp(stack_move_reg, -stack_move_limit);
 369     __ br(Assembler::greater, false, Assembler::pt, L_ok);
 370     __ delayed()->nop();
 371     __ BIND(L_bad);
 372     __ stop("load_stack_move of garbage value");
 373     __ BIND(L_ok);
 374   }
 375   BLOCK_COMMENT("} load_stack_move");
 376 }
 377 
 378 #ifdef ASSERT
 379 void MethodHandles::RicochetFrame::verify() const {
 380   assert(magic_number_1() == MAGIC_NUMBER_1, "");
 381   if (!Universe::heap()->is_gc_active()) {
 382     if (saved_args_layout() != NULL) {
 383       assert(saved_args_layout()->is_method(), "must be valid oop");
 384     }
 385     if (saved_target() != NULL) {
 386       assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value");
 387     }
 388   }
 389   int conv_op = adapter_conversion_op(conversion());
 390   assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS ||
 391          conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS ||
 392          conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF,
 393          "must be a sane conversion");
 394   if (has_return_value_slot()) {
 395     assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, "");
 396   }
 397 }
 398 
 399 void MethodHandles::verify_argslot(MacroAssembler* _masm, Register argslot_reg, Register temp_reg, const char* error_message) {
 400   // Verify that argslot lies within (Gargs, FP].
 401   Label L_ok, L_bad;
 402   BLOCK_COMMENT("verify_argslot {");
 403   __ add(FP, STACK_BIAS, temp_reg);  // STACK_BIAS is zero on !_LP64
 404   __ cmp(argslot_reg, temp_reg);
 405   __ brx(Assembler::greaterUnsigned, false, Assembler::pn, L_bad);
 406   __ delayed()->nop();
 407   __ cmp(Gargs, argslot_reg);
 408   __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok);
 409   __ delayed()->nop();
 410   __ BIND(L_bad);
 411   __ stop(error_message);
 412   __ BIND(L_ok);
 413   BLOCK_COMMENT("} verify_argslot");
 414 }
 415 
 416 void MethodHandles::verify_argslots(MacroAssembler* _masm,
 417                                     RegisterOrConstant arg_slots,
 418                                     Register arg_slot_base_reg,
 419                                     Register temp_reg,
 420                                     Register temp2_reg,
 421                                     bool negate_argslots,
 422                                     const char* error_message) {
 423   // Verify that [argslot..argslot+size) lies within (Gargs, FP).
 424   Label L_ok, L_bad;
 425   BLOCK_COMMENT("verify_argslots {");
 426   if (negate_argslots) {
 427     if (arg_slots.is_constant()) {
 428       arg_slots = -1 * arg_slots.as_constant();
 429     } else {
 430       __ neg(arg_slots.as_register(), temp_reg);
 431       arg_slots = temp_reg;
 432     }
 433   }
 434   __ add(arg_slot_base_reg, __ argument_offset(arg_slots, temp_reg), temp_reg);
 435   __ add(FP, STACK_BIAS, temp2_reg);  // STACK_BIAS is zero on !_LP64
 436   __ cmp(temp_reg, temp2_reg);
 437   __ brx(Assembler::greaterUnsigned, false, Assembler::pn, L_bad);
 438   __ delayed()->nop();
 439   // Gargs points to the first word so adjust by BytesPerWord
 440   __ add(arg_slot_base_reg, BytesPerWord, temp_reg);
 441   __ cmp(Gargs, temp_reg);
 442   __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok);
 443   __ delayed()->nop();
 444   __ BIND(L_bad);
 445   __ stop(error_message);
 446   __ BIND(L_ok);
 447   BLOCK_COMMENT("} verify_argslots");
 448 }
 449 
 450 // Make sure that arg_slots has the same sign as the given direction.
 451 // If (and only if) arg_slots is a assembly-time constant, also allow it to be zero.
 452 void MethodHandles::verify_stack_move(MacroAssembler* _masm,
 453                                       RegisterOrConstant arg_slots, int direction) {
 454   enum { UNREASONABLE_STACK_MOVE = 256 * 4 };  // limit of 255 arguments
 455   bool allow_zero = arg_slots.is_constant();
 456   if (direction == 0) { direction = +1; allow_zero = true; }
 457   assert(stack_move_unit() == -1, "else add extra checks here");
 458   if (arg_slots.is_register()) {
 459     Label L_ok, L_bad;
 460     BLOCK_COMMENT("verify_stack_move {");
 461     // __ btst(-stack_move_unit() - 1, arg_slots.as_register());  // no need
 462     // __ br(Assembler::notZero, false, Assembler::pn, L_bad);
 463     // __ delayed()->nop();
 464     __ cmp(arg_slots.as_register(), (int32_t) NULL_WORD);
 465     if (direction > 0) {
 466       __ br(allow_zero ? Assembler::less : Assembler::lessEqual, false, Assembler::pn, L_bad);
 467       __ delayed()->nop();
 468       __ cmp(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE);
 469       __ br(Assembler::less, false, Assembler::pn, L_ok);
 470       __ delayed()->nop();
 471     } else {
 472       __ br(allow_zero ? Assembler::greater : Assembler::greaterEqual, false, Assembler::pn, L_bad);
 473       __ delayed()->nop();
 474       __ cmp(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE);
 475       __ br(Assembler::greater, false, Assembler::pn, L_ok);
 476       __ delayed()->nop();
 477     }
 478     __ BIND(L_bad);
 479     if (direction > 0)
 480       __ stop("assert arg_slots > 0");
 481     else
 482       __ stop("assert arg_slots < 0");
 483     __ BIND(L_ok);
 484     BLOCK_COMMENT("} verify_stack_move");
 485   } else {
 486     intptr_t size = arg_slots.as_constant();
 487     if (direction < 0)  size = -size;
 488     assert(size >= 0, "correct direction of constant move");
 489     assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move");
 490   }
 491 }
 492 
 493 void MethodHandles::verify_klass(MacroAssembler* _masm,
 494                                  Register obj_reg, KlassHandle klass,
 495                                  Register temp_reg, Register temp2_reg,
 496                                  const char* error_message) {
 497   oop* klass_addr = klass.raw_value();
 498   assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() &&
 499          klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(),
 500          "must be one of the SystemDictionaryHandles");
 501   Label L_ok, L_bad;
 502   BLOCK_COMMENT("verify_klass {");
 503   __ verify_oop(obj_reg);
 504   __ br_null(obj_reg, false, Assembler::pn, L_bad);
 505   __ delayed()->nop();
 506   __ load_klass(obj_reg, temp_reg);
 507   __ set(ExternalAddress(klass_addr), temp2_reg);
 508   __ ld_ptr(Address(temp2_reg, 0), temp2_reg);
 509   __ cmp(temp_reg, temp2_reg);
 510   __ brx(Assembler::equal, false, Assembler::pt, L_ok);
 511   __ delayed()->nop();
 512   intptr_t super_check_offset = klass->super_check_offset();
 513   __ ld_ptr(Address(temp_reg, super_check_offset), temp_reg);
 514   __ set(ExternalAddress(klass_addr), temp2_reg);
 515   __ ld_ptr(Address(temp2_reg, 0), temp2_reg);
 516   __ cmp(temp_reg, temp2_reg);
 517   __ brx(Assembler::equal, false, Assembler::pt, L_ok);
 518   __ delayed()->nop();
 519   __ BIND(L_bad);
 520   __ stop(error_message);
 521   __ BIND(L_ok);
 522   BLOCK_COMMENT("} verify_klass");
 523 }
 524 #endif // ASSERT
 525 
 526 // Code generation
 527 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
 528   // I5_savedSP/O5_savedSP: sender SP (must preserve)
 529   // G4 (Gargs): incoming argument list (must preserve)
 530   // G5_method:  invoke methodOop
 531   // G3_method_handle: receiver method handle (must load from sp[MethodTypeForm.vmslots])
 532   // O0, O1, O2, O3, O4: garbage temps, blown away
 533   Register O0_mtype   = O0;
 534   Register O1_scratch = O1;
 535   Register O2_scratch = O2;
 536   Register O3_scratch = O3;
 537   Register O4_argslot = O4;
 538   Register O4_argbase = O4;
 539 
 540   // emit WrongMethodType path first, to enable back-branch from main path
 541   Label wrong_method_type;
 542   __ bind(wrong_method_type);
 543   Label invoke_generic_slow_path;
 544   assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
 545   __ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
 546   __ cmp(O1_scratch, (int) vmIntrinsics::_invokeExact);
 547   __ brx(Assembler::notEqual, false, Assembler::pt, invoke_generic_slow_path);
 548   __ delayed()->nop();
 549   __ mov(O0_mtype, G5_method_type);  // required by throw_WrongMethodType
 550   // mov(G3_method_handle, G3_method_handle);  // already in this register
 551   __ jump_to(AddressLiteral(Interpreter::throw_WrongMethodType_entry()), O1_scratch);
 552   __ delayed()->nop();
 553 
 554   // here's where control starts out:
 555   __ align(CodeEntryAlignment);
 556   address entry_point = __ pc();
 557 
 558   // fetch the MethodType from the method handle
 559   // FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list.
 560   // This would simplify several touchy bits of code.
 561   // See 6984712: JSR 292 method handle calls need a clean argument base pointer
 562   {
 563     Register tem = G5_method;
 564     for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
 565       __ ld_ptr(Address(tem, *pchase), O0_mtype);
 566       tem = O0_mtype;          // in case there is another indirection
 567     }
 568   }
 569 
 570   // given the MethodType, find out where the MH argument is buried
 571   __ load_heap_oop(Address(O0_mtype,   __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,        O1_scratch)), O4_argslot);
 572   __ ldsw(         Address(O4_argslot, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, O1_scratch)), O4_argslot);
 573   __ add(__ argument_address(O4_argslot, O4_argslot, 1), O4_argbase);
 574   // Note: argument_address uses its input as a scratch register!
 575   Address mh_receiver_slot_addr(O4_argbase, -Interpreter::stackElementSize);
 576   __ ld_ptr(mh_receiver_slot_addr, G3_method_handle);
 577 
 578   trace_method_handle(_masm, "invokeExact");
 579 
 580   __ check_method_handle_type(O0_mtype, G3_method_handle, O1_scratch, wrong_method_type);
 581 
 582   // Nobody uses the MH receiver slot after this.  Make sure.
 583   DEBUG_ONLY(__ set((int32_t) 0x999999, O1_scratch); __ st_ptr(O1_scratch, mh_receiver_slot_addr));
 584 
 585   __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
 586 
 587   // for invokeGeneric (only), apply argument and result conversions on the fly
 588   __ bind(invoke_generic_slow_path);
 589 #ifdef ASSERT
 590   if (VerifyMethodHandles) {
 591     Label L;
 592     __ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
 593     __ cmp(O1_scratch, (int) vmIntrinsics::_invokeGeneric);
 594     __ brx(Assembler::equal, false, Assembler::pt, L);
 595     __ delayed()->nop();
 596     __ stop("bad methodOop::intrinsic_id");
 597     __ bind(L);
 598   }
 599 #endif //ASSERT
 600 
 601   // make room on the stack for another pointer:
 602   insert_arg_slots(_masm, 2 * stack_move_unit(), O4_argbase, O1_scratch, O2_scratch, O3_scratch);
 603   // load up an adapter from the calling type (Java weaves this)
 604   Register O2_form    = O2_scratch;
 605   Register O3_adapter = O3_scratch;
 606   __ load_heap_oop(Address(O0_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,               O1_scratch)), O2_form);
 607   __ load_heap_oop(Address(O2_form,  __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, O1_scratch)), O3_adapter);
 608   __ verify_oop(O3_adapter);
 609   __ st_ptr(O3_adapter, Address(O4_argbase, 1 * Interpreter::stackElementSize));
 610   // As a trusted first argument, pass the type being called, so the adapter knows
 611   // the actual types of the arguments and return values.
 612   // (Generic invokers are shared among form-families of method-type.)
 613   __ st_ptr(O0_mtype,   Address(O4_argbase, 0 * Interpreter::stackElementSize));
 614   // FIXME: assert that O3_adapter is of the right method-type.
 615   __ mov(O3_adapter, G3_method_handle);
 616   trace_method_handle(_masm, "invokeGeneric");
 617   __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
 618 
 619   return entry_point;
 620 }
 621 
 622 // Workaround for C++ overloading nastiness on '0' for RegisterOrConstant.
 623 static RegisterOrConstant constant(int value) {
 624   return RegisterOrConstant(value);
 625 }
 626 
 627 static void load_vmargslot(MacroAssembler* _masm, Address vmargslot_addr, Register result) {
 628   __ ldsw(vmargslot_addr, result);
 629 }
 630 
 631 static RegisterOrConstant adjust_SP_and_Gargs_down_by_slots(MacroAssembler* _masm,
 632                                                             RegisterOrConstant arg_slots,
 633                                                             Register temp_reg, Register temp2_reg) {
 634   // Keep the stack pointer 2*wordSize aligned.
 635   const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
 636   if (arg_slots.is_constant()) {
 637     const int        offset = arg_slots.as_constant() << LogBytesPerWord;
 638     const int masked_offset = round_to(offset, 2 * BytesPerWord);
 639     const int masked_offset2 = (offset + 1*BytesPerWord) & ~TwoWordAlignmentMask;
 640     assert(masked_offset == masked_offset2, "must agree");
 641     __ sub(Gargs,        offset, Gargs);
 642     __ sub(SP,    masked_offset, SP   );
 643     return offset;
 644   } else {
 645 #ifdef ASSERT
 646     {
 647       Label L_ok;
 648       __ cmp(arg_slots.as_register(), 0);
 649       __ br(Assembler::greaterEqual, false, Assembler::pt, L_ok);
 650       __ delayed()->nop();
 651       __ stop("negative arg_slots");
 652       __ bind(L_ok);
 653     }
 654 #endif
 655     __ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg);
 656     __ add( temp_reg,  1*BytesPerWord,       temp2_reg);
 657     __ andn(temp2_reg, TwoWordAlignmentMask, temp2_reg);
 658     __ sub(Gargs, temp_reg,  Gargs);
 659     __ sub(SP,    temp2_reg, SP   );
 660     return temp_reg;
 661   }
 662 }
 663 
 664 static RegisterOrConstant adjust_SP_and_Gargs_up_by_slots(MacroAssembler* _masm,
 665                                                           RegisterOrConstant arg_slots,
 666                                                           Register temp_reg, Register temp2_reg) {
 667   // Keep the stack pointer 2*wordSize aligned.
 668   const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
 669   if (arg_slots.is_constant()) {
 670     const int        offset = arg_slots.as_constant() << LogBytesPerWord;
 671     const int masked_offset = offset & ~TwoWordAlignmentMask;
 672     __ add(Gargs,        offset, Gargs);
 673     __ add(SP,    masked_offset, SP   );
 674     return offset;
 675   } else {
 676     __ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg);
 677     __ andn(temp_reg, TwoWordAlignmentMask, temp2_reg);
 678     __ add(Gargs, temp_reg,  Gargs);
 679     __ add(SP,    temp2_reg, SP   );
 680     return temp_reg;
 681   }
 682 }
 683 
 684 // Helper to insert argument slots into the stack.
 685 // arg_slots must be a multiple of stack_move_unit() and < 0
 686 // argslot_reg is decremented to point to the new (shifted) location of the argslot
 687 // But, temp_reg ends up holding the original value of argslot_reg.
 688 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
 689                                      RegisterOrConstant arg_slots,
 690                                      Register argslot_reg,
 691                                      Register temp_reg, Register temp2_reg, Register temp3_reg) {
 692   // allow constant zero
 693   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
 694     return;
 695 
 696   assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
 697                              (!arg_slots.is_register() ? Gargs : arg_slots.as_register()));
 698 
 699   BLOCK_COMMENT("insert_arg_slots {");
 700   if (VerifyMethodHandles)
 701     verify_argslot(_masm, argslot_reg, temp_reg, "insertion point must fall within current frame");
 702   if (VerifyMethodHandles)
 703     verify_stack_move(_masm, arg_slots, -1);
 704 
 705   // Make space on the stack for the inserted argument(s).
 706   // Then pull down everything shallower than argslot_reg.
 707   // The stacked return address gets pulled down with everything else.
 708   // That is, copy [sp, argslot) downward by -size words.  In pseudo-code:
 709   //   sp -= size;
 710   //   for (temp = sp + size; temp < argslot; temp++)
 711   //     temp[-size] = temp[0]
 712   //   argslot -= size;
 713 
 714   // offset is temp3_reg in case of arg_slots being a register.
 715   RegisterOrConstant offset = adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg);
 716   __ sub(Gargs, offset, temp_reg);  // source pointer for copy
 717 
 718   {
 719     Label loop;
 720     __ BIND(loop);
 721     // pull one word down each time through the loop
 722     __ ld_ptr(           Address(temp_reg, 0     ), temp2_reg);
 723     __ st_ptr(temp2_reg, Address(temp_reg, offset)           );
 724     __ add(temp_reg, wordSize, temp_reg);
 725     __ cmp(temp_reg, argslot_reg);
 726     __ brx(Assembler::lessUnsigned, false, Assembler::pt, loop);
 727     __ delayed()->nop();  // FILLME
 728   }
 729 
 730   // Now move the argslot down, to point to the opened-up space.
 731   __ add(argslot_reg, offset, argslot_reg);
 732   BLOCK_COMMENT("} insert_arg_slots");
 733 }
 734 
 735 
 736 // Helper to remove argument slots from the stack.
 737 // arg_slots must be a multiple of stack_move_unit() and > 0
 738 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
 739                                      RegisterOrConstant arg_slots,
 740                                      Register argslot_reg,
 741                                      Register temp_reg, Register temp2_reg, Register temp3_reg) {
 742   // allow constant zero
 743   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
 744     return;
 745   assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
 746                              (!arg_slots.is_register() ? Gargs : arg_slots.as_register()));
 747 
 748   BLOCK_COMMENT("remove_arg_slots {");
 749   if (VerifyMethodHandles)
 750     verify_argslots(_masm, arg_slots, argslot_reg, temp_reg, temp2_reg, false,
 751                     "deleted argument(s) must fall within current frame");
 752   if (VerifyMethodHandles)
 753     verify_stack_move(_masm, arg_slots, +1);
 754 
 755   // Pull up everything shallower than argslot.
 756   // Then remove the excess space on the stack.
 757   // The stacked return address gets pulled up with everything else.
 758   // That is, copy [sp, argslot) upward by size words.  In pseudo-code:
 759   //   for (temp = argslot-1; temp >= sp; --temp)
 760   //     temp[size] = temp[0]
 761   //   argslot += size;
 762   //   sp += size;
 763 
 764   RegisterOrConstant offset = __ regcon_sll_ptr(arg_slots, LogBytesPerWord, temp3_reg);
 765   __ sub(argslot_reg, wordSize, temp_reg);  // source pointer for copy
 766 
 767   {
 768     Label L_loop;
 769     __ BIND(L_loop);
 770     // pull one word up each time through the loop
 771     __ ld_ptr(           Address(temp_reg, 0     ), temp2_reg);
 772     __ st_ptr(temp2_reg, Address(temp_reg, offset)           );
 773     __ sub(temp_reg, wordSize, temp_reg);
 774     __ cmp(temp_reg, Gargs);
 775     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, L_loop);
 776     __ delayed()->nop();  // FILLME
 777   }
 778 
 779   // And adjust the argslot address to point at the deletion point.
 780   __ add(argslot_reg, offset, argslot_reg);
 781 
 782   // We don't need the offset at this point anymore, just adjust SP and Gargs.
 783   (void) adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg);
 784 
 785   BLOCK_COMMENT("} remove_arg_slots");
 786 }
 787 
 788 // Helper to copy argument slots to the top of the stack.
 789 // The sequence starts with argslot_reg and is counted by slot_count
 790 // slot_count must be a multiple of stack_move_unit() and >= 0
 791 // This function blows the temps but does not change argslot_reg.
 792 void MethodHandles::push_arg_slots(MacroAssembler* _masm,
 793                                    Register argslot_reg,
 794                                    RegisterOrConstant slot_count,
 795                                    Register temp_reg, Register temp2_reg) {
 796   // allow constant zero
 797   if (slot_count.is_constant() && slot_count.as_constant() == 0)
 798     return;
 799   assert_different_registers(argslot_reg, temp_reg, temp2_reg,
 800                              (!slot_count.is_register() ? Gargs : slot_count.as_register()),
 801                              SP);
 802   assert(Interpreter::stackElementSize == wordSize, "else change this code");
 803 
 804   BLOCK_COMMENT("push_arg_slots {");
 805   if (VerifyMethodHandles)
 806     verify_stack_move(_masm, slot_count, 0);
 807 
 808   RegisterOrConstant offset = adjust_SP_and_Gargs_down_by_slots(_masm, slot_count, temp2_reg, temp_reg);
 809 
 810   if (slot_count.is_constant()) {
 811     for (int i = slot_count.as_constant() - 1; i >= 0; i--) {
 812       __ ld_ptr(          Address(argslot_reg, i * wordSize), temp_reg);
 813       __ st_ptr(temp_reg, Address(Gargs,       i * wordSize));
 814     }
 815   } else {
 816     Label L_plural, L_loop, L_break;
 817     // Emit code to dynamically check for the common cases, zero and one slot.
 818     __ cmp(slot_count.as_register(), (int32_t) 1);
 819     __ br(Assembler::greater, false, Assembler::pn, L_plural);
 820     __ delayed()->nop();
 821     __ br(Assembler::less, false, Assembler::pn, L_break);
 822     __ delayed()->nop();
 823     __ ld_ptr(          Address(argslot_reg, 0), temp_reg);
 824     __ st_ptr(temp_reg, Address(Gargs,       0));
 825     __ ba(false, L_break);
 826     __ delayed()->nop();  // FILLME
 827     __ BIND(L_plural);
 828 
 829     // Loop for 2 or more:
 830     //   top = &argslot[slot_count]
 831     //   while (top > argslot)  *(--Gargs) = *(--top)
 832     Register top_reg = temp_reg;
 833     __ add(argslot_reg, offset, top_reg);
 834     __ add(Gargs,       offset, Gargs  );  // move back up again so we can go down
 835     __ BIND(L_loop);
 836     __ sub(top_reg, wordSize, top_reg);
 837     __ sub(Gargs,   wordSize, Gargs  );
 838     __ ld_ptr(           Address(top_reg, 0), temp2_reg);
 839     __ st_ptr(temp2_reg, Address(Gargs,   0));
 840     __ cmp(top_reg, argslot_reg);
 841     __ brx(Assembler::greaterUnsigned, false, Assembler::pt, L_loop);
 842     __ delayed()->nop();  // FILLME
 843     __ BIND(L_break);
 844   }
 845   BLOCK_COMMENT("} push_arg_slots");
 846 }
 847 
 848 // in-place movement; no change to Gargs
 849 // blows temp_reg, temp2_reg
 850 void MethodHandles::move_arg_slots_up(MacroAssembler* _masm,
 851                                       Register bottom_reg,  // invariant
 852                                       Address  top_addr,    // can use temp_reg
 853                                       RegisterOrConstant positive_distance_in_slots,  // destroyed if register
 854                                       Register temp_reg, Register temp2_reg) {
 855   assert_different_registers(bottom_reg,
 856                              temp_reg, temp2_reg,
 857                              positive_distance_in_slots.register_or_noreg());
 858   BLOCK_COMMENT("move_arg_slots_up {");
 859   Label L_loop, L_break;
 860   Register top_reg = temp_reg;
 861   if (!top_addr.is_same_address(Address(top_reg, 0))) {
 862     __ add(top_addr, top_reg);
 863   }
 864   // Detect empty (or broken) loop:
 865 #ifdef ASSERT
 866   if (VerifyMethodHandles) {
 867     // Verify that &bottom < &top (non-empty interval)
 868     Label L_ok, L_bad;
 869     if (positive_distance_in_slots.is_register()) {
 870       __ cmp(positive_distance_in_slots.as_register(), (int32_t) 0);
 871       __ br(Assembler::lessEqual, false, Assembler::pn, L_bad);
 872       __ delayed()->nop();
 873     }
 874     __ cmp(bottom_reg, top_reg);
 875     __ brx(Assembler::lessUnsigned, false, Assembler::pt, L_ok);
 876     __ delayed()->nop();
 877     __ BIND(L_bad);
 878     __ stop("valid bounds (copy up)");
 879     __ BIND(L_ok);
 880   }
 881 #endif
 882   __ cmp(bottom_reg, top_reg);
 883   __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pn, L_break);
 884   __ delayed()->nop();
 885   // work top down to bottom, copying contiguous data upwards
 886   // In pseudo-code:
 887   //   while (--top >= bottom) *(top + distance) = *(top + 0);
 888   RegisterOrConstant offset = __ argument_offset(positive_distance_in_slots, positive_distance_in_slots.register_or_noreg());
 889   __ BIND(L_loop);
 890   __ sub(top_reg, wordSize, top_reg);
 891   __ ld_ptr(           Address(top_reg, 0     ), temp2_reg);
 892   __ st_ptr(temp2_reg, Address(top_reg, offset)           );
 893   __ cmp(top_reg, bottom_reg);
 894   __ brx(Assembler::greaterUnsigned, false, Assembler::pt, L_loop);
 895   __ delayed()->nop();  // FILLME
 896   assert(Interpreter::stackElementSize == wordSize, "else change loop");
 897   __ BIND(L_break);
 898   BLOCK_COMMENT("} move_arg_slots_up");
 899 }
 900 
 901 // in-place movement; no change to rsp
 902 // blows temp_reg, temp2_reg
 903 void MethodHandles::move_arg_slots_down(MacroAssembler* _masm,
 904                                         Address  bottom_addr,  // can use temp_reg
 905                                         Register top_reg,      // invariant
 906                                         RegisterOrConstant negative_distance_in_slots,  // destroyed if register
 907                                         Register temp_reg, Register temp2_reg) {
 908   assert_different_registers(top_reg,
 909                              negative_distance_in_slots.register_or_noreg(),
 910                              temp_reg, temp2_reg);
 911   BLOCK_COMMENT("move_arg_slots_down {");
 912   Label L_loop, L_break;
 913   Register bottom_reg = temp_reg;
 914   if (!bottom_addr.is_same_address(Address(bottom_reg, 0))) {
 915     __ add(bottom_addr, bottom_reg);
 916   }
 917   // Detect empty (or broken) loop:
 918 #ifdef ASSERT
 919   assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, "");
 920   if (VerifyMethodHandles) {
 921     // Verify that &bottom < &top (non-empty interval)
 922     Label L_ok, L_bad;
 923     if (negative_distance_in_slots.is_register()) {
 924       __ cmp(negative_distance_in_slots.as_register(), (int32_t) 0);
 925       __ br(Assembler::greaterEqual, false, Assembler::pn, L_bad);
 926       __ delayed()->nop();
 927     }
 928     __ cmp(bottom_reg, top_reg);
 929     __ brx(Assembler::lessUnsigned, false, Assembler::pt, L_ok);
 930     __ delayed()->nop();
 931     __ BIND(L_bad);
 932     __ stop("valid bounds (copy down)");
 933     __ BIND(L_ok);
 934   }
 935 #endif
 936   __ cmp(bottom_reg, top_reg);
 937   __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pn, L_break);
 938   __ delayed()->nop();
 939   // work bottom up to top, copying contiguous data downwards
 940   // In pseudo-code:
 941   //   while (bottom < top) *(bottom - distance) = *(bottom + 0), bottom++;
 942   RegisterOrConstant offset = __ argument_offset(negative_distance_in_slots, negative_distance_in_slots.register_or_noreg());
 943   __ BIND(L_loop);
 944   __ ld_ptr(           Address(bottom_reg, 0     ), temp2_reg);
 945   __ st_ptr(temp2_reg, Address(bottom_reg, offset)           );
 946   __ add(bottom_reg, wordSize, bottom_reg);
 947   __ cmp(bottom_reg, top_reg);
 948   __ brx(Assembler::lessUnsigned, false, Assembler::pt, L_loop);
 949   __ delayed()->nop();  // FILLME
 950   assert(Interpreter::stackElementSize == wordSize, "else change loop");
 951   __ BIND(L_break);
 952   BLOCK_COMMENT("} move_arg_slots_down");
 953 }
 954 
 955 // Copy from a field or array element to a stacked argument slot.
 956 // is_element (ignored) says whether caller is loading an array element instead of an instance field.
 957 void MethodHandles::move_typed_arg(MacroAssembler* _masm,
 958                                    BasicType type, bool is_element,
 959                                    Address value_src, Address slot_dest,
 960                                    Register temp_reg) {
 961   assert(!slot_dest.uses(temp_reg), "must be different register");
 962   BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)");
 963   if (type == T_OBJECT || type == T_ARRAY) {
 964     __ load_heap_oop(value_src, temp_reg);
 965     __ verify_oop(temp_reg);
 966     __ st_ptr(temp_reg, slot_dest);
 967   } else if (type != T_VOID) {
 968     int  arg_size      = type2aelembytes(type);
 969     bool arg_is_signed = is_signed_subword_type(type);
 970     int  slot_size     = is_subword_type(type) ? type2aelembytes(T_INT) : arg_size;  // store int sub-words as int
 971     __ load_sized_value( value_src, temp_reg, arg_size, arg_is_signed);
 972     __ store_sized_value(temp_reg, slot_dest, slot_size              );
 973   }
 974   BLOCK_COMMENT("} move_typed_arg");
 975 }
 976 
 977 // Cf. TemplateInterpreterGenerator::generate_return_entry_for and
 978 // InterpreterMacroAssembler::save_return_value
 979 void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type,
 980                                       Address return_slot) {
 981   BLOCK_COMMENT("move_return_value {");
 982   // Look at the type and pull the value out of the corresponding register.
 983   if (type == T_VOID) {
 984     // nothing to do
 985   } else if (type == T_OBJECT) {
 986     __ verify_oop(O0);
 987     __ st_ptr(O0, return_slot);
 988   } else if (type == T_INT || is_subword_type(type)) {
 989     int type_size = type2aelembytes(T_INT);
 990     __ store_sized_value(O0, return_slot, type_size);
 991   } else if (type == T_LONG) {
 992     // store the value by parts
 993     // Note: We assume longs are continguous (if misaligned) on the interpreter stack.
 994 #if !defined(_LP64) && defined(COMPILER2)
 995     __ stx(G1, return_slot);
 996 #else
 997   #ifdef _LP64
 998     __ stx(O0, return_slot);
 999   #else
1000     if (return_slot.has_disp()) {
1001       // The displacement is a constant
1002       __ st(O0, return_slot);
1003       __ st(O1, return_slot.plus_disp(Interpreter::stackElementSize));
1004     } else {
1005       __ std(O0, return_slot);
1006     }
1007   #endif
1008 #endif
1009   } else if (type == T_FLOAT) {
1010     __ stf(FloatRegisterImpl::S, Ftos_f, return_slot);
1011   } else if (type == T_DOUBLE) {
1012     __ stf(FloatRegisterImpl::D, Ftos_f, return_slot);
1013   } else {
1014     ShouldNotReachHere();
1015   }
1016   BLOCK_COMMENT("} move_return_value");
1017 }
1018 
1019 #ifndef PRODUCT
1020 extern "C" void print_method_handle(oop mh);
1021 void trace_method_handle_stub(const char* adaptername,
1022                               oopDesc* mh,
1023                               intptr_t* saved_sp) {
1024   bool has_mh = (strstr(adaptername, "return/") == NULL);  // return adapters don't have mh
1025   tty->print_cr("MH %s mh="INTPTR_FORMAT " saved_sp=" INTPTR_FORMAT, adaptername, (intptr_t) mh, saved_sp);
1026   if (has_mh)
1027     print_method_handle(mh);
1028 }
1029 void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
1030   if (!TraceMethodHandles)  return;
1031   BLOCK_COMMENT("trace_method_handle {");
1032   // save: Gargs, O5_savedSP
1033   __ save_frame(16);
1034   __ set((intptr_t) adaptername, O0);
1035   __ mov(G3_method_handle, O1);
1036   __ mov(I5_savedSP, O2);
1037   __ mov(G3_method_handle, L3);
1038   __ mov(Gargs, L4);
1039   __ mov(G5_method_type, L5);
1040   __ call_VM_leaf(L7, CAST_FROM_FN_PTR(address, trace_method_handle_stub));
1041 
1042   __ mov(L3, G3_method_handle);
1043   __ mov(L4, Gargs);
1044   __ mov(L5, G5_method_type);
1045   __ restore();
1046   BLOCK_COMMENT("} trace_method_handle");
1047 }
1048 #endif // PRODUCT
1049 
1050 // which conversion op types are implemented here?
1051 int MethodHandles::adapter_conversion_ops_supported_mask() {
1052   return ((1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY)
1053          |(1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW)
1054          |(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST)
1055          |(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM)
1056          |(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM)
1057           // OP_PRIM_TO_REF is below...
1058          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS)
1059          |(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS)
1060          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS)
1061          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS)
1062           // OP_COLLECT_ARGS is below...
1063          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS)
1064          |(!UseRicochetFrames ? 0 :
1065            java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() <= 0 ? 0 :
1066            ((1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF)
1067            |(1<<java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS)
1068            |(1<<java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS)
1069            )
1070           )
1071          );
1072 }
1073 
1074 //------------------------------------------------------------------------------
1075 // MethodHandles::generate_method_handle_stub
1076 //
1077 // Generate an "entry" field for a method handle.
1078 // This determines how the method handle will respond to calls.
1079 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
1080   MethodHandles::EntryKind ek_orig = ek_original_kind(ek);
1081 
1082   // Here is the register state during an interpreted call,
1083   // as set up by generate_method_handle_interpreter_entry():
1084   // - G5: garbage temp (was MethodHandle.invoke methodOop, unused)
1085   // - G3: receiver method handle
1086   // - O5_savedSP: sender SP (must preserve)
1087 
1088   const Register O0_scratch = O0;
1089   const Register O1_scratch = O1;
1090   const Register O2_scratch = O2;
1091   const Register O3_scratch = O3;
1092   const Register O4_scratch = O4;
1093   const Register G5_scratch = G5;
1094 
1095   // Often used names:
1096   const Register O0_argslot = O0;
1097 
1098   // Argument registers for _raise_exception:
1099   const Register O0_code     = O0;
1100   const Register O1_actual   = O1;
1101   const Register O2_required = O2;
1102 
1103   guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
1104 
1105   // Some handy addresses:
1106   Address G5_method_fie(    G5_method,        in_bytes(methodOopDesc::from_interpreted_offset()));
1107   Address G5_method_fce(    G5_method,        in_bytes(methodOopDesc::from_compiled_offset()));
1108 
1109   Address G3_mh_vmtarget(   G3_method_handle, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes());
1110 
1111   Address G3_dmh_vmindex(   G3_method_handle, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes());
1112 
1113   Address G3_bmh_vmargslot( G3_method_handle, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes());
1114   Address G3_bmh_argument(  G3_method_handle, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes());
1115 
1116   Address G3_amh_vmargslot( G3_method_handle, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes());
1117   Address G3_amh_argument ( G3_method_handle, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes());
1118   Address G3_amh_conversion(G3_method_handle, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
1119 
1120   const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
1121 
1122   if (have_entry(ek)) {
1123     __ nop();  // empty stubs make SG sick
1124     return;
1125   }
1126 
1127   address interp_entry = __ pc();
1128 
1129   trace_method_handle(_masm, entry_name(ek));
1130 
1131   BLOCK_COMMENT(err_msg("Entry %s {", entry_name(ek)));
1132 
1133   switch ((int) ek) {
1134   case _raise_exception:
1135     {
1136       // Not a real MH entry, but rather shared code for raising an
1137       // exception.  Since we use the compiled entry, arguments are
1138       // expected in compiler argument registers.
1139       assert(raise_exception_method(), "must be set");
1140       assert(raise_exception_method()->from_compiled_entry(), "method must be linked");
1141 
1142       __ mov(O5_savedSP, SP);  // Cut the stack back to where the caller started.
1143 
1144       Label L_no_method;
1145       // FIXME: fill in _raise_exception_method with a suitable java.lang.invoke method
1146       __ set(AddressLiteral((address) &_raise_exception_method), G5_method);
1147       __ ld_ptr(Address(G5_method, 0), G5_method);
1148       __ tst(G5_method);
1149       __ brx(Assembler::zero, false, Assembler::pn, L_no_method);
1150       __ delayed()->nop();
1151 
1152       const int jobject_oop_offset = 0;
1153       __ ld_ptr(Address(G5_method, jobject_oop_offset), G5_method);
1154       __ tst(G5_method);
1155       __ brx(Assembler::zero, false, Assembler::pn, L_no_method);
1156       __ delayed()->nop();
1157 
1158       __ verify_oop(G5_method);
1159       __ jump_indirect_to(G5_method_fce, O3_scratch);  // jump to compiled entry
1160       __ delayed()->nop();
1161 
1162       // Do something that is at least causes a valid throw from the interpreter.
1163       __ bind(L_no_method);
1164       __ unimplemented("call throw_WrongMethodType_entry");
1165     }
1166     break;
1167 
1168   case _invokestatic_mh:
1169   case _invokespecial_mh:
1170     {
1171       __ load_heap_oop(G3_mh_vmtarget, G5_method);  // target is a methodOop
1172       __ verify_oop(G5_method);
1173       // Same as TemplateTable::invokestatic or invokespecial,
1174       // minus the CP setup and profiling:
1175       if (ek == _invokespecial_mh) {
1176         // Must load & check the first argument before entering the target method.
1177         __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
1178         __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
1179         __ null_check(G3_method_handle);
1180         __ verify_oop(G3_method_handle);
1181       }
1182       __ jump_indirect_to(G5_method_fie, O1_scratch);
1183       __ delayed()->nop();
1184     }
1185     break;
1186 
1187   case _invokevirtual_mh:
1188     {
1189       // Same as TemplateTable::invokevirtual,
1190       // minus the CP setup and profiling:
1191 
1192       // Pick out the vtable index and receiver offset from the MH,
1193       // and then we can discard it:
1194       Register O2_index = O2_scratch;
1195       __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
1196       __ ldsw(G3_dmh_vmindex, O2_index);
1197       // Note:  The verifier allows us to ignore G3_mh_vmtarget.
1198       __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
1199       __ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());
1200 
1201       // Get receiver klass:
1202       Register O0_klass = O0_argslot;
1203       __ load_klass(G3_method_handle, O0_klass);
1204       __ verify_oop(O0_klass);
1205 
1206       // Get target methodOop & entry point:
1207       const int base = instanceKlass::vtable_start_offset() * wordSize;
1208       assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
1209 
1210       __ sll_ptr(O2_index, LogBytesPerWord, O2_index);
1211       __ add(O0_klass, O2_index, O0_klass);
1212       Address vtable_entry_addr(O0_klass, base + vtableEntry::method_offset_in_bytes());
1213       __ ld_ptr(vtable_entry_addr, G5_method);
1214 
1215       __ verify_oop(G5_method);
1216       __ jump_indirect_to(G5_method_fie, O1_scratch);
1217       __ delayed()->nop();
1218     }
1219     break;
1220 
1221   case _invokeinterface_mh:
1222     {
1223       // Same as TemplateTable::invokeinterface,
1224       // minus the CP setup and profiling:
1225       __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
1226       Register O1_intf  = O1_scratch;
1227       Register G5_index = G5_scratch;
1228       __ load_heap_oop(G3_mh_vmtarget, O1_intf);
1229       __ ldsw(G3_dmh_vmindex, G5_index);
1230       __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
1231       __ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());
1232 
1233       // Get receiver klass:
1234       Register O0_klass = O0_argslot;
1235       __ load_klass(G3_method_handle, O0_klass);
1236       __ verify_oop(O0_klass);
1237 
1238       // Get interface:
1239       Label no_such_interface;
1240       __ verify_oop(O1_intf);
1241       __ lookup_interface_method(O0_klass, O1_intf,
1242                                  // Note: next two args must be the same:
1243                                  G5_index, G5_method,
1244                                  O2_scratch,
1245                                  O3_scratch,
1246                                  no_such_interface);
1247 
1248       __ verify_oop(G5_method);
1249       __ jump_indirect_to(G5_method_fie, O1_scratch);
1250       __ delayed()->nop();
1251 
1252       __ bind(no_such_interface);
1253       // Throw an exception.
1254       // For historical reasons, it will be IncompatibleClassChangeError.
1255       __ unimplemented("not tested yet");
1256       __ ld_ptr(Address(O1_intf, java_mirror_offset), O2_required);  // required interface
1257       __ mov(   O0_klass,                             O1_actual);    // bad receiver
1258       __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
1259       __ delayed()->mov(Bytecodes::_invokeinterface,  O0_code);      // who is complaining?
1260     }
1261     break;
1262 
1263   case _bound_ref_mh:
1264   case _bound_int_mh:
1265   case _bound_long_mh:
1266   case _bound_ref_direct_mh:
1267   case _bound_int_direct_mh:
1268   case _bound_long_direct_mh:
1269     {
1270       const bool direct_to_method = (ek >= _bound_ref_direct_mh);
1271       BasicType arg_type  = ek_bound_mh_arg_type(ek);
1272       int       arg_slots = type2size[arg_type];
1273 
1274       // Make room for the new argument:
1275       load_vmargslot(_masm, G3_bmh_vmargslot, O0_argslot);
1276       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
1277 
1278       insert_arg_slots(_masm, arg_slots * stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
1279 
1280       // Store bound argument into the new stack slot:
1281       __ load_heap_oop(G3_bmh_argument, O1_scratch);
1282       if (arg_type == T_OBJECT) {
1283         __ st_ptr(O1_scratch, Address(O0_argslot, 0));
1284       } else {
1285         Address prim_value_addr(O1_scratch, java_lang_boxing_object::value_offset_in_bytes(arg_type));
1286         move_typed_arg(_masm, arg_type, false,
1287                        prim_value_addr,
1288                        Address(O0_argslot, 0),
1289                        O2_scratch);  // must be an even register for !_LP64 long moves (uses O2/O3)
1290       }
1291 
1292       if (direct_to_method) {
1293         __ load_heap_oop(G3_mh_vmtarget, G5_method);  // target is a methodOop
1294         __ verify_oop(G5_method);
1295         __ jump_indirect_to(G5_method_fie, O1_scratch);
1296         __ delayed()->nop();
1297       } else {
1298         __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);  // target is a methodOop
1299         __ verify_oop(G3_method_handle);
1300         __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
1301       }
1302     }
1303     break;
1304 
1305   case _adapter_retype_only:
1306   case _adapter_retype_raw:
1307     // Immediately jump to the next MH layer:
1308     __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
1309     __ verify_oop(G3_method_handle);
1310     __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
1311     // This is OK when all parameter types widen.
1312     // It is also OK when a return type narrows.
1313     break;
1314 
1315   case _adapter_check_cast:
1316     {
1317       // Check a reference argument before jumping to the next layer of MH:
1318       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
1319       Address vmarg = __ argument_address(O0_argslot, O0_argslot);
1320 
1321       // What class are we casting to?
1322       Register O1_klass = O1_scratch;  // Interesting AMH data.
1323       __ load_heap_oop(G3_amh_argument, O1_klass);  // This is a Class object!
1324       load_klass_from_Class(_masm, O1_klass, O2_scratch, O3_scratch);
1325 
1326       Label L_done;
1327       __ ld_ptr(vmarg, O2_scratch);
1328       __ tst(O2_scratch);
1329       __ brx(Assembler::zero, false, Assembler::pn, L_done);  // No cast if null.
1330       __ delayed()->nop();
1331       __ load_klass(O2_scratch, O2_scratch);
1332 
1333       // Live at this point:
1334       // - O0_argslot      :  argslot index in vmarg; may be required in the failing path
1335       // - O1_klass        :  klass required by the target method
1336       // - O2_scratch      :  argument klass to test
1337       // - G3_method_handle:  adapter method handle
1338       __ check_klass_subtype(O2_scratch, O1_klass, O3_scratch, O4_scratch, L_done);
1339 
1340       // If we get here, the type check failed!
1341       __ load_heap_oop(G3_amh_argument,        O2_required);  // required class
1342       __ ld_ptr(       vmarg,                  O1_actual);    // bad object
1343       __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
1344       __ delayed()->mov(Bytecodes::_checkcast, O0_code);      // who is complaining?
1345 
1346       __ BIND(L_done);
1347       // Get the new MH:
1348       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
1349       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
1350     }
1351     break;
1352 
1353   case _adapter_prim_to_prim:
1354   case _adapter_ref_to_prim:
1355     // Handled completely by optimized cases.
1356     __ stop("init_AdapterMethodHandle should not issue this");
1357     break;
1358 
1359   case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
1360 //case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
1361   case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
1362   case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
1363     {
1364       // Perform an in-place conversion to int or an int subword.
1365       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
1366       Address value;
1367       Address vmarg;
1368       bool value_left_justified = false;
1369 
1370       switch (ek) {
1371       case _adapter_opt_i2i:
1372         value = vmarg = __ argument_address(O0_argslot, O0_argslot);
1373         break;
1374       case _adapter_opt_l2i:
1375         {
1376           // just delete the extra slot
1377 #ifdef _LP64
1378           // In V9, longs are given 2 64-bit slots in the interpreter, but the
1379           // data is passed in only 1 slot.
1380           // Keep the second slot.
1381           __ add(__ argument_address(O0_argslot, O0_argslot, -1), O0_argslot);
1382           remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
1383           value = Address(O0_argslot, 4);  // Get least-significant 32-bit of 64-bit value.
1384           vmarg = Address(O0_argslot, Interpreter::stackElementSize);
1385 #else
1386           // Keep the first slot.
1387           __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
1388           remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
1389           value = Address(O0_argslot, 0);
1390           vmarg = value;
1391 #endif
1392         }
1393         break;
1394       case _adapter_opt_unboxi:
1395         {
1396           vmarg = __ argument_address(O0_argslot, O0_argslot);
1397           // Load the value up from the heap.
1398           __ ld_ptr(vmarg, O1_scratch);
1399           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
1400 #ifdef ASSERT
1401           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
1402             if (is_subword_type(BasicType(bt)))
1403               assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
1404           }
1405 #endif
1406           __ null_check(O1_scratch, value_offset);
1407           value = Address(O1_scratch, value_offset);
1408 #ifdef _BIG_ENDIAN
1409           // Values stored in objects are packed.
1410           value_left_justified = true;
1411 #endif
1412         }
1413         break;
1414       default:
1415         ShouldNotReachHere();
1416       }
1417 
1418       // This check is required on _BIG_ENDIAN
1419       Register G5_vminfo = G5_scratch;
1420       __ ldsw(G3_amh_conversion, G5_vminfo);
1421       assert(CONV_VMINFO_SHIFT == 0, "preshifted");
1422 
1423       // Original 32-bit vmdata word must be of this form:
1424       // | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
1425       __ lduw(value, O1_scratch);
1426       if (!value_left_justified)
1427         __ sll(O1_scratch, G5_vminfo, O1_scratch);
1428       Label zero_extend, done;
1429       __ btst(CONV_VMINFO_SIGN_FLAG, G5_vminfo);
1430       __ br(Assembler::zero, false, Assembler::pn, zero_extend);
1431       __ delayed()->nop();
1432 
1433       // this path is taken for int->byte, int->short
1434       __ sra(O1_scratch, G5_vminfo, O1_scratch);
1435       __ ba(false, done);
1436       __ delayed()->nop();
1437 
1438       __ bind(zero_extend);
1439       // this is taken for int->char
1440       __ srl(O1_scratch, G5_vminfo, O1_scratch);
1441 
1442       __ bind(done);
1443       __ st(O1_scratch, vmarg);
1444 
1445       // Get the new MH:
1446       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
1447       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
1448     }
1449     break;
1450 
1451   case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
1452   case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
1453     {
1454       // Perform an in-place int-to-long or ref-to-long conversion.
1455       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
1456 
1457       // On big-endian machine we duplicate the slot and store the MSW
1458       // in the first slot.
1459       __ add(__ argument_address(O0_argslot, O0_argslot, 1), O0_argslot);
1460 
1461       insert_arg_slots(_masm, stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
1462 
1463       Address arg_lsw(O0_argslot, 0);
1464       Address arg_msw(O0_argslot, -Interpreter::stackElementSize);
1465 
1466       switch (ek) {
1467       case _adapter_opt_i2l:
1468         {
1469 #ifdef _LP64
1470           __ ldsw(arg_lsw, O2_scratch);                 // Load LSW sign-extended
1471 #else
1472           __ ldsw(arg_lsw, O3_scratch);                 // Load LSW sign-extended
1473           __ srlx(O3_scratch, BitsPerInt, O2_scratch);  // Move MSW value to lower 32-bits for std
1474 #endif
1475           __ st_long(O2_scratch, arg_msw);              // Uses O2/O3 on !_LP64
1476         }
1477         break;
1478       case _adapter_opt_unboxl:
1479         {
1480           // Load the value up from the heap.
1481           __ ld_ptr(arg_lsw, O1_scratch);
1482           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
1483           assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
1484           __ null_check(O1_scratch, value_offset);
1485           __ ld_long(Address(O1_scratch, value_offset), O2_scratch);  // Uses O2/O3 on !_LP64
1486           __ st_long(O2_scratch, arg_msw);
1487         }
1488         break;
1489       default:
1490         ShouldNotReachHere();
1491       }
1492 
1493       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
1494       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
1495     }
1496     break;
1497 
1498   case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
1499   case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
1500     {
1501       // perform an in-place floating primitive conversion
1502       __ unimplemented(entry_name(ek));
1503     }
1504     break;
1505 
1506   case _adapter_prim_to_ref:
1507     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
1508     break;
1509 
1510   case _adapter_swap_args:
1511   case _adapter_rot_args:
1512     // handled completely by optimized cases
1513     __ stop("init_AdapterMethodHandle should not issue this");
1514     break;
1515 
1516   case _adapter_opt_swap_1:
1517   case _adapter_opt_swap_2:
1518   case _adapter_opt_rot_1_up:
1519   case _adapter_opt_rot_1_down:
1520   case _adapter_opt_rot_2_up:
1521   case _adapter_opt_rot_2_down:
1522     {
1523       int swap_slots = ek_adapter_opt_swap_slots(ek);
1524       int rotate     = ek_adapter_opt_swap_mode(ek);
1525 
1526       // 'argslot' is the position of the first argument to swap.
1527       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
1528       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
1529       if (VerifyMethodHandles)
1530         verify_argslot(_masm, O0_argslot, O2_scratch, "swap point must fall within current frame");
1531 
1532       // 'vminfo' is the second.
1533       Register O1_destslot = O1_scratch;
1534       load_conversion_vminfo(_masm, G3_amh_conversion, O1_destslot);
1535       __ add(__ argument_address(O1_destslot, O1_destslot), O1_destslot);
1536       if (VerifyMethodHandles)
1537         verify_argslot(_masm, O1_destslot, O2_scratch, "swap point must fall within current frame");
1538 
1539       assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here");
1540       if (!rotate) {
1541         // simple swap
1542         for (int i = 0; i < swap_slots; i++) {
1543           __ ld_ptr(            Address(O0_argslot,  i * wordSize), O2_scratch);
1544           __ ld_ptr(            Address(O1_destslot, i * wordSize), O3_scratch);
1545           __ st_ptr(O3_scratch, Address(O0_argslot,  i * wordSize));
1546           __ st_ptr(O2_scratch, Address(O1_destslot, i * wordSize));
1547         }
1548       } else {
1549         // A rotate is actually pair of moves, with an "odd slot" (or pair)
1550         // changing place with a series of other slots.
1551         // First, push the "odd slot", which is going to get overwritten
1552         switch (swap_slots) {
1553         case 2 :  __ ld_ptr(Address(O0_argslot, 1 * wordSize), O4_scratch); // fall-thru
1554         case 1 :  __ ld_ptr(Address(O0_argslot, 0 * wordSize), O3_scratch); break;
1555         default:  ShouldNotReachHere();
1556         }
1557         if (rotate > 0) {
1558           // Here is rotate > 0:
1559           // (low mem)                                          (high mem)
1560           //     | dest:     more_slots...     | arg: odd_slot :arg+1 |
1561           // =>
1562           //     | dest: odd_slot | dest+1: more_slots...      :arg+1 |
1563           // work argslot down to destslot, copying contiguous data upwards
1564           // pseudo-code:
1565           //   argslot  = src_addr - swap_bytes
1566           //   destslot = dest_addr
1567           //   while (argslot >= destslot) *(argslot + swap_bytes) = *(argslot + 0), argslot--;
1568           move_arg_slots_up(_masm,
1569                             O1_destslot,
1570                             Address(O0_argslot, 0),
1571                             swap_slots,
1572                             O0_argslot, O2_scratch);
1573         } else {
1574           // Here is the other direction, rotate < 0:
1575           // (low mem)                                          (high mem)
1576           //     | arg: odd_slot | arg+1: more_slots...       :dest+1 |
1577           // =>
1578           //     | arg:    more_slots...     | dest: odd_slot :dest+1 |
1579           // work argslot up to destslot, copying contiguous data downwards
1580           // pseudo-code:
1581           //   argslot  = src_addr + swap_bytes
1582           //   destslot = dest_addr
1583           //   while (argslot <= destslot) *(argslot - swap_bytes) = *(argslot + 0), argslot++;
1584           // dest_slot denotes an exclusive upper limit
1585           int limit_bias = OP_ROT_ARGS_DOWN_LIMIT_BIAS;
1586           if (limit_bias != 0)
1587             __ add(O1_destslot, - limit_bias * wordSize, O1_destslot);
1588           move_arg_slots_down(_masm,
1589                               Address(O0_argslot, swap_slots * wordSize),
1590                               O1_destslot,
1591                               -swap_slots,
1592                               O0_argslot, O2_scratch);
1593 
1594           __ sub(O1_destslot, swap_slots * wordSize, O1_destslot);
1595         }
1596         // pop the original first chunk into the destination slot, now free
1597         switch (swap_slots) {
1598         case 2 :  __ st_ptr(O4_scratch, Address(O1_destslot, 1 * wordSize)); // fall-thru
1599         case 1 :  __ st_ptr(O3_scratch, Address(O1_destslot, 0 * wordSize)); break;
1600         default:  ShouldNotReachHere();
1601         }
1602       }
1603 
1604       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
1605       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
1606     }
1607     break;
1608 
1609   case _adapter_dup_args:
1610     {
1611       // 'argslot' is the position of the first argument to duplicate.
1612       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
1613       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
1614 
1615       // 'stack_move' is negative number of words to duplicate.
1616       Register O1_stack_move = O1_scratch;
1617       load_stack_move(_masm, G3_amh_conversion, O1_stack_move);
1618 
1619       if (VerifyMethodHandles) {
1620         verify_argslots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, true,
1621                         "copied argument(s) must fall within current frame");
1622       }
1623 
1624       // insert location is always the bottom of the argument list:
1625       __ neg(O1_stack_move);
1626       push_arg_slots(_masm, O0_argslot, O1_stack_move, O2_scratch, O3_scratch);
1627 
1628       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
1629       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
1630     }
1631     break;
1632 
1633   case _adapter_drop_args:
1634     {
1635       // 'argslot' is the position of the first argument to nuke.
1636       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
1637       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
1638 
1639       // 'stack_move' is number of words to drop.
1640       Register O1_stack_move = O1_scratch;
1641       load_stack_move(_masm, G3_amh_conversion, O1_stack_move);
1642 
1643       remove_arg_slots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, O4_scratch);
1644 
1645       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
1646       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
1647     }
1648     break;
1649 
1650   case _adapter_collect_args:
1651   case _adapter_fold_args:
1652   case _adapter_spread_args:
1653     // Handled completely by optimized cases.
1654     __ stop("init_AdapterMethodHandle should not issue this");
1655     break;
1656 
1657   case _adapter_opt_collect_ref:
1658   case _adapter_opt_collect_int:
1659   case _adapter_opt_collect_long:
1660   case _adapter_opt_collect_float:
1661   case _adapter_opt_collect_double:
1662   case _adapter_opt_collect_void:
1663   case _adapter_opt_collect_0_ref:
1664   case _adapter_opt_collect_1_ref:
1665   case _adapter_opt_collect_2_ref:
1666   case _adapter_opt_collect_3_ref:
1667   case _adapter_opt_collect_4_ref:
1668   case _adapter_opt_collect_5_ref:
1669   case _adapter_opt_filter_S0_ref:
1670   case _adapter_opt_filter_S1_ref:
1671   case _adapter_opt_filter_S2_ref:
1672   case _adapter_opt_filter_S3_ref:
1673   case _adapter_opt_filter_S4_ref:
1674   case _adapter_opt_filter_S5_ref:
1675   case _adapter_opt_collect_2_S0_ref:
1676   case _adapter_opt_collect_2_S1_ref:
1677   case _adapter_opt_collect_2_S2_ref:
1678   case _adapter_opt_collect_2_S3_ref:
1679   case _adapter_opt_collect_2_S4_ref:
1680   case _adapter_opt_collect_2_S5_ref:
1681   case _adapter_opt_fold_ref:
1682   case _adapter_opt_fold_int:
1683   case _adapter_opt_fold_long:
1684   case _adapter_opt_fold_float:
1685   case _adapter_opt_fold_double:
1686   case _adapter_opt_fold_void:
1687   case _adapter_opt_fold_1_ref:
1688   case _adapter_opt_fold_2_ref:
1689   case _adapter_opt_fold_3_ref:
1690   case _adapter_opt_fold_4_ref:
1691   case _adapter_opt_fold_5_ref:
1692     {
1693       // Given a fresh incoming stack frame, build a new ricochet frame.
1694       // On entry, TOS points at a return PC, and FP is the callers frame ptr.
1695       // RSI/R13 has the caller's exact stack pointer, which we must also preserve.
1696       // RCX contains an AdapterMethodHandle of the indicated kind.
1697 
1698       // Relevant AMH fields:
1699       // amh.vmargslot:
1700       //   points to the trailing edge of the arguments
1701       //   to filter, collect, or fold.  For a boxing operation,
1702       //   it points just after the single primitive value.
1703       // amh.argument:
1704       //   recursively called MH, on |collect| arguments
1705       // amh.vmtarget:
1706       //   final destination MH, on return value, etc.
1707       // amh.conversion.dest:
1708       //   tells what is the type of the return value
1709       //   (not needed here, since dest is also derived from ek)
1710       // amh.conversion.vminfo:
1711       //   points to the trailing edge of the return value
1712       //   when the vmtarget is to be called; this is
1713       //   equal to vmargslot + (retained ? |collect| : 0)
1714 
1715       // Pass 0 or more argument slots to the recursive target.
1716       int collect_count_constant = ek_adapter_opt_collect_count(ek);
1717 
1718       // The collected arguments are copied from the saved argument list:
1719       int collect_slot_constant = ek_adapter_opt_collect_slot(ek);
1720 
1721       assert(ek_orig == _adapter_collect_args ||
1722              ek_orig == _adapter_fold_args, "");
1723       bool retain_original_args = (ek_orig == _adapter_fold_args);
1724 
1725       // The return value is replaced (or inserted) at the 'vminfo' argslot.
1726       // Sometimes we can compute this statically.
1727       int dest_slot_constant = -1;
1728       if (!retain_original_args)
1729         dest_slot_constant = collect_slot_constant;
1730       else if (collect_slot_constant >= 0 && collect_count_constant >= 0)
1731         // We are preserving all the arguments, and the return value is prepended,
1732         // so the return slot is to the left (above) the |collect| sequence.
1733         dest_slot_constant = collect_slot_constant + collect_count_constant;
1734 
1735       // Replace all those slots by the result of the recursive call.
1736       // The result type can be one of ref, int, long, float, double, void.
1737       // In the case of void, nothing is pushed on the stack after return.
1738       BasicType dest = ek_adapter_opt_collect_type(ek);
1739       assert(dest == type2wfield[dest], "dest is a stack slot type");
1740       int dest_count = type2size[dest];
1741       assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size");
1742 
1743       // Choose a return continuation.
1744       EntryKind ek_ret = _adapter_opt_return_any;
1745       if (dest != T_CONFLICT && OptimizeMethodHandles) {
1746         switch (dest) {
1747         case T_INT    : ek_ret = _adapter_opt_return_int;     break;
1748         case T_LONG   : ek_ret = _adapter_opt_return_long;    break;
1749         case T_FLOAT  : ek_ret = _adapter_opt_return_float;   break;
1750         case T_DOUBLE : ek_ret = _adapter_opt_return_double;  break;
1751         case T_OBJECT : ek_ret = _adapter_opt_return_ref;     break;
1752         case T_VOID   : ek_ret = _adapter_opt_return_void;    break;
1753         default       : ShouldNotReachHere();
1754         }
1755         if (dest == T_OBJECT && dest_slot_constant >= 0) {
1756           EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant);
1757           if (ek_try <= _adapter_opt_return_LAST &&
1758               ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) {
1759             ek_ret = ek_try;
1760           }
1761         }
1762         assert(ek_adapter_opt_return_type(ek_ret) == dest, "");
1763       }
1764 
1765       // Already pushed:  ... keep1 | collect | keep2 |
1766 
1767       // Push a few extra argument words, if we need them to store the return value.
1768       {
1769         int extra_slots = 0;
1770         if (retain_original_args) {
1771           extra_slots = dest_count;
1772         } else if (collect_count_constant == -1) {
1773           extra_slots = dest_count;  // collect_count might be zero; be generous
1774         } else if (dest_count > collect_count_constant) {
1775           extra_slots = (dest_count - collect_count_constant);
1776         } else {
1777           // else we know we have enough dead space in |collect| to repurpose for return values
1778         }
1779         if (extra_slots != 0) {
1780           __ sub(SP, round_to(extra_slots, 2) * Interpreter::stackElementSize, SP);
1781         }
1782       }
1783 
1784       // Set up Ricochet Frame.
1785       __ mov(SP, O5_savedSP);  // record SP for the callee
1786 
1787       // One extra (empty) slot for outgoing target MH (see Gargs computation below).
1788       __ save_frame(2);  // Note: we need to add 2 slots since frame::memory_parameter_word_sp_offset is 23.
1789 
1790       // Note: Gargs is live throughout the following, until we make our recursive call.
1791       // And the RF saves a copy in L4_saved_args_base.
1792 
1793       RicochetFrame::enter_ricochet_frame(_masm, G3_method_handle, Gargs,
1794                                           entry(ek_ret)->from_interpreted_entry());
1795 
1796       // Compute argument base:
1797       // Set up Gargs for current frame, extra (empty) slot is for outgoing target MH (space reserved by save_frame above).
1798       __ add(FP, STACK_BIAS - (1 * Interpreter::stackElementSize), Gargs);
1799 
1800       // Now pushed:  ... keep1 | collect | keep2 | extra | [RF]
1801 
1802 #ifdef ASSERT
1803       if (VerifyMethodHandles && dest != T_CONFLICT) {
1804         BLOCK_COMMENT("verify AMH.conv.dest {");
1805         extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O1_scratch);
1806         Label L_dest_ok;
1807         __ cmp(O1_scratch, (int) dest);
1808         __ br(Assembler::equal, false, Assembler::pt, L_dest_ok);
1809         __ delayed()->nop();
1810         if (dest == T_INT) {
1811           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
1812             if (is_subword_type(BasicType(bt))) {
1813               __ cmp(O1_scratch, (int) bt);
1814               __ br(Assembler::equal, false, Assembler::pt, L_dest_ok);
1815               __ delayed()->nop();
1816             }
1817           }
1818         }
1819         __ stop("bad dest in AMH.conv");
1820         __ BIND(L_dest_ok);
1821         BLOCK_COMMENT("} verify AMH.conv.dest");
1822       }
1823 #endif //ASSERT
1824 
1825       // Find out where the original copy of the recursive argument sequence begins.
1826       Register O0_coll = O0_scratch;
1827       {
1828         RegisterOrConstant collect_slot = collect_slot_constant;
1829         if (collect_slot_constant == -1) {
1830           load_vmargslot(_masm, G3_amh_vmargslot, O1_scratch);
1831           collect_slot = O1_scratch;
1832         }
1833         // collect_slot might be 0, but we need the move anyway.
1834         __ add(RicochetFrame::L4_saved_args_base, __ argument_offset(collect_slot, collect_slot.register_or_noreg()), O0_coll);
1835         // O0_coll now points at the trailing edge of |collect| and leading edge of |keep2|
1836       }
1837 
1838       // Replace the old AMH with the recursive MH.  (No going back now.)
1839       // In the case of a boxing call, the recursive call is to a 'boxer' method,
1840       // such as Integer.valueOf or Long.valueOf.  In the case of a filter
1841       // or collect call, it will take one or more arguments, transform them,
1842       // and return some result, to store back into argument_base[vminfo].
1843       __ load_heap_oop(G3_amh_argument, G3_method_handle);
1844       if (VerifyMethodHandles)  verify_method_handle(_masm, G3_method_handle, O1_scratch, O2_scratch);
1845 
1846       // Calculate |collect|, the number of arguments we are collecting.
1847       Register O1_collect_count = O1_scratch;
1848       RegisterOrConstant collect_count;
1849       if (collect_count_constant < 0) {
1850         __ load_method_handle_vmslots(O1_collect_count, G3_method_handle, O2_scratch);
1851         collect_count = O1_collect_count;
1852       } else {
1853         collect_count = collect_count_constant;
1854 #ifdef ASSERT
1855         if (VerifyMethodHandles) {
1856           BLOCK_COMMENT("verify collect_count_constant {");
1857           __ load_method_handle_vmslots(O3_scratch, G3_method_handle, O2_scratch);
1858           Label L_count_ok;
1859           __ cmp(O3_scratch, collect_count_constant);
1860           __ br(Assembler::equal, false, Assembler::pt, L_count_ok);
1861           __ delayed()->nop();
1862           __ stop("bad vminfo in AMH.conv");
1863           __ BIND(L_count_ok);
1864           BLOCK_COMMENT("} verify collect_count_constant");
1865         }
1866 #endif //ASSERT
1867       }
1868 
1869       // copy |collect| slots directly to TOS:
1870       push_arg_slots(_masm, O0_coll, collect_count, O2_scratch, O3_scratch);
1871       // Now pushed:  ... keep1 | collect | keep2 | RF... | collect |
1872       // O0_coll still points at the trailing edge of |collect| and leading edge of |keep2|
1873 
1874       // If necessary, adjust the saved arguments to make room for the eventual return value.
1875       // Normal adjustment:  ... keep1 | +dest+ | -collect- | keep2 | RF... | collect |
1876       // If retaining args:  ... keep1 | +dest+ |  collect  | keep2 | RF... | collect |
1877       // In the non-retaining case, this might move keep2 either up or down.
1878       // We don't have to copy the whole | RF... collect | complex,
1879       // but we must adjust RF.saved_args_base.
1880       // Also, from now on, we will forget about the original copy of |collect|.
1881       // If we are retaining it, we will treat it as part of |keep2|.
1882       // For clarity we will define |keep3| = |collect|keep2| or |keep2|.
1883 
1884       BLOCK_COMMENT("adjust trailing arguments {");
1885       // Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements.
1886       int                open_count  = dest_count;
1887       RegisterOrConstant close_count = collect_count_constant;
1888       Register O1_close_count = O1_collect_count;
1889       if (retain_original_args) {
1890         close_count = constant(0);
1891       } else if (collect_count_constant == -1) {
1892         close_count = O1_collect_count;
1893       }
1894 
1895       // How many slots need moving?  This is simply dest_slot (0 => no |keep3|).
1896       RegisterOrConstant keep3_count;
1897       Register O2_keep3_count = O2_scratch;
1898       if (dest_slot_constant < 0) {
1899         extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O2_keep3_count);
1900         keep3_count = O2_keep3_count;
1901       } else  {
1902         keep3_count = dest_slot_constant;
1903 #ifdef ASSERT
1904         if (VerifyMethodHandles && dest_slot_constant < 0) {
1905           BLOCK_COMMENT("verify dest_slot_constant {");
1906           extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O3_scratch);
1907           Label L_vminfo_ok;
1908           __ cmp(O3_scratch, dest_slot_constant);
1909           __ br(Assembler::equal, false, Assembler::pt, L_vminfo_ok);
1910           __ delayed()->nop();
1911           __ stop("bad vminfo in AMH.conv");
1912           __ BIND(L_vminfo_ok);
1913           BLOCK_COMMENT("} verify dest_slot_constant");
1914         }
1915 #endif //ASSERT
1916       }
1917 
1918       // tasks remaining:
1919       bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0);
1920       bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0));
1921       bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant());
1922 
1923       // Old and new argument locations (based at slot 0).
1924       // Net shift (&new_argv - &old_argv) is (close_count - open_count).
1925       bool zero_open_count = (open_count == 0);  // remember this bit of info
1926       if (move_keep3 && fix_arg_base) {
1927         // It will be easier to have everything in one register:
1928         if (close_count.is_register()) {
1929           // Deduct open_count from close_count register to get a clean +/- value.
1930           __ sub(close_count.as_register(), open_count, close_count.as_register());
1931         } else {
1932           close_count = close_count.as_constant() - open_count;
1933         }
1934         open_count = 0;
1935       }
1936       Register L4_old_argv = RicochetFrame::L4_saved_args_base;
1937       Register O3_new_argv = O3_scratch;
1938       if (fix_arg_base) {
1939         __ add(L4_old_argv, __ argument_offset(close_count, O4_scratch), O3_new_argv,
1940                -(open_count * Interpreter::stackElementSize));
1941       }
1942 
1943       // First decide if any actual data are to be moved.
1944       // We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change.
1945       // (As it happens, all movements involve an argument list size change.)
1946 
1947       // If there are variable parameters, use dynamic checks to skip around the whole mess.
1948       Label L_done;
1949       if (keep3_count.is_register()) {
1950         __ tst(keep3_count.as_register());
1951         __ br(Assembler::zero, false, Assembler::pn, L_done);
1952         __ delayed()->nop();
1953       }
1954       if (close_count.is_register()) {
1955         __ cmp(close_count.as_register(), open_count);
1956         __ br(Assembler::equal, false, Assembler::pn, L_done);
1957         __ delayed()->nop();
1958       }
1959 
1960       if (move_keep3 && fix_arg_base) {
1961         bool emit_move_down = false, emit_move_up = false, emit_guard = false;
1962         if (!close_count.is_constant()) {
1963           emit_move_down = emit_guard = !zero_open_count;
1964           emit_move_up   = true;
1965         } else if (open_count != close_count.as_constant()) {
1966           emit_move_down = (open_count > close_count.as_constant());
1967           emit_move_up   = !emit_move_down;
1968         }
1969         Label L_move_up;
1970         if (emit_guard) {
1971           __ cmp(close_count.as_register(), open_count);
1972           __ br(Assembler::greater, false, Assembler::pn, L_move_up);
1973           __ delayed()->nop();
1974         }
1975 
1976         if (emit_move_down) {
1977           // Move arguments down if |+dest+| > |-collect-|
1978           // (This is rare, except when arguments are retained.)
1979           // This opens space for the return value.
1980           if (keep3_count.is_constant()) {
1981             for (int i = 0; i < keep3_count.as_constant(); i++) {
1982               __ ld_ptr(            Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch);
1983               __ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize)            );
1984             }
1985           } else {
1986             // Live: O1_close_count, O2_keep3_count, O3_new_argv
1987             Register argv_top = O0_scratch;
1988             __ add(L4_old_argv, __ argument_offset(keep3_count, O4_scratch), argv_top);
1989             move_arg_slots_down(_masm,
1990                                 Address(L4_old_argv, 0),  // beginning of old argv
1991                                 argv_top,                 // end of old argv
1992                                 close_count,              // distance to move down (must be negative)
1993                                 O4_scratch, G5_scratch);
1994           }
1995         }
1996 
1997         if (emit_guard) {
1998           __ ba(false, L_done);  // assumes emit_move_up is true also
1999           __ delayed()->nop();
2000           __ BIND(L_move_up);
2001         }
2002 
2003         if (emit_move_up) {
2004           // Move arguments up if |+dest+| < |-collect-|
2005           // (This is usual, except when |keep3| is empty.)
2006           // This closes up the space occupied by the now-deleted collect values.
2007           if (keep3_count.is_constant()) {
2008             for (int i = keep3_count.as_constant() - 1; i >= 0; i--) {
2009               __ ld_ptr(            Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch);
2010               __ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize)            );
2011             }
2012           } else {
2013             Address argv_top(L4_old_argv, __ argument_offset(keep3_count, O4_scratch));
2014             // Live: O1_close_count, O2_keep3_count, O3_new_argv
2015             move_arg_slots_up(_masm,
2016                               L4_old_argv,  // beginning of old argv
2017                               argv_top,     // end of old argv
2018                               close_count,  // distance to move up (must be positive)
2019                               O4_scratch, G5_scratch);
2020           }
2021         }
2022       }
2023       __ BIND(L_done);
2024 
2025       if (fix_arg_base) {
2026         // adjust RF.saved_args_base
2027         __ mov(O3_new_argv, RicochetFrame::L4_saved_args_base);
2028       }
2029 
2030       if (stomp_dest) {
2031         // Stomp the return slot, so it doesn't hold garbage.
2032         // This isn't strictly necessary, but it may help detect bugs.
2033         __ set(RicochetFrame::RETURN_VALUE_PLACEHOLDER, O4_scratch);
2034         __ st_ptr(O4_scratch, Address(RicochetFrame::L4_saved_args_base,
2035                                       __ argument_offset(keep3_count, keep3_count.register_or_noreg())));  // uses O2_keep3_count
2036       }
2037       BLOCK_COMMENT("} adjust trailing arguments");
2038 
2039       BLOCK_COMMENT("do_recursive_call");
2040       __ mov(SP, O5_savedSP);  // record SP for the callee
2041       __ set(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr() - frame::pc_return_offset), O7);
2042       // The globally unique bounce address has two purposes:
2043       // 1. It helps the JVM recognize this frame (frame::is_ricochet_frame).
2044       // 2. When returned to, it cuts back the stack and redirects control flow
2045       //    to the return handler.
2046       // The return handler will further cut back the stack when it takes
2047       // down the RF.  Perhaps there is a way to streamline this further.
2048 
2049       // State during recursive call:
2050       // ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc |
2051       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
2052     }
2053     break;
2054 
2055   case _adapter_opt_return_ref:
2056   case _adapter_opt_return_int:
2057   case _adapter_opt_return_long:
2058   case _adapter_opt_return_float:
2059   case _adapter_opt_return_double:
2060   case _adapter_opt_return_void:
2061   case _adapter_opt_return_S0_ref:
2062   case _adapter_opt_return_S1_ref:
2063   case _adapter_opt_return_S2_ref:
2064   case _adapter_opt_return_S3_ref:
2065   case _adapter_opt_return_S4_ref:
2066   case _adapter_opt_return_S5_ref:
2067     {
2068       BasicType dest_type_constant = ek_adapter_opt_return_type(ek);
2069       int       dest_slot_constant = ek_adapter_opt_return_slot(ek);
2070 
2071       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
2072 
2073       if (dest_slot_constant == -1) {
2074         // The current stub is a general handler for this dest_type.
2075         // It can be called from _adapter_opt_return_any below.
2076         // Stash the address in a little table.
2077         assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob");
2078         address return_handler = __ pc();
2079         _adapter_return_handlers[dest_type_constant] = return_handler;
2080         if (dest_type_constant == T_INT) {
2081           // do the subword types too
2082           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
2083             if (is_subword_type(BasicType(bt)) &&
2084                 _adapter_return_handlers[bt] == NULL) {
2085               _adapter_return_handlers[bt] = return_handler;
2086             }
2087           }
2088         }
2089       }
2090 
2091       // On entry to this continuation handler, make Gargs live again.
2092       __ mov(RicochetFrame::L4_saved_args_base, Gargs);
2093 
2094       Register O7_temp   = O7;
2095       Register O5_vminfo = O5;
2096 
2097       RegisterOrConstant dest_slot = dest_slot_constant;
2098       if (dest_slot_constant == -1) {
2099         extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O5_vminfo);
2100         dest_slot = O5_vminfo;
2101       }
2102       // Store the result back into the argslot.
2103       // This code uses the interpreter calling sequence, in which the return value
2104       // is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop.
2105       // There are certain irregularities with floating point values, which can be seen
2106       // in TemplateInterpreterGenerator::generate_return_entry_for.
2107       move_return_value(_masm, dest_type_constant, __ argument_address(dest_slot, O7_temp));
2108 
2109       RicochetFrame::leave_ricochet_frame(_masm, G3_method_handle, I5_savedSP, I7);
2110 
2111       // Load the final target and go.
2112       if (VerifyMethodHandles)  verify_method_handle(_masm, G3_method_handle, O0_scratch, O1_scratch);
2113       __ restore(I5_savedSP, G0, SP);
2114       __ jump_to_method_handle_entry(G3_method_handle, O0_scratch);
2115       __ illtrap(0);
2116     }
2117     break;
2118 
2119   case _adapter_opt_return_any:
2120     {
2121       Register O7_temp      = O7;
2122       Register O5_dest_type = O5;
2123 
2124       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
2125       extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O5_dest_type);
2126       __ set(ExternalAddress((address) &_adapter_return_handlers[0]), O7_temp);
2127       __ sll_ptr(O5_dest_type, LogBytesPerWord, O5_dest_type);
2128       __ ld_ptr(O7_temp, O5_dest_type, O7_temp);
2129 
2130 #ifdef ASSERT
2131       { Label L_ok;
2132         __ br_notnull(O7_temp, false, Assembler::pt, L_ok);
2133         __ delayed()->nop();
2134         __ stop("bad method handle return");
2135         __ BIND(L_ok);
2136       }
2137 #endif //ASSERT
2138       __ JMP(O7_temp, 0);
2139       __ delayed()->nop();
2140     }
2141     break;
2142 
2143   case _adapter_opt_spread_0:
2144   case _adapter_opt_spread_1_ref:
2145   case _adapter_opt_spread_2_ref:
2146   case _adapter_opt_spread_3_ref:
2147   case _adapter_opt_spread_4_ref:
2148   case _adapter_opt_spread_5_ref:
2149   case _adapter_opt_spread_ref:
2150   case _adapter_opt_spread_byte:
2151   case _adapter_opt_spread_char:
2152   case _adapter_opt_spread_short:
2153   case _adapter_opt_spread_int:
2154   case _adapter_opt_spread_long:
2155   case _adapter_opt_spread_float:
2156   case _adapter_opt_spread_double:
2157     {
2158       // spread an array out into a group of arguments
2159       int  length_constant    = ek_adapter_opt_spread_count(ek);
2160       bool length_can_be_zero = (length_constant == 0);
2161       if (length_constant < 0) {
2162         // some adapters with variable length must handle the zero case
2163         if (!OptimizeMethodHandles ||
2164             ek_adapter_opt_spread_type(ek) != T_OBJECT)
2165           length_can_be_zero = true;
2166       }
2167 
2168       // find the address of the array argument
2169       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
2170       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
2171 
2172       // O0_argslot points both to the array and to the first output arg
2173       Address vmarg = Address(O0_argslot, 0);
2174 
2175       // Get the array value.
2176       Register  O1_array       = O1_scratch;
2177       Register  O2_array_klass = O2_scratch;
2178       BasicType elem_type      = ek_adapter_opt_spread_type(ek);
2179       int       elem_slots     = type2size[elem_type];  // 1 or 2
2180       int       array_slots    = 1;  // array is always a T_OBJECT
2181       int       length_offset  = arrayOopDesc::length_offset_in_bytes();
2182       int       elem0_offset   = arrayOopDesc::base_offset_in_bytes(elem_type);
2183       __ ld_ptr(vmarg, O1_array);
2184 
2185       Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done;
2186       if (length_can_be_zero) {
2187         // handle the null pointer case, if zero is allowed
2188         Label L_skip;
2189         if (length_constant < 0) {
2190           load_conversion_vminfo(_masm, G3_amh_conversion, O3_scratch);
2191           __ br_zero(Assembler::notZero, false, Assembler::pn, O3_scratch, L_skip);
2192           __ delayed()->nop();
2193         }
2194         __ br_null(O1_array, false, Assembler::pn, L_array_is_empty);
2195         __ delayed()->nop();
2196         __ BIND(L_skip);
2197       }
2198       __ null_check(O1_array, oopDesc::klass_offset_in_bytes());
2199       __ load_klass(O1_array, O2_array_klass);
2200 
2201       // Check the array type.
2202       Register O3_klass = O3_scratch;
2203       __ load_heap_oop(G3_amh_argument, O3_klass);  // this is a Class object!
2204       load_klass_from_Class(_masm, O3_klass, O4_scratch, G5_scratch);
2205 
2206       Label L_ok_array_klass, L_bad_array_klass, L_bad_array_length;
2207       __ check_klass_subtype(O2_array_klass, O3_klass, O4_scratch, G5_scratch, L_ok_array_klass);
2208       // If we get here, the type check failed!
2209       __ ba(false, L_bad_array_klass);
2210       __ delayed()->nop();
2211       __ BIND(L_ok_array_klass);
2212 
2213       // Check length.
2214       if (length_constant >= 0) {
2215         __ ldsw(Address(O1_array, length_offset), O4_scratch);
2216         __ cmp(O4_scratch, length_constant);
2217       } else {
2218         Register O3_vminfo = O3_scratch;
2219         load_conversion_vminfo(_masm, G3_amh_conversion, O3_vminfo);
2220         __ ldsw(Address(O1_array, length_offset), O4_scratch);
2221         __ cmp(O3_vminfo, O4_scratch);
2222       }
2223       __ br(Assembler::notEqual, false, Assembler::pn, L_bad_array_length);
2224       __ delayed()->nop();
2225 
2226       Register O2_argslot_limit = O2_scratch;
2227 
2228       // Array length checks out.  Now insert any required stack slots.
2229       if (length_constant == -1) {
2230         // Form a pointer to the end of the affected region.
2231         __ add(O0_argslot, Interpreter::stackElementSize, O2_argslot_limit);
2232         // 'stack_move' is negative number of words to insert
2233         // This number already accounts for elem_slots.
2234         Register O3_stack_move = O3_scratch;
2235         load_stack_move(_masm, G3_amh_conversion, O3_stack_move);
2236         __ cmp(O3_stack_move, 0);
2237         assert(stack_move_unit() < 0, "else change this comparison");
2238         __ br(Assembler::less, false, Assembler::pn, L_insert_arg_space);
2239         __ delayed()->nop();
2240         __ br(Assembler::equal, false, Assembler::pn, L_copy_args);
2241         __ delayed()->nop();
2242         // single argument case, with no array movement
2243         __ BIND(L_array_is_empty);
2244         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
2245                          O0_argslot, O1_scratch, O2_scratch, O3_scratch);
2246         __ ba(false, L_args_done);  // no spreading to do
2247         __ delayed()->nop();
2248         __ BIND(L_insert_arg_space);
2249         // come here in the usual case, stack_move < 0 (2 or more spread arguments)
2250         // Live: O1_array, O2_argslot_limit, O3_stack_move
2251         insert_arg_slots(_masm, O3_stack_move,
2252                          O0_argslot, O4_scratch, G5_scratch, O1_scratch);
2253         // reload from rdx_argslot_limit since rax_argslot is now decremented
2254         __ ld_ptr(Address(O2_argslot_limit, -Interpreter::stackElementSize), O1_array);
2255       } else if (length_constant >= 1) {
2256         int new_slots = (length_constant * elem_slots) - array_slots;
2257         insert_arg_slots(_masm, new_slots * stack_move_unit(),
2258                          O0_argslot, O2_scratch, O3_scratch, O4_scratch);
2259       } else if (length_constant == 0) {
2260         __ BIND(L_array_is_empty);
2261         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
2262                          O0_argslot, O1_scratch, O2_scratch, O3_scratch);
2263       } else {
2264         ShouldNotReachHere();
2265       }
2266 
2267       // Copy from the array to the new slots.
2268       // Note: Stack change code preserves integrity of O0_argslot pointer.
2269       // So even after slot insertions, O0_argslot still points to first argument.
2270       // Beware:  Arguments that are shallow on the stack are deep in the array,
2271       // and vice versa.  So a downward-growing stack (the usual) has to be copied
2272       // elementwise in reverse order from the source array.
2273       __ BIND(L_copy_args);
2274       if (length_constant == -1) {
2275         // [O0_argslot, O2_argslot_limit) is the area we are inserting into.
2276         // Array element [0] goes at O0_argslot_limit[-wordSize].
2277         Register O1_source = O1_array;
2278         __ add(Address(O1_array, elem0_offset), O1_source);
2279         Register O4_fill_ptr = O4_scratch;
2280         __ mov(O2_argslot_limit, O4_fill_ptr);
2281         Label L_loop;
2282         __ BIND(L_loop);
2283         __ add(O4_fill_ptr, -Interpreter::stackElementSize * elem_slots, O4_fill_ptr);
2284         move_typed_arg(_masm, elem_type, true,
2285                        Address(O1_source, 0), Address(O4_fill_ptr, 0),
2286                        O2_scratch);  // must be an even register for !_LP64 long moves (uses O2/O3)
2287         __ add(O1_source, type2aelembytes(elem_type), O1_source);
2288         __ cmp(O4_fill_ptr, O0_argslot);
2289         __ brx(Assembler::greaterUnsigned, false, Assembler::pt, L_loop);
2290         __ delayed()->nop();  // FILLME
2291       } else if (length_constant == 0) {
2292         // nothing to copy
2293       } else {
2294         int elem_offset = elem0_offset;
2295         int slot_offset = length_constant * Interpreter::stackElementSize;
2296         for (int index = 0; index < length_constant; index++) {
2297           slot_offset -= Interpreter::stackElementSize * elem_slots;  // fill backward
2298           move_typed_arg(_masm, elem_type, true,
2299                          Address(O1_array, elem_offset), Address(O0_argslot, slot_offset),
2300                          O2_scratch);  // must be an even register for !_LP64 long moves (uses O2/O3)
2301           elem_offset += type2aelembytes(elem_type);
2302         }
2303       }
2304       __ BIND(L_args_done);
2305 
2306       // Arguments are spread.  Move to next method handle.
2307       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
2308       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
2309 
2310       __ BIND(L_bad_array_klass);
2311       assert(!vmarg.uses(O2_required), "must be different registers");
2312       __ load_heap_oop(Address(O2_array_klass, java_mirror_offset), O2_required);  // required class
2313       __ ld_ptr(       vmarg,                                       O1_actual);    // bad object
2314       __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
2315       __ delayed()->mov(Bytecodes::_aaload,                         O0_code);      // who is complaining?
2316 
2317       __ bind(L_bad_array_length);
2318       assert(!vmarg.uses(O2_required), "must be different registers");
2319       __ mov(   G3_method_handle,                O2_required);  // required class
2320       __ ld_ptr(vmarg,                           O1_actual);    // bad object
2321       __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
2322       __ delayed()->mov(Bytecodes::_arraylength, O0_code);      // who is complaining?
2323     }
2324     break;
2325 
2326   default:
2327     DEBUG_ONLY(tty->print_cr("bad ek=%d (%s)", (int)ek, entry_name(ek)));
2328     ShouldNotReachHere();
2329   }
2330   BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek)));
2331 
2332   address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
2333   __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
2334 
2335   init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
2336 }