1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "prims/methodHandles.hpp"
  30 
  31 #define __ _masm->
  32 
  33 #ifdef PRODUCT
  34 #define BLOCK_COMMENT(str) /* nothing */
  35 #else
  36 #define BLOCK_COMMENT(str) __ block_comment(str)
  37 #endif
  38 
  39 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  40 
  41 // Workaround for C++ overloading nastiness on '0' for RegisterOrConstant.
  42 static RegisterOrConstant constant(int value) {
  43   return RegisterOrConstant(value);
  44 }
  45 
  46 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
  47                                                 address interpreted_entry) {
  48   // Just before the actual machine code entry point, allocate space
  49   // for a MethodHandleEntry::Data record, so that we can manage everything
  50   // from one base pointer.
  51   __ align(wordSize);
  52   address target = __ pc() + sizeof(Data);
  53   while (__ pc() < target) {
  54     __ nop();
  55     __ align(wordSize);
  56   }
  57 
  58   MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
  59   me->set_end_address(__ pc());         // set a temporary end_address
  60   me->set_from_interpreted_entry(interpreted_entry);
  61   me->set_type_checking_entry(NULL);
  62 
  63   return (address) me;
  64 }
  65 
  66 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
  67                                                 address start_addr) {
  68   MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
  69   assert(me->end_address() == start_addr, "valid ME");
  70 
  71   // Fill in the real end_address:
  72   __ align(wordSize);
  73   me->set_end_address(__ pc());
  74 
  75   return me;
  76 }
  77 
  78 // stack walking support
  79 
  80 frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) {
  81   RicochetFrame* f = RicochetFrame::from_frame(fr);
  82   if (map->update_map())
  83     frame::update_map_with_saved_link(map, &f->_sender_link);
  84   return frame(f->extended_sender_sp(), f->exact_sender_sp(), f->sender_link(), f->sender_pc());
  85 }
  86 
  87 void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) {
  88   RicochetFrame* f = RicochetFrame::from_frame(fr);
  89 
  90   // pick up the argument type descriptor:
  91   Thread* thread = Thread::current();
  92   Handle cookie(thread, f->compute_saved_args_layout(true, true));
  93 
  94   // process fixed part
  95   blk->do_oop((oop*)f->saved_target_addr());
  96   blk->do_oop((oop*)f->saved_args_layout_addr());
  97 
  98   // process variable arguments:
  99   if (cookie.is_null())  return;  // no arguments to describe
 100 
 101   // the cookie is actually the invokeExact method for my target
 102   // his argument signature is what I'm interested in
 103   assert(cookie->is_method(), "");
 104   methodHandle invoker(thread, methodOop(cookie()));
 105   assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method");
 106   assert(!invoker->is_static(), "must have MH argument");
 107   int slot_count = invoker->size_of_parameters();
 108   assert(slot_count >= 1, "must include 'this'");
 109   intptr_t* base = f->saved_args_base();
 110   intptr_t* retval = NULL;
 111   if (f->has_return_value_slot())
 112     retval = f->return_value_slot_addr();
 113   int slot_num = slot_count;
 114   intptr_t* loc = &base[slot_num -= 1];
 115   //blk->do_oop((oop*) loc);   // original target, which is irrelevant
 116   int arg_num = 0;
 117   for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) {
 118     if (ss.at_return_type())  continue;
 119     BasicType ptype = ss.type();
 120     if (ptype == T_ARRAY)  ptype = T_OBJECT; // fold all refs to T_OBJECT
 121     assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void");
 122     loc = &base[slot_num -= type2size[ptype]];
 123     bool is_oop = (ptype == T_OBJECT && loc != retval);
 124     if (is_oop)  blk->do_oop((oop*)loc);
 125     arg_num += 1;
 126   }
 127   assert(slot_num == 0, "must have processed all the arguments");
 128 }
 129 
 130 oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) {
 131   oop cookie = NULL;
 132   if (read_cache) {
 133     cookie = saved_args_layout();
 134     if (cookie != NULL)  return cookie;
 135   }
 136   oop target = saved_target();
 137   oop mtype  = java_lang_invoke_MethodHandle::type(target);
 138   oop mtform = java_lang_invoke_MethodType::form(mtype);
 139   cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform);
 140   if (write_cache)  {
 141     (*saved_args_layout_addr()) = cookie;
 142   }
 143   return cookie;
 144 }
 145 
 146 void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm,
 147                                                           // output params:
 148                                                           int* bounce_offset,
 149                                                           int* exception_offset,
 150                                                           int* frame_size_in_words) {
 151   (*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize;
 152 
 153   address start = __ pc();
 154 
 155 #ifdef ASSERT
 156   __ hlt(); __ hlt(); __ hlt();
 157   // here's a hint of something special:
 158   __ push(MAGIC_NUMBER_1);
 159   __ push(MAGIC_NUMBER_2);
 160 #endif //ASSERT
 161   __ hlt();  // not reached
 162 
 163   // A return PC has just been popped from the stack.
 164   // Return values are in registers.
 165   // The ebp points into the RicochetFrame, which contains
 166   // a cleanup continuation we must return to.
 167 
 168   (*bounce_offset) = __ pc() - start;
 169   BLOCK_COMMENT("ricochet_blob.bounce");
 170 
 171   if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
 172   trace_method_handle(_masm, "return/ricochet_blob.bounce");
 173 
 174   __ jmp(frame_address(continuation_offset_in_bytes()));
 175   __ hlt();
 176   DEBUG_ONLY(__ push(MAGIC_NUMBER_2));
 177 
 178   (*exception_offset) = __ pc() - start;
 179   BLOCK_COMMENT("ricochet_blob.exception");
 180 
 181   // compare this to Interpreter::rethrow_exception_entry, which is parallel code
 182   // for example, see TemplateInterpreterGenerator::generate_throw_exception
 183   // Live registers in:
 184   //   rax: exception
 185   //   rdx: return address/pc that threw exception (ignored, always equal to bounce addr)
 186   __ verify_oop(rax);
 187 
 188   // no need to empty_FPU_stack or reinit_heapbase, since caller frame will do the same if needed
 189 
 190   // Take down the frame.
 191 
 192   // Cf. InterpreterMacroAssembler::remove_activation.
 193   leave_ricochet_frame(_masm, /*rcx_recv=*/ noreg,
 194                        saved_last_sp_register(),
 195                        /*sender_pc_reg=*/ rdx);
 196 
 197   // In between activations - previous activation type unknown yet
 198   // compute continuation point - the continuation point expects the
 199   // following registers set up:
 200   //
 201   // rax: exception
 202   // rdx: return address/pc that threw exception
 203   // rsp: expression stack of caller
 204   // rbp: ebp of caller
 205   __ push(rax);                                  // save exception
 206   __ push(rdx);                                  // save return address
 207   Register thread_reg = LP64_ONLY(r15_thread) NOT_LP64(rdi);
 208   NOT_LP64(__ get_thread(thread_reg));
 209   __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 210                                    SharedRuntime::exception_handler_for_return_address),
 211                   thread_reg, rdx);
 212   __ mov(rbx, rax);                              // save exception handler
 213   __ pop(rdx);                                   // restore return address
 214   __ pop(rax);                                   // restore exception
 215   __ jmp(rbx);                                   // jump to exception
 216                                                  // handler of caller
 217 }
 218 
 219 void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm,
 220                                                         Register rcx_recv,
 221                                                         Register rax_argv,
 222                                                         address return_handler,
 223                                                         Register rbx_temp) {
 224   const Register saved_last_sp = saved_last_sp_register();
 225   Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
 226   Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
 227 
 228   // Push the RicochetFrame a word at a time.
 229   // This creates something similar to an interpreter frame.
 230   // Cf. TemplateInterpreterGenerator::generate_fixed_frame.
 231   BLOCK_COMMENT("push RicochetFrame {");
 232   DEBUG_ONLY(int rfo = (int) sizeof(RicochetFrame));
 233   assert((rfo -= wordSize) == RicochetFrame::sender_pc_offset_in_bytes(), "");
 234 #define RF_FIELD(push_value, name)                                      \
 235   { push_value;                                                         \
 236     assert((rfo -= wordSize) == RicochetFrame::name##_offset_in_bytes(), ""); }
 237   RF_FIELD(__ push(rbp),                   sender_link);
 238   RF_FIELD(__ push(saved_last_sp),         exact_sender_sp);  // rsi/r13
 239   RF_FIELD(__ pushptr(rcx_amh_conversion), conversion);
 240   RF_FIELD(__ push(rax_argv),              saved_args_base);   // can be updated if args are shifted
 241   RF_FIELD(__ push((int32_t) NULL_WORD),   saved_args_layout); // cache for GC layout cookie
 242   if (UseCompressedOops) {
 243     __ load_heap_oop(rbx_temp, rcx_mh_vmtarget);
 244     RF_FIELD(__ push(rbx_temp),            saved_target);
 245   } else {
 246     RF_FIELD(__ pushptr(rcx_mh_vmtarget),  saved_target);
 247   }
 248   __ lea(rbx_temp, ExternalAddress(return_handler));
 249   RF_FIELD(__ push(rbx_temp),              continuation);
 250 #undef RF_FIELD
 251   assert(rfo == 0, "fully initialized the RicochetFrame");
 252   // compute new frame pointer:
 253   __ lea(rbp, Address(rsp, RicochetFrame::sender_link_offset_in_bytes()));
 254   // Push guard word #1 in debug mode.
 255   DEBUG_ONLY(__ push((int32_t) RicochetFrame::MAGIC_NUMBER_1));
 256   // For debugging, leave behind an indication of which stub built this frame.
 257   DEBUG_ONLY({ Label L; __ call(L, relocInfo::none); __ bind(L); });
 258   BLOCK_COMMENT("} RicochetFrame");
 259 }
 260 
 261 void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm,
 262                                                         Register rcx_recv,
 263                                                         Register new_sp_reg,
 264                                                         Register sender_pc_reg) {
 265   assert_different_registers(rcx_recv, new_sp_reg, sender_pc_reg);
 266   const Register saved_last_sp = saved_last_sp_register();
 267   // Take down the frame.
 268   // Cf. InterpreterMacroAssembler::remove_activation.
 269   BLOCK_COMMENT("end_ricochet_frame {");
 270   // TO DO: If (exact_sender_sp - extended_sender_sp) > THRESH, compact the frame down.
 271   // This will keep stack in bounds even with unlimited tailcalls, each with an adapter.
 272   if (rcx_recv->is_valid())
 273     __ movptr(rcx_recv,    RicochetFrame::frame_address(RicochetFrame::saved_target_offset_in_bytes()));
 274   __ movptr(sender_pc_reg, RicochetFrame::frame_address(RicochetFrame::sender_pc_offset_in_bytes()));
 275   __ movptr(saved_last_sp, RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes()));
 276   __ movptr(rbp,           RicochetFrame::frame_address(RicochetFrame::sender_link_offset_in_bytes()));
 277   __ mov(rsp, new_sp_reg);
 278   BLOCK_COMMENT("} end_ricochet_frame");
 279 }
 280 
 281 // Emit code to verify that RBP is pointing at a valid ricochet frame.
 282 #ifdef ASSERT
 283 enum {
 284   ARG_LIMIT = 255, SLOP = 4,
 285   // use this parameter for checking for garbage stack movements:
 286   UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP)
 287   // the slop defends against false alarms due to fencepost errors
 288 };
 289 
 290 void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) {
 291   // The stack should look like this:
 292   //    ... keep1 | dest=42 | keep2 | RF | magic | handler | magic | recursive args |
 293   // Check various invariants.
 294   verify_offsets();
 295 
 296   Register rdi_temp = rdi;
 297   Register rcx_temp = rcx;
 298   { __ push(rdi_temp); __ push(rcx_temp); }
 299 #define UNPUSH_TEMPS \
 300   { __ pop(rcx_temp);  __ pop(rdi_temp); }
 301 
 302   Address magic_number_1_addr  = RicochetFrame::frame_address(RicochetFrame::magic_number_1_offset_in_bytes());
 303   Address magic_number_2_addr  = RicochetFrame::frame_address(RicochetFrame::magic_number_2_offset_in_bytes());
 304   Address continuation_addr    = RicochetFrame::frame_address(RicochetFrame::continuation_offset_in_bytes());
 305   Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
 306   Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
 307 
 308   Label L_bad, L_ok;
 309   BLOCK_COMMENT("verify_clean {");
 310   // Magic numbers must check out:
 311   __ cmpptr(magic_number_1_addr, (int32_t) MAGIC_NUMBER_1);
 312   __ jcc(Assembler::notEqual, L_bad);
 313   __ cmpptr(magic_number_2_addr, (int32_t) MAGIC_NUMBER_2);
 314   __ jcc(Assembler::notEqual, L_bad);
 315 
 316   // Arguments pointer must look reasonable:
 317   __ movptr(rcx_temp, saved_args_base_addr);
 318   __ cmpptr(rcx_temp, rbp);
 319   __ jcc(Assembler::below, L_bad);
 320   __ subptr(rcx_temp, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize);
 321   __ cmpptr(rcx_temp, rbp);
 322   __ jcc(Assembler::above, L_bad);
 323 
 324   load_conversion_dest_type(_masm, rdi_temp, conversion_addr);
 325   __ cmpl(rdi_temp, T_VOID);
 326   __ jcc(Assembler::equal, L_ok);
 327   __ movptr(rcx_temp, saved_args_base_addr);
 328   load_conversion_vminfo(_masm, rdi_temp, conversion_addr);
 329   __ cmpptr(Address(rcx_temp, rdi_temp, Interpreter::stackElementScale()),
 330             (int32_t) RETURN_VALUE_PLACEHOLDER);
 331   __ jcc(Assembler::equal, L_ok);
 332   __ BIND(L_bad);
 333   UNPUSH_TEMPS;
 334   __ stop("damaged ricochet frame");
 335   __ BIND(L_ok);
 336   UNPUSH_TEMPS;
 337   BLOCK_COMMENT("} verify_clean");
 338 
 339 #undef UNPUSH_TEMPS
 340 
 341 }
 342 #endif //ASSERT
 343 
 344 void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg) {
 345   if (VerifyMethodHandles)
 346     verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(),
 347                  "AMH argument is a Class");
 348   __ load_heap_oop(klass_reg, Address(klass_reg, java_lang_Class::klass_offset_in_bytes()));
 349 }
 350 
 351 void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Register reg, Address conversion_field_addr) {
 352   int bits   = BitsPerByte;
 353   int offset = (CONV_VMINFO_SHIFT / bits);
 354   int shift  = (CONV_VMINFO_SHIFT % bits);
 355   __ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset));
 356   assert(CONV_VMINFO_MASK == right_n_bits(bits - shift), "else change type of previous load");
 357   assert(shift == 0, "no shift needed");
 358 }
 359 
 360 void MethodHandles::load_conversion_dest_type(MacroAssembler* _masm, Register reg, Address conversion_field_addr) {
 361   int bits   = BitsPerByte;
 362   int offset = (CONV_DEST_TYPE_SHIFT / bits);
 363   int shift  = (CONV_DEST_TYPE_SHIFT % bits);
 364   __ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset));
 365   assert(CONV_TYPE_MASK == right_n_bits(bits - shift), "else change type of previous load");
 366   __ shrl(reg, shift);
 367   DEBUG_ONLY(int conv_type_bits = (int) exact_log2(CONV_TYPE_MASK+1));
 368   assert((shift + conv_type_bits) == bits, "left justified in byte");
 369 }
 370 
 371 void MethodHandles::load_stack_move(MacroAssembler* _masm,
 372                                     Register rdi_stack_move,
 373                                     Register rcx_amh,
 374                                     bool might_be_negative) {
 375   BLOCK_COMMENT("load_stack_move {");
 376   Address rcx_amh_conversion(rcx_amh, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
 377   __ movl(rdi_stack_move, rcx_amh_conversion);
 378   __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
 379 #ifdef _LP64
 380   if (might_be_negative) {
 381     // clean high bits of stack motion register (was loaded as an int)
 382     __ movslq(rdi_stack_move, rdi_stack_move);
 383   }
 384 #endif //_LP64
 385   if (VerifyMethodHandles) {
 386     Label L_ok, L_bad;
 387     int32_t stack_move_limit = 0x4000;  // extra-large
 388     __ cmpptr(rdi_stack_move, stack_move_limit);
 389     __ jcc(Assembler::greaterEqual, L_bad);
 390     __ cmpptr(rdi_stack_move, -stack_move_limit);
 391     __ jcc(Assembler::greater, L_ok);
 392     __ bind(L_bad);
 393     __ stop("load_stack_move of garbage value");
 394     __ BIND(L_ok);
 395   }
 396   BLOCK_COMMENT("} load_stack_move");
 397 }
 398 
 399 #ifdef ASSERT
 400 void MethodHandles::RicochetFrame::verify_offsets() {
 401   // Check compatibility of this struct with the more generally used offsets of class frame:
 402   int ebp_off = sender_link_offset_in_bytes();  // offset from struct base to local rbp value
 403   assert(ebp_off + wordSize*frame::interpreter_frame_method_offset      == saved_args_base_offset_in_bytes(), "");
 404   assert(ebp_off + wordSize*frame::interpreter_frame_last_sp_offset     == conversion_offset_in_bytes(), "");
 405   assert(ebp_off + wordSize*frame::interpreter_frame_sender_sp_offset   == exact_sender_sp_offset_in_bytes(), "");
 406   // These last two have to be exact:
 407   assert(ebp_off + wordSize*frame::link_offset                          == sender_link_offset_in_bytes(), "");
 408   assert(ebp_off + wordSize*frame::return_addr_offset                   == sender_pc_offset_in_bytes(), "");
 409 }
 410 
 411 void MethodHandles::RicochetFrame::verify() const {
 412   verify_offsets();
 413   assert(magic_number_1() == MAGIC_NUMBER_1, "");
 414   assert(magic_number_2() == MAGIC_NUMBER_2, "");
 415   if (!Universe::heap()->is_gc_active()) {
 416     if (saved_args_layout() != NULL) {
 417       assert(saved_args_layout()->is_method(), "must be valid oop");
 418     }
 419     if (saved_target() != NULL) {
 420       assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value");
 421     }
 422   }
 423   int conv_op = adapter_conversion_op(conversion());
 424   assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS ||
 425          conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS ||
 426          conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF,
 427          "must be a sane conversion");
 428   if (has_return_value_slot()) {
 429     assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, "");
 430   }
 431 }
 432 #endif //PRODUCT
 433 
 434 #ifdef ASSERT
 435 void MethodHandles::verify_argslot(MacroAssembler* _masm,
 436                                    Register argslot_reg,
 437                                    const char* error_message) {
 438   // Verify that argslot lies within (rsp, rbp].
 439   Label L_ok, L_bad;
 440   BLOCK_COMMENT("verify_argslot {");
 441   __ cmpptr(argslot_reg, rbp);
 442   __ jccb(Assembler::above, L_bad);
 443   __ cmpptr(rsp, argslot_reg);
 444   __ jccb(Assembler::below, L_ok);
 445   __ bind(L_bad);
 446   __ stop(error_message);
 447   __ BIND(L_ok);
 448   BLOCK_COMMENT("} verify_argslot");
 449 }
 450 
 451 void MethodHandles::verify_argslots(MacroAssembler* _masm,
 452                                     RegisterOrConstant arg_slots,
 453                                     Register arg_slot_base_reg,
 454                                     bool negate_argslots,
 455                                     const char* error_message) {
 456   // Verify that [argslot..argslot+size) lies within (rsp, rbp).
 457   Label L_ok, L_bad;
 458   Register rdi_temp = rdi;
 459   BLOCK_COMMENT("verify_argslots {");
 460   __ push(rdi_temp);
 461   if (negate_argslots) {
 462     if (arg_slots.is_constant()) {
 463       arg_slots = -1 * arg_slots.as_constant();
 464     } else {
 465       __ movptr(rdi_temp, arg_slots);
 466       __ negptr(rdi_temp);
 467       arg_slots = rdi_temp;
 468     }
 469   }
 470   __ lea(rdi_temp, Address(arg_slot_base_reg, arg_slots, Interpreter::stackElementScale()));
 471   __ cmpptr(rdi_temp, rbp);
 472   __ pop(rdi_temp);
 473   __ jcc(Assembler::above, L_bad);
 474   __ cmpptr(rsp, arg_slot_base_reg);
 475   __ jcc(Assembler::below, L_ok);
 476   __ bind(L_bad);
 477   __ stop(error_message);
 478   __ BIND(L_ok);
 479   BLOCK_COMMENT("} verify_argslots");
 480 }
 481 
 482 // Make sure that arg_slots has the same sign as the given direction.
 483 // If (and only if) arg_slots is a assembly-time constant, also allow it to be zero.
 484 void MethodHandles::verify_stack_move(MacroAssembler* _masm,
 485                                       RegisterOrConstant arg_slots, int direction) {
 486   bool allow_zero = arg_slots.is_constant();
 487   if (direction == 0) { direction = +1; allow_zero = true; }
 488   assert(stack_move_unit() == -1, "else add extra checks here");
 489   if (arg_slots.is_register()) {
 490     Label L_ok, L_bad;
 491     BLOCK_COMMENT("verify_stack_move {");
 492     // testl(arg_slots.as_register(), -stack_move_unit() - 1);  // no need
 493     // jcc(Assembler::notZero, L_bad);
 494     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
 495     if (direction > 0) {
 496       __ jcc(allow_zero ? Assembler::less : Assembler::lessEqual, L_bad);
 497       __ cmpptr(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE);
 498       __ jcc(Assembler::less, L_ok);
 499     } else {
 500       __ jcc(allow_zero ? Assembler::greater : Assembler::greaterEqual, L_bad);
 501       __ cmpptr(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE);
 502       __ jcc(Assembler::greater, L_ok);
 503     }
 504     __ bind(L_bad);
 505     if (direction > 0)
 506       __ stop("assert arg_slots > 0");
 507     else
 508       __ stop("assert arg_slots < 0");
 509     __ BIND(L_ok);
 510     BLOCK_COMMENT("} verify_stack_move");
 511   } else {
 512     intptr_t size = arg_slots.as_constant();
 513     if (direction < 0)  size = -size;
 514     assert(size >= 0, "correct direction of constant move");
 515     assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move");
 516   }
 517 }
 518 
 519 void MethodHandles::verify_klass(MacroAssembler* _masm,
 520                                  Register obj, KlassHandle klass,
 521                                  const char* error_message) {
 522   oop* klass_addr = klass.raw_value();
 523   assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() &&
 524          klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(),
 525          "must be one of the SystemDictionaryHandles");
 526   Register temp = rdi;
 527   Label L_ok, L_bad;
 528   BLOCK_COMMENT("verify_klass {");
 529   __ verify_oop(obj);
 530   __ testptr(obj, obj);
 531   __ jcc(Assembler::zero, L_bad);
 532   __ push(temp);
 533   __ load_klass(temp, obj);
 534   __ cmpptr(temp, ExternalAddress((address) klass_addr));
 535   __ jcc(Assembler::equal, L_ok);
 536   intptr_t super_check_offset = klass->super_check_offset();
 537   __ movptr(temp, Address(temp, super_check_offset));
 538   __ cmpptr(temp, ExternalAddress((address) klass_addr));
 539   __ jcc(Assembler::equal, L_ok);
 540   __ pop(temp);
 541   __ bind(L_bad);
 542   __ stop(error_message);
 543   __ BIND(L_ok);
 544   __ pop(temp);
 545   BLOCK_COMMENT("} verify_klass");
 546 }
 547 #endif //ASSERT
 548 
 549 // Code generation
 550 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
 551   // rbx: methodOop
 552   // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
 553   // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
 554   // rdx, rdi: garbage temp, blown away
 555 
 556   Register rbx_method = rbx;
 557   Register rcx_recv   = rcx;
 558   Register rax_mtype  = rax;
 559   Register rdx_temp   = rdx;
 560   Register rdi_temp   = rdi;
 561 
 562   // emit WrongMethodType path first, to enable jccb back-branch from main path
 563   Label wrong_method_type;
 564   __ bind(wrong_method_type);
 565   Label invoke_generic_slow_path, invoke_exact_error_path;
 566   assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
 567   __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeExact);
 568   __ jcc(Assembler::notEqual, invoke_generic_slow_path);
 569   __ jmp(invoke_exact_error_path);
 570 
 571   // here's where control starts out:
 572   __ align(CodeEntryAlignment);
 573   address entry_point = __ pc();
 574 
 575   // fetch the MethodType from the method handle into rax (the 'check' register)
 576   // FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list.
 577   // This would simplify several touchy bits of code.
 578   // See 6984712: JSR 292 method handle calls need a clean argument base pointer
 579   {
 580     Register tem = rbx_method;
 581     for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
 582       __ movptr(rax_mtype, Address(tem, *pchase));
 583       tem = rax_mtype;          // in case there is another indirection
 584     }
 585   }
 586 
 587   // given the MethodType, find out where the MH argument is buried
 588   __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, rdi_temp)));
 589   Register rdx_vmslots = rdx_temp;
 590   __ movl(rdx_vmslots, Address(rdx_temp, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, rdi_temp)));
 591   Address mh_receiver_slot_addr = __ argument_address(rdx_vmslots);
 592   __ movptr(rcx_recv, mh_receiver_slot_addr);
 593 
 594   trace_method_handle(_masm, "invokeExact");
 595 
 596   __ check_method_handle_type(rax_mtype, rcx_recv, rdi_temp, wrong_method_type);
 597 
 598   // Nobody uses the MH receiver slot after this.  Make sure.
 599   DEBUG_ONLY(__ movptr(mh_receiver_slot_addr, (int32_t)0x999999));
 600 
 601   __ jump_to_method_handle_entry(rcx_recv, rdi_temp);
 602 
 603   // error path for invokeExact (only)
 604   __ bind(invoke_exact_error_path);
 605   // Stub wants expected type in rax and the actual type in rcx
 606   __ jump(ExternalAddress(StubRoutines::throw_WrongMethodTypeException_entry()));
 607 
 608   // for invokeGeneric (only), apply argument and result conversions on the fly
 609   __ bind(invoke_generic_slow_path);
 610 #ifdef ASSERT
 611   if (VerifyMethodHandles) {
 612     Label L;
 613     __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeGeneric);
 614     __ jcc(Assembler::equal, L);
 615     __ stop("bad methodOop::intrinsic_id");
 616     __ bind(L);
 617   }
 618 #endif //ASSERT
 619   Register rbx_temp = rbx_method;  // don't need it now
 620 
 621   // make room on the stack for another pointer:
 622   Register rcx_argslot = rcx_recv;
 623   __ lea(rcx_argslot, __ argument_address(rdx_vmslots, 1));
 624   insert_arg_slots(_masm, 2 * stack_move_unit(),
 625                    rcx_argslot, rbx_temp, rdx_temp);
 626 
 627   // load up an adapter from the calling type (Java weaves this)
 628   Register rdx_adapter = rdx_temp;
 629   __ load_heap_oop(rdx_temp,    Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,               rdi_temp)));
 630   __ load_heap_oop(rdx_adapter, Address(rdx_temp,  __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, rdi_temp)));
 631   __ verify_oop(rdx_adapter);
 632   __ movptr(Address(rcx_argslot, 1 * Interpreter::stackElementSize), rdx_adapter);
 633   // As a trusted first argument, pass the type being called, so the adapter knows
 634   // the actual types of the arguments and return values.
 635   // (Generic invokers are shared among form-families of method-type.)
 636   __ movptr(Address(rcx_argslot, 0 * Interpreter::stackElementSize), rax_mtype);
 637   // FIXME: assert that rdx_adapter is of the right method-type.
 638   __ mov(rcx, rdx_adapter);
 639   trace_method_handle(_masm, "invokeGeneric");
 640   __ jump_to_method_handle_entry(rcx, rdi_temp);
 641 
 642   return entry_point;
 643 }
 644 
 645 // Helper to insert argument slots into the stack.
 646 // arg_slots must be a multiple of stack_move_unit() and < 0
 647 // rax_argslot is decremented to point to the new (shifted) location of the argslot
 648 // But, rdx_temp ends up holding the original value of rax_argslot.
 649 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
 650                                      RegisterOrConstant arg_slots,
 651                                      Register rax_argslot,
 652                                      Register rbx_temp, Register rdx_temp) {
 653   // allow constant zero
 654   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
 655     return;
 656   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
 657                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
 658   if (VerifyMethodHandles)
 659     verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
 660   if (VerifyMethodHandles)
 661     verify_stack_move(_masm, arg_slots, -1);
 662 
 663   // Make space on the stack for the inserted argument(s).
 664   // Then pull down everything shallower than rax_argslot.
 665   // The stacked return address gets pulled down with everything else.
 666   // That is, copy [rsp, argslot) downward by -size words.  In pseudo-code:
 667   //   rsp -= size;
 668   //   for (rdx = rsp + size; rdx < argslot; rdx++)
 669   //     rdx[-size] = rdx[0]
 670   //   argslot -= size;
 671   BLOCK_COMMENT("insert_arg_slots {");
 672   __ mov(rdx_temp, rsp);                        // source pointer for copy
 673   __ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale()));
 674   {
 675     Label loop;
 676     __ BIND(loop);
 677     // pull one word down each time through the loop
 678     __ movptr(rbx_temp, Address(rdx_temp, 0));
 679     __ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp);
 680     __ addptr(rdx_temp, wordSize);
 681     __ cmpptr(rdx_temp, rax_argslot);
 682     __ jcc(Assembler::below, loop);
 683   }
 684 
 685   // Now move the argslot down, to point to the opened-up space.
 686   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale()));
 687   BLOCK_COMMENT("} insert_arg_slots");
 688 }
 689 
 690 // Helper to remove argument slots from the stack.
 691 // arg_slots must be a multiple of stack_move_unit() and > 0
 692 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
 693                                      RegisterOrConstant arg_slots,
 694                                      Register rax_argslot,
 695                                      Register rbx_temp, Register rdx_temp) {
 696   // allow constant zero
 697   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
 698     return;
 699   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
 700                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
 701   if (VerifyMethodHandles)
 702     verify_argslots(_masm, arg_slots, rax_argslot, false,
 703                     "deleted argument(s) must fall within current frame");
 704   if (VerifyMethodHandles)
 705     verify_stack_move(_masm, arg_slots, +1);
 706 
 707   BLOCK_COMMENT("remove_arg_slots {");
 708   // Pull up everything shallower than rax_argslot.
 709   // Then remove the excess space on the stack.
 710   // The stacked return address gets pulled up with everything else.
 711   // That is, copy [rsp, argslot) upward by size words.  In pseudo-code:
 712   //   for (rdx = argslot-1; rdx >= rsp; --rdx)
 713   //     rdx[size] = rdx[0]
 714   //   argslot += size;
 715   //   rsp += size;
 716   __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
 717   {
 718     Label loop;
 719     __ BIND(loop);
 720     // pull one word up each time through the loop
 721     __ movptr(rbx_temp, Address(rdx_temp, 0));
 722     __ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp);
 723     __ addptr(rdx_temp, -wordSize);
 724     __ cmpptr(rdx_temp, rsp);
 725     __ jcc(Assembler::aboveEqual, loop);
 726   }
 727 
 728   // Now move the argslot up, to point to the just-copied block.
 729   __ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale()));
 730   // And adjust the argslot address to point at the deletion point.
 731   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale()));
 732   BLOCK_COMMENT("} remove_arg_slots");
 733 }
 734 
 735 // Helper to copy argument slots to the top of the stack.
 736 // The sequence starts with rax_argslot and is counted by slot_count
 737 // slot_count must be a multiple of stack_move_unit() and >= 0
 738 // This function blows the temps but does not change rax_argslot.
 739 void MethodHandles::push_arg_slots(MacroAssembler* _masm,
 740                                    Register rax_argslot,
 741                                    RegisterOrConstant slot_count,
 742                                    int skip_words_count,
 743                                    Register rbx_temp, Register rdx_temp) {
 744   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
 745                              (!slot_count.is_register() ? rbp : slot_count.as_register()),
 746                              rsp);
 747   assert(Interpreter::stackElementSize == wordSize, "else change this code");
 748 
 749   if (VerifyMethodHandles)
 750     verify_stack_move(_masm, slot_count, 0);
 751 
 752   // allow constant zero
 753   if (slot_count.is_constant() && slot_count.as_constant() == 0)
 754     return;
 755 
 756   BLOCK_COMMENT("push_arg_slots {");
 757 
 758   Register rbx_top = rbx_temp;
 759 
 760   // There is at most 1 word to carry down with the TOS.
 761   switch (skip_words_count) {
 762   case 1: __ pop(rdx_temp); break;
 763   case 0:                   break;
 764   default: ShouldNotReachHere();
 765   }
 766 
 767   if (slot_count.is_constant()) {
 768     for (int i = slot_count.as_constant() - 1; i >= 0; i--) {
 769       __ pushptr(Address(rax_argslot, i * wordSize));
 770     }
 771   } else {
 772     Label L_plural, L_loop, L_break;
 773     // Emit code to dynamically check for the common cases, zero and one slot.
 774     __ cmpl(slot_count.as_register(), (int32_t) 1);
 775     __ jccb(Assembler::greater, L_plural);
 776     __ jccb(Assembler::less, L_break);
 777     __ pushptr(Address(rax_argslot, 0));
 778     __ jmpb(L_break);
 779     __ BIND(L_plural);
 780 
 781     // Loop for 2 or more:
 782     //   rbx = &rax[slot_count]
 783     //   while (rbx > rax)  *(--rsp) = *(--rbx)
 784     __ lea(rbx_top, Address(rax_argslot, slot_count, Address::times_ptr));
 785     __ BIND(L_loop);
 786     __ subptr(rbx_top, wordSize);
 787     __ pushptr(Address(rbx_top, 0));
 788     __ cmpptr(rbx_top, rax_argslot);
 789     __ jcc(Assembler::above, L_loop);
 790     __ bind(L_break);
 791   }
 792   switch (skip_words_count) {
 793   case 1: __ push(rdx_temp); break;
 794   case 0:                    break;
 795   default: ShouldNotReachHere();
 796   }
 797   BLOCK_COMMENT("} push_arg_slots");
 798 }
 799 
 800 // in-place movement; no change to rsp
 801 // blows rax_temp, rdx_temp
 802 void MethodHandles::move_arg_slots_up(MacroAssembler* _masm,
 803                                       Register rbx_bottom,  // invariant
 804                                       Address  top_addr,     // can use rax_temp
 805                                       RegisterOrConstant positive_distance_in_slots,
 806                                       Register rax_temp, Register rdx_temp) {
 807   BLOCK_COMMENT("move_arg_slots_up {");
 808   assert_different_registers(rbx_bottom,
 809                              rax_temp, rdx_temp,
 810                              positive_distance_in_slots.register_or_noreg());
 811   Label L_loop, L_break;
 812   Register rax_top = rax_temp;
 813   if (!top_addr.is_same_address(Address(rax_top, 0)))
 814     __ lea(rax_top, top_addr);
 815   // Detect empty (or broken) loop:
 816 #ifdef ASSERT
 817   if (VerifyMethodHandles) {
 818     // Verify that &bottom < &top (non-empty interval)
 819     Label L_ok, L_bad;
 820     if (positive_distance_in_slots.is_register()) {
 821       __ cmpptr(positive_distance_in_slots.as_register(), (int32_t) 0);
 822       __ jcc(Assembler::lessEqual, L_bad);
 823     }
 824     __ cmpptr(rbx_bottom, rax_top);
 825     __ jcc(Assembler::below, L_ok);
 826     __ bind(L_bad);
 827     __ stop("valid bounds (copy up)");
 828     __ BIND(L_ok);
 829   }
 830 #endif
 831   __ cmpptr(rbx_bottom, rax_top);
 832   __ jccb(Assembler::aboveEqual, L_break);
 833   // work rax down to rbx, copying contiguous data upwards
 834   // In pseudo-code:
 835   //   [rbx, rax) = &[bottom, top)
 836   //   while (--rax >= rbx) *(rax + distance) = *(rax + 0), rax--;
 837   __ BIND(L_loop);
 838   __ subptr(rax_top, wordSize);
 839   __ movptr(rdx_temp, Address(rax_top, 0));
 840   __ movptr(          Address(rax_top, positive_distance_in_slots, Address::times_ptr), rdx_temp);
 841   __ cmpptr(rax_top, rbx_bottom);
 842   __ jcc(Assembler::above, L_loop);
 843   assert(Interpreter::stackElementSize == wordSize, "else change loop");
 844   __ bind(L_break);
 845   BLOCK_COMMENT("} move_arg_slots_up");
 846 }
 847 
 848 // in-place movement; no change to rsp
 849 // blows rax_temp, rdx_temp
 850 void MethodHandles::move_arg_slots_down(MacroAssembler* _masm,
 851                                         Address  bottom_addr,  // can use rax_temp
 852                                         Register rbx_top,      // invariant
 853                                         RegisterOrConstant negative_distance_in_slots,
 854                                         Register rax_temp, Register rdx_temp) {
 855   BLOCK_COMMENT("move_arg_slots_down {");
 856   assert_different_registers(rbx_top,
 857                              negative_distance_in_slots.register_or_noreg(),
 858                              rax_temp, rdx_temp);
 859   Label L_loop, L_break;
 860   Register rax_bottom = rax_temp;
 861   if (!bottom_addr.is_same_address(Address(rax_bottom, 0)))
 862     __ lea(rax_bottom, bottom_addr);
 863   // Detect empty (or broken) loop:
 864 #ifdef ASSERT
 865   assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, "");
 866   if (VerifyMethodHandles) {
 867     // Verify that &bottom < &top (non-empty interval)
 868     Label L_ok, L_bad;
 869     if (negative_distance_in_slots.is_register()) {
 870       __ cmpptr(negative_distance_in_slots.as_register(), (int32_t) 0);
 871       __ jcc(Assembler::greaterEqual, L_bad);
 872     }
 873     __ cmpptr(rax_bottom, rbx_top);
 874     __ jcc(Assembler::below, L_ok);
 875     __ bind(L_bad);
 876     __ stop("valid bounds (copy down)");
 877     __ BIND(L_ok);
 878   }
 879 #endif
 880   __ cmpptr(rax_bottom, rbx_top);
 881   __ jccb(Assembler::aboveEqual, L_break);
 882   // work rax up to rbx, copying contiguous data downwards
 883   // In pseudo-code:
 884   //   [rax, rbx) = &[bottom, top)
 885   //   while (rax < rbx) *(rax - distance) = *(rax + 0), rax++;
 886   __ BIND(L_loop);
 887   __ movptr(rdx_temp, Address(rax_bottom, 0));
 888   __ movptr(          Address(rax_bottom, negative_distance_in_slots, Address::times_ptr), rdx_temp);
 889   __ addptr(rax_bottom, wordSize);
 890   __ cmpptr(rax_bottom, rbx_top);
 891   __ jcc(Assembler::below, L_loop);
 892   assert(Interpreter::stackElementSize == wordSize, "else change loop");
 893   __ bind(L_break);
 894   BLOCK_COMMENT("} move_arg_slots_down");
 895 }
 896 
 897 // Copy from a field or array element to a stacked argument slot.
 898 // is_element (ignored) says whether caller is loading an array element instead of an instance field.
 899 void MethodHandles::move_typed_arg(MacroAssembler* _masm,
 900                                    BasicType type, bool is_element,
 901                                    Address slot_dest, Address value_src,
 902                                    Register rbx_temp, Register rdx_temp) {
 903   BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)");
 904   if (type == T_OBJECT || type == T_ARRAY) {
 905     __ load_heap_oop(rbx_temp, value_src);
 906     __ movptr(slot_dest, rbx_temp);
 907   } else if (type != T_VOID) {
 908     int  arg_size      = type2aelembytes(type);
 909     bool arg_is_signed = is_signed_subword_type(type);
 910     int  slot_size     = (arg_size > wordSize) ? arg_size : wordSize;
 911     __ load_sized_value(  rdx_temp,  value_src, arg_size, arg_is_signed, rbx_temp);
 912     __ store_sized_value( slot_dest, rdx_temp,  slot_size,               rbx_temp);
 913   }
 914   BLOCK_COMMENT("} move_typed_arg");
 915 }
 916 
 917 void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type,
 918                                       Address return_slot) {
 919   BLOCK_COMMENT("move_return_value {");
 920   // Old versions of the JVM must clean the FPU stack after every return.
 921 #ifndef _LP64
 922 #ifdef COMPILER2
 923   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
 924   if ((type == T_FLOAT && UseSSE < 1) || (type == T_DOUBLE && UseSSE < 2)) {
 925     for (int i = 1; i < 8; i++) {
 926         __ ffree(i);
 927     }
 928   } else if (UseSSE < 2) {
 929     __ empty_FPU_stack();
 930   }
 931 #endif //COMPILER2
 932 #endif //!_LP64
 933 
 934   // Look at the type and pull the value out of the corresponding register.
 935   if (type == T_VOID) {
 936     // nothing to do
 937   } else if (type == T_OBJECT) {
 938     __ movptr(return_slot, rax);
 939   } else if (type == T_INT || is_subword_type(type)) {
 940     // write the whole word, even if only 32 bits is significant
 941     __ movptr(return_slot, rax);
 942   } else if (type == T_LONG) {
 943     // store the value by parts
 944     // Note: We assume longs are continguous (if misaligned) on the interpreter stack.
 945     __ store_sized_value(return_slot, rax, BytesPerLong, rdx);
 946   } else if (NOT_LP64((type == T_FLOAT  && UseSSE < 1) ||
 947                       (type == T_DOUBLE && UseSSE < 2) ||)
 948              false) {
 949     // Use old x86 FPU registers:
 950     if (type == T_FLOAT)
 951       __ fstp_s(return_slot);
 952     else
 953       __ fstp_d(return_slot);
 954   } else if (type == T_FLOAT) {
 955     __ movflt(return_slot, xmm0);
 956   } else if (type == T_DOUBLE) {
 957     __ movdbl(return_slot, xmm0);
 958   } else {
 959     ShouldNotReachHere();
 960   }
 961   BLOCK_COMMENT("} move_return_value");
 962 }
 963 
 964 
 965 #ifndef PRODUCT
 966 extern "C" void print_method_handle(oop mh);
 967 void trace_method_handle_stub(const char* adaptername,
 968                               oop mh,
 969                               intptr_t* saved_regs,
 970                               intptr_t* entry_sp,
 971                               intptr_t* saved_sp,
 972                               intptr_t* saved_bp) {
 973   // called as a leaf from native code: do not block the JVM!
 974   bool has_mh = (strstr(adaptername, "return/") == NULL);  // return adapters don't have rcx_mh
 975   intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset];
 976   intptr_t* base_sp = last_sp;
 977   typedef MethodHandles::RicochetFrame RicochetFrame;
 978   RicochetFrame* rfp = (RicochetFrame*)((address)saved_bp - RicochetFrame::sender_link_offset_in_bytes());
 979   if (!UseRicochetFrames || Universe::heap()->is_in((address) rfp->saved_args_base())) {
 980     // Probably an interpreter frame.
 981     base_sp = (intptr_t*) saved_bp[frame::interpreter_frame_monitor_block_top_offset];
 982   }
 983   intptr_t    mh_reg = (intptr_t)mh;
 984   const char* mh_reg_name = "rcx_mh";
 985   if (!has_mh)  mh_reg_name = "rcx";
 986   tty->print_cr("MH %s %s="PTR_FORMAT" sp=("PTR_FORMAT"+"INTX_FORMAT") stack_size="INTX_FORMAT" bp="PTR_FORMAT,
 987                 adaptername, mh_reg_name, mh_reg,
 988                 (intptr_t)entry_sp, (intptr_t)(saved_sp - entry_sp), (intptr_t)(base_sp - last_sp), (intptr_t)saved_bp);
 989   if (Verbose) {
 990     tty->print(" reg dump: ");
 991     int saved_regs_count = (entry_sp-1) - saved_regs;
 992     // 32 bit: rdi rsi rbp rsp; rbx rdx rcx (*) rax
 993     int i;
 994     for (i = 0; i <= saved_regs_count; i++) {
 995       if (i > 0 && i % 4 == 0 && i != saved_regs_count) {
 996         tty->cr();
 997         tty->print("   + dump: ");
 998       }
 999       tty->print(" %d: "PTR_FORMAT, i, saved_regs[i]);
1000     }
1001     tty->cr();
1002     if (last_sp != saved_sp && last_sp != NULL)
1003       tty->print_cr("*** last_sp="PTR_FORMAT, (intptr_t)last_sp);
1004     int stack_dump_count = 16;
1005     if (stack_dump_count < (int)(saved_bp + 2 - saved_sp))
1006       stack_dump_count = (int)(saved_bp + 2 - saved_sp);
1007     if (stack_dump_count > 64)  stack_dump_count = 48;
1008     for (i = 0; i < stack_dump_count; i += 4) {
1009       tty->print_cr(" dump at SP[%d] "PTR_FORMAT": "PTR_FORMAT" "PTR_FORMAT" "PTR_FORMAT" "PTR_FORMAT,
1010                     i, (intptr_t) &entry_sp[i+0], entry_sp[i+0], entry_sp[i+1], entry_sp[i+2], entry_sp[i+3]);
1011     }
1012     if (has_mh)
1013       print_method_handle(mh);
1014   }
1015 }
1016 
1017 // The stub wraps the arguments in a struct on the stack to avoid
1018 // dealing with the different calling conventions for passing 6
1019 // arguments.
1020 struct MethodHandleStubArguments {
1021   const char* adaptername;
1022   oopDesc* mh;
1023   intptr_t* saved_regs;
1024   intptr_t* entry_sp;
1025   intptr_t* saved_sp;
1026   intptr_t* saved_bp;
1027 };
1028 void trace_method_handle_stub_wrapper(MethodHandleStubArguments* args) {
1029   trace_method_handle_stub(args->adaptername,
1030                            args->mh,
1031                            args->saved_regs,
1032                            args->entry_sp,
1033                            args->saved_sp,
1034                            args->saved_bp);
1035 }
1036 
1037 void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
1038   if (!TraceMethodHandles)  return;
1039   BLOCK_COMMENT("trace_method_handle {");
1040   __ push(rax);
1041   __ lea(rax, Address(rsp, wordSize * NOT_LP64(6) LP64_ONLY(14))); // entry_sp  __ pusha();
1042   __ pusha();
1043   __ mov(rbx, rsp);
1044   __ enter();
1045   // incoming state:
1046   // rcx: method handle
1047   // r13 or rsi: saved sp
1048   // To avoid calling convention issues, build a record on the stack and pass the pointer to that instead.
1049   __ push(rbp);               // saved_bp
1050   __ push(rsi);               // saved_sp
1051   __ push(rax);               // entry_sp
1052   __ push(rbx);               // pusha saved_regs
1053   __ push(rcx);               // mh
1054   __ push(rcx);               // adaptername
1055   __ movptr(Address(rsp, 0), (intptr_t) adaptername);
1056   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub_wrapper), rsp);
1057   __ leave();
1058   __ popa();
1059   __ pop(rax);
1060   BLOCK_COMMENT("} trace_method_handle");
1061 }
1062 #endif //PRODUCT
1063 
1064 // which conversion op types are implemented here?
1065 int MethodHandles::adapter_conversion_ops_supported_mask() {
1066   return ((1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY)
1067          |(1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW)
1068          |(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST)
1069          |(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM)
1070          |(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM)
1071           //OP_PRIM_TO_REF is below...
1072          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS)
1073          |(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS)
1074          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS)
1075          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS)
1076           //OP_COLLECT_ARGS is below...
1077          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS)
1078          |(!UseRicochetFrames ? 0 :
1079            java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() <= 0 ? 0 :
1080            ((1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF)
1081            |(1<<java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS)
1082            |(1<<java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS)
1083             ))
1084          );
1085 }
1086 
1087 //------------------------------------------------------------------------------
1088 // MethodHandles::generate_method_handle_stub
1089 //
1090 // Generate an "entry" field for a method handle.
1091 // This determines how the method handle will respond to calls.
1092 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
1093   MethodHandles::EntryKind ek_orig = ek_original_kind(ek);
1094 
1095   // Here is the register state during an interpreted call,
1096   // as set up by generate_method_handle_interpreter_entry():
1097   // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
1098   // - rcx: receiver method handle
1099   // - rax: method handle type (only used by the check_mtype entry point)
1100   // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
1101   // - rdx: garbage temp, can blow away
1102 
1103   const Register rcx_recv    = rcx;
1104   const Register rax_argslot = rax;
1105   const Register rbx_temp    = rbx;
1106   const Register rdx_temp    = rdx;
1107   const Register rdi_temp    = rdi;
1108 
1109   // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
1110   // and gen_c2i_adapter (from compiled calls):
1111   const Register saved_last_sp = saved_last_sp_register();
1112 
1113   // Argument registers for _raise_exception.
1114   // 32-bit: Pass first two oop/int args in registers ECX and EDX.
1115   const Register rarg0_code     = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
1116   const Register rarg1_actual   = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
1117   const Register rarg2_required = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
1118   assert_different_registers(rarg0_code, rarg1_actual, rarg2_required, saved_last_sp);
1119 
1120   guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
1121 
1122   // some handy addresses
1123   Address rbx_method_fie(     rbx,      methodOopDesc::from_interpreted_offset() );
1124   Address rbx_method_fce(     rbx,      methodOopDesc::from_compiled_offset() );
1125 
1126   Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
1127   Address rcx_dmh_vmindex(    rcx_recv, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes() );
1128 
1129   Address rcx_bmh_vmargslot(  rcx_recv, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes() );
1130   Address rcx_bmh_argument(   rcx_recv, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes() );
1131 
1132   Address rcx_amh_vmargslot(  rcx_recv, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes() );
1133   Address rcx_amh_argument(   rcx_recv, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes() );
1134   Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
1135   Address vmarg;                // __ argument_address(vmargslot)
1136 
1137   const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
1138 
1139   if (have_entry(ek)) {
1140     __ nop();                   // empty stubs make SG sick
1141     return;
1142   }
1143 
1144 #ifdef ASSERT
1145   __ push((int32_t) 0xEEEEEEEE);
1146   __ push((int32_t) (intptr_t) entry_name(ek));
1147   LP64_ONLY(__ push((int32_t) high((intptr_t) entry_name(ek))));
1148   __ push((int32_t) 0x33333333);
1149 #endif //ASSERT
1150 
1151   address interp_entry = __ pc();
1152 
1153   trace_method_handle(_masm, entry_name(ek));
1154 
1155   BLOCK_COMMENT(err_msg("Entry %s {", entry_name(ek)));
1156 
1157   switch ((int) ek) {
1158   case _raise_exception:
1159     {
1160       // Not a real MH entry, but rather shared code for raising an
1161       // exception.  Since we use the compiled entry, arguments are
1162       // expected in compiler argument registers.
1163       assert(raise_exception_method(), "must be set");
1164       assert(raise_exception_method()->from_compiled_entry(), "method must be linked");
1165 
1166       const Register rdi_pc = rax;
1167       __ pop(rdi_pc);  // caller PC
1168       __ mov(rsp, saved_last_sp);  // cut the stack back to where the caller started
1169 
1170       Register rbx_method = rbx_temp;
1171       __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
1172 
1173       const int jobject_oop_offset = 0;
1174       __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset));  // dereference the jobject
1175       __ verify_oop(rbx_method);
1176 
1177       NOT_LP64(__ push(rarg2_required));
1178       __ push(rdi_pc);         // restore caller PC
1179       __ jmp(rbx_method_fce);  // jump to compiled entry
1180     }
1181     break;
1182 
1183   case _invokestatic_mh:
1184   case _invokespecial_mh:
1185     {
1186       Register rbx_method = rbx_temp;
1187       __ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop
1188       __ verify_oop(rbx_method);
1189       // same as TemplateTable::invokestatic or invokespecial,
1190       // minus the CP setup and profiling:
1191       if (ek == _invokespecial_mh) {
1192         // Must load & check the first argument before entering the target method.
1193         __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
1194         __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
1195         __ null_check(rcx_recv);
1196         __ verify_oop(rcx_recv);
1197       }
1198       __ jmp(rbx_method_fie);
1199     }
1200     break;
1201 
1202   case _invokevirtual_mh:
1203     {
1204       // same as TemplateTable::invokevirtual,
1205       // minus the CP setup and profiling:
1206 
1207       // pick out the vtable index and receiver offset from the MH,
1208       // and then we can discard it:
1209       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
1210       Register rbx_index = rbx_temp;
1211       __ movl(rbx_index, rcx_dmh_vmindex);
1212       // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
1213       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
1214       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
1215 
1216       // get receiver klass
1217       Register rax_klass = rax_argslot;
1218       __ load_klass(rax_klass, rcx_recv);
1219       __ verify_oop(rax_klass);
1220 
1221       // get target methodOop & entry point
1222       const int base = instanceKlass::vtable_start_offset() * wordSize;
1223       assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
1224       Address vtable_entry_addr(rax_klass,
1225                                 rbx_index, Address::times_ptr,
1226                                 base + vtableEntry::method_offset_in_bytes());
1227       Register rbx_method = rbx_temp;
1228       __ movptr(rbx_method, vtable_entry_addr);
1229 
1230       __ verify_oop(rbx_method);
1231       __ jmp(rbx_method_fie);
1232     }
1233     break;
1234 
1235   case _invokeinterface_mh:
1236     {
1237       // same as TemplateTable::invokeinterface,
1238       // minus the CP setup and profiling:
1239 
1240       // pick out the interface and itable index from the MH.
1241       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
1242       Register rdx_intf  = rdx_temp;
1243       Register rbx_index = rbx_temp;
1244       __ load_heap_oop(rdx_intf, rcx_mh_vmtarget);
1245       __ movl(rbx_index, rcx_dmh_vmindex);
1246       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
1247       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
1248 
1249       // get receiver klass
1250       Register rax_klass = rax_argslot;
1251       __ load_klass(rax_klass, rcx_recv);
1252       __ verify_oop(rax_klass);
1253 
1254       Register rbx_method = rbx_index;
1255 
1256       // get interface klass
1257       Label no_such_interface;
1258       __ verify_oop(rdx_intf);
1259       __ lookup_interface_method(rax_klass, rdx_intf,
1260                                  // note: next two args must be the same:
1261                                  rbx_index, rbx_method,
1262                                  rdi_temp,
1263                                  no_such_interface);
1264 
1265       __ verify_oop(rbx_method);
1266       __ jmp(rbx_method_fie);
1267       __ hlt();
1268 
1269       __ bind(no_such_interface);
1270       // Throw an exception.
1271       // For historical reasons, it will be IncompatibleClassChangeError.
1272       __ mov(rbx_temp, rcx_recv);  // rarg2_required might be RCX
1273       assert_different_registers(rarg2_required, rbx_temp);
1274       __ movptr(rarg2_required, Address(rdx_intf, java_mirror_offset));  // required interface
1275       __ mov(   rarg1_actual,   rbx_temp);                               // bad receiver
1276       __ movl(  rarg0_code,     (int) Bytecodes::_invokeinterface);      // who is complaining?
1277       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
1278     }
1279     break;
1280 
1281   case _bound_ref_mh:
1282   case _bound_int_mh:
1283   case _bound_long_mh:
1284   case _bound_ref_direct_mh:
1285   case _bound_int_direct_mh:
1286   case _bound_long_direct_mh:
1287     {
1288       const bool direct_to_method = (ek >= _bound_ref_direct_mh);
1289       BasicType arg_type  = ek_bound_mh_arg_type(ek);
1290       int       arg_slots = type2size[arg_type];
1291 
1292       // make room for the new argument:
1293       __ movl(rax_argslot, rcx_bmh_vmargslot);
1294       __ lea(rax_argslot, __ argument_address(rax_argslot));
1295 
1296       insert_arg_slots(_masm, arg_slots * stack_move_unit(), rax_argslot, rbx_temp, rdx_temp);
1297 
1298       // store bound argument into the new stack slot:
1299       __ load_heap_oop(rbx_temp, rcx_bmh_argument);
1300       if (arg_type == T_OBJECT) {
1301         __ movptr(Address(rax_argslot, 0), rbx_temp);
1302       } else {
1303         Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
1304         move_typed_arg(_masm, arg_type, false,
1305                        Address(rax_argslot, 0),
1306                        prim_value_addr,
1307                        rbx_temp, rdx_temp);
1308       }
1309 
1310       if (direct_to_method) {
1311         Register rbx_method = rbx_temp;
1312         __ load_heap_oop(rbx_method, rcx_mh_vmtarget);
1313         __ verify_oop(rbx_method);
1314         __ jmp(rbx_method_fie);
1315       } else {
1316         __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1317         __ verify_oop(rcx_recv);
1318         __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1319       }
1320     }
1321     break;
1322 
1323   case _adapter_retype_only:
1324   case _adapter_retype_raw:
1325     // immediately jump to the next MH layer:
1326     __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1327     __ verify_oop(rcx_recv);
1328     __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1329     // This is OK when all parameter types widen.
1330     // It is also OK when a return type narrows.
1331     break;
1332 
1333   case _adapter_check_cast:
1334     {
1335       // temps:
1336       Register rbx_klass = rbx_temp; // interesting AMH data
1337 
1338       // check a reference argument before jumping to the next layer of MH:
1339       __ movl(rax_argslot, rcx_amh_vmargslot);
1340       vmarg = __ argument_address(rax_argslot);
1341 
1342       // What class are we casting to?
1343       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
1344       load_klass_from_Class(_masm, rbx_klass);
1345 
1346       Label done;
1347       __ movptr(rdx_temp, vmarg);
1348       __ testptr(rdx_temp, rdx_temp);
1349       __ jcc(Assembler::zero, done);         // no cast if null
1350       __ load_klass(rdx_temp, rdx_temp);
1351 
1352       // live at this point:
1353       // - rbx_klass:  klass required by the target method
1354       // - rdx_temp:   argument klass to test
1355       // - rcx_recv:   adapter method handle
1356       __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);
1357 
1358       // If we get here, the type check failed!
1359       // Call the wrong_method_type stub, passing the failing argument type in rax.
1360       Register rax_mtype = rax_argslot;
1361       __ movl(rax_argslot, rcx_amh_vmargslot);  // reload argslot field
1362       __ movptr(rdx_temp, vmarg);
1363 
1364       assert_different_registers(rarg2_required, rdx_temp);
1365       __ load_heap_oop(rarg2_required, rcx_amh_argument);             // required class
1366       __ mov(          rarg1_actual,   rdx_temp);                     // bad object
1367       __ movl(         rarg0_code,     (int) Bytecodes::_checkcast);  // who is complaining?
1368       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
1369 
1370       __ bind(done);
1371       // get the new MH:
1372       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1373       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1374     }
1375     break;
1376 
1377   case _adapter_prim_to_prim:
1378   case _adapter_ref_to_prim:
1379   case _adapter_prim_to_ref:
1380     // handled completely by optimized cases
1381     __ stop("init_AdapterMethodHandle should not issue this");
1382     break;
1383 
1384   case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
1385 //case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
1386   case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
1387   case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
1388     {
1389       // perform an in-place conversion to int or an int subword
1390       __ movl(rax_argslot, rcx_amh_vmargslot);
1391       vmarg = __ argument_address(rax_argslot);
1392 
1393       switch (ek) {
1394       case _adapter_opt_i2i:
1395         __ movl(rdx_temp, vmarg);
1396         break;
1397       case _adapter_opt_l2i:
1398         {
1399           // just delete the extra slot; on a little-endian machine we keep the first
1400           __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
1401           remove_arg_slots(_masm, -stack_move_unit(),
1402                            rax_argslot, rbx_temp, rdx_temp);
1403           vmarg = Address(rax_argslot, -Interpreter::stackElementSize);
1404           __ movl(rdx_temp, vmarg);
1405         }
1406         break;
1407       case _adapter_opt_unboxi:
1408         {
1409           // Load the value up from the heap.
1410           __ movptr(rdx_temp, vmarg);
1411           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
1412 #ifdef ASSERT
1413           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
1414             if (is_subword_type(BasicType(bt)))
1415               assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
1416           }
1417 #endif
1418           __ null_check(rdx_temp, value_offset);
1419           __ movl(rdx_temp, Address(rdx_temp, value_offset));
1420           // We load this as a word.  Because we are little-endian,
1421           // the low bits will be correct, but the high bits may need cleaning.
1422           // The vminfo will guide us to clean those bits.
1423         }
1424         break;
1425       default:
1426         ShouldNotReachHere();
1427       }
1428 
1429       // Do the requested conversion and store the value.
1430       Register rbx_vminfo = rbx_temp;
1431       load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion);
1432 
1433       // get the new MH:
1434       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1435       // (now we are done with the old MH)
1436 
1437       // original 32-bit vmdata word must be of this form:
1438       //    | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
1439       __ xchgptr(rcx, rbx_vminfo);                // free rcx for shifts
1440       __ shll(rdx_temp /*, rcx*/);
1441       Label zero_extend, done;
1442       __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
1443       __ jccb(Assembler::zero, zero_extend);
1444 
1445       // this path is taken for int->byte, int->short
1446       __ sarl(rdx_temp /*, rcx*/);
1447       __ jmpb(done);
1448 
1449       __ bind(zero_extend);
1450       // this is taken for int->char
1451       __ shrl(rdx_temp /*, rcx*/);
1452 
1453       __ bind(done);
1454       __ movl(vmarg, rdx_temp);  // Store the value.
1455       __ xchgptr(rcx, rbx_vminfo);                // restore rcx_recv
1456 
1457       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1458     }
1459     break;
1460 
1461   case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
1462   case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
1463     {
1464       // perform an in-place int-to-long or ref-to-long conversion
1465       __ movl(rax_argslot, rcx_amh_vmargslot);
1466 
1467       // on a little-endian machine we keep the first slot and add another after
1468       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
1469       insert_arg_slots(_masm, stack_move_unit(),
1470                        rax_argslot, rbx_temp, rdx_temp);
1471       Address vmarg1(rax_argslot, -Interpreter::stackElementSize);
1472       Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize);
1473 
1474       switch (ek) {
1475       case _adapter_opt_i2l:
1476         {
1477 #ifdef _LP64
1478           __ movslq(rdx_temp, vmarg1);  // Load sign-extended
1479           __ movq(vmarg1, rdx_temp);    // Store into first slot
1480 #else
1481           __ movl(rdx_temp, vmarg1);
1482           __ sarl(rdx_temp, BitsPerInt - 1);  // __ extend_sign()
1483           __ movl(vmarg2, rdx_temp); // store second word
1484 #endif
1485         }
1486         break;
1487       case _adapter_opt_unboxl:
1488         {
1489           // Load the value up from the heap.
1490           __ movptr(rdx_temp, vmarg1);
1491           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
1492           assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
1493           __ null_check(rdx_temp, value_offset);
1494 #ifdef _LP64
1495           __ movq(rbx_temp, Address(rdx_temp, value_offset));
1496           __ movq(vmarg1, rbx_temp);
1497 #else
1498           __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
1499           __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
1500           __ movl(vmarg1, rbx_temp);
1501           __ movl(vmarg2, rdx_temp);
1502 #endif
1503         }
1504         break;
1505       default:
1506         ShouldNotReachHere();
1507       }
1508 
1509       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1510       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1511     }
1512     break;
1513 
1514   case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
1515   case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
1516     {
1517       // perform an in-place floating primitive conversion
1518       __ movl(rax_argslot, rcx_amh_vmargslot);
1519       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
1520       if (ek == _adapter_opt_f2d) {
1521         insert_arg_slots(_masm, stack_move_unit(),
1522                          rax_argslot, rbx_temp, rdx_temp);
1523       }
1524       Address vmarg(rax_argslot, -Interpreter::stackElementSize);
1525 
1526 #ifdef _LP64
1527       if (ek == _adapter_opt_f2d) {
1528         __ movflt(xmm0, vmarg);
1529         __ cvtss2sd(xmm0, xmm0);
1530         __ movdbl(vmarg, xmm0);
1531       } else {
1532         __ movdbl(xmm0, vmarg);
1533         __ cvtsd2ss(xmm0, xmm0);
1534         __ movflt(vmarg, xmm0);
1535       }
1536 #else //_LP64
1537       if (ek == _adapter_opt_f2d) {
1538         __ fld_s(vmarg);        // load float to ST0
1539         __ fstp_d(vmarg);       // store double
1540       } else {
1541         __ fld_d(vmarg);        // load double to ST0
1542         __ fstp_s(vmarg);       // store single
1543       }
1544 #endif //_LP64
1545 
1546       if (ek == _adapter_opt_d2f) {
1547         remove_arg_slots(_masm, -stack_move_unit(),
1548                          rax_argslot, rbx_temp, rdx_temp);
1549       }
1550 
1551       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1552       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1553     }
1554     break;
1555 
1556   case _adapter_swap_args:
1557   case _adapter_rot_args:
1558     // handled completely by optimized cases
1559     __ stop("init_AdapterMethodHandle should not issue this");
1560     break;
1561 
1562   case _adapter_opt_swap_1:
1563   case _adapter_opt_swap_2:
1564   case _adapter_opt_rot_1_up:
1565   case _adapter_opt_rot_1_down:
1566   case _adapter_opt_rot_2_up:
1567   case _adapter_opt_rot_2_down:
1568     {
1569       int swap_slots = ek_adapter_opt_swap_slots(ek);
1570       int rotate     = ek_adapter_opt_swap_mode(ek);
1571 
1572       // 'argslot' is the position of the first argument to swap
1573       __ movl(rax_argslot, rcx_amh_vmargslot);
1574       __ lea(rax_argslot, __ argument_address(rax_argslot));
1575 
1576       // 'vminfo' is the second
1577       Register rbx_destslot = rbx_temp;
1578       load_conversion_vminfo(_masm, rbx_destslot, rcx_amh_conversion);
1579       __ lea(rbx_destslot, __ argument_address(rbx_destslot));
1580       if (VerifyMethodHandles)
1581         verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame");
1582 
1583       assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here");
1584       if (!rotate) {
1585         // simple swap
1586         for (int i = 0; i < swap_slots; i++) {
1587           __ movptr(rdi_temp, Address(rax_argslot,  i * wordSize));
1588           __ movptr(rdx_temp, Address(rbx_destslot, i * wordSize));
1589           __ movptr(Address(rax_argslot,  i * wordSize), rdx_temp);
1590           __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp);
1591         }
1592       } else {
1593         // A rotate is actually pair of moves, with an "odd slot" (or pair)
1594         // changing place with a series of other slots.
1595         // First, push the "odd slot", which is going to get overwritten
1596         for (int i = swap_slots - 1; i >= 0; i--) {
1597           // handle one with rdi_temp instead of a push:
1598           if (i == 0)  __ movptr(rdi_temp, Address(rax_argslot, i * wordSize));
1599           else         __ pushptr(         Address(rax_argslot, i * wordSize));
1600         }
1601         if (rotate > 0) {
1602           // Here is rotate > 0:
1603           // (low mem)                                          (high mem)
1604           //     | dest:     more_slots...     | arg: odd_slot :arg+1 |
1605           // =>
1606           //     | dest: odd_slot | dest+1: more_slots...      :arg+1 |
1607           // work argslot down to destslot, copying contiguous data upwards
1608           // pseudo-code:
1609           //   rax = src_addr - swap_bytes
1610           //   rbx = dest_addr
1611           //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
1612           move_arg_slots_up(_masm,
1613                             rbx_destslot,
1614                             Address(rax_argslot, 0),
1615                             swap_slots,
1616                             rax_argslot, rdx_temp);
1617         } else {
1618           // Here is the other direction, rotate < 0:
1619           // (low mem)                                          (high mem)
1620           //     | arg: odd_slot | arg+1: more_slots...       :dest+1 |
1621           // =>
1622           //     | arg:    more_slots...     | dest: odd_slot :dest+1 |
1623           // work argslot up to destslot, copying contiguous data downwards
1624           // pseudo-code:
1625           //   rax = src_addr + swap_bytes
1626           //   rbx = dest_addr
1627           //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
1628           // dest_slot denotes an exclusive upper limit
1629           int limit_bias = OP_ROT_ARGS_DOWN_LIMIT_BIAS;
1630           if (limit_bias != 0)
1631             __ addptr(rbx_destslot, - limit_bias * wordSize);
1632           move_arg_slots_down(_masm,
1633                               Address(rax_argslot, swap_slots * wordSize),
1634                               rbx_destslot,
1635                               -swap_slots,
1636                               rax_argslot, rdx_temp);
1637           __ subptr(rbx_destslot, swap_slots * wordSize);
1638         }
1639         // pop the original first chunk into the destination slot, now free
1640         for (int i = 0; i < swap_slots; i++) {
1641           if (i == 0)  __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp);
1642           else         __ popptr(Address(rbx_destslot, i * wordSize));
1643         }
1644       }
1645 
1646       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1647       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1648     }
1649     break;
1650 
1651   case _adapter_dup_args:
1652     {
1653       // 'argslot' is the position of the first argument to duplicate
1654       __ movl(rax_argslot, rcx_amh_vmargslot);
1655       __ lea(rax_argslot, __ argument_address(rax_argslot));
1656 
1657       // 'stack_move' is negative number of words to duplicate
1658       Register rdi_stack_move = rdi_temp;
1659       load_stack_move(_masm, rdi_stack_move, rcx_recv, true);
1660 
1661       if (VerifyMethodHandles) {
1662         verify_argslots(_masm, rdi_stack_move, rax_argslot, true,
1663                         "copied argument(s) must fall within current frame");
1664       }
1665 
1666       // insert location is always the bottom of the argument list:
1667       Address insert_location = __ argument_address(constant(0));
1668       int pre_arg_words = insert_location.disp() / wordSize;   // return PC is pushed
1669       assert(insert_location.base() == rsp, "");
1670 
1671       __ negl(rdi_stack_move);
1672       push_arg_slots(_masm, rax_argslot, rdi_stack_move,
1673                      pre_arg_words, rbx_temp, rdx_temp);
1674 
1675       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1676       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1677     }
1678     break;
1679 
1680   case _adapter_drop_args:
1681     {
1682       // 'argslot' is the position of the first argument to nuke
1683       __ movl(rax_argslot, rcx_amh_vmargslot);
1684       __ lea(rax_argslot, __ argument_address(rax_argslot));
1685 
1686       // (must do previous push after argslot address is taken)
1687 
1688       // 'stack_move' is number of words to drop
1689       Register rdi_stack_move = rdi_temp;
1690       load_stack_move(_masm, rdi_stack_move, rcx_recv, false);
1691       remove_arg_slots(_masm, rdi_stack_move,
1692                        rax_argslot, rbx_temp, rdx_temp);
1693 
1694       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1695       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1696     }
1697     break;
1698 
1699   case _adapter_collect_args:
1700   case _adapter_fold_args:
1701   case _adapter_spread_args:
1702     // handled completely by optimized cases
1703     __ stop("init_AdapterMethodHandle should not issue this");
1704     break;
1705 
1706   case _adapter_opt_collect_ref:
1707   case _adapter_opt_collect_int:
1708   case _adapter_opt_collect_long:
1709   case _adapter_opt_collect_float:
1710   case _adapter_opt_collect_double:
1711   case _adapter_opt_collect_void:
1712   case _adapter_opt_collect_0_ref:
1713   case _adapter_opt_collect_1_ref:
1714   case _adapter_opt_collect_2_ref:
1715   case _adapter_opt_collect_3_ref:
1716   case _adapter_opt_collect_4_ref:
1717   case _adapter_opt_collect_5_ref:
1718   case _adapter_opt_filter_S0_ref:
1719   case _adapter_opt_filter_S1_ref:
1720   case _adapter_opt_filter_S2_ref:
1721   case _adapter_opt_filter_S3_ref:
1722   case _adapter_opt_filter_S4_ref:
1723   case _adapter_opt_filter_S5_ref:
1724   case _adapter_opt_collect_2_S0_ref:
1725   case _adapter_opt_collect_2_S1_ref:
1726   case _adapter_opt_collect_2_S2_ref:
1727   case _adapter_opt_collect_2_S3_ref:
1728   case _adapter_opt_collect_2_S4_ref:
1729   case _adapter_opt_collect_2_S5_ref:
1730   case _adapter_opt_fold_ref:
1731   case _adapter_opt_fold_int:
1732   case _adapter_opt_fold_long:
1733   case _adapter_opt_fold_float:
1734   case _adapter_opt_fold_double:
1735   case _adapter_opt_fold_void:
1736   case _adapter_opt_fold_1_ref:
1737   case _adapter_opt_fold_2_ref:
1738   case _adapter_opt_fold_3_ref:
1739   case _adapter_opt_fold_4_ref:
1740   case _adapter_opt_fold_5_ref:
1741     {
1742       // Given a fresh incoming stack frame, build a new ricochet frame.
1743       // On entry, TOS points at a return PC, and RBP is the callers frame ptr.
1744       // RSI/R13 has the caller's exact stack pointer, which we must also preserve.
1745       // RCX contains an AdapterMethodHandle of the indicated kind.
1746 
1747       // Relevant AMH fields:
1748       // amh.vmargslot:
1749       //   points to the trailing edge of the arguments
1750       //   to filter, collect, or fold.  For a boxing operation,
1751       //   it points just after the single primitive value.
1752       // amh.argument:
1753       //   recursively called MH, on |collect| arguments
1754       // amh.vmtarget:
1755       //   final destination MH, on return value, etc.
1756       // amh.conversion.dest:
1757       //   tells what is the type of the return value
1758       //   (not needed here, since dest is also derived from ek)
1759       // amh.conversion.vminfo:
1760       //   points to the trailing edge of the return value
1761       //   when the vmtarget is to be called; this is
1762       //   equal to vmargslot + (retained ? |collect| : 0)
1763 
1764       // Pass 0 or more argument slots to the recursive target.
1765       int collect_count_constant = ek_adapter_opt_collect_count(ek);
1766 
1767       // The collected arguments are copied from the saved argument list:
1768       int collect_slot_constant = ek_adapter_opt_collect_slot(ek);
1769 
1770       assert(ek_orig == _adapter_collect_args ||
1771              ek_orig == _adapter_fold_args, "");
1772       bool retain_original_args = (ek_orig == _adapter_fold_args);
1773 
1774       // The return value is replaced (or inserted) at the 'vminfo' argslot.
1775       // Sometimes we can compute this statically.
1776       int dest_slot_constant = -1;
1777       if (!retain_original_args)
1778         dest_slot_constant = collect_slot_constant;
1779       else if (collect_slot_constant >= 0 && collect_count_constant >= 0)
1780         // We are preserving all the arguments, and the return value is prepended,
1781         // so the return slot is to the left (above) the |collect| sequence.
1782         dest_slot_constant = collect_slot_constant + collect_count_constant;
1783 
1784       // Replace all those slots by the result of the recursive call.
1785       // The result type can be one of ref, int, long, float, double, void.
1786       // In the case of void, nothing is pushed on the stack after return.
1787       BasicType dest = ek_adapter_opt_collect_type(ek);
1788       assert(dest == type2wfield[dest], "dest is a stack slot type");
1789       int dest_count = type2size[dest];
1790       assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size");
1791 
1792       // Choose a return continuation.
1793       EntryKind ek_ret = _adapter_opt_return_any;
1794       if (dest != T_CONFLICT && OptimizeMethodHandles) {
1795         switch (dest) {
1796         case T_INT    : ek_ret = _adapter_opt_return_int;     break;
1797         case T_LONG   : ek_ret = _adapter_opt_return_long;    break;
1798         case T_FLOAT  : ek_ret = _adapter_opt_return_float;   break;
1799         case T_DOUBLE : ek_ret = _adapter_opt_return_double;  break;
1800         case T_OBJECT : ek_ret = _adapter_opt_return_ref;     break;
1801         case T_VOID   : ek_ret = _adapter_opt_return_void;    break;
1802         default       : ShouldNotReachHere();
1803         }
1804         if (dest == T_OBJECT && dest_slot_constant >= 0) {
1805           EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant);
1806           if (ek_try <= _adapter_opt_return_LAST &&
1807               ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) {
1808             ek_ret = ek_try;
1809           }
1810         }
1811         assert(ek_adapter_opt_return_type(ek_ret) == dest, "");
1812       }
1813 
1814       // Already pushed:  ... keep1 | collect | keep2 | sender_pc |
1815       // push(sender_pc);
1816 
1817       // Compute argument base:
1818       Register rax_argv = rax_argslot;
1819       __ lea(rax_argv, __ argument_address(constant(0)));
1820 
1821       // Push a few extra argument words, if we need them to store the return value.
1822       {
1823         int extra_slots = 0;
1824         if (retain_original_args) {
1825           extra_slots = dest_count;
1826         } else if (collect_count_constant == -1) {
1827           extra_slots = dest_count;  // collect_count might be zero; be generous
1828         } else if (dest_count > collect_count_constant) {
1829           extra_slots = (dest_count - collect_count_constant);
1830         } else {
1831           // else we know we have enough dead space in |collect| to repurpose for return values
1832         }
1833         DEBUG_ONLY(extra_slots += 1);
1834         if (extra_slots > 0) {
1835           __ pop(rbx_temp);   // return value
1836           __ subptr(rsp, (extra_slots * Interpreter::stackElementSize));
1837           // Push guard word #2 in debug mode.
1838           DEBUG_ONLY(__ movptr(Address(rsp, 0), (int32_t) RicochetFrame::MAGIC_NUMBER_2));
1839           __ push(rbx_temp);
1840         }
1841       }
1842 
1843       RicochetFrame::enter_ricochet_frame(_masm, rcx_recv, rax_argv,
1844                                           entry(ek_ret)->from_interpreted_entry(), rbx_temp);
1845 
1846       // Now pushed:  ... keep1 | collect | keep2 | RF |
1847       // some handy frame slots:
1848       Address exact_sender_sp_addr = RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes());
1849       Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
1850       Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
1851 
1852 #ifdef ASSERT
1853       if (VerifyMethodHandles && dest != T_CONFLICT) {
1854         BLOCK_COMMENT("verify AMH.conv.dest");
1855         load_conversion_dest_type(_masm, rbx_temp, conversion_addr);
1856         Label L_dest_ok;
1857         __ cmpl(rbx_temp, (int) dest);
1858         __ jcc(Assembler::equal, L_dest_ok);
1859         if (dest == T_INT) {
1860           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
1861             if (is_subword_type(BasicType(bt))) {
1862               __ cmpl(rbx_temp, (int) bt);
1863               __ jcc(Assembler::equal, L_dest_ok);
1864             }
1865           }
1866         }
1867         __ stop("bad dest in AMH.conv");
1868         __ BIND(L_dest_ok);
1869       }
1870 #endif //ASSERT
1871 
1872       // Find out where the original copy of the recursive argument sequence begins.
1873       Register rax_coll = rax_argv;
1874       {
1875         RegisterOrConstant collect_slot = collect_slot_constant;
1876         if (collect_slot_constant == -1) {
1877           __ movl(rdi_temp, rcx_amh_vmargslot);
1878           collect_slot = rdi_temp;
1879         }
1880         if (collect_slot_constant != 0)
1881           __ lea(rax_coll, Address(rax_argv, collect_slot, Interpreter::stackElementScale()));
1882         // rax_coll now points at the trailing edge of |collect| and leading edge of |keep2|
1883       }
1884 
1885       // Replace the old AMH with the recursive MH.  (No going back now.)
1886       // In the case of a boxing call, the recursive call is to a 'boxer' method,
1887       // such as Integer.valueOf or Long.valueOf.  In the case of a filter
1888       // or collect call, it will take one or more arguments, transform them,
1889       // and return some result, to store back into argument_base[vminfo].
1890       __ load_heap_oop(rcx_recv, rcx_amh_argument);
1891       if (VerifyMethodHandles)  verify_method_handle(_masm, rcx_recv);
1892 
1893       // Push a space for the recursively called MH first:
1894       __ push((int32_t)NULL_WORD);
1895 
1896       // Calculate |collect|, the number of arguments we are collecting.
1897       Register rdi_collect_count = rdi_temp;
1898       RegisterOrConstant collect_count;
1899       if (collect_count_constant >= 0) {
1900         collect_count = collect_count_constant;
1901       } else {
1902         __ load_method_handle_vmslots(rdi_collect_count, rcx_recv, rdx_temp);
1903         collect_count = rdi_collect_count;
1904       }
1905 #ifdef ASSERT
1906       if (VerifyMethodHandles && collect_count_constant >= 0) {
1907         __ load_method_handle_vmslots(rbx_temp, rcx_recv, rdx_temp);
1908         Label L_count_ok;
1909         __ cmpl(rbx_temp, collect_count_constant);
1910         __ jcc(Assembler::equal, L_count_ok);
1911         __ stop("bad vminfo in AMH.conv");
1912         __ BIND(L_count_ok);
1913       }
1914 #endif //ASSERT
1915 
1916       // copy |collect| slots directly to TOS:
1917       push_arg_slots(_masm, rax_coll, collect_count, 0, rbx_temp, rdx_temp);
1918       // Now pushed:  ... keep1 | collect | keep2 | RF... | collect |
1919       // rax_coll still points at the trailing edge of |collect| and leading edge of |keep2|
1920 
1921       // If necessary, adjust the saved arguments to make room for the eventual return value.
1922       // Normal adjustment:  ... keep1 | +dest+ | -collect- | keep2 | RF... | collect |
1923       // If retaining args:  ... keep1 | +dest+ |  collect  | keep2 | RF... | collect |
1924       // In the non-retaining case, this might move keep2 either up or down.
1925       // We don't have to copy the whole | RF... collect | complex,
1926       // but we must adjust RF.saved_args_base.
1927       // Also, from now on, we will forget about the original copy of |collect|.
1928       // If we are retaining it, we will treat it as part of |keep2|.
1929       // For clarity we will define |keep3| = |collect|keep2| or |keep2|.
1930 
1931       BLOCK_COMMENT("adjust trailing arguments {");
1932       // Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements.
1933       int                open_count  = dest_count;
1934       RegisterOrConstant close_count = collect_count_constant;
1935       Register rdi_close_count = rdi_collect_count;
1936       if (retain_original_args) {
1937         close_count = constant(0);
1938       } else if (collect_count_constant == -1) {
1939         close_count = rdi_collect_count;
1940       }
1941 
1942       // How many slots need moving?  This is simply dest_slot (0 => no |keep3|).
1943       RegisterOrConstant keep3_count;
1944       Register rsi_keep3_count = rsi;  // can repair from RF.exact_sender_sp
1945       if (dest_slot_constant >= 0) {
1946         keep3_count = dest_slot_constant;
1947       } else  {
1948         load_conversion_vminfo(_masm, rsi_keep3_count, conversion_addr);
1949         keep3_count = rsi_keep3_count;
1950       }
1951 #ifdef ASSERT
1952       if (VerifyMethodHandles && dest_slot_constant >= 0) {
1953         load_conversion_vminfo(_masm, rbx_temp, conversion_addr);
1954         Label L_vminfo_ok;
1955         __ cmpl(rbx_temp, dest_slot_constant);
1956         __ jcc(Assembler::equal, L_vminfo_ok);
1957         __ stop("bad vminfo in AMH.conv");
1958         __ BIND(L_vminfo_ok);
1959       }
1960 #endif //ASSERT
1961 
1962       // tasks remaining:
1963       bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0);
1964       bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0));
1965       bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant());
1966 
1967       if (stomp_dest | fix_arg_base) {
1968         // we will probably need an updated rax_argv value
1969         if (collect_slot_constant >= 0) {
1970           // rax_coll already holds the leading edge of |keep2|, so tweak it
1971           assert(rax_coll == rax_argv, "elided a move");
1972           if (collect_slot_constant != 0)
1973             __ subptr(rax_argv, collect_slot_constant * Interpreter::stackElementSize);
1974         } else {
1975           // Just reload from RF.saved_args_base.
1976           __ movptr(rax_argv, saved_args_base_addr);
1977         }
1978       }
1979 
1980       // Old and new argument locations (based at slot 0).
1981       // Net shift (&new_argv - &old_argv) is (close_count - open_count).
1982       bool zero_open_count = (open_count == 0);  // remember this bit of info
1983       if (move_keep3 && fix_arg_base) {
1984         // It will be easier to have everything in one register:
1985         if (close_count.is_register()) {
1986           // Deduct open_count from close_count register to get a clean +/- value.
1987           __ subptr(close_count.as_register(), open_count);
1988         } else {
1989           close_count = close_count.as_constant() - open_count;
1990         }
1991         open_count = 0;
1992       }
1993       Address old_argv(rax_argv, 0);
1994       Address new_argv(rax_argv, close_count,  Interpreter::stackElementScale(),
1995                                 - open_count * Interpreter::stackElementSize);
1996 
1997       // First decide if any actual data are to be moved.
1998       // We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change.
1999       // (As it happens, all movements involve an argument list size change.)
2000 
2001       // If there are variable parameters, use dynamic checks to skip around the whole mess.
2002       Label L_done;
2003       if (!keep3_count.is_constant()) {
2004         __ testl(keep3_count.as_register(), keep3_count.as_register());
2005         __ jcc(Assembler::zero, L_done);
2006       }
2007       if (!close_count.is_constant()) {
2008         __ cmpl(close_count.as_register(), open_count);
2009         __ jcc(Assembler::equal, L_done);
2010       }
2011 
2012       if (move_keep3 && fix_arg_base) {
2013         bool emit_move_down = false, emit_move_up = false, emit_guard = false;
2014         if (!close_count.is_constant()) {
2015           emit_move_down = emit_guard = !zero_open_count;
2016           emit_move_up   = true;
2017         } else if (open_count != close_count.as_constant()) {
2018           emit_move_down = (open_count > close_count.as_constant());
2019           emit_move_up   = !emit_move_down;
2020         }
2021         Label L_move_up;
2022         if (emit_guard) {
2023           __ cmpl(close_count.as_register(), open_count);
2024           __ jcc(Assembler::greater, L_move_up);
2025         }
2026 
2027         if (emit_move_down) {
2028           // Move arguments down if |+dest+| > |-collect-|
2029           // (This is rare, except when arguments are retained.)
2030           // This opens space for the return value.
2031           if (keep3_count.is_constant()) {
2032             for (int i = 0; i < keep3_count.as_constant(); i++) {
2033               __ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize));
2034               __ movptr(          new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp);
2035             }
2036           } else {
2037             Register rbx_argv_top = rbx_temp;
2038             __ lea(rbx_argv_top, old_argv.plus_disp(keep3_count, Interpreter::stackElementScale()));
2039             move_arg_slots_down(_masm,
2040                                 old_argv,     // beginning of old argv
2041                                 rbx_argv_top, // end of old argv
2042                                 close_count,  // distance to move down (must be negative)
2043                                 rax_argv, rdx_temp);
2044             // Used argv as an iteration variable; reload from RF.saved_args_base.
2045             __ movptr(rax_argv, saved_args_base_addr);
2046           }
2047         }
2048 
2049         if (emit_guard) {
2050           __ jmp(L_done);  // assumes emit_move_up is true also
2051           __ BIND(L_move_up);
2052         }
2053 
2054         if (emit_move_up) {
2055 
2056           // Move arguments up if |+dest+| < |-collect-|
2057           // (This is usual, except when |keep3| is empty.)
2058           // This closes up the space occupied by the now-deleted collect values.
2059           if (keep3_count.is_constant()) {
2060             for (int i = keep3_count.as_constant() - 1; i >= 0; i--) {
2061               __ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize));
2062               __ movptr(          new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp);
2063             }
2064           } else {
2065             Address argv_top = old_argv.plus_disp(keep3_count, Interpreter::stackElementScale());
2066             move_arg_slots_up(_masm,
2067                               rax_argv,     // beginning of old argv
2068                               argv_top,     // end of old argv
2069                               close_count,  // distance to move up (must be positive)
2070                               rbx_temp, rdx_temp);
2071           }
2072         }
2073       }
2074       __ BIND(L_done);
2075 
2076       if (fix_arg_base) {
2077         // adjust RF.saved_args_base by adding (close_count - open_count)
2078         if (!new_argv.is_same_address(Address(rax_argv, 0)))
2079           __ lea(rax_argv, new_argv);
2080         __ movptr(saved_args_base_addr, rax_argv);
2081       }
2082 
2083       if (stomp_dest) {
2084         // Stomp the return slot, so it doesn't hold garbage.
2085         // This isn't strictly necessary, but it may help detect bugs.
2086         int forty_two = RicochetFrame::RETURN_VALUE_PLACEHOLDER;
2087         __ movptr(Address(rax_argv, keep3_count, Address::times_ptr),
2088                   (int32_t) forty_two);
2089         // uses rsi_keep3_count
2090       }
2091       BLOCK_COMMENT("} adjust trailing arguments");
2092 
2093       BLOCK_COMMENT("do_recursive_call");
2094       __ mov(saved_last_sp, rsp);    // set rsi/r13 for callee
2095       __ pushptr(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr()).addr());
2096       // The globally unique bounce address has two purposes:
2097       // 1. It helps the JVM recognize this frame (frame::is_ricochet_frame).
2098       // 2. When returned to, it cuts back the stack and redirects control flow
2099       //    to the return handler.
2100       // The return handler will further cut back the stack when it takes
2101       // down the RF.  Perhaps there is a way to streamline this further.
2102 
2103       // State during recursive call:
2104       // ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc |
2105       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
2106 
2107       break;
2108     }
2109 
2110   case _adapter_opt_return_ref:
2111   case _adapter_opt_return_int:
2112   case _adapter_opt_return_long:
2113   case _adapter_opt_return_float:
2114   case _adapter_opt_return_double:
2115   case _adapter_opt_return_void:
2116   case _adapter_opt_return_S0_ref:
2117   case _adapter_opt_return_S1_ref:
2118   case _adapter_opt_return_S2_ref:
2119   case _adapter_opt_return_S3_ref:
2120   case _adapter_opt_return_S4_ref:
2121   case _adapter_opt_return_S5_ref:
2122     {
2123       BasicType dest_type_constant = ek_adapter_opt_return_type(ek);
2124       int       dest_slot_constant = ek_adapter_opt_return_slot(ek);
2125 
2126       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
2127 
2128       if (dest_slot_constant == -1) {
2129         // The current stub is a general handler for this dest_type.
2130         // It can be called from _adapter_opt_return_any below.
2131         // Stash the address in a little table.
2132         assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob");
2133         address return_handler = __ pc();
2134         _adapter_return_handlers[dest_type_constant] = return_handler;
2135         if (dest_type_constant == T_INT) {
2136           // do the subword types too
2137           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
2138             if (is_subword_type(BasicType(bt)) &&
2139                 _adapter_return_handlers[bt] == NULL) {
2140               _adapter_return_handlers[bt] = return_handler;
2141             }
2142           }
2143         }
2144       }
2145 
2146       Register rbx_arg_base = rbx_temp;
2147       assert_different_registers(rax, rdx,  // possibly live return value registers
2148                                  rdi_temp, rbx_arg_base);
2149 
2150       Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
2151       Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
2152 
2153       __ movptr(rbx_arg_base, saved_args_base_addr);
2154       RegisterOrConstant dest_slot = dest_slot_constant;
2155       if (dest_slot_constant == -1) {
2156         load_conversion_vminfo(_masm, rdi_temp, conversion_addr);
2157         dest_slot = rdi_temp;
2158       }
2159       // Store the result back into the argslot.
2160       // This code uses the interpreter calling sequence, in which the return value
2161       // is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop.
2162       // There are certain irregularities with floating point values, which can be seen
2163       // in TemplateInterpreterGenerator::generate_return_entry_for.
2164       move_return_value(_masm, dest_type_constant, Address(rbx_arg_base, dest_slot, Interpreter::stackElementScale()));
2165 
2166       RicochetFrame::leave_ricochet_frame(_masm, rcx_recv, rbx_arg_base, rdx_temp);
2167       __ push(rdx_temp);  // repush the return PC
2168 
2169       // Load the final target and go.
2170       if (VerifyMethodHandles)  verify_method_handle(_masm, rcx_recv);
2171       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
2172       __ hlt(); // --------------------
2173       break;
2174     }
2175 
2176   case _adapter_opt_return_any:
2177     {
2178       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
2179       Register rdi_conv = rdi_temp;
2180       assert_different_registers(rax, rdx,  // possibly live return value registers
2181                                  rdi_conv, rbx_temp);
2182 
2183       Address conversion_addr = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
2184       load_conversion_dest_type(_masm, rdi_conv, conversion_addr);
2185       __ lea(rbx_temp, ExternalAddress((address) &_adapter_return_handlers[0]));
2186       __ movptr(rbx_temp, Address(rbx_temp, rdi_conv, Address::times_ptr));
2187 
2188 #ifdef ASSERT
2189       { Label L_badconv;
2190         __ testptr(rbx_temp, rbx_temp);
2191         __ jccb(Assembler::zero, L_badconv);
2192         __ jmp(rbx_temp);
2193         __ bind(L_badconv);
2194         __ stop("bad method handle return");
2195       }
2196 #else //ASSERT
2197       __ jmp(rbx_temp);
2198 #endif //ASSERT
2199       break;
2200     }
2201 
2202   case _adapter_opt_spread_0:
2203   case _adapter_opt_spread_1_ref:
2204   case _adapter_opt_spread_2_ref:
2205   case _adapter_opt_spread_3_ref:
2206   case _adapter_opt_spread_4_ref:
2207   case _adapter_opt_spread_5_ref:
2208   case _adapter_opt_spread_ref:
2209   case _adapter_opt_spread_byte:
2210   case _adapter_opt_spread_char:
2211   case _adapter_opt_spread_short:
2212   case _adapter_opt_spread_int:
2213   case _adapter_opt_spread_long:
2214   case _adapter_opt_spread_float:
2215   case _adapter_opt_spread_double:
2216     {
2217       // spread an array out into a group of arguments
2218       int length_constant = ek_adapter_opt_spread_count(ek);
2219       bool length_can_be_zero = (length_constant == 0);
2220       if (length_constant < 0) {
2221         // some adapters with variable length must handle the zero case
2222         if (!OptimizeMethodHandles ||
2223             ek_adapter_opt_spread_type(ek) != T_OBJECT)
2224           length_can_be_zero = true;
2225       }
2226 
2227       // find the address of the array argument
2228       __ movl(rax_argslot, rcx_amh_vmargslot);
2229       __ lea(rax_argslot, __ argument_address(rax_argslot));
2230 
2231       // grab another temp
2232       Register rsi_temp = rsi;
2233       { if (rsi_temp == saved_last_sp)  __ push(saved_last_sp); }
2234       // (preceding push must be done after argslot address is taken!)
2235 #define UNPUSH_RSI \
2236       { if (rsi_temp == saved_last_sp)  __ pop(saved_last_sp); }
2237 
2238       // arx_argslot points both to the array and to the first output arg
2239       vmarg = Address(rax_argslot, 0);
2240 
2241       // Get the array value.
2242       Register  rsi_array       = rsi_temp;
2243       Register  rdx_array_klass = rdx_temp;
2244       BasicType elem_type = ek_adapter_opt_spread_type(ek);
2245       int       elem_slots = type2size[elem_type];  // 1 or 2
2246       int       array_slots = 1;  // array is always a T_OBJECT
2247       int       length_offset   = arrayOopDesc::length_offset_in_bytes();
2248       int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
2249       __ movptr(rsi_array, vmarg);
2250 
2251       Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done;
2252       if (length_can_be_zero) {
2253         // handle the null pointer case, if zero is allowed
2254         Label L_skip;
2255         if (length_constant < 0) {
2256           load_conversion_vminfo(_masm, rbx_temp, rcx_amh_conversion);
2257           __ testl(rbx_temp, rbx_temp);
2258           __ jcc(Assembler::notZero, L_skip);
2259         }
2260         __ testptr(rsi_array, rsi_array);
2261         __ jcc(Assembler::zero, L_array_is_empty);
2262         __ bind(L_skip);
2263       }
2264       __ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
2265       __ load_klass(rdx_array_klass, rsi_array);
2266 
2267       // Check the array type.
2268       Register rbx_klass = rbx_temp;
2269       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
2270       load_klass_from_Class(_masm, rbx_klass);
2271 
2272       Label ok_array_klass, bad_array_klass, bad_array_length;
2273       __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi_temp, ok_array_klass);
2274       // If we get here, the type check failed!
2275       __ jmp(bad_array_klass);
2276       __ BIND(ok_array_klass);
2277 
2278       // Check length.
2279       if (length_constant >= 0) {
2280         __ cmpl(Address(rsi_array, length_offset), length_constant);
2281       } else {
2282         Register rbx_vminfo = rbx_temp;
2283         load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion);
2284         __ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
2285       }
2286       __ jcc(Assembler::notEqual, bad_array_length);
2287 
2288       Register rdx_argslot_limit = rdx_temp;
2289 
2290       // Array length checks out.  Now insert any required stack slots.
2291       if (length_constant == -1) {
2292         // Form a pointer to the end of the affected region.
2293         __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize));
2294         // 'stack_move' is negative number of words to insert
2295         // This number already accounts for elem_slots.
2296         Register rdi_stack_move = rdi_temp;
2297         load_stack_move(_masm, rdi_stack_move, rcx_recv, true);
2298         __ cmpptr(rdi_stack_move, 0);
2299         assert(stack_move_unit() < 0, "else change this comparison");
2300         __ jcc(Assembler::less, L_insert_arg_space);
2301         __ jcc(Assembler::equal, L_copy_args);
2302         // single argument case, with no array movement
2303         __ BIND(L_array_is_empty);
2304         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
2305                          rax_argslot, rbx_temp, rdx_temp);
2306         __ jmp(L_args_done);  // no spreading to do
2307         __ BIND(L_insert_arg_space);
2308         // come here in the usual case, stack_move < 0 (2 or more spread arguments)
2309         Register rsi_temp = rsi_array;  // spill this
2310         insert_arg_slots(_masm, rdi_stack_move,
2311                          rax_argslot, rbx_temp, rsi_temp);
2312         // reload the array since rsi was killed
2313         // reload from rdx_argslot_limit since rax_argslot is now decremented
2314         __ movptr(rsi_array, Address(rdx_argslot_limit, -Interpreter::stackElementSize));
2315       } else if (length_constant >= 1) {
2316         int new_slots = (length_constant * elem_slots) - array_slots;
2317         insert_arg_slots(_masm, new_slots * stack_move_unit(),
2318                          rax_argslot, rbx_temp, rdx_temp);
2319       } else if (length_constant == 0) {
2320         __ BIND(L_array_is_empty);
2321         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
2322                          rax_argslot, rbx_temp, rdx_temp);
2323       } else {
2324         ShouldNotReachHere();
2325       }
2326 
2327       // Copy from the array to the new slots.
2328       // Note: Stack change code preserves integrity of rax_argslot pointer.
2329       // So even after slot insertions, rax_argslot still points to first argument.
2330       // Beware:  Arguments that are shallow on the stack are deep in the array,
2331       // and vice versa.  So a downward-growing stack (the usual) has to be copied
2332       // elementwise in reverse order from the source array.
2333       __ BIND(L_copy_args);
2334       if (length_constant == -1) {
2335         // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
2336         // Array element [0] goes at rdx_argslot_limit[-wordSize].
2337         Register rsi_source = rsi_array;
2338         __ lea(rsi_source, Address(rsi_array, elem0_offset));
2339         Register rdx_fill_ptr = rdx_argslot_limit;
2340         Label loop;
2341         __ BIND(loop);
2342         __ addptr(rdx_fill_ptr, -Interpreter::stackElementSize * elem_slots);
2343         move_typed_arg(_masm, elem_type, true,
2344                        Address(rdx_fill_ptr, 0), Address(rsi_source, 0),
2345                        rbx_temp, rdi_temp);
2346         __ addptr(rsi_source, type2aelembytes(elem_type));
2347         __ cmpptr(rdx_fill_ptr, rax_argslot);
2348         __ jcc(Assembler::above, loop);
2349       } else if (length_constant == 0) {
2350         // nothing to copy
2351       } else {
2352         int elem_offset = elem0_offset;
2353         int slot_offset = length_constant * Interpreter::stackElementSize;
2354         for (int index = 0; index < length_constant; index++) {
2355           slot_offset -= Interpreter::stackElementSize * elem_slots;  // fill backward
2356           move_typed_arg(_masm, elem_type, true,
2357                          Address(rax_argslot, slot_offset), Address(rsi_array, elem_offset),
2358                          rbx_temp, rdi_temp);
2359           elem_offset += type2aelembytes(elem_type);
2360         }
2361       }
2362       __ BIND(L_args_done);
2363 
2364       // Arguments are spread.  Move to next method handle.
2365       UNPUSH_RSI;
2366       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
2367       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
2368 
2369       __ bind(bad_array_klass);
2370       UNPUSH_RSI;
2371       assert(!vmarg.uses(rarg2_required), "must be different registers");
2372       __ load_heap_oop( rarg2_required, Address(rdx_array_klass, java_mirror_offset));  // required type
2373       __ movptr(        rarg1_actual,   vmarg);                                         // bad array
2374       __ movl(          rarg0_code,     (int) Bytecodes::_aaload);                      // who is complaining?
2375       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
2376 
2377       __ bind(bad_array_length);
2378       UNPUSH_RSI;
2379       assert(!vmarg.uses(rarg2_required), "must be different registers");
2380       __ mov(    rarg2_required, rcx_recv);                       // AMH requiring a certain length
2381       __ movptr( rarg1_actual,   vmarg);                          // bad array
2382       __ movl(   rarg0_code,     (int) Bytecodes::_arraylength);  // who is complaining?
2383       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
2384 #undef UNPUSH_RSI
2385 
2386       break;
2387     }
2388 
2389   default:
2390     // do not require all platforms to recognize all adapter types
2391     __ nop();
2392     return;
2393   }
2394   BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek)));
2395   __ hlt();
2396 
2397   address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
2398   __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
2399 
2400   init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
2401 }