1 /*
   2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterGenerator.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/templateTable.hpp"
  32 #include "oops/arrayOop.hpp"
  33 #include "oops/methodDataOop.hpp"
  34 #include "oops/methodOop.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/synchronizer.hpp"
  44 #include "runtime/timer.hpp"
  45 #include "runtime/vframeArray.hpp"
  46 #include "utilities/debug.hpp"
  47 
  48 #define __ _masm->
  49 
  50 #ifndef CC_INTERP
  51 
  52 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  53 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
  54 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
  55 
  56 //-----------------------------------------------------------------------------
  57 
  58 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
  59   address entry = __ pc();
  60 
  61 #ifdef ASSERT
  62   {
  63     Label L;
  64     __ lea(rax, Address(rbp,
  65                         frame::interpreter_frame_monitor_block_top_offset *
  66                         wordSize));
  67     __ cmpptr(rax, rsp); // rax = maximal rsp for current rbp (stack
  68                          // grows negative)
  69     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
  70     __ stop ("interpreter frame not set up");
  71     __ bind(L);
  72   }
  73 #endif // ASSERT
  74   // Restore bcp under the assumption that the current frame is still
  75   // interpreted
  76   __ restore_bcp();
  77 
  78   // expression stack must be empty before entering the VM if an
  79   // exception happened
  80   __ empty_expression_stack();
  81   // throw exception
  82   __ call_VM(noreg,
  83              CAST_FROM_FN_PTR(address,
  84                               InterpreterRuntime::throw_StackOverflowError));
  85   return entry;
  86 }
  87 
  88 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
  89         const char* name) {
  90   address entry = __ pc();
  91   // expression stack must be empty before entering the VM if an
  92   // exception happened
  93   __ empty_expression_stack();
  94   // setup parameters
  95   // ??? convention: expect aberrant index in register ebx
  96   __ lea(c_rarg1, ExternalAddress((address)name));
  97   __ call_VM(noreg,
  98              CAST_FROM_FN_PTR(address,
  99                               InterpreterRuntime::
 100                               throw_ArrayIndexOutOfBoundsException),
 101              c_rarg1, rbx);
 102   return entry;
 103 }
 104 
 105 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 106   address entry = __ pc();
 107 
 108   // object is at TOS
 109   __ pop(c_rarg1);
 110 
 111   // expression stack must be empty before entering the VM if an
 112   // exception happened
 113   __ empty_expression_stack();
 114 
 115   __ call_VM(noreg,
 116              CAST_FROM_FN_PTR(address,
 117                               InterpreterRuntime::
 118                               throw_ClassCastException),
 119              c_rarg1);
 120   return entry;
 121 }
 122 
 123 // Arguments are: required type at TOS+8, failing object (or NULL) at TOS+4.
 124 address TemplateInterpreterGenerator::generate_WrongMethodType_handler() {
 125   address entry = __ pc();
 126 
 127   __ pop(c_rarg2);              // failing object is at TOS
 128   __ pop(c_rarg1);              // required type is at TOS+8
 129 
 130   __ verify_oop(c_rarg1);
 131   __ verify_oop(c_rarg2);
 132 
 133   // Various method handle types use interpreter registers as temps.
 134   __ restore_bcp();
 135   __ restore_locals();
 136 
 137   // Expression stack must be empty before entering the VM for an exception.
 138   __ empty_expression_stack();
 139 
 140   __ call_VM(noreg,
 141              CAST_FROM_FN_PTR(address,
 142                               InterpreterRuntime::throw_WrongMethodTypeException),
 143              // pass required type, failing object (or NULL)
 144              c_rarg1, c_rarg2);
 145   return entry;
 146 }
 147 
 148 address TemplateInterpreterGenerator::generate_exception_handler_common(
 149         const char* name, const char* message, bool pass_oop) {
 150   assert(!pass_oop || message == NULL, "either oop or message but not both");
 151   address entry = __ pc();
 152   if (pass_oop) {
 153     // object is at TOS
 154     __ pop(c_rarg2);
 155   }
 156   // expression stack must be empty before entering the VM if an
 157   // exception happened
 158   __ empty_expression_stack();
 159   // setup parameters
 160   __ lea(c_rarg1, ExternalAddress((address)name));
 161   if (pass_oop) {
 162     __ call_VM(rax, CAST_FROM_FN_PTR(address,
 163                                      InterpreterRuntime::
 164                                      create_klass_exception),
 165                c_rarg1, c_rarg2);
 166   } else {
 167     // kind of lame ExternalAddress can't take NULL because
 168     // external_word_Relocation will assert.
 169     if (message != NULL) {
 170       __ lea(c_rarg2, ExternalAddress((address)message));
 171     } else {
 172       __ movptr(c_rarg2, NULL_WORD);
 173     }
 174     __ call_VM(rax,
 175                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 176                c_rarg1, c_rarg2);
 177   }
 178   // throw exception
 179   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
 180   return entry;
 181 }
 182 
 183 
 184 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 185   address entry = __ pc();
 186   // NULL last_sp until next java call
 187   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 188   __ dispatch_next(state);
 189   return entry;
 190 }
 191 
 192 
 193 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
 194   address entry = __ pc();
 195 
 196   // Restore stack bottom in case i2c adjusted stack
 197   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
 198   // and NULL it as marker that esp is now tos until next java call
 199   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 200 
 201   __ restore_bcp();
 202   __ restore_locals();
 203 
 204   Label L_got_cache, L_giant_index;
 205   if (EnableInvokeDynamic) {
 206     __ cmpb(Address(r13, 0), Bytecodes::_invokedynamic);
 207     __ jcc(Assembler::equal, L_giant_index);
 208   }
 209   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
 210   __ bind(L_got_cache);
 211   __ movl(rbx, Address(rbx, rcx,
 212                        Address::times_ptr,
 213                        in_bytes(constantPoolCacheOopDesc::base_offset()) +
 214                        3 * wordSize));
 215   __ andl(rbx, 0xFF);
 216   __ lea(rsp, Address(rsp, rbx, Address::times_8));
 217   __ dispatch_next(state, step);
 218 
 219   // out of the main line of code...
 220   if (EnableInvokeDynamic) {
 221     __ bind(L_giant_index);
 222     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
 223     __ jmp(L_got_cache);
 224   }
 225 
 226   return entry;
 227 }
 228 
 229 
 230 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
 231                                                                int step) {
 232   address entry = __ pc();
 233   // NULL last_sp until next java call
 234   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 235   __ restore_bcp();
 236   __ restore_locals();
 237   // handle exceptions
 238   {
 239     Label L;
 240     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
 241     __ jcc(Assembler::zero, L);
 242     __ call_VM(noreg,
 243                CAST_FROM_FN_PTR(address,
 244                                 InterpreterRuntime::throw_pending_exception));
 245     __ should_not_reach_here();
 246     __ bind(L);
 247   }
 248   __ dispatch_next(state, step);
 249   return entry;
 250 }
 251 
 252 int AbstractInterpreter::BasicType_as_index(BasicType type) {
 253   int i = 0;
 254   switch (type) {
 255     case T_BOOLEAN: i = 0; break;
 256     case T_CHAR   : i = 1; break;
 257     case T_BYTE   : i = 2; break;
 258     case T_SHORT  : i = 3; break;
 259     case T_INT    : i = 4; break;
 260     case T_LONG   : i = 5; break;
 261     case T_VOID   : i = 6; break;
 262     case T_FLOAT  : i = 7; break;
 263     case T_DOUBLE : i = 8; break;
 264     case T_OBJECT : i = 9; break;
 265     case T_ARRAY  : i = 9; break;
 266     default       : ShouldNotReachHere();
 267   }
 268   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
 269          "index out of bounds");
 270   return i;
 271 }
 272 
 273 
 274 address TemplateInterpreterGenerator::generate_result_handler_for(
 275         BasicType type) {
 276   address entry = __ pc();
 277   switch (type) {
 278   case T_BOOLEAN: __ c2bool(rax);            break;
 279   case T_CHAR   : __ movzwl(rax, rax);       break;
 280   case T_BYTE   : __ sign_extend_byte(rax);  break;
 281   case T_SHORT  : __ sign_extend_short(rax); break;
 282   case T_INT    : /* nothing to do */        break;
 283   case T_LONG   : /* nothing to do */        break;
 284   case T_VOID   : /* nothing to do */        break;
 285   case T_FLOAT  : /* nothing to do */        break;
 286   case T_DOUBLE : /* nothing to do */        break;
 287   case T_OBJECT :
 288     // retrieve result from frame
 289     __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
 290     // and verify it
 291     __ verify_oop(rax);
 292     break;
 293   default       : ShouldNotReachHere();
 294   }
 295   __ ret(0);                                   // return from result handler
 296   return entry;
 297 }
 298 
 299 address TemplateInterpreterGenerator::generate_safept_entry_for(
 300         TosState state,
 301         address runtime_entry) {
 302   address entry = __ pc();
 303   __ push(state);
 304   __ call_VM(noreg, runtime_entry);
 305   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 306   return entry;
 307 }
 308 
 309 
 310 
 311 // Helpers for commoning out cases in the various type of method entries.
 312 //
 313 
 314 
 315 // increment invocation count & check for overflow
 316 //
 317 // Note: checking for negative value instead of overflow
 318 //       so we have a 'sticky' overflow test
 319 //
 320 // rbx: method
 321 // ecx: invocation counter
 322 //
 323 void InterpreterGenerator::generate_counter_incr(
 324         Label* overflow,
 325         Label* profile_method,
 326         Label* profile_method_continue) {
 327   const Address invocation_counter(rbx, in_bytes(methodOopDesc::invocation_counter_offset()) +
 328                                         in_bytes(InvocationCounter::counter_offset()));
 329   // Note: In tiered we increment either counters in methodOop or in MDO depending if we're profiling or not.
 330   if (TieredCompilation) {
 331     int increment = InvocationCounter::count_increment;
 332     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
 333     Label no_mdo, done;
 334     if (ProfileInterpreter) {
 335       // Are we profiling?
 336       __ movptr(rax, Address(rbx, methodOopDesc::method_data_offset()));
 337       __ testptr(rax, rax);
 338       __ jccb(Assembler::zero, no_mdo);
 339       // Increment counter in the MDO
 340       const Address mdo_invocation_counter(rax, in_bytes(methodDataOopDesc::invocation_counter_offset()) +
 341                                                 in_bytes(InvocationCounter::counter_offset()));
 342       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
 343       __ jmpb(done);
 344     }
 345     __ bind(no_mdo);
 346     // Increment counter in methodOop (we don't need to load it, it's in ecx).
 347     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx, true, Assembler::zero, overflow);
 348     __ bind(done);
 349   } else {
 350     const Address backedge_counter(rbx,
 351                                    methodOopDesc::backedge_counter_offset() +
 352                                    InvocationCounter::counter_offset());
 353 
 354     if (ProfileInterpreter) { // %%% Merge this into methodDataOop
 355       __ incrementl(Address(rbx,
 356                             methodOopDesc::interpreter_invocation_counter_offset()));
 357     }
 358     // Update standard invocation counters
 359     __ movl(rax, backedge_counter);   // load backedge counter
 360 
 361     __ incrementl(rcx, InvocationCounter::count_increment);
 362     __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
 363 
 364     __ movl(invocation_counter, rcx); // save invocation count
 365     __ addl(rcx, rax);                // add both counters
 366 
 367     // profile_method is non-null only for interpreted method so
 368     // profile_method != NULL == !native_call
 369 
 370     if (ProfileInterpreter && profile_method != NULL) {
 371       // Test to see if we should create a method data oop
 372       __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
 373       __ jcc(Assembler::less, *profile_method_continue);
 374 
 375       // if no method data exists, go to profile_method
 376       __ test_method_data_pointer(rax, *profile_method);
 377     }
 378 
 379     __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
 380     __ jcc(Assembler::aboveEqual, *overflow);
 381   }
 382 }
 383 
 384 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
 385 
 386   // Asm interpreter on entry
 387   // r14 - locals
 388   // r13 - bcp
 389   // rbx - method
 390   // edx - cpool --- DOES NOT APPEAR TO BE TRUE
 391   // rbp - interpreter frame
 392 
 393   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 394   // Everything as it was on entry
 395   // rdx is not restored. Doesn't appear to really be set.
 396 
 397   const Address size_of_parameters(rbx,
 398                                    methodOopDesc::size_of_parameters_offset());
 399 
 400   // InterpreterRuntime::frequency_counter_overflow takes two
 401   // arguments, the first (thread) is passed by call_VM, the second
 402   // indicates if the counter overflow occurs at a backwards branch
 403   // (NULL bcp).  We pass zero for it.  The call returns the address
 404   // of the verified entry point for the method or NULL if the
 405   // compilation did not complete (either went background or bailed
 406   // out).
 407   __ movl(c_rarg1, 0);
 408   __ call_VM(noreg,
 409              CAST_FROM_FN_PTR(address,
 410                               InterpreterRuntime::frequency_counter_overflow),
 411              c_rarg1);
 412 
 413   __ movptr(rbx, Address(rbp, method_offset));   // restore methodOop
 414   // Preserve invariant that r13/r14 contain bcp/locals of sender frame
 415   // and jump to the interpreted entry.
 416   __ jmp(*do_continue, relocInfo::none);
 417 }
 418 
 419 // See if we've got enough room on the stack for locals plus overhead.
 420 // The expression stack grows down incrementally, so the normal guard
 421 // page mechanism will work for that.
 422 //
 423 // NOTE: Since the additional locals are also always pushed (wasn't
 424 // obvious in generate_method_entry) so the guard should work for them
 425 // too.
 426 //
 427 // Args:
 428 //      rdx: number of additional locals this frame needs (what we must check)
 429 //      rbx: methodOop
 430 //
 431 // Kills:
 432 //      rax
 433 void InterpreterGenerator::generate_stack_overflow_check(void) {
 434 
 435   // monitor entry size: see picture of stack set
 436   // (generate_method_entry) and frame_amd64.hpp
 437   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 438 
 439   // total overhead size: entry_size + (saved rbp through expr stack
 440   // bottom).  be sure to change this if you add/subtract anything
 441   // to/from the overhead area
 442   const int overhead_size =
 443     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
 444 
 445   const int page_size = os::vm_page_size();
 446 
 447   Label after_frame_check;
 448 
 449   // see if the frame is greater than one page in size. If so,
 450   // then we need to verify there is enough stack space remaining
 451   // for the additional locals.
 452   __ cmpl(rdx, (page_size - overhead_size) / Interpreter::stackElementSize);
 453   __ jcc(Assembler::belowEqual, after_frame_check);
 454 
 455   // compute rsp as if this were going to be the last frame on
 456   // the stack before the red zone
 457 
 458   const Address stack_base(r15_thread, Thread::stack_base_offset());
 459   const Address stack_size(r15_thread, Thread::stack_size_offset());
 460 
 461   // locals + overhead, in bytes
 462   __ mov(rax, rdx);
 463   __ shlptr(rax, Interpreter::logStackElementSize);  // 2 slots per parameter.
 464   __ addptr(rax, overhead_size);
 465 
 466 #ifdef ASSERT
 467   Label stack_base_okay, stack_size_okay;
 468   // verify that thread stack base is non-zero
 469   __ cmpptr(stack_base, (int32_t)NULL_WORD);
 470   __ jcc(Assembler::notEqual, stack_base_okay);
 471   __ stop("stack base is zero");
 472   __ bind(stack_base_okay);
 473   // verify that thread stack size is non-zero
 474   __ cmpptr(stack_size, 0);
 475   __ jcc(Assembler::notEqual, stack_size_okay);
 476   __ stop("stack size is zero");
 477   __ bind(stack_size_okay);
 478 #endif
 479 
 480   // Add stack base to locals and subtract stack size
 481   __ addptr(rax, stack_base);
 482   __ subptr(rax, stack_size);
 483 
 484   // Use the maximum number of pages we might bang.
 485   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
 486                                                                               (StackRedPages+StackYellowPages);
 487 
 488   // add in the red and yellow zone sizes
 489   __ addptr(rax, max_pages * page_size);
 490 
 491   // check against the current stack bottom
 492   __ cmpptr(rsp, rax);
 493   __ jcc(Assembler::above, after_frame_check);
 494 
 495   __ pop(rax); // get return address
 496   __ jump(ExternalAddress(Interpreter::throw_StackOverflowError_entry()));
 497 
 498   // all done with frame size check
 499   __ bind(after_frame_check);
 500 }
 501 
 502 // Allocate monitor and lock method (asm interpreter)
 503 //
 504 // Args:
 505 //      rbx: methodOop
 506 //      r14: locals
 507 //
 508 // Kills:
 509 //      rax
 510 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
 511 //      rscratch1, rscratch2 (scratch regs)
 512 void InterpreterGenerator::lock_method(void) {
 513   // synchronize method
 514   const Address access_flags(rbx, methodOopDesc::access_flags_offset());
 515   const Address monitor_block_top(
 516         rbp,
 517         frame::interpreter_frame_monitor_block_top_offset * wordSize);
 518   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 519 
 520 #ifdef ASSERT
 521   {
 522     Label L;
 523     __ movl(rax, access_flags);
 524     __ testl(rax, JVM_ACC_SYNCHRONIZED);
 525     __ jcc(Assembler::notZero, L);
 526     __ stop("method doesn't need synchronization");
 527     __ bind(L);
 528   }
 529 #endif // ASSERT
 530 
 531   // get synchronization object
 532   {
 533     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() +
 534                               Klass::java_mirror_offset_in_bytes();
 535     Label done;
 536     __ movl(rax, access_flags);
 537     __ testl(rax, JVM_ACC_STATIC);
 538     // get receiver (assume this is frequent case)
 539     __ movptr(rax, Address(r14, Interpreter::local_offset_in_bytes(0)));
 540     __ jcc(Assembler::zero, done);
 541     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
 542     __ movptr(rax, Address(rax,
 543                            constantPoolOopDesc::pool_holder_offset_in_bytes()));
 544     __ movptr(rax, Address(rax, mirror_offset));
 545 
 546 #ifdef ASSERT
 547     {
 548       Label L;
 549       __ testptr(rax, rax);
 550       __ jcc(Assembler::notZero, L);
 551       __ stop("synchronization object is NULL");
 552       __ bind(L);
 553     }
 554 #endif // ASSERT
 555 
 556     __ bind(done);
 557   }
 558 
 559   // add space for monitor & lock
 560   __ subptr(rsp, entry_size); // add space for a monitor entry
 561   __ movptr(monitor_block_top, rsp);  // set new monitor block top
 562   // store object
 563   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax);
 564   __ movptr(c_rarg1, rsp); // object address
 565   __ lock_object(c_rarg1);
 566 }
 567 
 568 // Generate a fixed interpreter frame. This is identical setup for
 569 // interpreted methods and for native methods hence the shared code.
 570 //
 571 // Args:
 572 //      rax: return address
 573 //      rbx: methodOop
 574 //      r14: pointer to locals
 575 //      r13: sender sp
 576 //      rdx: cp cache
 577 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 578   // initialize fixed part of activation frame
 579   __ push(rax);        // save return address
 580   __ enter();          // save old & set new rbp
 581   __ push(r13);        // set sender sp
 582   __ push((int)NULL_WORD); // leave last_sp as null
 583   __ movptr(r13, Address(rbx, methodOopDesc::const_offset()));      // get constMethodOop
 584   __ lea(r13, Address(r13, constMethodOopDesc::codes_offset())); // get codebase
 585   __ push(rbx);        // save methodOop
 586   if (ProfileInterpreter) {
 587     Label method_data_continue;
 588     __ movptr(rdx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
 589     __ testptr(rdx, rdx);
 590     __ jcc(Assembler::zero, method_data_continue);
 591     __ addptr(rdx, in_bytes(methodDataOopDesc::data_offset()));
 592     __ bind(method_data_continue);
 593     __ push(rdx);      // set the mdp (method data pointer)
 594   } else {
 595     __ push(0);
 596   }
 597 
 598   __ movptr(rdx, Address(rbx, methodOopDesc::constants_offset()));
 599   __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
 600   __ push(rdx); // set constant pool cache
 601   __ push(r14); // set locals pointer
 602   if (native_call) {
 603     __ push(0); // no bcp
 604   } else {
 605     __ push(r13); // set bcp
 606   }
 607   __ push(0); // reserve word for pointer to expression stack bottom
 608   __ movptr(Address(rsp, 0), rsp); // set expression stack bottom
 609 }
 610 
 611 // End of helpers
 612 
 613 // Various method entries
 614 //------------------------------------------------------------------------------------------------------------------------
 615 //
 616 //
 617 
 618 // Call an accessor method (assuming it is resolved, otherwise drop
 619 // into vanilla (slow path) entry
 620 address InterpreterGenerator::generate_accessor_entry(void) {
 621   // rbx: methodOop
 622 
 623   // r13: senderSP must preserver for slow path, set SP to it on fast path
 624 
 625   address entry_point = __ pc();
 626   Label xreturn_path;
 627 
 628   // do fastpath for resolved accessor methods
 629   if (UseFastAccessorMethods) {
 630     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites
 631     //       thereof; parameter size = 1
 632     // Note: We can only use this code if the getfield has been resolved
 633     //       and if we don't have a null-pointer exception => check for
 634     //       these conditions first and use slow path if necessary.
 635     Label slow_path;
 636     // If we need a safepoint check, generate full interpreter entry.
 637     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
 638              SafepointSynchronize::_not_synchronized);
 639 
 640     __ jcc(Assembler::notEqual, slow_path);
 641     // rbx: method
 642     __ movptr(rax, Address(rsp, wordSize));
 643 
 644     // check if local 0 != NULL and read field
 645     __ testptr(rax, rax);
 646     __ jcc(Assembler::zero, slow_path);
 647 
 648     __ movptr(rdi, Address(rbx, methodOopDesc::constants_offset()));
 649     // read first instruction word and extract bytecode @ 1 and index @ 2
 650     __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
 651     __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
 652     // Shift codes right to get the index on the right.
 653     // The bytecode fetched looks like <index><0xb4><0x2a>
 654     __ shrl(rdx, 2 * BitsPerByte);
 655     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
 656     __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
 657 
 658     // rax: local 0
 659     // rbx: method
 660     // rdx: constant pool cache index
 661     // rdi: constant pool cache
 662 
 663     // check if getfield has been resolved and read constant pool cache entry
 664     // check the validity of the cache entry by testing whether _indices field
 665     // contains Bytecode::_getfield in b1 byte.
 666     assert(in_words(ConstantPoolCacheEntry::size()) == 4,
 667            "adjust shift below");
 668     __ movl(rcx,
 669             Address(rdi,
 670                     rdx,
 671                     Address::times_8,
 672                     constantPoolCacheOopDesc::base_offset() +
 673                     ConstantPoolCacheEntry::indices_offset()));
 674     __ shrl(rcx, 2 * BitsPerByte);
 675     __ andl(rcx, 0xFF);
 676     __ cmpl(rcx, Bytecodes::_getfield);
 677     __ jcc(Assembler::notEqual, slow_path);
 678 
 679     // Note: constant pool entry is not valid before bytecode is resolved
 680     __ movptr(rcx,
 681               Address(rdi,
 682                       rdx,
 683                       Address::times_8,
 684                       constantPoolCacheOopDesc::base_offset() +
 685                       ConstantPoolCacheEntry::f2_offset()));
 686     // edx: flags
 687     __ movl(rdx,
 688             Address(rdi,
 689                     rdx,
 690                     Address::times_8,
 691                     constantPoolCacheOopDesc::base_offset() +
 692                     ConstantPoolCacheEntry::flags_offset()));
 693 
 694     Label notObj, notInt, notByte, notShort;
 695     const Address field_address(rax, rcx, Address::times_1);
 696 
 697     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 698     // because they are different sizes.
 699     // Use the type from the constant pool cache
 700     __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
 701     // Make sure we don't need to mask edx for tosBits after the above shift
 702     ConstantPoolCacheEntry::verify_tosBits();
 703 
 704     __ cmpl(rdx, atos);
 705     __ jcc(Assembler::notEqual, notObj);
 706     // atos
 707     __ load_heap_oop(rax, field_address);
 708     __ jmp(xreturn_path);
 709 
 710     __ bind(notObj);
 711     __ cmpl(rdx, itos);
 712     __ jcc(Assembler::notEqual, notInt);
 713     // itos
 714     __ movl(rax, field_address);
 715     __ jmp(xreturn_path);
 716 
 717     __ bind(notInt);
 718     __ cmpl(rdx, btos);
 719     __ jcc(Assembler::notEqual, notByte);
 720     // btos
 721     __ load_signed_byte(rax, field_address);
 722     __ jmp(xreturn_path);
 723 
 724     __ bind(notByte);
 725     __ cmpl(rdx, stos);
 726     __ jcc(Assembler::notEqual, notShort);
 727     // stos
 728     __ load_signed_short(rax, field_address);
 729     __ jmp(xreturn_path);
 730 
 731     __ bind(notShort);
 732 #ifdef ASSERT
 733     Label okay;
 734     __ cmpl(rdx, ctos);
 735     __ jcc(Assembler::equal, okay);
 736     __ stop("what type is this?");
 737     __ bind(okay);
 738 #endif
 739     // ctos
 740     __ load_unsigned_short(rax, field_address);
 741 
 742     __ bind(xreturn_path);
 743 
 744     // _ireturn/_areturn
 745     __ pop(rdi);
 746     __ mov(rsp, r13);
 747     __ jmp(rdi);
 748     __ ret(0);
 749 
 750     // generate a vanilla interpreter entry as the slow path
 751     __ bind(slow_path);
 752     (void) generate_normal_entry(false);
 753   } else {
 754     (void) generate_normal_entry(false);
 755   }
 756 
 757   return entry_point;
 758 }
 759 
 760 // Method entry for java.lang.ref.Reference.get.
 761 address InterpreterGenerator::generate_Reference_get_entry(void) {
 762 #ifndef SERIALGC
 763   // Code: _aload_0, _getfield, _areturn
 764   // parameter size = 1
 765   //
 766   // The code that gets generated by this routine is split into 2 parts:
 767   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 768   //    2. The slow path - which is an expansion of the regular method entry.
 769   //
 770   // Notes:-
 771   // * In the G1 code we do not check whether we need to block for
 772   //   a safepoint. If G1 is enabled then we must execute the specialized
 773   //   code for Reference.get (except when the Reference object is null)
 774   //   so that we can log the value in the referent field with an SATB
 775   //   update buffer.
 776   //   If the code for the getfield template is modified so that the
 777   //   G1 pre-barrier code is executed when the current method is
 778   //   Reference.get() then going through the normal method entry
 779   //   will be fine.
 780   // * The G1 code can, however, check the receiver object (the instance
 781   //   of java.lang.Reference) and jump to the slow path if null. If the
 782   //   Reference object is null then we obviously cannot fetch the referent
 783   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 784   //   regular method entry code to generate the NPE.
 785   //
 786   // This code is based on generate_accessor_enty.
 787   //
 788   // rbx: methodOop
 789 
 790   // r13: senderSP must preserve for slow path, set SP to it on fast path
 791 
 792   address entry = __ pc();
 793 
 794   const int referent_offset = java_lang_ref_Reference::referent_offset;
 795   guarantee(referent_offset > 0, "referent offset not initialized");
 796 
 797   if (UseG1GC) {
 798     Label slow_path;
 799     // rbx: method
 800 
 801     // Check if local 0 != NULL
 802     // If the receiver is null then it is OK to jump to the slow path.
 803     __ movptr(rax, Address(rsp, wordSize));
 804 
 805     __ testptr(rax, rax);
 806     __ jcc(Assembler::zero, slow_path);
 807 
 808     // rax: local 0
 809     // rbx: method (but can be used as scratch now)
 810     // rdx: scratch
 811     // rdi: scratch
 812 
 813     // Generate the G1 pre-barrier code to log the value of
 814     // the referent field in an SATB buffer.
 815 
 816     // Load the value of the referent field.
 817     const Address field_address(rax, referent_offset);
 818     __ load_heap_oop(rax, field_address);
 819 
 820     // Generate the G1 pre-barrier code to log the value of
 821     // the referent field in an SATB buffer.
 822     __ g1_write_barrier_pre(noreg /* obj */,
 823                             rax /* pre_val */,
 824                             r15_thread /* thread */,
 825                             rbx /* tmp */,
 826                             true /* tosca_live */,
 827                             true /* expand_call */);
 828 
 829     // _areturn
 830     __ pop(rdi);                // get return address
 831     __ mov(rsp, r13);           // set sp to sender sp
 832     __ jmp(rdi);
 833     __ ret(0);
 834 
 835     // generate a vanilla interpreter entry as the slow path
 836     __ bind(slow_path);
 837     (void) generate_normal_entry(false);
 838 
 839     return entry;
 840   }
 841 #endif // SERIALGC
 842 
 843   // If G1 is not enabled then attempt to go through the accessor entry point
 844   // Reference.get is an accessor
 845   return generate_accessor_entry();
 846 }
 847 
 848 
 849 // Interpreter stub for calling a native method. (asm interpreter)
 850 // This sets up a somewhat different looking stack for calling the
 851 // native method than the typical interpreter frame setup.
 852 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 853   // determine code generation flags
 854   bool inc_counter  = UseCompiler || CountCompiledCalls;
 855 
 856   // rbx: methodOop
 857   // r13: sender sp
 858 
 859   address entry_point = __ pc();
 860 
 861   const Address size_of_parameters(rbx, methodOopDesc::
 862                                         size_of_parameters_offset());
 863   const Address invocation_counter(rbx, methodOopDesc::
 864                                         invocation_counter_offset() +
 865                                         InvocationCounter::counter_offset());
 866   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
 867 
 868   // get parameter size (always needed)
 869   __ load_unsigned_short(rcx, size_of_parameters);
 870 
 871   // native calls don't need the stack size check since they have no
 872   // expression stack and the arguments are already on the stack and
 873   // we only add a handful of words to the stack
 874 
 875   // rbx: methodOop
 876   // rcx: size of parameters
 877   // r13: sender sp
 878   __ pop(rax);                                       // get return address
 879 
 880   // for natives the size of locals is zero
 881 
 882   // compute beginning of parameters (r14)
 883   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
 884 
 885   // add 2 zero-initialized slots for native calls
 886   // initialize result_handler slot
 887   __ push((int) NULL_WORD);
 888   // slot for oop temp
 889   // (static native method holder mirror/jni oop result)
 890   __ push((int) NULL_WORD);
 891 
 892   if (inc_counter) {
 893     __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
 894   }
 895 
 896   // initialize fixed part of activation frame
 897   generate_fixed_frame(true);
 898 
 899   // make sure method is native & not abstract
 900 #ifdef ASSERT
 901   __ movl(rax, access_flags);
 902   {
 903     Label L;
 904     __ testl(rax, JVM_ACC_NATIVE);
 905     __ jcc(Assembler::notZero, L);
 906     __ stop("tried to execute non-native method as native");
 907     __ bind(L);
 908   }
 909   {
 910     Label L;
 911     __ testl(rax, JVM_ACC_ABSTRACT);
 912     __ jcc(Assembler::zero, L);
 913     __ stop("tried to execute abstract method in interpreter");
 914     __ bind(L);
 915   }
 916 #endif
 917 
 918   // Since at this point in the method invocation the exception handler
 919   // would try to exit the monitor of synchronized methods which hasn't
 920   // been entered yet, we set the thread local variable
 921   // _do_not_unlock_if_synchronized to true. The remove_activation will
 922   // check this flag.
 923 
 924   const Address do_not_unlock_if_synchronized(r15_thread,
 925         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 926   __ movbool(do_not_unlock_if_synchronized, true);
 927 
 928   // increment invocation count & check for overflow
 929   Label invocation_counter_overflow;
 930   if (inc_counter) {
 931     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 932   }
 933 
 934   Label continue_after_compile;
 935   __ bind(continue_after_compile);
 936 
 937   bang_stack_shadow_pages(true);
 938 
 939   // reset the _do_not_unlock_if_synchronized flag
 940   __ movbool(do_not_unlock_if_synchronized, false);
 941 
 942   // check for synchronized methods
 943   // Must happen AFTER invocation_counter check and stack overflow check,
 944   // so method is not locked if overflows.
 945   if (synchronized) {
 946     lock_method();
 947   } else {
 948     // no synchronization necessary
 949 #ifdef ASSERT
 950     {
 951       Label L;
 952       __ movl(rax, access_flags);
 953       __ testl(rax, JVM_ACC_SYNCHRONIZED);
 954       __ jcc(Assembler::zero, L);
 955       __ stop("method needs synchronization");
 956       __ bind(L);
 957     }
 958 #endif
 959   }
 960 
 961   // start execution
 962 #ifdef ASSERT
 963   {
 964     Label L;
 965     const Address monitor_block_top(rbp,
 966                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
 967     __ movptr(rax, monitor_block_top);
 968     __ cmpptr(rax, rsp);
 969     __ jcc(Assembler::equal, L);
 970     __ stop("broken stack frame setup in interpreter");
 971     __ bind(L);
 972   }
 973 #endif
 974 
 975   // jvmti support
 976   __ notify_method_entry();
 977 
 978   // work registers
 979   const Register method = rbx;
 980   const Register t      = r11;
 981 
 982   // allocate space for parameters
 983   __ get_method(method);
 984   __ verify_oop(method);
 985   __ load_unsigned_short(t,
 986                          Address(method,
 987                                  methodOopDesc::size_of_parameters_offset()));
 988   __ shll(t, Interpreter::logStackElementSize);
 989 
 990   __ subptr(rsp, t);
 991   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
 992   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
 993 
 994   // get signature handler
 995   {
 996     Label L;
 997     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
 998     __ testptr(t, t);
 999     __ jcc(Assembler::notZero, L);
1000     __ call_VM(noreg,
1001                CAST_FROM_FN_PTR(address,
1002                                 InterpreterRuntime::prepare_native_call),
1003                method);
1004     __ get_method(method);
1005     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
1006     __ bind(L);
1007   }
1008 
1009   // call signature handler
1010   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == r14,
1011          "adjust this code");
1012   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == rsp,
1013          "adjust this code");
1014   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
1015           "adjust this code");
1016 
1017   // The generated handlers do not touch RBX (the method oop).
1018   // However, large signatures cannot be cached and are generated
1019   // each time here.  The slow-path generator can do a GC on return,
1020   // so we must reload it after the call.
1021   __ call(t);
1022   __ get_method(method);        // slow path can do a GC, reload RBX
1023 
1024 
1025   // result handler is in rax
1026   // set result handler
1027   __ movptr(Address(rbp,
1028                     (frame::interpreter_frame_result_handler_offset) * wordSize),
1029             rax);
1030 
1031   // pass mirror handle if static call
1032   {
1033     Label L;
1034     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() +
1035                               Klass::java_mirror_offset_in_bytes();
1036     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
1037     __ testl(t, JVM_ACC_STATIC);
1038     __ jcc(Assembler::zero, L);
1039     // get mirror
1040     __ movptr(t, Address(method, methodOopDesc::constants_offset()));
1041     __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
1042     __ movptr(t, Address(t, mirror_offset));
1043     // copy mirror into activation frame
1044     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize),
1045             t);
1046     // pass handle to mirror
1047     __ lea(c_rarg1,
1048            Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
1049     __ bind(L);
1050   }
1051 
1052   // get native function entry point
1053   {
1054     Label L;
1055     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
1056     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1057     __ movptr(rscratch2, unsatisfied.addr());
1058     __ cmpptr(rax, rscratch2);
1059     __ jcc(Assembler::notEqual, L);
1060     __ call_VM(noreg,
1061                CAST_FROM_FN_PTR(address,
1062                                 InterpreterRuntime::prepare_native_call),
1063                method);
1064     __ get_method(method);
1065     __ verify_oop(method);
1066     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
1067     __ bind(L);
1068   }
1069 
1070   // pass JNIEnv
1071   __ lea(c_rarg0, Address(r15_thread, JavaThread::jni_environment_offset()));
1072 
1073   // It is enough that the pc() points into the right code
1074   // segment. It does not have to be the correct return pc.
1075   __ set_last_Java_frame(rsp, rbp, (address) __ pc());
1076 
1077   // change thread state
1078 #ifdef ASSERT
1079   {
1080     Label L;
1081     __ movl(t, Address(r15_thread, JavaThread::thread_state_offset()));
1082     __ cmpl(t, _thread_in_Java);
1083     __ jcc(Assembler::equal, L);
1084     __ stop("Wrong thread state in native stub");
1085     __ bind(L);
1086   }
1087 #endif
1088 
1089   // Change state to native
1090 
1091   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
1092           _thread_in_native);
1093 
1094   // Call the native method.
1095   __ call(rax);
1096   // result potentially in rax or xmm0
1097 
1098   // Depending on runtime options, either restore the MXCSR
1099   // register after returning from the JNI Call or verify that
1100   // it wasn't changed during -Xcheck:jni.
1101   if (RestoreMXCSROnJNICalls) {
1102     __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
1103   }
1104   else if (CheckJNICalls) {
1105     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
1106   }
1107 
1108   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
1109   // in order to extract the result of a method call. If the order of these
1110   // pushes change or anything else is added to the stack then the code in
1111   // interpreter_frame_result must also change.
1112 
1113   __ push(dtos);
1114   __ push(ltos);
1115 
1116   // change thread state
1117   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
1118           _thread_in_native_trans);
1119 
1120   if (os::is_MP()) {
1121     if (UseMembar) {
1122       // Force this write out before the read below
1123       __ membar(Assembler::Membar_mask_bits(
1124            Assembler::LoadLoad | Assembler::LoadStore |
1125            Assembler::StoreLoad | Assembler::StoreStore));
1126     } else {
1127       // Write serialization page so VM thread can do a pseudo remote membar.
1128       // We use the current thread pointer to calculate a thread specific
1129       // offset to write to within the page. This minimizes bus traffic
1130       // due to cache line collision.
1131       __ serialize_memory(r15_thread, rscratch2);
1132     }
1133   }
1134 
1135   // check for safepoint operation in progress and/or pending suspend requests
1136   {
1137     Label Continue;
1138     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
1139              SafepointSynchronize::_not_synchronized);
1140 
1141     Label L;
1142     __ jcc(Assembler::notEqual, L);
1143     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
1144     __ jcc(Assembler::equal, Continue);
1145     __ bind(L);
1146 
1147     // Don't use call_VM as it will see a possible pending exception
1148     // and forward it and never return here preventing us from
1149     // clearing _last_native_pc down below.  Also can't use
1150     // call_VM_leaf either as it will check to see if r13 & r14 are
1151     // preserved and correspond to the bcp/locals pointers. So we do a
1152     // runtime call by hand.
1153     //
1154     __ mov(c_rarg0, r15_thread);
1155     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
1156     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1157     __ andptr(rsp, -16); // align stack as required by ABI
1158     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
1159     __ mov(rsp, r12); // restore sp
1160     __ reinit_heapbase();
1161     __ bind(Continue);
1162   }
1163 
1164   // change thread state
1165   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
1166 
1167   // reset_last_Java_frame
1168   __ reset_last_Java_frame(true, true);
1169 
1170   // reset handle block
1171   __ movptr(t, Address(r15_thread, JavaThread::active_handles_offset()));
1172   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1173 
1174   // If result is an oop unbox and store it in frame where gc will see it
1175   // and result handler will pick it up
1176 
1177   {
1178     Label no_oop, store_result;
1179     __ lea(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
1180     __ cmpptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
1181     __ jcc(Assembler::notEqual, no_oop);
1182     // retrieve result
1183     __ pop(ltos);
1184     __ testptr(rax, rax);
1185     __ jcc(Assembler::zero, store_result);
1186     __ movptr(rax, Address(rax, 0));
1187     __ bind(store_result);
1188     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize), rax);
1189     // keep stack depth as expected by pushing oop which will eventually be discarde
1190     __ push(ltos);
1191     __ bind(no_oop);
1192   }
1193 
1194 
1195   {
1196     Label no_reguard;
1197     __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()),
1198             JavaThread::stack_guard_yellow_disabled);
1199     __ jcc(Assembler::notEqual, no_reguard);
1200 
1201     __ pusha(); // XXX only save smashed registers
1202     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
1203     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1204     __ andptr(rsp, -16); // align stack as required by ABI
1205     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1206     __ mov(rsp, r12); // restore sp
1207     __ popa(); // XXX only restore smashed registers
1208     __ reinit_heapbase();
1209 
1210     __ bind(no_reguard);
1211   }
1212 
1213 
1214   // The method register is junk from after the thread_in_native transition
1215   // until here.  Also can't call_VM until the bcp has been
1216   // restored.  Need bcp for throwing exception below so get it now.
1217   __ get_method(method);
1218   __ verify_oop(method);
1219 
1220   // restore r13 to have legal interpreter frame, i.e., bci == 0 <=>
1221   // r13 == code_base()
1222   __ movptr(r13, Address(method, methodOopDesc::const_offset()));   // get constMethodOop
1223   __ lea(r13, Address(r13, constMethodOopDesc::codes_offset()));    // get codebase
1224   // handle exceptions (exception handling will handle unlocking!)
1225   {
1226     Label L;
1227     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
1228     __ jcc(Assembler::zero, L);
1229     // Note: At some point we may want to unify this with the code
1230     // used in call_VM_base(); i.e., we should use the
1231     // StubRoutines::forward_exception code. For now this doesn't work
1232     // here because the rsp is not correctly set at this point.
1233     __ MacroAssembler::call_VM(noreg,
1234                                CAST_FROM_FN_PTR(address,
1235                                InterpreterRuntime::throw_pending_exception));
1236     __ should_not_reach_here();
1237     __ bind(L);
1238   }
1239 
1240   // do unlocking if necessary
1241   {
1242     Label L;
1243     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
1244     __ testl(t, JVM_ACC_SYNCHRONIZED);
1245     __ jcc(Assembler::zero, L);
1246     // the code below should be shared with interpreter macro
1247     // assembler implementation
1248     {
1249       Label unlock;
1250       // BasicObjectLock will be first in list, since this is a
1251       // synchronized method. However, need to check that the object
1252       // has not been unlocked by an explicit monitorexit bytecode.
1253       const Address monitor(rbp,
1254                             (intptr_t)(frame::interpreter_frame_initial_sp_offset *
1255                                        wordSize - sizeof(BasicObjectLock)));
1256 
1257       // monitor expect in c_rarg1 for slow unlock path
1258       __ lea(c_rarg1, monitor); // address of first monitor
1259 
1260       __ movptr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
1261       __ testptr(t, t);
1262       __ jcc(Assembler::notZero, unlock);
1263 
1264       // Entry already unlocked, need to throw exception
1265       __ MacroAssembler::call_VM(noreg,
1266                                  CAST_FROM_FN_PTR(address,
1267                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1268       __ should_not_reach_here();
1269 
1270       __ bind(unlock);
1271       __ unlock_object(c_rarg1);
1272     }
1273     __ bind(L);
1274   }
1275 
1276   // jvmti support
1277   // Note: This must happen _after_ handling/throwing any exceptions since
1278   //       the exception handler code notifies the runtime of method exits
1279   //       too. If this happens before, method entry/exit notifications are
1280   //       not properly paired (was bug - gri 11/22/99).
1281   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1282 
1283   // restore potential result in edx:eax, call result handler to
1284   // restore potential result in ST0 & handle result
1285 
1286   __ pop(ltos);
1287   __ pop(dtos);
1288 
1289   __ movptr(t, Address(rbp,
1290                        (frame::interpreter_frame_result_handler_offset) * wordSize));
1291   __ call(t);
1292 
1293   // remove activation
1294   __ movptr(t, Address(rbp,
1295                        frame::interpreter_frame_sender_sp_offset *
1296                        wordSize)); // get sender sp
1297   __ leave();                                // remove frame anchor
1298   __ pop(rdi);                               // get return address
1299   __ mov(rsp, t);                            // set sp to sender sp
1300   __ jmp(rdi);
1301 
1302   if (inc_counter) {
1303     // Handle overflow of counter and compile method
1304     __ bind(invocation_counter_overflow);
1305     generate_counter_overflow(&continue_after_compile);
1306   }
1307 
1308   return entry_point;
1309 }
1310 
1311 //
1312 // Generic interpreted method entry to (asm) interpreter
1313 //
1314 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1315   // determine code generation flags
1316   bool inc_counter  = UseCompiler || CountCompiledCalls;
1317 
1318   // ebx: methodOop
1319   // r13: sender sp
1320   address entry_point = __ pc();
1321 
1322   const Address size_of_parameters(rbx,
1323                                    methodOopDesc::size_of_parameters_offset());
1324   const Address size_of_locals(rbx, methodOopDesc::size_of_locals_offset());
1325   const Address invocation_counter(rbx,
1326                                    methodOopDesc::invocation_counter_offset() +
1327                                    InvocationCounter::counter_offset());
1328   const Address access_flags(rbx, methodOopDesc::access_flags_offset());
1329 
1330   // get parameter size (always needed)
1331   __ load_unsigned_short(rcx, size_of_parameters);
1332 
1333   // rbx: methodOop
1334   // rcx: size of parameters
1335   // r13: sender_sp (could differ from sp+wordSize if we were called via c2i )
1336 
1337   __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
1338   __ subl(rdx, rcx); // rdx = no. of additional locals
1339 
1340   // YYY
1341 //   __ incrementl(rdx);
1342 //   __ andl(rdx, -2);
1343 
1344   // see if we've got enough room on the stack for locals plus overhead.
1345   generate_stack_overflow_check();
1346 
1347   // get return address
1348   __ pop(rax);
1349 
1350   // compute beginning of parameters (r14)
1351   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
1352 
1353   // rdx - # of additional locals
1354   // allocate space for locals
1355   // explicitly initialize locals
1356   {
1357     Label exit, loop;
1358     __ testl(rdx, rdx);
1359     __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
1360     __ bind(loop);
1361     __ push((int) NULL_WORD); // initialize local variables
1362     __ decrementl(rdx); // until everything initialized
1363     __ jcc(Assembler::greater, loop);
1364     __ bind(exit);
1365   }
1366 
1367   // (pre-)fetch invocation count
1368   if (inc_counter) {
1369     __ movl(rcx, invocation_counter);
1370   }
1371   // initialize fixed part of activation frame
1372   generate_fixed_frame(false);
1373 
1374   // make sure method is not native & not abstract
1375 #ifdef ASSERT
1376   __ movl(rax, access_flags);
1377   {
1378     Label L;
1379     __ testl(rax, JVM_ACC_NATIVE);
1380     __ jcc(Assembler::zero, L);
1381     __ stop("tried to execute native method as non-native");
1382     __ bind(L);
1383   }
1384   {
1385     Label L;
1386     __ testl(rax, JVM_ACC_ABSTRACT);
1387     __ jcc(Assembler::zero, L);
1388     __ stop("tried to execute abstract method in interpreter");
1389     __ bind(L);
1390   }
1391 #endif
1392 
1393   // Since at this point in the method invocation the exception
1394   // handler would try to exit the monitor of synchronized methods
1395   // which hasn't been entered yet, we set the thread local variable
1396   // _do_not_unlock_if_synchronized to true. The remove_activation
1397   // will check this flag.
1398 
1399   const Address do_not_unlock_if_synchronized(r15_thread,
1400         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1401   __ movbool(do_not_unlock_if_synchronized, true);
1402 
1403   // increment invocation count & check for overflow
1404   Label invocation_counter_overflow;
1405   Label profile_method;
1406   Label profile_method_continue;
1407   if (inc_counter) {
1408     generate_counter_incr(&invocation_counter_overflow,
1409                           &profile_method,
1410                           &profile_method_continue);
1411     if (ProfileInterpreter) {
1412       __ bind(profile_method_continue);
1413     }
1414   }
1415 
1416   Label continue_after_compile;
1417   __ bind(continue_after_compile);
1418 
1419   // check for synchronized interpreted methods
1420   bang_stack_shadow_pages(false);
1421 
1422   // reset the _do_not_unlock_if_synchronized flag
1423   __ movbool(do_not_unlock_if_synchronized, false);
1424 
1425   // check for synchronized methods
1426   // Must happen AFTER invocation_counter check and stack overflow check,
1427   // so method is not locked if overflows.
1428   if (synchronized) {
1429     // Allocate monitor and lock method
1430     lock_method();
1431   } else {
1432     // no synchronization necessary
1433 #ifdef ASSERT
1434     {
1435       Label L;
1436       __ movl(rax, access_flags);
1437       __ testl(rax, JVM_ACC_SYNCHRONIZED);
1438       __ jcc(Assembler::zero, L);
1439       __ stop("method needs synchronization");
1440       __ bind(L);
1441     }
1442 #endif
1443   }
1444 
1445   // start execution
1446 #ifdef ASSERT
1447   {
1448     Label L;
1449      const Address monitor_block_top (rbp,
1450                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1451     __ movptr(rax, monitor_block_top);
1452     __ cmpptr(rax, rsp);
1453     __ jcc(Assembler::equal, L);
1454     __ stop("broken stack frame setup in interpreter");
1455     __ bind(L);
1456   }
1457 #endif
1458 
1459   // jvmti support
1460   __ notify_method_entry();
1461 
1462   __ dispatch_next(vtos);
1463 
1464   // invocation counter overflow
1465   if (inc_counter) {
1466     if (ProfileInterpreter) {
1467       // We have decided to profile this method in the interpreter
1468       __ bind(profile_method);
1469       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1470       __ set_method_data_pointer_for_bcp();
1471       __ get_method(rbx);
1472       __ jmp(profile_method_continue);
1473     }
1474     // Handle overflow of counter and compile method
1475     __ bind(invocation_counter_overflow);
1476     generate_counter_overflow(&continue_after_compile);
1477   }
1478 
1479   return entry_point;
1480 }
1481 
1482 // Entry points
1483 //
1484 // Here we generate the various kind of entries into the interpreter.
1485 // The two main entry type are generic bytecode methods and native
1486 // call method.  These both come in synchronized and non-synchronized
1487 // versions but the frame layout they create is very similar. The
1488 // other method entry types are really just special purpose entries
1489 // that are really entry and interpretation all in one. These are for
1490 // trivial methods like accessor, empty, or special math methods.
1491 //
1492 // When control flow reaches any of the entry types for the interpreter
1493 // the following holds ->
1494 //
1495 // Arguments:
1496 //
1497 // rbx: methodOop
1498 //
1499 // Stack layout immediately at entry
1500 //
1501 // [ return address     ] <--- rsp
1502 // [ parameter n        ]
1503 //   ...
1504 // [ parameter 1        ]
1505 // [ expression stack   ] (caller's java expression stack)
1506 
1507 // Assuming that we don't go to one of the trivial specialized entries
1508 // the stack will look like below when we are ready to execute the
1509 // first bytecode (or call the native routine). The register usage
1510 // will be as the template based interpreter expects (see
1511 // interpreter_amd64.hpp).
1512 //
1513 // local variables follow incoming parameters immediately; i.e.
1514 // the return address is moved to the end of the locals).
1515 //
1516 // [ monitor entry      ] <--- rsp
1517 //   ...
1518 // [ monitor entry      ]
1519 // [ expr. stack bottom ]
1520 // [ saved r13          ]
1521 // [ current r14        ]
1522 // [ methodOop          ]
1523 // [ saved ebp          ] <--- rbp
1524 // [ return address     ]
1525 // [ local variable m   ]
1526 //   ...
1527 // [ local variable 1   ]
1528 // [ parameter n        ]
1529 //   ...
1530 // [ parameter 1        ] <--- r14
1531 
1532 address AbstractInterpreterGenerator::generate_method_entry(
1533                                         AbstractInterpreter::MethodKind kind) {
1534   // determine code generation flags
1535   bool synchronized = false;
1536   address entry_point = NULL;
1537 
1538   switch (kind) {
1539   case Interpreter::zerolocals             :                                                                             break;
1540   case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
1541   case Interpreter::native                 : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false); break;
1542   case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(true);  break;
1543   case Interpreter::empty                  : entry_point = ((InterpreterGenerator*) this)->generate_empty_entry();       break;
1544   case Interpreter::accessor               : entry_point = ((InterpreterGenerator*) this)->generate_accessor_entry();    break;
1545   case Interpreter::abstract               : entry_point = ((InterpreterGenerator*) this)->generate_abstract_entry();    break;
1546   case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*) this)->generate_method_handle_entry();break;
1547 
1548   case Interpreter::java_lang_math_sin     : // fall thru
1549   case Interpreter::java_lang_math_cos     : // fall thru
1550   case Interpreter::java_lang_math_tan     : // fall thru
1551   case Interpreter::java_lang_math_abs     : // fall thru
1552   case Interpreter::java_lang_math_log     : // fall thru
1553   case Interpreter::java_lang_math_log10   : // fall thru
1554   case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*) this)->generate_math_entry(kind);    break;
1555   case Interpreter::java_lang_ref_reference_get
1556                                            : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
1557   default                                  : ShouldNotReachHere();                                                       break;
1558   }
1559 
1560   if (entry_point) {
1561     return entry_point;
1562   }
1563 
1564   return ((InterpreterGenerator*) this)->
1565                                 generate_normal_entry(synchronized);
1566 }
1567 
1568 // These should never be compiled since the interpreter will prefer
1569 // the compiled version to the intrinsic version.
1570 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
1571   switch (method_kind(m)) {
1572     case Interpreter::java_lang_math_sin     : // fall thru
1573     case Interpreter::java_lang_math_cos     : // fall thru
1574     case Interpreter::java_lang_math_tan     : // fall thru
1575     case Interpreter::java_lang_math_abs     : // fall thru
1576     case Interpreter::java_lang_math_log     : // fall thru
1577     case Interpreter::java_lang_math_log10   : // fall thru
1578     case Interpreter::java_lang_math_sqrt    :
1579       return false;
1580     default:
1581       return true;
1582   }
1583 }
1584 
1585 // How much stack a method activation needs in words.
1586 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
1587   const int entry_size = frame::interpreter_frame_monitor_size();
1588 
1589   // total overhead size: entry_size + (saved rbp thru expr stack
1590   // bottom).  be sure to change this if you add/subtract anything
1591   // to/from the overhead area
1592   const int overhead_size =
1593     -(frame::interpreter_frame_initial_sp_offset) + entry_size;
1594 
1595   const int stub_code = frame::entry_frame_after_call_words;
1596   const int extra_stack = methodOopDesc::extra_stack_entries();
1597   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
1598                            Interpreter::stackElementWords;
1599   return (overhead_size + method_stack + stub_code);
1600 }
1601 
1602 int AbstractInterpreter::layout_activation(methodOop method,
1603                                            int tempcount,
1604                                            int popframe_extra_args,
1605                                            int moncount,
1606                                            int caller_actual_parameters,
1607                                            int callee_param_count,
1608                                            int callee_locals,
1609                                            frame* caller,
1610                                            frame* interpreter_frame,
1611                                            bool is_top_frame) {
1612   // Note: This calculation must exactly parallel the frame setup
1613   // in AbstractInterpreterGenerator::generate_method_entry.
1614   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
1615   // The frame interpreter_frame, if not NULL, is guaranteed to be the
1616   // right size, as determined by a previous call to this method.
1617   // It is also guaranteed to be walkable even though it is in a skeletal state
1618 
1619   // fixed size of an interpreter frame:
1620   int max_locals = method->max_locals() * Interpreter::stackElementWords;
1621   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
1622                      Interpreter::stackElementWords;
1623 
1624   int overhead = frame::sender_sp_offset -
1625                  frame::interpreter_frame_initial_sp_offset;
1626   // Our locals were accounted for by the caller (or last_frame_adjust
1627   // on the transistion) Since the callee parameters already account
1628   // for the callee's params we only need to account for the extra
1629   // locals.
1630   int size = overhead +
1631          (callee_locals - callee_param_count)*Interpreter::stackElementWords +
1632          moncount * frame::interpreter_frame_monitor_size() +
1633          tempcount* Interpreter::stackElementWords + popframe_extra_args;
1634   if (interpreter_frame != NULL) {
1635 #ifdef ASSERT
1636     if (!EnableInvokeDynamic)
1637       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
1638       // Probably, since deoptimization doesn't work yet.
1639       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
1640     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
1641 #endif
1642 
1643     interpreter_frame->interpreter_frame_set_method(method);
1644     // NOTE the difference in using sender_sp and
1645     // interpreter_frame_sender_sp interpreter_frame_sender_sp is
1646     // the original sp of the caller (the unextended_sp) and
1647     // sender_sp is fp+16 XXX
1648     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
1649 
1650     interpreter_frame->interpreter_frame_set_locals(locals);
1651     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
1652     BasicObjectLock* monbot = montop - moncount;
1653     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
1654 
1655     // Set last_sp
1656     intptr_t*  esp = (intptr_t*) monbot -
1657                      tempcount*Interpreter::stackElementWords -
1658                      popframe_extra_args;
1659     interpreter_frame->interpreter_frame_set_last_sp(esp);
1660 
1661     // All frames but the initial (oldest) interpreter frame we fill in have
1662     // a value for sender_sp that allows walking the stack but isn't
1663     // truly correct. Correct the value here.
1664     if (extra_locals != 0 &&
1665         interpreter_frame->sender_sp() ==
1666         interpreter_frame->interpreter_frame_sender_sp()) {
1667       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() +
1668                                                          extra_locals);
1669     }
1670     *interpreter_frame->interpreter_frame_cache_addr() =
1671       method->constants()->cache();
1672   }
1673   return size;
1674 }
1675 
1676 //-----------------------------------------------------------------------------
1677 // Exceptions
1678 
1679 void TemplateInterpreterGenerator::generate_throw_exception() {
1680   // Entry point in previous activation (i.e., if the caller was
1681   // interpreted)
1682   Interpreter::_rethrow_exception_entry = __ pc();
1683   // Restore sp to interpreter_frame_last_sp even though we are going
1684   // to empty the expression stack for the exception processing.
1685   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
1686   // rax: exception
1687   // rdx: return address/pc that threw exception
1688   __ restore_bcp();    // r13 points to call/send
1689   __ restore_locals();
1690   __ reinit_heapbase();  // restore r12 as heapbase.
1691   // Entry point for exceptions thrown within interpreter code
1692   Interpreter::_throw_exception_entry = __ pc();
1693   // expression stack is undefined here
1694   // rax: exception
1695   // r13: exception bcp
1696   __ verify_oop(rax);
1697   __ mov(c_rarg1, rax);
1698 
1699   // expression stack must be empty before entering the VM in case of
1700   // an exception
1701   __ empty_expression_stack();
1702   // find exception handler address and preserve exception oop
1703   __ call_VM(rdx,
1704              CAST_FROM_FN_PTR(address,
1705                           InterpreterRuntime::exception_handler_for_exception),
1706              c_rarg1);
1707   // rax: exception handler entry point
1708   // rdx: preserved exception oop
1709   // r13: bcp for exception handler
1710   __ push_ptr(rdx); // push exception which is now the only value on the stack
1711   __ jmp(rax); // jump to exception handler (may be _remove_activation_entry!)
1712 
1713   // If the exception is not handled in the current frame the frame is
1714   // removed and the exception is rethrown (i.e. exception
1715   // continuation is _rethrow_exception).
1716   //
1717   // Note: At this point the bci is still the bxi for the instruction
1718   // which caused the exception and the expression stack is
1719   // empty. Thus, for any VM calls at this point, GC will find a legal
1720   // oop map (with empty expression stack).
1721 
1722   // In current activation
1723   // tos: exception
1724   // esi: exception bcp
1725 
1726   //
1727   // JVMTI PopFrame support
1728   //
1729 
1730   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1731   __ empty_expression_stack();
1732   // Set the popframe_processing bit in pending_popframe_condition
1733   // indicating that we are currently handling popframe, so that
1734   // call_VMs that may happen later do not trigger new popframe
1735   // handling cycles.
1736   __ movl(rdx, Address(r15_thread, JavaThread::popframe_condition_offset()));
1737   __ orl(rdx, JavaThread::popframe_processing_bit);
1738   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()), rdx);
1739 
1740   {
1741     // Check to see whether we are returning to a deoptimized frame.
1742     // (The PopFrame call ensures that the caller of the popped frame is
1743     // either interpreted or compiled and deoptimizes it if compiled.)
1744     // In this case, we can't call dispatch_next() after the frame is
1745     // popped, but instead must save the incoming arguments and restore
1746     // them after deoptimization has occurred.
1747     //
1748     // Note that we don't compare the return PC against the
1749     // deoptimization blob's unpack entry because of the presence of
1750     // adapter frames in C2.
1751     Label caller_not_deoptimized;
1752     __ movptr(c_rarg1, Address(rbp, frame::return_addr_offset * wordSize));
1753     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1754                                InterpreterRuntime::interpreter_contains), c_rarg1);
1755     __ testl(rax, rax);
1756     __ jcc(Assembler::notZero, caller_not_deoptimized);
1757 
1758     // Compute size of arguments for saving when returning to
1759     // deoptimized caller
1760     __ get_method(rax);
1761     __ load_unsigned_short(rax, Address(rax, in_bytes(methodOopDesc::
1762                                                 size_of_parameters_offset())));
1763     __ shll(rax, Interpreter::logStackElementSize);
1764     __ restore_locals(); // XXX do we need this?
1765     __ subptr(r14, rax);
1766     __ addptr(r14, wordSize);
1767     // Save these arguments
1768     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1769                                            Deoptimization::
1770                                            popframe_preserve_args),
1771                           r15_thread, rax, r14);
1772 
1773     __ remove_activation(vtos, rdx,
1774                          /* throw_monitor_exception */ false,
1775                          /* install_monitor_exception */ false,
1776                          /* notify_jvmdi */ false);
1777 
1778     // Inform deoptimization that it is responsible for restoring
1779     // these arguments
1780     __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
1781             JavaThread::popframe_force_deopt_reexecution_bit);
1782 
1783     // Continue in deoptimization handler
1784     __ jmp(rdx);
1785 
1786     __ bind(caller_not_deoptimized);
1787   }
1788 
1789   __ remove_activation(vtos, rdx, /* rdx result (retaddr) is not used */
1790                        /* throw_monitor_exception */ false,
1791                        /* install_monitor_exception */ false,
1792                        /* notify_jvmdi */ false);
1793 
1794   // Finish with popframe handling
1795   // A previous I2C followed by a deoptimization might have moved the
1796   // outgoing arguments further up the stack. PopFrame expects the
1797   // mutations to those outgoing arguments to be preserved and other
1798   // constraints basically require this frame to look exactly as
1799   // though it had previously invoked an interpreted activation with
1800   // no space between the top of the expression stack (current
1801   // last_sp) and the top of stack. Rather than force deopt to
1802   // maintain this kind of invariant all the time we call a small
1803   // fixup routine to move the mutated arguments onto the top of our
1804   // expression stack if necessary.
1805   __ mov(c_rarg1, rsp);
1806   __ movptr(c_rarg2, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1807   // PC must point into interpreter here
1808   __ set_last_Java_frame(noreg, rbp, __ pc());
1809   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), r15_thread, c_rarg1, c_rarg2);
1810   __ reset_last_Java_frame(true, true);
1811   // Restore the last_sp and null it out
1812   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1813   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
1814 
1815   __ restore_bcp();  // XXX do we need this?
1816   __ restore_locals(); // XXX do we need this?
1817   // The method data pointer was incremented already during
1818   // call profiling. We have to restore the mdp for the current bcp.
1819   if (ProfileInterpreter) {
1820     __ set_method_data_pointer_for_bcp();
1821   }
1822 
1823   // Clear the popframe condition flag
1824   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
1825           JavaThread::popframe_inactive);
1826 
1827   __ dispatch_next(vtos);
1828   // end of PopFrame support
1829 
1830   Interpreter::_remove_activation_entry = __ pc();
1831 
1832   // preserve exception over this code sequence
1833   __ pop_ptr(rax);
1834   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), rax);
1835   // remove the activation (without doing throws on illegalMonitorExceptions)
1836   __ remove_activation(vtos, rdx, false, true, false);
1837   // restore exception
1838   __ movptr(rax, Address(r15_thread, JavaThread::vm_result_offset()));
1839   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int32_t)NULL_WORD);
1840   __ verify_oop(rax);
1841 
1842   // In between activations - previous activation type unknown yet
1843   // compute continuation point - the continuation point expects the
1844   // following registers set up:
1845   //
1846   // rax: exception
1847   // rdx: return address/pc that threw exception
1848   // rsp: expression stack of caller
1849   // rbp: ebp of caller
1850   __ push(rax);                                  // save exception
1851   __ push(rdx);                                  // save return address
1852   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1853                           SharedRuntime::exception_handler_for_return_address),
1854                         r15_thread, rdx);
1855   __ mov(rbx, rax);                              // save exception handler
1856   __ pop(rdx);                                   // restore return address
1857   __ pop(rax);                                   // restore exception
1858   // Note that an "issuing PC" is actually the next PC after the call
1859   __ jmp(rbx);                                   // jump to exception
1860                                                  // handler of caller
1861 }
1862 
1863 
1864 //
1865 // JVMTI ForceEarlyReturn support
1866 //
1867 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1868   address entry = __ pc();
1869 
1870   __ restore_bcp();
1871   __ restore_locals();
1872   __ empty_expression_stack();
1873   __ load_earlyret_value(state);
1874 
1875   __ movptr(rdx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
1876   Address cond_addr(rdx, JvmtiThreadState::earlyret_state_offset());
1877 
1878   // Clear the earlyret state
1879   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
1880 
1881   __ remove_activation(state, rsi,
1882                        false, /* throw_monitor_exception */
1883                        false, /* install_monitor_exception */
1884                        true); /* notify_jvmdi */
1885   __ jmp(rsi);
1886 
1887   return entry;
1888 } // end of ForceEarlyReturn support
1889 
1890 
1891 //-----------------------------------------------------------------------------
1892 // Helper for vtos entry point generation
1893 
1894 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
1895                                                          address& bep,
1896                                                          address& cep,
1897                                                          address& sep,
1898                                                          address& aep,
1899                                                          address& iep,
1900                                                          address& lep,
1901                                                          address& fep,
1902                                                          address& dep,
1903                                                          address& vep) {
1904   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1905   Label L;
1906   aep = __ pc();  __ push_ptr();  __ jmp(L);
1907   fep = __ pc();  __ push_f();    __ jmp(L);
1908   dep = __ pc();  __ push_d();    __ jmp(L);
1909   lep = __ pc();  __ push_l();    __ jmp(L);
1910   bep = cep = sep =
1911   iep = __ pc();  __ push_i();
1912   vep = __ pc();
1913   __ bind(L);
1914   generate_and_dispatch(t);
1915 }
1916 
1917 
1918 //-----------------------------------------------------------------------------
1919 // Generation of individual instructions
1920 
1921 // helpers for generate_and_dispatch
1922 
1923 
1924 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
1925   : TemplateInterpreterGenerator(code) {
1926    generate_all(); // down here so it can be "virtual"
1927 }
1928 
1929 //-----------------------------------------------------------------------------
1930 
1931 // Non-product code
1932 #ifndef PRODUCT
1933 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1934   address entry = __ pc();
1935 
1936   __ push(state);
1937   __ push(c_rarg0);
1938   __ push(c_rarg1);
1939   __ push(c_rarg2);
1940   __ push(c_rarg3);
1941   __ mov(c_rarg2, rax);  // Pass itos
1942 #ifdef _WIN64
1943   __ movflt(xmm3, xmm0); // Pass ftos
1944 #endif
1945   __ call_VM(noreg,
1946              CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode),
1947              c_rarg1, c_rarg2, c_rarg3);
1948   __ pop(c_rarg3);
1949   __ pop(c_rarg2);
1950   __ pop(c_rarg1);
1951   __ pop(c_rarg0);
1952   __ pop(state);
1953   __ ret(0);                                   // return from result handler
1954 
1955   return entry;
1956 }
1957 
1958 void TemplateInterpreterGenerator::count_bytecode() {
1959   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
1960 }
1961 
1962 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1963   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
1964 }
1965 
1966 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1967   __ mov32(rbx, ExternalAddress((address) &BytecodePairHistogram::_index));
1968   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
1969   __ orl(rbx,
1970          ((int) t->bytecode()) <<
1971          BytecodePairHistogram::log2_number_of_codes);
1972   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
1973   __ lea(rscratch1, ExternalAddress((address) BytecodePairHistogram::_counters));
1974   __ incrementl(Address(rscratch1, rbx, Address::times_4));
1975 }
1976 
1977 
1978 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
1979   // Call a little run-time stub to avoid blow-up for each bytecode.
1980   // The run-time runtime saves the right registers, depending on
1981   // the tosca in-state for the given template.
1982 
1983   assert(Interpreter::trace_code(t->tos_in()) != NULL,
1984          "entry must have been generated");
1985   __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
1986   __ andptr(rsp, -16); // align stack as required by ABI
1987   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
1988   __ mov(rsp, r12); // restore sp
1989   __ reinit_heapbase();
1990 }
1991 
1992 
1993 void TemplateInterpreterGenerator::stop_interpreter_at() {
1994   Label L;
1995   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
1996            StopInterpreterAt);
1997   __ jcc(Assembler::notEqual, L);
1998   __ int3();
1999   __ bind(L);
2000 }
2001 #endif // !PRODUCT
2002 #endif // ! CC_INTERP