1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/interpreterRuntime.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/forte.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiRedefineClassesTrace.hpp"
  42 #include "prims/methodHandles.hpp"
  43 #include "prims/nativeLookup.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/vframe.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "utilities/copy.hpp"
  55 #include "utilities/dtrace.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/hashtable.inline.hpp"
  58 #include "utilities/xmlstream.hpp"
  59 #ifdef TARGET_ARCH_x86
  60 # include "nativeInst_x86.hpp"
  61 # include "vmreg_x86.inline.hpp"
  62 #endif
  63 #ifdef TARGET_ARCH_sparc
  64 # include "nativeInst_sparc.hpp"
  65 # include "vmreg_sparc.inline.hpp"
  66 #endif
  67 #ifdef TARGET_ARCH_zero
  68 # include "nativeInst_zero.hpp"
  69 # include "vmreg_zero.inline.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_arm
  72 # include "nativeInst_arm.hpp"
  73 # include "vmreg_arm.inline.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_ppc
  76 # include "nativeInst_ppc.hpp"
  77 # include "vmreg_ppc.inline.hpp"
  78 #endif
  79 #ifdef COMPILER1
  80 #include "c1/c1_Runtime1.hpp"
  81 #endif
  82 
  83 // Shared stub locations
  84 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  85 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  89 
  90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  91 RicochetBlob*       SharedRuntime::_ricochet_blob;
  92 
  93 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  95 
  96 #ifdef COMPILER2
  97 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  98 #endif // COMPILER2
  99 
 100 
 101 //----------------------------generate_stubs-----------------------------------
 102 void SharedRuntime::generate_stubs() {
 103   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
 104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
 105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
 106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
 107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
 108 
 109   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false);
 110   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true);
 111 
 112   generate_ricochet_blob();
 113   generate_deopt_blob();
 114 
 115 #ifdef COMPILER2
 116   generate_uncommon_trap_blob();
 117 #endif // COMPILER2
 118 }
 119 
 120 //----------------------------generate_ricochet_blob---------------------------
 121 void SharedRuntime::generate_ricochet_blob() {
 122   if (!EnableInvokeDynamic)  return;  // leave it as a null
 123 
 124 #ifndef TARGET_ARCH_NYI_6939861
 125   // allocate space for the code
 126   ResourceMark rm;
 127   // setup code generation tools
 128   CodeBuffer buffer("ricochet_blob", 256 LP64_ONLY(+ 256), 256);  // XXX x86 LP64L: 512, 512
 129   MacroAssembler* masm = new MacroAssembler(&buffer);
 130 
 131   int bounce_offset = -1, exception_offset = -1, frame_size_in_words = -1;
 132   MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &bounce_offset, &exception_offset, &frame_size_in_words);
 133 
 134   // -------------
 135   // make sure all code is generated
 136   masm->flush();
 137 
 138   // failed to generate?
 139   if (bounce_offset < 0 || exception_offset < 0 || frame_size_in_words < 0) {
 140     assert(false, "bad ricochet blob");
 141     return;
 142   }
 143 
 144   _ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
 145 #endif
 146 }
 147 
 148 
 149 #include <math.h>
 150 
 151 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 152 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 153                       char*, int, char*, int, char*, int);
 154 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 155                       char*, int, char*, int, char*, int);
 156 
 157 // Implementation of SharedRuntime
 158 
 159 #ifndef PRODUCT
 160 // For statistics
 161 int SharedRuntime::_ic_miss_ctr = 0;
 162 int SharedRuntime::_wrong_method_ctr = 0;
 163 int SharedRuntime::_resolve_static_ctr = 0;
 164 int SharedRuntime::_resolve_virtual_ctr = 0;
 165 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 166 int SharedRuntime::_implicit_null_throws = 0;
 167 int SharedRuntime::_implicit_div0_throws = 0;
 168 int SharedRuntime::_throw_null_ctr = 0;
 169 
 170 int SharedRuntime::_nof_normal_calls = 0;
 171 int SharedRuntime::_nof_optimized_calls = 0;
 172 int SharedRuntime::_nof_inlined_calls = 0;
 173 int SharedRuntime::_nof_megamorphic_calls = 0;
 174 int SharedRuntime::_nof_static_calls = 0;
 175 int SharedRuntime::_nof_inlined_static_calls = 0;
 176 int SharedRuntime::_nof_interface_calls = 0;
 177 int SharedRuntime::_nof_optimized_interface_calls = 0;
 178 int SharedRuntime::_nof_inlined_interface_calls = 0;
 179 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 180 int SharedRuntime::_nof_removable_exceptions = 0;
 181 
 182 int SharedRuntime::_new_instance_ctr=0;
 183 int SharedRuntime::_new_array_ctr=0;
 184 int SharedRuntime::_multi1_ctr=0;
 185 int SharedRuntime::_multi2_ctr=0;
 186 int SharedRuntime::_multi3_ctr=0;
 187 int SharedRuntime::_multi4_ctr=0;
 188 int SharedRuntime::_multi5_ctr=0;
 189 int SharedRuntime::_mon_enter_stub_ctr=0;
 190 int SharedRuntime::_mon_exit_stub_ctr=0;
 191 int SharedRuntime::_mon_enter_ctr=0;
 192 int SharedRuntime::_mon_exit_ctr=0;
 193 int SharedRuntime::_partial_subtype_ctr=0;
 194 int SharedRuntime::_jbyte_array_copy_ctr=0;
 195 int SharedRuntime::_jshort_array_copy_ctr=0;
 196 int SharedRuntime::_jint_array_copy_ctr=0;
 197 int SharedRuntime::_jlong_array_copy_ctr=0;
 198 int SharedRuntime::_oop_array_copy_ctr=0;
 199 int SharedRuntime::_checkcast_array_copy_ctr=0;
 200 int SharedRuntime::_unsafe_array_copy_ctr=0;
 201 int SharedRuntime::_generic_array_copy_ctr=0;
 202 int SharedRuntime::_slow_array_copy_ctr=0;
 203 int SharedRuntime::_find_handler_ctr=0;
 204 int SharedRuntime::_rethrow_ctr=0;
 205 
 206 int     SharedRuntime::_ICmiss_index                    = 0;
 207 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 208 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 209 
 210 
 211 void SharedRuntime::trace_ic_miss(address at) {
 212   for (int i = 0; i < _ICmiss_index; i++) {
 213     if (_ICmiss_at[i] == at) {
 214       _ICmiss_count[i]++;
 215       return;
 216     }
 217   }
 218   int index = _ICmiss_index++;
 219   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 220   _ICmiss_at[index] = at;
 221   _ICmiss_count[index] = 1;
 222 }
 223 
 224 void SharedRuntime::print_ic_miss_histogram() {
 225   if (ICMissHistogram) {
 226     tty->print_cr ("IC Miss Histogram:");
 227     int tot_misses = 0;
 228     for (int i = 0; i < _ICmiss_index; i++) {
 229       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 230       tot_misses += _ICmiss_count[i];
 231     }
 232     tty->print_cr ("Total IC misses: %7d", tot_misses);
 233   }
 234 }
 235 #endif // PRODUCT
 236 
 237 #ifndef SERIALGC
 238 
 239 // G1 write-barrier pre: executed before a pointer store.
 240 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 241   if (orig == NULL) {
 242     assert(false, "should be optimized out");
 243     return;
 244   }
 245   assert(orig->is_oop(true /* ignore mark word */), "Error");
 246   // store the original value that was in the field reference
 247   thread->satb_mark_queue().enqueue(orig);
 248 JRT_END
 249 
 250 // G1 write-barrier post: executed after a pointer store.
 251 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 252   thread->dirty_card_queue().enqueue(card_addr);
 253 JRT_END
 254 
 255 #endif // !SERIALGC
 256 
 257 
 258 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 259   return x * y;
 260 JRT_END
 261 
 262 
 263 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 264   if (x == min_jlong && y == CONST64(-1)) {
 265     return x;
 266   } else {
 267     return x / y;
 268   }
 269 JRT_END
 270 
 271 
 272 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 273   if (x == min_jlong && y == CONST64(-1)) {
 274     return 0;
 275   } else {
 276     return x % y;
 277   }
 278 JRT_END
 279 
 280 
 281 const juint  float_sign_mask  = 0x7FFFFFFF;
 282 const juint  float_infinity   = 0x7F800000;
 283 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 284 const julong double_infinity  = CONST64(0x7FF0000000000000);
 285 
 286 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 287 #ifdef _WIN64
 288   // 64-bit Windows on amd64 returns the wrong values for
 289   // infinity operands.
 290   union { jfloat f; juint i; } xbits, ybits;
 291   xbits.f = x;
 292   ybits.f = y;
 293   // x Mod Infinity == x unless x is infinity
 294   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 295        ((ybits.i & float_sign_mask) == float_infinity) ) {
 296     return x;
 297   }
 298 #endif
 299   return ((jfloat)fmod((double)x,(double)y));
 300 JRT_END
 301 
 302 
 303 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 304 #ifdef _WIN64
 305   union { jdouble d; julong l; } xbits, ybits;
 306   xbits.d = x;
 307   ybits.d = y;
 308   // x Mod Infinity == x unless x is infinity
 309   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 310        ((ybits.l & double_sign_mask) == double_infinity) ) {
 311     return x;
 312   }
 313 #endif
 314   return ((jdouble)fmod((double)x,(double)y));
 315 JRT_END
 316 
 317 #ifdef __SOFTFP__
 318 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 319   return x + y;
 320 JRT_END
 321 
 322 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 323   return x - y;
 324 JRT_END
 325 
 326 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 327   return x * y;
 328 JRT_END
 329 
 330 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 331   return x / y;
 332 JRT_END
 333 
 334 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 335   return x + y;
 336 JRT_END
 337 
 338 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 339   return x - y;
 340 JRT_END
 341 
 342 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 343   return x * y;
 344 JRT_END
 345 
 346 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 347   return x / y;
 348 JRT_END
 349 
 350 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 351   return (jfloat)x;
 352 JRT_END
 353 
 354 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 355   return (jdouble)x;
 356 JRT_END
 357 
 358 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 359   return (jdouble)x;
 360 JRT_END
 361 
 362 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 363   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 364 JRT_END
 365 
 366 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 367   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 368 JRT_END
 369 
 370 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 371   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 372 JRT_END
 373 
 374 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 375   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 376 JRT_END
 377 
 378 // Functions to return the opposite of the aeabi functions for nan.
 379 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 380   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 381 JRT_END
 382 
 383 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 384   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 385 JRT_END
 386 
 387 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 388   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 389 JRT_END
 390 
 391 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 392   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 393 JRT_END
 394 
 395 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 396   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 397 JRT_END
 398 
 399 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 400   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 401 JRT_END
 402 
 403 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 404   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 405 JRT_END
 406 
 407 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 408   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 409 JRT_END
 410 
 411 // Intrinsics make gcc generate code for these.
 412 float  SharedRuntime::fneg(float f)   {
 413   return -f;
 414 }
 415 
 416 double SharedRuntime::dneg(double f)  {
 417   return -f;
 418 }
 419 
 420 #endif // __SOFTFP__
 421 
 422 #if defined(__SOFTFP__) || defined(E500V2)
 423 // Intrinsics make gcc generate code for these.
 424 double SharedRuntime::dabs(double f)  {
 425   return (f <= (double)0.0) ? (double)0.0 - f : f;
 426 }
 427 
 428 #endif
 429 
 430 #if defined(__SOFTFP__) || defined(PPC)
 431 double SharedRuntime::dsqrt(double f) {
 432   return sqrt(f);
 433 }
 434 #endif
 435 
 436 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 437   if (g_isnan(x))
 438     return 0;
 439   if (x >= (jfloat) max_jint)
 440     return max_jint;
 441   if (x <= (jfloat) min_jint)
 442     return min_jint;
 443   return (jint) x;
 444 JRT_END
 445 
 446 
 447 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 448   if (g_isnan(x))
 449     return 0;
 450   if (x >= (jfloat) max_jlong)
 451     return max_jlong;
 452   if (x <= (jfloat) min_jlong)
 453     return min_jlong;
 454   return (jlong) x;
 455 JRT_END
 456 
 457 
 458 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 459   if (g_isnan(x))
 460     return 0;
 461   if (x >= (jdouble) max_jint)
 462     return max_jint;
 463   if (x <= (jdouble) min_jint)
 464     return min_jint;
 465   return (jint) x;
 466 JRT_END
 467 
 468 
 469 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 470   if (g_isnan(x))
 471     return 0;
 472   if (x >= (jdouble) max_jlong)
 473     return max_jlong;
 474   if (x <= (jdouble) min_jlong)
 475     return min_jlong;
 476   return (jlong) x;
 477 JRT_END
 478 
 479 
 480 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 481   return (jfloat)x;
 482 JRT_END
 483 
 484 
 485 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 486   return (jfloat)x;
 487 JRT_END
 488 
 489 
 490 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 491   return (jdouble)x;
 492 JRT_END
 493 
 494 // Exception handling accross interpreter/compiler boundaries
 495 //
 496 // exception_handler_for_return_address(...) returns the continuation address.
 497 // The continuation address is the entry point of the exception handler of the
 498 // previous frame depending on the return address.
 499 
 500 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 501   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 502 
 503   // Reset method handle flag.
 504   thread->set_is_method_handle_return(false);
 505 
 506   // The fastest case first
 507   CodeBlob* blob = CodeCache::find_blob(return_address);
 508   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 509   if (nm != NULL) {
 510     // Set flag if return address is a method handle call site.
 511     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 512     // native nmethods don't have exception handlers
 513     assert(!nm->is_native_method(), "no exception handler");
 514     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 515     if (nm->is_deopt_pc(return_address)) {
 516       return SharedRuntime::deopt_blob()->unpack_with_exception();
 517     } else {
 518       return nm->exception_begin();
 519     }
 520   }
 521 
 522   // Entry code
 523   if (StubRoutines::returns_to_call_stub(return_address)) {
 524     return StubRoutines::catch_exception_entry();
 525   }
 526   // Interpreted code
 527   if (Interpreter::contains(return_address)) {
 528     return Interpreter::rethrow_exception_entry();
 529   }
 530   // Ricochet frame unwind code
 531   if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) {
 532     return SharedRuntime::ricochet_blob()->exception_addr();
 533   }
 534 
 535   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 536   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 537 
 538 #ifndef PRODUCT
 539   { ResourceMark rm;
 540     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 541     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 542     tty->print_cr("b) other problem");
 543   }
 544 #endif // PRODUCT
 545 
 546   ShouldNotReachHere();
 547   return NULL;
 548 }
 549 
 550 
 551 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 552   return raw_exception_handler_for_return_address(thread, return_address);
 553 JRT_END
 554 
 555 
 556 address SharedRuntime::get_poll_stub(address pc) {
 557   address stub;
 558   // Look up the code blob
 559   CodeBlob *cb = CodeCache::find_blob(pc);
 560 
 561   // Should be an nmethod
 562   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 563 
 564   // Look up the relocation information
 565   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 566     "safepoint polling: type must be poll" );
 567 
 568   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 569     "Only polling locations are used for safepoint");
 570 
 571   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 572   if (at_poll_return) {
 573     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 574            "polling page return stub not created yet");
 575     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 576   } else {
 577     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 578            "polling page safepoint stub not created yet");
 579     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 580   }
 581 #ifndef PRODUCT
 582   if( TraceSafepoint ) {
 583     char buf[256];
 584     jio_snprintf(buf, sizeof(buf),
 585                  "... found polling page %s exception at pc = "
 586                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 587                  at_poll_return ? "return" : "loop",
 588                  (intptr_t)pc, (intptr_t)stub);
 589     tty->print_raw_cr(buf);
 590   }
 591 #endif // PRODUCT
 592   return stub;
 593 }
 594 
 595 
 596 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 597   assert(caller.is_interpreted_frame(), "");
 598   int args_size = ArgumentSizeComputer(sig).size() + 1;
 599   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 600   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 601   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 602   return result;
 603 }
 604 
 605 
 606 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 607   if (JvmtiExport::can_post_on_exceptions()) {
 608     vframeStream vfst(thread, true);
 609     methodHandle method = methodHandle(thread, vfst.method());
 610     address bcp = method()->bcp_from(vfst.bci());
 611     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 612   }
 613   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 614 }
 615 
 616 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 617   Handle h_exception = Exceptions::new_exception(thread, name, message);
 618   throw_and_post_jvmti_exception(thread, h_exception);
 619 }
 620 
 621 // The interpreter code to call this tracing function is only
 622 // called/generated when TraceRedefineClasses has the right bits
 623 // set. Since obsolete methods are never compiled, we don't have
 624 // to modify the compilers to generate calls to this function.
 625 //
 626 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 627     JavaThread* thread, methodOopDesc* method))
 628   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 629 
 630   if (method->is_obsolete()) {
 631     // We are calling an obsolete method, but this is not necessarily
 632     // an error. Our method could have been redefined just after we
 633     // fetched the methodOop from the constant pool.
 634 
 635     // RC_TRACE macro has an embedded ResourceMark
 636     RC_TRACE_WITH_THREAD(0x00001000, thread,
 637                          ("calling obsolete method '%s'",
 638                           method->name_and_sig_as_C_string()));
 639     if (RC_TRACE_ENABLED(0x00002000)) {
 640       // this option is provided to debug calls to obsolete methods
 641       guarantee(false, "faulting at call to an obsolete method.");
 642     }
 643   }
 644   return 0;
 645 JRT_END
 646 
 647 // ret_pc points into caller; we are returning caller's exception handler
 648 // for given exception
 649 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 650                                                     bool force_unwind, bool top_frame_only) {
 651   assert(nm != NULL, "must exist");
 652   ResourceMark rm;
 653 
 654   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 655   // determine handler bci, if any
 656   EXCEPTION_MARK;
 657 
 658   int handler_bci = -1;
 659   int scope_depth = 0;
 660   if (!force_unwind) {
 661     int bci = sd->bci();
 662     do {
 663       bool skip_scope_increment = false;
 664       // exception handler lookup
 665       KlassHandle ek (THREAD, exception->klass());
 666       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
 667       if (HAS_PENDING_EXCEPTION) {
 668         // We threw an exception while trying to find the exception handler.
 669         // Transfer the new exception to the exception handle which will
 670         // be set into thread local storage, and do another lookup for an
 671         // exception handler for this exception, this time starting at the
 672         // BCI of the exception handler which caused the exception to be
 673         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 674         // argument to ensure that the correct exception is thrown (4870175).
 675         exception = Handle(THREAD, PENDING_EXCEPTION);
 676         CLEAR_PENDING_EXCEPTION;
 677         if (handler_bci >= 0) {
 678           bci = handler_bci;
 679           handler_bci = -1;
 680           skip_scope_increment = true;
 681         }
 682       }
 683       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 684         sd = sd->sender();
 685         if (sd != NULL) {
 686           bci = sd->bci();
 687         }
 688         ++scope_depth;
 689       }
 690     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
 691   }
 692 
 693   // found handling method => lookup exception handler
 694   int catch_pco = ret_pc - nm->code_begin();
 695 
 696   ExceptionHandlerTable table(nm);
 697   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 698   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 699     // Allow abbreviated catch tables.  The idea is to allow a method
 700     // to materialize its exceptions without committing to the exact
 701     // routing of exceptions.  In particular this is needed for adding
 702     // a synthethic handler to unlock monitors when inlining
 703     // synchonized methods since the unlock path isn't represented in
 704     // the bytecodes.
 705     t = table.entry_for(catch_pco, -1, 0);
 706   }
 707 
 708 #ifdef COMPILER1
 709   if (t == NULL && nm->is_compiled_by_c1()) {
 710     assert(nm->unwind_handler_begin() != NULL, "");
 711     return nm->unwind_handler_begin();
 712   }
 713 #endif
 714 
 715   if (t == NULL) {
 716     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 717     tty->print_cr("   Exception:");
 718     exception->print();
 719     tty->cr();
 720     tty->print_cr(" Compiled exception table :");
 721     table.print();
 722     nm->print_code();
 723     guarantee(false, "missing exception handler");
 724     return NULL;
 725   }
 726 
 727   return nm->code_begin() + t->pco();
 728 }
 729 
 730 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 731   // These errors occur only at call sites
 732   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 733 JRT_END
 734 
 735 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 736   // These errors occur only at call sites
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 741   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 742 JRT_END
 743 
 744 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 745   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 746 JRT_END
 747 
 748 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 749   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 750   // cache sites (when the callee activation is not yet set up) so we are at a call site
 751   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 752 JRT_END
 753 
 754 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 755   // We avoid using the normal exception construction in this case because
 756   // it performs an upcall to Java, and we're already out of stack space.
 757   klassOop k = SystemDictionary::StackOverflowError_klass();
 758   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
 759   Handle exception (thread, exception_oop);
 760   if (StackTraceInThrowable) {
 761     java_lang_Throwable::fill_in_stack_trace(exception);
 762   }
 763   throw_and_post_jvmti_exception(thread, exception);
 764 JRT_END
 765 
 766 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 767                                                            address pc,
 768                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 769 {
 770   address target_pc = NULL;
 771 
 772   if (Interpreter::contains(pc)) {
 773 #ifdef CC_INTERP
 774     // C++ interpreter doesn't throw implicit exceptions
 775     ShouldNotReachHere();
 776 #else
 777     switch (exception_kind) {
 778       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 779       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 780       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 781       default:                      ShouldNotReachHere();
 782     }
 783 #endif // !CC_INTERP
 784   } else {
 785     switch (exception_kind) {
 786       case STACK_OVERFLOW: {
 787         // Stack overflow only occurs upon frame setup; the callee is
 788         // going to be unwound. Dispatch to a shared runtime stub
 789         // which will cause the StackOverflowError to be fabricated
 790         // and processed.
 791         // For stack overflow in deoptimization blob, cleanup thread.
 792         if (thread->deopt_mark() != NULL) {
 793           Deoptimization::cleanup_deopt_info(thread, NULL);
 794         }
 795         return StubRoutines::throw_StackOverflowError_entry();
 796       }
 797 
 798       case IMPLICIT_NULL: {
 799         if (VtableStubs::contains(pc)) {
 800           // We haven't yet entered the callee frame. Fabricate an
 801           // exception and begin dispatching it in the caller. Since
 802           // the caller was at a call site, it's safe to destroy all
 803           // caller-saved registers, as these entry points do.
 804           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 805 
 806           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 807           if (vt_stub == NULL) return NULL;
 808 
 809           if (vt_stub->is_abstract_method_error(pc)) {
 810             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 811             return StubRoutines::throw_AbstractMethodError_entry();
 812           } else {
 813             return StubRoutines::throw_NullPointerException_at_call_entry();
 814           }
 815         } else {
 816           CodeBlob* cb = CodeCache::find_blob(pc);
 817 
 818           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 819           if (cb == NULL) return NULL;
 820 
 821           // Exception happened in CodeCache. Must be either:
 822           // 1. Inline-cache check in C2I handler blob,
 823           // 2. Inline-cache check in nmethod, or
 824           // 3. Implict null exception in nmethod
 825 
 826           if (!cb->is_nmethod()) {
 827             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
 828                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 829             // There is no handler here, so we will simply unwind.
 830             return StubRoutines::throw_NullPointerException_at_call_entry();
 831           }
 832 
 833           // Otherwise, it's an nmethod.  Consult its exception handlers.
 834           nmethod* nm = (nmethod*)cb;
 835           if (nm->inlinecache_check_contains(pc)) {
 836             // exception happened inside inline-cache check code
 837             // => the nmethod is not yet active (i.e., the frame
 838             // is not set up yet) => use return address pushed by
 839             // caller => don't push another return address
 840             return StubRoutines::throw_NullPointerException_at_call_entry();
 841           }
 842 
 843 #ifndef PRODUCT
 844           _implicit_null_throws++;
 845 #endif
 846           target_pc = nm->continuation_for_implicit_exception(pc);
 847           // If there's an unexpected fault, target_pc might be NULL,
 848           // in which case we want to fall through into the normal
 849           // error handling code.
 850         }
 851 
 852         break; // fall through
 853       }
 854 
 855 
 856       case IMPLICIT_DIVIDE_BY_ZERO: {
 857         nmethod* nm = CodeCache::find_nmethod(pc);
 858         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 859 #ifndef PRODUCT
 860         _implicit_div0_throws++;
 861 #endif
 862         target_pc = nm->continuation_for_implicit_exception(pc);
 863         // If there's an unexpected fault, target_pc might be NULL,
 864         // in which case we want to fall through into the normal
 865         // error handling code.
 866         break; // fall through
 867       }
 868 
 869       default: ShouldNotReachHere();
 870     }
 871 
 872     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 873 
 874     // for AbortVMOnException flag
 875     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 876     if (exception_kind == IMPLICIT_NULL) {
 877       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 878     } else {
 879       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 880     }
 881     return target_pc;
 882   }
 883 
 884   ShouldNotReachHere();
 885   return NULL;
 886 }
 887 
 888 
 889 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 890 {
 891   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 892 }
 893 JNI_END
 894 
 895 
 896 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 897   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 898 }
 899 
 900 
 901 #ifndef PRODUCT
 902 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 903   const frame f = thread->last_frame();
 904   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 905 #ifndef PRODUCT
 906   methodHandle mh(THREAD, f.interpreter_frame_method());
 907   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 908 #endif // !PRODUCT
 909   return preserve_this_value;
 910 JRT_END
 911 #endif // !PRODUCT
 912 
 913 
 914 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 915   os::yield_all(attempts);
 916 JRT_END
 917 
 918 
 919 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 920   assert(obj->is_oop(), "must be a valid oop");
 921   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 922   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 923 JRT_END
 924 
 925 
 926 jlong SharedRuntime::get_java_tid(Thread* thread) {
 927   if (thread != NULL) {
 928     if (thread->is_Java_thread()) {
 929       oop obj = ((JavaThread*)thread)->threadObj();
 930       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 931     }
 932   }
 933   return 0;
 934 }
 935 
 936 /**
 937  * This function ought to be a void function, but cannot be because
 938  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 939  * 6254741.  Once that is fixed we can remove the dummy return value.
 940  */
 941 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 942   return dtrace_object_alloc_base(Thread::current(), o);
 943 }
 944 
 945 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 946   assert(DTraceAllocProbes, "wrong call");
 947   Klass* klass = o->blueprint();
 948   int size = o->size();
 949   Symbol* name = klass->name();
 950   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 951                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 952   return 0;
 953 }
 954 
 955 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 956     JavaThread* thread, methodOopDesc* method))
 957   assert(DTraceMethodProbes, "wrong call");
 958   Symbol* kname = method->klass_name();
 959   Symbol* name = method->name();
 960   Symbol* sig = method->signature();
 961   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 962       kname->bytes(), kname->utf8_length(),
 963       name->bytes(), name->utf8_length(),
 964       sig->bytes(), sig->utf8_length());
 965   return 0;
 966 JRT_END
 967 
 968 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 969     JavaThread* thread, methodOopDesc* method))
 970   assert(DTraceMethodProbes, "wrong call");
 971   Symbol* kname = method->klass_name();
 972   Symbol* name = method->name();
 973   Symbol* sig = method->signature();
 974   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
 975       kname->bytes(), kname->utf8_length(),
 976       name->bytes(), name->utf8_length(),
 977       sig->bytes(), sig->utf8_length());
 978   return 0;
 979 JRT_END
 980 
 981 
 982 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 983 // for a call current in progress, i.e., arguments has been pushed on stack
 984 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 985 // vtable updates, etc.  Caller frame must be compiled.
 986 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
 987   ResourceMark rm(THREAD);
 988 
 989   // last java frame on stack (which includes native call frames)
 990   vframeStream vfst(thread, true);  // Do not skip and javaCalls
 991 
 992   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
 993 }
 994 
 995 
 996 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
 997 // for a call current in progress, i.e., arguments has been pushed on stack
 998 // but callee has not been invoked yet.  Caller frame must be compiled.
 999 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1000                                               vframeStream& vfst,
1001                                               Bytecodes::Code& bc,
1002                                               CallInfo& callinfo, TRAPS) {
1003   Handle receiver;
1004   Handle nullHandle;  //create a handy null handle for exception returns
1005 
1006   assert(!vfst.at_end(), "Java frame must exist");
1007 
1008   // Find caller and bci from vframe
1009   methodHandle caller (THREAD, vfst.method());
1010   int          bci    = vfst.bci();
1011 
1012   // Find bytecode
1013   Bytecode_invoke bytecode(caller, bci);
1014   bc = bytecode.java_code();
1015   int bytecode_index = bytecode.index();
1016 
1017   // Find receiver for non-static call
1018   if (bc != Bytecodes::_invokestatic) {
1019     // This register map must be update since we need to find the receiver for
1020     // compiled frames. The receiver might be in a register.
1021     RegisterMap reg_map2(thread);
1022     frame stubFrame   = thread->last_frame();
1023     // Caller-frame is a compiled frame
1024     frame callerFrame = stubFrame.sender(&reg_map2);
1025 
1026     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1027     if (callee.is_null()) {
1028       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1029     }
1030     // Retrieve from a compiled argument list
1031     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1032 
1033     if (receiver.is_null()) {
1034       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1035     }
1036   }
1037 
1038   // Resolve method. This is parameterized by bytecode.
1039   constantPoolHandle constants (THREAD, caller->constants());
1040   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
1041   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1042 
1043 #ifdef ASSERT
1044   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1045   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
1046     assert(receiver.not_null(), "should have thrown exception");
1047     KlassHandle receiver_klass (THREAD, receiver->klass());
1048     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1049                             // klass is already loaded
1050     KlassHandle static_receiver_klass (THREAD, rk);
1051     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
1052     if (receiver_klass->oop_is_instance()) {
1053       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
1054         tty->print_cr("ERROR: Klass not yet initialized!!");
1055         receiver_klass.print();
1056       }
1057       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1058     }
1059   }
1060 #endif
1061 
1062   return receiver;
1063 }
1064 
1065 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1066   ResourceMark rm(THREAD);
1067   // We need first to check if any Java activations (compiled, interpreted)
1068   // exist on the stack since last JavaCall.  If not, we need
1069   // to get the target method from the JavaCall wrapper.
1070   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1071   methodHandle callee_method;
1072   if (vfst.at_end()) {
1073     // No Java frames were found on stack since we did the JavaCall.
1074     // Hence the stack can only contain an entry_frame.  We need to
1075     // find the target method from the stub frame.
1076     RegisterMap reg_map(thread, false);
1077     frame fr = thread->last_frame();
1078     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1079     fr = fr.sender(&reg_map);
1080     assert(fr.is_entry_frame(), "must be");
1081     // fr is now pointing to the entry frame.
1082     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1083     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1084   } else {
1085     Bytecodes::Code bc;
1086     CallInfo callinfo;
1087     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1088     callee_method = callinfo.selected_method();
1089   }
1090   assert(callee_method()->is_method(), "must be");
1091   return callee_method;
1092 }
1093 
1094 // Resolves a call.
1095 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1096                                            bool is_virtual,
1097                                            bool is_optimized, TRAPS) {
1098   methodHandle callee_method;
1099   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1100   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1101     int retry_count = 0;
1102     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1103            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1104       // If has a pending exception then there is no need to re-try to
1105       // resolve this method.
1106       // If the method has been redefined, we need to try again.
1107       // Hack: we have no way to update the vtables of arrays, so don't
1108       // require that java.lang.Object has been updated.
1109 
1110       // It is very unlikely that method is redefined more than 100 times
1111       // in the middle of resolve. If it is looping here more than 100 times
1112       // means then there could be a bug here.
1113       guarantee((retry_count++ < 100),
1114                 "Could not resolve to latest version of redefined method");
1115       // method is redefined in the middle of resolve so re-try.
1116       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1117     }
1118   }
1119   return callee_method;
1120 }
1121 
1122 // Resolves a call.  The compilers generate code for calls that go here
1123 // and are patched with the real destination of the call.
1124 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1125                                            bool is_virtual,
1126                                            bool is_optimized, TRAPS) {
1127 
1128   ResourceMark rm(thread);
1129   RegisterMap cbl_map(thread, false);
1130   frame caller_frame = thread->last_frame().sender(&cbl_map);
1131 
1132   CodeBlob* caller_cb = caller_frame.cb();
1133   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1134   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1135   // make sure caller is not getting deoptimized
1136   // and removed before we are done with it.
1137   // CLEANUP - with lazy deopt shouldn't need this lock
1138   nmethodLocker caller_lock(caller_nm);
1139 
1140 
1141   // determine call info & receiver
1142   // note: a) receiver is NULL for static calls
1143   //       b) an exception is thrown if receiver is NULL for non-static calls
1144   CallInfo call_info;
1145   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1146   Handle receiver = find_callee_info(thread, invoke_code,
1147                                      call_info, CHECK_(methodHandle()));
1148   methodHandle callee_method = call_info.selected_method();
1149 
1150   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
1151          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
1152 
1153 #ifndef PRODUCT
1154   // tracing/debugging/statistics
1155   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1156                 (is_virtual) ? (&_resolve_virtual_ctr) :
1157                                (&_resolve_static_ctr);
1158   Atomic::inc(addr);
1159 
1160   if (TraceCallFixup) {
1161     ResourceMark rm(thread);
1162     tty->print("resolving %s%s (%s) call to",
1163       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1164       Bytecodes::name(invoke_code));
1165     callee_method->print_short_name(tty);
1166     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1167   }
1168 #endif
1169 
1170   // JSR 292
1171   // If the resolved method is a MethodHandle invoke target the call
1172   // site must be a MethodHandle call site.
1173   if (callee_method->is_method_handle_invoke()) {
1174     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1175   }
1176 
1177   // Compute entry points. This might require generation of C2I converter
1178   // frames, so we cannot be holding any locks here. Furthermore, the
1179   // computation of the entry points is independent of patching the call.  We
1180   // always return the entry-point, but we only patch the stub if the call has
1181   // not been deoptimized.  Return values: For a virtual call this is an
1182   // (cached_oop, destination address) pair. For a static call/optimized
1183   // virtual this is just a destination address.
1184 
1185   StaticCallInfo static_call_info;
1186   CompiledICInfo virtual_call_info;
1187 
1188   // Make sure the callee nmethod does not get deoptimized and removed before
1189   // we are done patching the code.
1190   nmethod* callee_nm = callee_method->code();
1191   nmethodLocker nl_callee(callee_nm);
1192 #ifdef ASSERT
1193   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1194 #endif
1195 
1196   if (is_virtual) {
1197     assert(receiver.not_null(), "sanity check");
1198     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1199     KlassHandle h_klass(THREAD, receiver->klass());
1200     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1201                      is_optimized, static_bound, virtual_call_info,
1202                      CHECK_(methodHandle()));
1203   } else {
1204     // static call
1205     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1206   }
1207 
1208   // grab lock, check for deoptimization and potentially patch caller
1209   {
1210     MutexLocker ml_patch(CompiledIC_lock);
1211 
1212     // Now that we are ready to patch if the methodOop was redefined then
1213     // don't update call site and let the caller retry.
1214 
1215     if (!callee_method->is_old()) {
1216 #ifdef ASSERT
1217       // We must not try to patch to jump to an already unloaded method.
1218       if (dest_entry_point != 0) {
1219         assert(CodeCache::find_blob(dest_entry_point) != NULL,
1220                "should not unload nmethod while locked");
1221       }
1222 #endif
1223       if (is_virtual) {
1224         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1225         if (inline_cache->is_clean()) {
1226           inline_cache->set_to_monomorphic(virtual_call_info);
1227         }
1228       } else {
1229         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1230         if (ssc->is_clean()) ssc->set(static_call_info);
1231       }
1232     }
1233 
1234   } // unlock CompiledIC_lock
1235 
1236   return callee_method;
1237 }
1238 
1239 
1240 // Inline caches exist only in compiled code
1241 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1242 #ifdef ASSERT
1243   RegisterMap reg_map(thread, false);
1244   frame stub_frame = thread->last_frame();
1245   assert(stub_frame.is_runtime_frame(), "sanity check");
1246   frame caller_frame = stub_frame.sender(&reg_map);
1247   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1248   assert(!caller_frame.is_ricochet_frame(), "unexpected frame");
1249 #endif /* ASSERT */
1250 
1251   methodHandle callee_method;
1252   JRT_BLOCK
1253     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1254     // Return methodOop through TLS
1255     thread->set_vm_result(callee_method());
1256   JRT_BLOCK_END
1257   // return compiled code entry point after potential safepoints
1258   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1259   return callee_method->verified_code_entry();
1260 JRT_END
1261 
1262 
1263 // Handle call site that has been made non-entrant
1264 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1265   // 6243940 We might end up in here if the callee is deoptimized
1266   // as we race to call it.  We don't want to take a safepoint if
1267   // the caller was interpreted because the caller frame will look
1268   // interpreted to the stack walkers and arguments are now
1269   // "compiled" so it is much better to make this transition
1270   // invisible to the stack walking code. The i2c path will
1271   // place the callee method in the callee_target. It is stashed
1272   // there because if we try and find the callee by normal means a
1273   // safepoint is possible and have trouble gc'ing the compiled args.
1274   RegisterMap reg_map(thread, false);
1275   frame stub_frame = thread->last_frame();
1276   assert(stub_frame.is_runtime_frame(), "sanity check");
1277   frame caller_frame = stub_frame.sender(&reg_map);
1278 
1279   // MethodHandle invokes don't have a CompiledIC and should always
1280   // simply redispatch to the callee_target.
1281   address   sender_pc = caller_frame.pc();
1282   CodeBlob* sender_cb = caller_frame.cb();
1283   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1284   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
1285   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
1286     // If the callee_target is set, then we have come here via an i2c
1287     // adapter.
1288     methodOop callee = thread->callee_target();
1289     if (callee != NULL) {
1290       assert(callee->is_method(), "sanity");
1291       is_mh_invoke_via_adapter = true;
1292     }
1293   }
1294 
1295   if (caller_frame.is_interpreted_frame() ||
1296       caller_frame.is_entry_frame()       ||
1297       caller_frame.is_ricochet_frame()    ||
1298       is_mh_invoke_via_adapter) {
1299     methodOop callee = thread->callee_target();
1300     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1301     thread->set_vm_result(callee);
1302     thread->set_callee_target(NULL);
1303     return callee->get_c2i_entry();
1304   }
1305 
1306   // Must be compiled to compiled path which is safe to stackwalk
1307   methodHandle callee_method;
1308   JRT_BLOCK
1309     // Force resolving of caller (if we called from compiled frame)
1310     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1311     thread->set_vm_result(callee_method());
1312   JRT_BLOCK_END
1313   // return compiled code entry point after potential safepoints
1314   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1315   return callee_method->verified_code_entry();
1316 JRT_END
1317 
1318 
1319 // resolve a static call and patch code
1320 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1321   methodHandle callee_method;
1322   JRT_BLOCK
1323     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1324     thread->set_vm_result(callee_method());
1325   JRT_BLOCK_END
1326   // return compiled code entry point after potential safepoints
1327   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1328   return callee_method->verified_code_entry();
1329 JRT_END
1330 
1331 
1332 // resolve virtual call and update inline cache to monomorphic
1333 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1334   methodHandle callee_method;
1335   JRT_BLOCK
1336     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1337     thread->set_vm_result(callee_method());
1338   JRT_BLOCK_END
1339   // return compiled code entry point after potential safepoints
1340   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1341   return callee_method->verified_code_entry();
1342 JRT_END
1343 
1344 
1345 // Resolve a virtual call that can be statically bound (e.g., always
1346 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1347 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1348   methodHandle callee_method;
1349   JRT_BLOCK
1350     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1351     thread->set_vm_result(callee_method());
1352   JRT_BLOCK_END
1353   // return compiled code entry point after potential safepoints
1354   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1355   return callee_method->verified_code_entry();
1356 JRT_END
1357 
1358 
1359 
1360 
1361 
1362 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1363   ResourceMark rm(thread);
1364   CallInfo call_info;
1365   Bytecodes::Code bc;
1366 
1367   // receiver is NULL for static calls. An exception is thrown for NULL
1368   // receivers for non-static calls
1369   Handle receiver = find_callee_info(thread, bc, call_info,
1370                                      CHECK_(methodHandle()));
1371   // Compiler1 can produce virtual call sites that can actually be statically bound
1372   // If we fell thru to below we would think that the site was going megamorphic
1373   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1374   // we'd try and do a vtable dispatch however methods that can be statically bound
1375   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1376   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1377   // plain ic_miss) and the site will be converted to an optimized virtual call site
1378   // never to miss again. I don't believe C2 will produce code like this but if it
1379   // did this would still be the correct thing to do for it too, hence no ifdef.
1380   //
1381   if (call_info.resolved_method()->can_be_statically_bound()) {
1382     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1383     if (TraceCallFixup) {
1384       RegisterMap reg_map(thread, false);
1385       frame caller_frame = thread->last_frame().sender(&reg_map);
1386       ResourceMark rm(thread);
1387       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1388       callee_method->print_short_name(tty);
1389       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1390       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1391     }
1392     return callee_method;
1393   }
1394 
1395   methodHandle callee_method = call_info.selected_method();
1396 
1397   bool should_be_mono = false;
1398 
1399 #ifndef PRODUCT
1400   Atomic::inc(&_ic_miss_ctr);
1401 
1402   // Statistics & Tracing
1403   if (TraceCallFixup) {
1404     ResourceMark rm(thread);
1405     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1406     callee_method->print_short_name(tty);
1407     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1408   }
1409 
1410   if (ICMissHistogram) {
1411     MutexLocker m(VMStatistic_lock);
1412     RegisterMap reg_map(thread, false);
1413     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1414     // produce statistics under the lock
1415     trace_ic_miss(f.pc());
1416   }
1417 #endif
1418 
1419   // install an event collector so that when a vtable stub is created the
1420   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1421   // event can't be posted when the stub is created as locks are held
1422   // - instead the event will be deferred until the event collector goes
1423   // out of scope.
1424   JvmtiDynamicCodeEventCollector event_collector;
1425 
1426   // Update inline cache to megamorphic. Skip update if caller has been
1427   // made non-entrant or we are called from interpreted.
1428   { MutexLocker ml_patch (CompiledIC_lock);
1429     RegisterMap reg_map(thread, false);
1430     frame caller_frame = thread->last_frame().sender(&reg_map);
1431     CodeBlob* cb = caller_frame.cb();
1432     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1433       // Not a non-entrant nmethod, so find inline_cache
1434       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1435       bool should_be_mono = false;
1436       if (inline_cache->is_optimized()) {
1437         if (TraceCallFixup) {
1438           ResourceMark rm(thread);
1439           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1440           callee_method->print_short_name(tty);
1441           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1442         }
1443         should_be_mono = true;
1444       } else {
1445         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1446         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1447 
1448           if (receiver()->klass() == ic_oop->holder_klass()) {
1449             // This isn't a real miss. We must have seen that compiled code
1450             // is now available and we want the call site converted to a
1451             // monomorphic compiled call site.
1452             // We can't assert for callee_method->code() != NULL because it
1453             // could have been deoptimized in the meantime
1454             if (TraceCallFixup) {
1455               ResourceMark rm(thread);
1456               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1457               callee_method->print_short_name(tty);
1458               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1459             }
1460             should_be_mono = true;
1461           }
1462         }
1463       }
1464 
1465       if (should_be_mono) {
1466 
1467         // We have a path that was monomorphic but was going interpreted
1468         // and now we have (or had) a compiled entry. We correct the IC
1469         // by using a new icBuffer.
1470         CompiledICInfo info;
1471         KlassHandle receiver_klass(THREAD, receiver()->klass());
1472         inline_cache->compute_monomorphic_entry(callee_method,
1473                                                 receiver_klass,
1474                                                 inline_cache->is_optimized(),
1475                                                 false,
1476                                                 info, CHECK_(methodHandle()));
1477         inline_cache->set_to_monomorphic(info);
1478       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1479         // Change to megamorphic
1480         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1481       } else {
1482         // Either clean or megamorphic
1483       }
1484     }
1485   } // Release CompiledIC_lock
1486 
1487   return callee_method;
1488 }
1489 
1490 //
1491 // Resets a call-site in compiled code so it will get resolved again.
1492 // This routines handles both virtual call sites, optimized virtual call
1493 // sites, and static call sites. Typically used to change a call sites
1494 // destination from compiled to interpreted.
1495 //
1496 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1497   ResourceMark rm(thread);
1498   RegisterMap reg_map(thread, false);
1499   frame stub_frame = thread->last_frame();
1500   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1501   frame caller = stub_frame.sender(&reg_map);
1502 
1503   // Do nothing if the frame isn't a live compiled frame.
1504   // nmethod could be deoptimized by the time we get here
1505   // so no update to the caller is needed.
1506 
1507   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1508 
1509     address pc = caller.pc();
1510     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1511 
1512     // Default call_addr is the location of the "basic" call.
1513     // Determine the address of the call we a reresolving. With
1514     // Inline Caches we will always find a recognizable call.
1515     // With Inline Caches disabled we may or may not find a
1516     // recognizable call. We will always find a call for static
1517     // calls and for optimized virtual calls. For vanilla virtual
1518     // calls it depends on the state of the UseInlineCaches switch.
1519     //
1520     // With Inline Caches disabled we can get here for a virtual call
1521     // for two reasons:
1522     //   1 - calling an abstract method. The vtable for abstract methods
1523     //       will run us thru handle_wrong_method and we will eventually
1524     //       end up in the interpreter to throw the ame.
1525     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1526     //       call and between the time we fetch the entry address and
1527     //       we jump to it the target gets deoptimized. Similar to 1
1528     //       we will wind up in the interprter (thru a c2i with c2).
1529     //
1530     address call_addr = NULL;
1531     {
1532       // Get call instruction under lock because another thread may be
1533       // busy patching it.
1534       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1535       // Location of call instruction
1536       if (NativeCall::is_call_before(pc)) {
1537         NativeCall *ncall = nativeCall_before(pc);
1538         call_addr = ncall->instruction_address();
1539       }
1540     }
1541 
1542     // Check for static or virtual call
1543     bool is_static_call = false;
1544     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1545     // Make sure nmethod doesn't get deoptimized and removed until
1546     // this is done with it.
1547     // CLEANUP - with lazy deopt shouldn't need this lock
1548     nmethodLocker nmlock(caller_nm);
1549 
1550     if (call_addr != NULL) {
1551       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1552       int ret = iter.next(); // Get item
1553       if (ret) {
1554         assert(iter.addr() == call_addr, "must find call");
1555         if (iter.type() == relocInfo::static_call_type) {
1556           is_static_call = true;
1557         } else {
1558           assert(iter.type() == relocInfo::virtual_call_type ||
1559                  iter.type() == relocInfo::opt_virtual_call_type
1560                 , "unexpected relocInfo. type");
1561         }
1562       } else {
1563         assert(!UseInlineCaches, "relocation info. must exist for this address");
1564       }
1565 
1566       // Cleaning the inline cache will force a new resolve. This is more robust
1567       // than directly setting it to the new destination, since resolving of calls
1568       // is always done through the same code path. (experience shows that it
1569       // leads to very hard to track down bugs, if an inline cache gets updated
1570       // to a wrong method). It should not be performance critical, since the
1571       // resolve is only done once.
1572 
1573       MutexLocker ml(CompiledIC_lock);
1574       //
1575       // We do not patch the call site if the nmethod has been made non-entrant
1576       // as it is a waste of time
1577       //
1578       if (caller_nm->is_in_use()) {
1579         if (is_static_call) {
1580           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1581           ssc->set_to_clean();
1582         } else {
1583           // compiled, dispatched call (which used to call an interpreted method)
1584           CompiledIC* inline_cache = CompiledIC_at(call_addr);
1585           inline_cache->set_to_clean();
1586         }
1587       }
1588     }
1589 
1590   }
1591 
1592   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1593 
1594 
1595 #ifndef PRODUCT
1596   Atomic::inc(&_wrong_method_ctr);
1597 
1598   if (TraceCallFixup) {
1599     ResourceMark rm(thread);
1600     tty->print("handle_wrong_method reresolving call to");
1601     callee_method->print_short_name(tty);
1602     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1603   }
1604 #endif
1605 
1606   return callee_method;
1607 }
1608 
1609 // ---------------------------------------------------------------------------
1610 // We are calling the interpreter via a c2i. Normally this would mean that
1611 // we were called by a compiled method. However we could have lost a race
1612 // where we went int -> i2c -> c2i and so the caller could in fact be
1613 // interpreted. If the caller is compiled we attempt to patch the caller
1614 // so he no longer calls into the interpreter.
1615 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1616   methodOop moop(method);
1617 
1618   address entry_point = moop->from_compiled_entry();
1619 
1620   // It's possible that deoptimization can occur at a call site which hasn't
1621   // been resolved yet, in which case this function will be called from
1622   // an nmethod that has been patched for deopt and we can ignore the
1623   // request for a fixup.
1624   // Also it is possible that we lost a race in that from_compiled_entry
1625   // is now back to the i2c in that case we don't need to patch and if
1626   // we did we'd leap into space because the callsite needs to use
1627   // "to interpreter" stub in order to load up the methodOop. Don't
1628   // ask me how I know this...
1629 
1630   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1631   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1632     return;
1633   }
1634 
1635   // The check above makes sure this is a nmethod.
1636   nmethod* nm = cb->as_nmethod_or_null();
1637   assert(nm, "must be");
1638 
1639   // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
1640   // to implement MethodHandle actions.
1641   if (nm->is_method_handle_return(caller_pc)) {
1642     return;
1643   }
1644 
1645   // There is a benign race here. We could be attempting to patch to a compiled
1646   // entry point at the same time the callee is being deoptimized. If that is
1647   // the case then entry_point may in fact point to a c2i and we'd patch the
1648   // call site with the same old data. clear_code will set code() to NULL
1649   // at the end of it. If we happen to see that NULL then we can skip trying
1650   // to patch. If we hit the window where the callee has a c2i in the
1651   // from_compiled_entry and the NULL isn't present yet then we lose the race
1652   // and patch the code with the same old data. Asi es la vida.
1653 
1654   if (moop->code() == NULL) return;
1655 
1656   if (nm->is_in_use()) {
1657 
1658     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1659     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1660     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1661       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1662       //
1663       // bug 6281185. We might get here after resolving a call site to a vanilla
1664       // virtual call. Because the resolvee uses the verified entry it may then
1665       // see compiled code and attempt to patch the site by calling us. This would
1666       // then incorrectly convert the call site to optimized and its downhill from
1667       // there. If you're lucky you'll get the assert in the bugid, if not you've
1668       // just made a call site that could be megamorphic into a monomorphic site
1669       // for the rest of its life! Just another racing bug in the life of
1670       // fixup_callers_callsite ...
1671       //
1672       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1673       iter.next();
1674       assert(iter.has_current(), "must have a reloc at java call site");
1675       relocInfo::relocType typ = iter.reloc()->type();
1676       if ( typ != relocInfo::static_call_type &&
1677            typ != relocInfo::opt_virtual_call_type &&
1678            typ != relocInfo::static_stub_type) {
1679         return;
1680       }
1681       address destination = call->destination();
1682       if (destination != entry_point) {
1683         CodeBlob* callee = CodeCache::find_blob(destination);
1684         // callee == cb seems weird. It means calling interpreter thru stub.
1685         if (callee == cb || callee->is_adapter_blob()) {
1686           // static call or optimized virtual
1687           if (TraceCallFixup) {
1688             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1689             moop->print_short_name(tty);
1690             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1691           }
1692           call->set_destination_mt_safe(entry_point);
1693         } else {
1694           if (TraceCallFixup) {
1695             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1696             moop->print_short_name(tty);
1697             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1698           }
1699           // assert is too strong could also be resolve destinations.
1700           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1701         }
1702       } else {
1703           if (TraceCallFixup) {
1704             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1705             moop->print_short_name(tty);
1706             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1707           }
1708       }
1709     }
1710   }
1711 
1712 IRT_END
1713 
1714 
1715 // same as JVM_Arraycopy, but called directly from compiled code
1716 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1717                                                 oopDesc* dest, jint dest_pos,
1718                                                 jint length,
1719                                                 JavaThread* thread)) {
1720 #ifndef PRODUCT
1721   _slow_array_copy_ctr++;
1722 #endif
1723   // Check if we have null pointers
1724   if (src == NULL || dest == NULL) {
1725     THROW(vmSymbols::java_lang_NullPointerException());
1726   }
1727   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1728   // even though the copy_array API also performs dynamic checks to ensure
1729   // that src and dest are truly arrays (and are conformable).
1730   // The copy_array mechanism is awkward and could be removed, but
1731   // the compilers don't call this function except as a last resort,
1732   // so it probably doesn't matter.
1733   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1734                                         (arrayOopDesc*)dest, dest_pos,
1735                                         length, thread);
1736 }
1737 JRT_END
1738 
1739 char* SharedRuntime::generate_class_cast_message(
1740     JavaThread* thread, const char* objName) {
1741 
1742   // Get target class name from the checkcast instruction
1743   vframeStream vfst(thread, true);
1744   assert(!vfst.at_end(), "Java frame must exist");
1745   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1746   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1747     cc.index(), thread));
1748   return generate_class_cast_message(objName, targetKlass->external_name());
1749 }
1750 
1751 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1752                                                         oopDesc* required,
1753                                                         oopDesc* actual) {
1754   if (TraceMethodHandles) {
1755     tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
1756                   thread, required, actual);
1757   }
1758   assert(EnableInvokeDynamic, "");
1759   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1760   char* message = NULL;
1761   if (singleKlass != NULL) {
1762     const char* objName = "argument or return value";
1763     if (actual != NULL) {
1764       // be flexible about the junk passed in:
1765       klassOop ak = (actual->is_klass()
1766                      ? (klassOop)actual
1767                      : actual->klass());
1768       objName = Klass::cast(ak)->external_name();
1769     }
1770     Klass* targetKlass = Klass::cast(required->is_klass()
1771                                      ? (klassOop)required
1772                                      : java_lang_Class::as_klassOop(required));
1773     message = generate_class_cast_message(objName, targetKlass->external_name());
1774   } else {
1775     // %%% need to get the MethodType string, without messing around too much
1776     const char* desc = NULL;
1777     // Get a signature from the invoke instruction
1778     const char* mhName = "method handle";
1779     const char* targetType = "the required signature";
1780     int targetArity = -1, mhArity = -1;
1781     vframeStream vfst(thread, true);
1782     if (!vfst.at_end()) {
1783       Bytecode_invoke call(vfst.method(), vfst.bci());
1784       methodHandle target;
1785       {
1786         EXCEPTION_MARK;
1787         target = call.static_target(THREAD);
1788         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1789       }
1790       if (target.not_null()
1791           && target->is_method_handle_invoke()
1792           && required == target->method_handle_type()) {
1793         targetType = target->signature()->as_C_string();
1794         targetArity = ArgumentCount(target->signature()).size();
1795       }
1796     }
1797     KlassHandle kignore; int dmf_flags = 0;
1798     methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
1799     if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
1800                        MethodHandles::_dmf_does_dispatch |
1801                        MethodHandles::_dmf_from_interface)) != 0)
1802       actual_method = methodHandle();  // MH does extra binds, drops, etc.
1803     bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
1804     if (actual_method.not_null()) {
1805       mhName = actual_method->signature()->as_C_string();
1806       mhArity = ArgumentCount(actual_method->signature()).size();
1807       if (!actual_method->is_static())  mhArity += 1;
1808     } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
1809       oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
1810       mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
1811       stringStream st;
1812       java_lang_invoke_MethodType::print_signature(mhType, &st);
1813       mhName = st.as_string();
1814     }
1815     if (targetArity != -1 && targetArity != mhArity) {
1816       if (has_receiver && targetArity == mhArity-1)
1817         desc = " cannot be called without a receiver argument as ";
1818       else
1819         desc = " cannot be called with a different arity as ";
1820     }
1821     message = generate_class_cast_message(mhName, targetType,
1822                                           desc != NULL ? desc :
1823                                           " cannot be called as ");
1824   }
1825   if (TraceMethodHandles) {
1826     tty->print_cr("WrongMethodType => message=%s", message);
1827   }
1828   return message;
1829 }
1830 
1831 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1832                                                             oopDesc* required) {
1833   if (required == NULL)  return NULL;
1834   if (required->klass() == SystemDictionary::Class_klass())
1835     return required;
1836   if (required->is_klass())
1837     return Klass::cast(klassOop(required))->java_mirror();
1838   return NULL;
1839 }
1840 
1841 
1842 char* SharedRuntime::generate_class_cast_message(
1843     const char* objName, const char* targetKlassName, const char* desc) {
1844   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1845 
1846   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1847   if (NULL == message) {
1848     // Shouldn't happen, but don't cause even more problems if it does
1849     message = const_cast<char*>(objName);
1850   } else {
1851     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1852   }
1853   return message;
1854 }
1855 
1856 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1857   (void) JavaThread::current()->reguard_stack();
1858 JRT_END
1859 
1860 
1861 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1862 #ifndef PRODUCT
1863 int SharedRuntime::_monitor_enter_ctr=0;
1864 #endif
1865 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1866   oop obj(_obj);
1867 #ifndef PRODUCT
1868   _monitor_enter_ctr++;             // monitor enter slow
1869 #endif
1870   if (PrintBiasedLockingStatistics) {
1871     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1872   }
1873   Handle h_obj(THREAD, obj);
1874   if (UseBiasedLocking) {
1875     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1876     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1877   } else {
1878     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1879   }
1880   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1881 JRT_END
1882 
1883 #ifndef PRODUCT
1884 int SharedRuntime::_monitor_exit_ctr=0;
1885 #endif
1886 // Handles the uncommon cases of monitor unlocking in compiled code
1887 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1888    oop obj(_obj);
1889 #ifndef PRODUCT
1890   _monitor_exit_ctr++;              // monitor exit slow
1891 #endif
1892   Thread* THREAD = JavaThread::current();
1893   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1894   // testing was unable to ever fire the assert that guarded it so I have removed it.
1895   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1896 #undef MIGHT_HAVE_PENDING
1897 #ifdef MIGHT_HAVE_PENDING
1898   // Save and restore any pending_exception around the exception mark.
1899   // While the slow_exit must not throw an exception, we could come into
1900   // this routine with one set.
1901   oop pending_excep = NULL;
1902   const char* pending_file;
1903   int pending_line;
1904   if (HAS_PENDING_EXCEPTION) {
1905     pending_excep = PENDING_EXCEPTION;
1906     pending_file  = THREAD->exception_file();
1907     pending_line  = THREAD->exception_line();
1908     CLEAR_PENDING_EXCEPTION;
1909   }
1910 #endif /* MIGHT_HAVE_PENDING */
1911 
1912   {
1913     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1914     EXCEPTION_MARK;
1915     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1916   }
1917 
1918 #ifdef MIGHT_HAVE_PENDING
1919   if (pending_excep != NULL) {
1920     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1921   }
1922 #endif /* MIGHT_HAVE_PENDING */
1923 JRT_END
1924 
1925 #ifndef PRODUCT
1926 
1927 void SharedRuntime::print_statistics() {
1928   ttyLocker ttyl;
1929   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1930 
1931   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1932   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1933   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1934 
1935   SharedRuntime::print_ic_miss_histogram();
1936 
1937   if (CountRemovableExceptions) {
1938     if (_nof_removable_exceptions > 0) {
1939       Unimplemented(); // this counter is not yet incremented
1940       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1941     }
1942   }
1943 
1944   // Dump the JRT_ENTRY counters
1945   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1946   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1947   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1948   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1949   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1950   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1951   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1952 
1953   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1954   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1955   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1956   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1957   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1958 
1959   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1960   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1961   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1962   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1963   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1964   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1965   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1966   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1967   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1968   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1969   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1970   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1971   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1972   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1973   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1974   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1975 
1976   AdapterHandlerLibrary::print_statistics();
1977 
1978   if (xtty != NULL)  xtty->tail("statistics");
1979 }
1980 
1981 inline double percent(int x, int y) {
1982   return 100.0 * x / MAX2(y, 1);
1983 }
1984 
1985 class MethodArityHistogram {
1986  public:
1987   enum { MAX_ARITY = 256 };
1988  private:
1989   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1990   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1991   static int _max_arity;                      // max. arity seen
1992   static int _max_size;                       // max. arg size seen
1993 
1994   static void add_method_to_histogram(nmethod* nm) {
1995     methodOop m = nm->method();
1996     ArgumentCount args(m->signature());
1997     int arity   = args.size() + (m->is_static() ? 0 : 1);
1998     int argsize = m->size_of_parameters();
1999     arity   = MIN2(arity, MAX_ARITY-1);
2000     argsize = MIN2(argsize, MAX_ARITY-1);
2001     int count = nm->method()->compiled_invocation_count();
2002     _arity_histogram[arity]  += count;
2003     _size_histogram[argsize] += count;
2004     _max_arity = MAX2(_max_arity, arity);
2005     _max_size  = MAX2(_max_size, argsize);
2006   }
2007 
2008   void print_histogram_helper(int n, int* histo, const char* name) {
2009     const int N = MIN2(5, n);
2010     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2011     double sum = 0;
2012     double weighted_sum = 0;
2013     int i;
2014     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2015     double rest = sum;
2016     double percent = sum / 100;
2017     for (i = 0; i <= N; i++) {
2018       rest -= histo[i];
2019       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2020     }
2021     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2022     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2023   }
2024 
2025   void print_histogram() {
2026     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2027     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2028     tty->print_cr("\nSame for parameter size (in words):");
2029     print_histogram_helper(_max_size, _size_histogram, "size");
2030     tty->cr();
2031   }
2032 
2033  public:
2034   MethodArityHistogram() {
2035     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2036     _max_arity = _max_size = 0;
2037     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2038     CodeCache::nmethods_do(add_method_to_histogram);
2039     print_histogram();
2040   }
2041 };
2042 
2043 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2044 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2045 int MethodArityHistogram::_max_arity;
2046 int MethodArityHistogram::_max_size;
2047 
2048 void SharedRuntime::print_call_statistics(int comp_total) {
2049   tty->print_cr("Calls from compiled code:");
2050   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2051   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2052   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2053   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2054   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2055   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2056   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2057   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2058   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2059   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2060   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2061   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2062   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2063   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2064   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2065   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2066   tty->cr();
2067   tty->print_cr("Note 1: counter updates are not MT-safe.");
2068   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2069   tty->print_cr("        %% in nested categories are relative to their category");
2070   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2071   tty->cr();
2072 
2073   MethodArityHistogram h;
2074 }
2075 #endif
2076 
2077 
2078 // A simple wrapper class around the calling convention information
2079 // that allows sharing of adapters for the same calling convention.
2080 class AdapterFingerPrint : public CHeapObj {
2081  private:
2082   union {
2083     int  _compact[3];
2084     int* _fingerprint;
2085   } _value;
2086   int _length; // A negative length indicates the fingerprint is in the compact form,
2087                // Otherwise _value._fingerprint is the array.
2088 
2089   // Remap BasicTypes that are handled equivalently by the adapters.
2090   // These are correct for the current system but someday it might be
2091   // necessary to make this mapping platform dependent.
2092   static BasicType adapter_encoding(BasicType in) {
2093     assert((~0xf & in) == 0, "must fit in 4 bits");
2094     switch(in) {
2095       case T_BOOLEAN:
2096       case T_BYTE:
2097       case T_SHORT:
2098       case T_CHAR:
2099         // There are all promoted to T_INT in the calling convention
2100         return T_INT;
2101 
2102       case T_OBJECT:
2103       case T_ARRAY:
2104 #ifdef _LP64
2105         return T_LONG;
2106 #else
2107         return T_INT;
2108 #endif
2109 
2110       case T_INT:
2111       case T_LONG:
2112       case T_FLOAT:
2113       case T_DOUBLE:
2114       case T_VOID:
2115         return in;
2116 
2117       default:
2118         ShouldNotReachHere();
2119         return T_CONFLICT;
2120     }
2121   }
2122 
2123  public:
2124   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2125     // The fingerprint is based on the BasicType signature encoded
2126     // into an array of ints with four entries per int.
2127     int* ptr;
2128     int len = (total_args_passed + 3) >> 2;
2129     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
2130       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2131       // Storing the signature encoded as signed chars hits about 98%
2132       // of the time.
2133       _length = -len;
2134       ptr = _value._compact;
2135     } else {
2136       _length = len;
2137       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
2138       ptr = _value._fingerprint;
2139     }
2140 
2141     // Now pack the BasicTypes with 4 per int
2142     int sig_index = 0;
2143     for (int index = 0; index < len; index++) {
2144       int value = 0;
2145       for (int byte = 0; byte < 4; byte++) {
2146         if (sig_index < total_args_passed) {
2147           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
2148         }
2149       }
2150       ptr[index] = value;
2151     }
2152   }
2153 
2154   ~AdapterFingerPrint() {
2155     if (_length > 0) {
2156       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2157     }
2158   }
2159 
2160   int value(int index) {
2161     if (_length < 0) {
2162       return _value._compact[index];
2163     }
2164     return _value._fingerprint[index];
2165   }
2166   int length() {
2167     if (_length < 0) return -_length;
2168     return _length;
2169   }
2170 
2171   bool is_compact() {
2172     return _length <= 0;
2173   }
2174 
2175   unsigned int compute_hash() {
2176     int hash = 0;
2177     for (int i = 0; i < length(); i++) {
2178       int v = value(i);
2179       hash = (hash << 8) ^ v ^ (hash >> 5);
2180     }
2181     return (unsigned int)hash;
2182   }
2183 
2184   const char* as_string() {
2185     stringStream st;
2186     for (int i = 0; i < length(); i++) {
2187       st.print(PTR_FORMAT, value(i));
2188     }
2189     return st.as_string();
2190   }
2191 
2192   bool equals(AdapterFingerPrint* other) {
2193     if (other->_length != _length) {
2194       return false;
2195     }
2196     if (_length < 0) {
2197       return _value._compact[0] == other->_value._compact[0] &&
2198              _value._compact[1] == other->_value._compact[1] &&
2199              _value._compact[2] == other->_value._compact[2];
2200     } else {
2201       for (int i = 0; i < _length; i++) {
2202         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2203           return false;
2204         }
2205       }
2206     }
2207     return true;
2208   }
2209 };
2210 
2211 
2212 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2213 class AdapterHandlerTable : public BasicHashtable {
2214   friend class AdapterHandlerTableIterator;
2215 
2216  private:
2217 
2218 #ifndef PRODUCT
2219   static int _lookups; // number of calls to lookup
2220   static int _buckets; // number of buckets checked
2221   static int _equals;  // number of buckets checked with matching hash
2222   static int _hits;    // number of successful lookups
2223   static int _compact; // number of equals calls with compact signature
2224 #endif
2225 
2226   AdapterHandlerEntry* bucket(int i) {
2227     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
2228   }
2229 
2230  public:
2231   AdapterHandlerTable()
2232     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
2233 
2234   // Create a new entry suitable for insertion in the table
2235   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2236     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
2237     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2238     return entry;
2239   }
2240 
2241   // Insert an entry into the table
2242   void add(AdapterHandlerEntry* entry) {
2243     int index = hash_to_index(entry->hash());
2244     add_entry(index, entry);
2245   }
2246 
2247   void free_entry(AdapterHandlerEntry* entry) {
2248     entry->deallocate();
2249     BasicHashtable::free_entry(entry);
2250   }
2251 
2252   // Find a entry with the same fingerprint if it exists
2253   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2254     NOT_PRODUCT(_lookups++);
2255     AdapterFingerPrint fp(total_args_passed, sig_bt);
2256     unsigned int hash = fp.compute_hash();
2257     int index = hash_to_index(hash);
2258     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2259       NOT_PRODUCT(_buckets++);
2260       if (e->hash() == hash) {
2261         NOT_PRODUCT(_equals++);
2262         if (fp.equals(e->fingerprint())) {
2263 #ifndef PRODUCT
2264           if (fp.is_compact()) _compact++;
2265           _hits++;
2266 #endif
2267           return e;
2268         }
2269       }
2270     }
2271     return NULL;
2272   }
2273 
2274 #ifndef PRODUCT
2275   void print_statistics() {
2276     ResourceMark rm;
2277     int longest = 0;
2278     int empty = 0;
2279     int total = 0;
2280     int nonempty = 0;
2281     for (int index = 0; index < table_size(); index++) {
2282       int count = 0;
2283       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2284         count++;
2285       }
2286       if (count != 0) nonempty++;
2287       if (count == 0) empty++;
2288       if (count > longest) longest = count;
2289       total += count;
2290     }
2291     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2292                   empty, longest, total, total / (double)nonempty);
2293     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2294                   _lookups, _buckets, _equals, _hits, _compact);
2295   }
2296 #endif
2297 };
2298 
2299 
2300 #ifndef PRODUCT
2301 
2302 int AdapterHandlerTable::_lookups;
2303 int AdapterHandlerTable::_buckets;
2304 int AdapterHandlerTable::_equals;
2305 int AdapterHandlerTable::_hits;
2306 int AdapterHandlerTable::_compact;
2307 
2308 #endif
2309 
2310 class AdapterHandlerTableIterator : public StackObj {
2311  private:
2312   AdapterHandlerTable* _table;
2313   int _index;
2314   AdapterHandlerEntry* _current;
2315 
2316   void scan() {
2317     while (_index < _table->table_size()) {
2318       AdapterHandlerEntry* a = _table->bucket(_index);
2319       _index++;
2320       if (a != NULL) {
2321         _current = a;
2322         return;
2323       }
2324     }
2325   }
2326 
2327  public:
2328   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2329     scan();
2330   }
2331   bool has_next() {
2332     return _current != NULL;
2333   }
2334   AdapterHandlerEntry* next() {
2335     if (_current != NULL) {
2336       AdapterHandlerEntry* result = _current;
2337       _current = _current->next();
2338       if (_current == NULL) scan();
2339       return result;
2340     } else {
2341       return NULL;
2342     }
2343   }
2344 };
2345 
2346 
2347 // ---------------------------------------------------------------------------
2348 // Implementation of AdapterHandlerLibrary
2349 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2350 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2351 const int AdapterHandlerLibrary_size = 16*K;
2352 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2353 
2354 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2355   // Should be called only when AdapterHandlerLibrary_lock is active.
2356   if (_buffer == NULL) // Initialize lazily
2357       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2358   return _buffer;
2359 }
2360 
2361 void AdapterHandlerLibrary::initialize() {
2362   if (_adapters != NULL) return;
2363   _adapters = new AdapterHandlerTable();
2364 
2365   // Create a special handler for abstract methods.  Abstract methods
2366   // are never compiled so an i2c entry is somewhat meaningless, but
2367   // fill it in with something appropriate just in case.  Pass handle
2368   // wrong method for the c2i transitions.
2369   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2370   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2371                                                               StubRoutines::throw_AbstractMethodError_entry(),
2372                                                               wrong_method, wrong_method);
2373 }
2374 
2375 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2376                                                       address i2c_entry,
2377                                                       address c2i_entry,
2378                                                       address c2i_unverified_entry) {
2379   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2380 }
2381 
2382 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2383   // Use customized signature handler.  Need to lock around updates to
2384   // the AdapterHandlerTable (it is not safe for concurrent readers
2385   // and a single writer: this could be fixed if it becomes a
2386   // problem).
2387 
2388   // Get the address of the ic_miss handlers before we grab the
2389   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2390   // was caused by the initialization of the stubs happening
2391   // while we held the lock and then notifying jvmti while
2392   // holding it. This just forces the initialization to be a little
2393   // earlier.
2394   address ic_miss = SharedRuntime::get_ic_miss_stub();
2395   assert(ic_miss != NULL, "must have handler");
2396 
2397   ResourceMark rm;
2398 
2399   NOT_PRODUCT(int insts_size);
2400   AdapterBlob* B = NULL;
2401   AdapterHandlerEntry* entry = NULL;
2402   AdapterFingerPrint* fingerprint = NULL;
2403   {
2404     MutexLocker mu(AdapterHandlerLibrary_lock);
2405     // make sure data structure is initialized
2406     initialize();
2407 
2408     if (method->is_abstract()) {
2409       return _abstract_method_handler;
2410     }
2411 
2412     // Fill in the signature array, for the calling-convention call.
2413     int total_args_passed = method->size_of_parameters(); // All args on stack
2414 
2415     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2416     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2417     int i = 0;
2418     if (!method->is_static())  // Pass in receiver first
2419       sig_bt[i++] = T_OBJECT;
2420     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2421       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2422       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2423         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2424     }
2425     assert(i == total_args_passed, "");
2426 
2427     // Lookup method signature's fingerprint
2428     entry = _adapters->lookup(total_args_passed, sig_bt);
2429 
2430 #ifdef ASSERT
2431     AdapterHandlerEntry* shared_entry = NULL;
2432     if (VerifyAdapterSharing && entry != NULL) {
2433       shared_entry = entry;
2434       entry = NULL;
2435     }
2436 #endif
2437 
2438     if (entry != NULL) {
2439       return entry;
2440     }
2441 
2442     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2443     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2444 
2445     // Make a C heap allocated version of the fingerprint to store in the adapter
2446     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2447 
2448     // Create I2C & C2I handlers
2449 
2450     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2451     if (buf != NULL) {
2452       CodeBuffer buffer(buf);
2453       short buffer_locs[20];
2454       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2455                                              sizeof(buffer_locs)/sizeof(relocInfo));
2456       MacroAssembler _masm(&buffer);
2457 
2458       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2459                                                      total_args_passed,
2460                                                      comp_args_on_stack,
2461                                                      sig_bt,
2462                                                      regs,
2463                                                      fingerprint);
2464 
2465 #ifdef ASSERT
2466       if (VerifyAdapterSharing) {
2467         if (shared_entry != NULL) {
2468           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2469                  "code must match");
2470           // Release the one just created and return the original
2471           _adapters->free_entry(entry);
2472           return shared_entry;
2473         } else  {
2474           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2475         }
2476       }
2477 #endif
2478 
2479       B = AdapterBlob::create(&buffer);
2480       NOT_PRODUCT(insts_size = buffer.insts_size());
2481     }
2482     if (B == NULL) {
2483       // CodeCache is full, disable compilation
2484       // Ought to log this but compile log is only per compile thread
2485       // and we're some non descript Java thread.
2486       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2487       CompileBroker::handle_full_code_cache();
2488       return NULL; // Out of CodeCache space
2489     }
2490     entry->relocate(B->content_begin());
2491 #ifndef PRODUCT
2492     // debugging suppport
2493     if (PrintAdapterHandlers) {
2494       tty->cr();
2495       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2496                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2497                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
2498       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2499       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
2500     }
2501 #endif
2502 
2503     _adapters->add(entry);
2504   }
2505   // Outside of the lock
2506   if (B != NULL) {
2507     char blob_id[256];
2508     jio_snprintf(blob_id,
2509                  sizeof(blob_id),
2510                  "%s(%s)@" PTR_FORMAT,
2511                  B->name(),
2512                  fingerprint->as_string(),
2513                  B->content_begin());
2514     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2515 
2516     if (JvmtiExport::should_post_dynamic_code_generated()) {
2517       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2518     }
2519   }
2520   return entry;
2521 }
2522 
2523 void AdapterHandlerEntry::relocate(address new_base) {
2524     ptrdiff_t delta = new_base - _i2c_entry;
2525     _i2c_entry += delta;
2526     _c2i_entry += delta;
2527     _c2i_unverified_entry += delta;
2528 }
2529 
2530 
2531 void AdapterHandlerEntry::deallocate() {
2532   delete _fingerprint;
2533 #ifdef ASSERT
2534   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2535   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
2536 #endif
2537 }
2538 
2539 
2540 #ifdef ASSERT
2541 // Capture the code before relocation so that it can be compared
2542 // against other versions.  If the code is captured after relocation
2543 // then relative instructions won't be equivalent.
2544 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2545   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
2546   _code_length = length;
2547   memcpy(_saved_code, buffer, length);
2548   _total_args_passed = total_args_passed;
2549   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
2550   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2551 }
2552 
2553 
2554 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2555   if (length != _code_length) {
2556     return false;
2557   }
2558   for (int i = 0; i < length; i++) {
2559     if (buffer[i] != _saved_code[i]) {
2560       return false;
2561     }
2562   }
2563   return true;
2564 }
2565 #endif
2566 
2567 
2568 // Create a native wrapper for this native method.  The wrapper converts the
2569 // java compiled calling convention to the native convention, handlizes
2570 // arguments, and transitions to native.  On return from the native we transition
2571 // back to java blocking if a safepoint is in progress.
2572 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2573   ResourceMark rm;
2574   nmethod* nm = NULL;
2575 
2576   assert(method->has_native_function(), "must have something valid to call!");
2577 
2578   {
2579     // perform the work while holding the lock, but perform any printing outside the lock
2580     MutexLocker mu(AdapterHandlerLibrary_lock);
2581     // See if somebody beat us to it
2582     nm = method->code();
2583     if (nm) {
2584       return nm;
2585     }
2586 
2587     ResourceMark rm;
2588 
2589     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2590     if (buf != NULL) {
2591       CodeBuffer buffer(buf);
2592       double locs_buf[20];
2593       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2594       MacroAssembler _masm(&buffer);
2595 
2596       // Fill in the signature array, for the calling-convention call.
2597       int total_args_passed = method->size_of_parameters();
2598 
2599       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2600       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2601       int i=0;
2602       if( !method->is_static() )  // Pass in receiver first
2603         sig_bt[i++] = T_OBJECT;
2604       SignatureStream ss(method->signature());
2605       for( ; !ss.at_return_type(); ss.next()) {
2606         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2607         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2608           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2609       }
2610       assert( i==total_args_passed, "" );
2611       BasicType ret_type = ss.type();
2612 
2613       // Now get the compiled-Java layout as input arguments
2614       int comp_args_on_stack;
2615       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2616 
2617       // Generate the compiled-to-native wrapper code
2618       nm = SharedRuntime::generate_native_wrapper(&_masm,
2619                                                   method,
2620                                                   compile_id,
2621                                                   total_args_passed,
2622                                                   comp_args_on_stack,
2623                                                   sig_bt,regs,
2624                                                   ret_type);
2625     }
2626   }
2627 
2628   // Must unlock before calling set_code
2629 
2630   // Install the generated code.
2631   if (nm != NULL) {
2632     if (PrintCompilation) {
2633       ttyLocker ttyl;
2634       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2635     }
2636     method->set_code(method, nm);
2637     nm->post_compiled_method_load_event();
2638   } else {
2639     // CodeCache is full, disable compilation
2640     CompileBroker::handle_full_code_cache();
2641   }
2642   return nm;
2643 }
2644 
2645 #ifdef HAVE_DTRACE_H
2646 // Create a dtrace nmethod for this method.  The wrapper converts the
2647 // java compiled calling convention to the native convention, makes a dummy call
2648 // (actually nops for the size of the call instruction, which become a trap if
2649 // probe is enabled). The returns to the caller. Since this all looks like a
2650 // leaf no thread transition is needed.
2651 
2652 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2653   ResourceMark rm;
2654   nmethod* nm = NULL;
2655 
2656   if (PrintCompilation) {
2657     ttyLocker ttyl;
2658     tty->print("---   n%s  ");
2659     method->print_short_name(tty);
2660     if (method->is_static()) {
2661       tty->print(" (static)");
2662     }
2663     tty->cr();
2664   }
2665 
2666   {
2667     // perform the work while holding the lock, but perform any printing
2668     // outside the lock
2669     MutexLocker mu(AdapterHandlerLibrary_lock);
2670     // See if somebody beat us to it
2671     nm = method->code();
2672     if (nm) {
2673       return nm;
2674     }
2675 
2676     ResourceMark rm;
2677 
2678     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2679     if (buf != NULL) {
2680       CodeBuffer buffer(buf);
2681       // Need a few relocation entries
2682       double locs_buf[20];
2683       buffer.insts()->initialize_shared_locs(
2684         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2685       MacroAssembler _masm(&buffer);
2686 
2687       // Generate the compiled-to-native wrapper code
2688       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2689     }
2690   }
2691   return nm;
2692 }
2693 
2694 // the dtrace method needs to convert java lang string to utf8 string.
2695 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2696   typeArrayOop jlsValue  = java_lang_String::value(src);
2697   int          jlsOffset = java_lang_String::offset(src);
2698   int          jlsLen    = java_lang_String::length(src);
2699   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2700                                            jlsValue->char_at_addr(jlsOffset);
2701   assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2702   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2703 }
2704 #endif // ndef HAVE_DTRACE_H
2705 
2706 // -------------------------------------------------------------------------
2707 // Java-Java calling convention
2708 // (what you use when Java calls Java)
2709 
2710 //------------------------------name_for_receiver----------------------------------
2711 // For a given signature, return the VMReg for parameter 0.
2712 VMReg SharedRuntime::name_for_receiver() {
2713   VMRegPair regs;
2714   BasicType sig_bt = T_OBJECT;
2715   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2716   // Return argument 0 register.  In the LP64 build pointers
2717   // take 2 registers, but the VM wants only the 'main' name.
2718   return regs.first();
2719 }
2720 
2721 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
2722   // This method is returning a data structure allocating as a
2723   // ResourceObject, so do not put any ResourceMarks in here.
2724   char *s = sig->as_C_string();
2725   int len = (int)strlen(s);
2726   *s++; len--;                  // Skip opening paren
2727   char *t = s+len;
2728   while( *(--t) != ')' ) ;      // Find close paren
2729 
2730   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2731   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2732   int cnt = 0;
2733   if (has_receiver) {
2734     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2735   }
2736 
2737   while( s < t ) {
2738     switch( *s++ ) {            // Switch on signature character
2739     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2740     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2741     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2742     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2743     case 'I': sig_bt[cnt++] = T_INT;     break;
2744     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2745     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2746     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2747     case 'V': sig_bt[cnt++] = T_VOID;    break;
2748     case 'L':                   // Oop
2749       while( *s++ != ';'  ) ;   // Skip signature
2750       sig_bt[cnt++] = T_OBJECT;
2751       break;
2752     case '[': {                 // Array
2753       do {                      // Skip optional size
2754         while( *s >= '0' && *s <= '9' ) s++;
2755       } while( *s++ == '[' );   // Nested arrays?
2756       // Skip element type
2757       if( s[-1] == 'L' )
2758         while( *s++ != ';'  ) ; // Skip signature
2759       sig_bt[cnt++] = T_ARRAY;
2760       break;
2761     }
2762     default : ShouldNotReachHere();
2763     }
2764   }
2765   assert( cnt < 256, "grow table size" );
2766 
2767   int comp_args_on_stack;
2768   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2769 
2770   // the calling convention doesn't count out_preserve_stack_slots so
2771   // we must add that in to get "true" stack offsets.
2772 
2773   if (comp_args_on_stack) {
2774     for (int i = 0; i < cnt; i++) {
2775       VMReg reg1 = regs[i].first();
2776       if( reg1->is_stack()) {
2777         // Yuck
2778         reg1 = reg1->bias(out_preserve_stack_slots());
2779       }
2780       VMReg reg2 = regs[i].second();
2781       if( reg2->is_stack()) {
2782         // Yuck
2783         reg2 = reg2->bias(out_preserve_stack_slots());
2784       }
2785       regs[i].set_pair(reg2, reg1);
2786     }
2787   }
2788 
2789   // results
2790   *arg_size = cnt;
2791   return regs;
2792 }
2793 
2794 // OSR Migration Code
2795 //
2796 // This code is used convert interpreter frames into compiled frames.  It is
2797 // called from very start of a compiled OSR nmethod.  A temp array is
2798 // allocated to hold the interesting bits of the interpreter frame.  All
2799 // active locks are inflated to allow them to move.  The displaced headers and
2800 // active interpeter locals are copied into the temp buffer.  Then we return
2801 // back to the compiled code.  The compiled code then pops the current
2802 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2803 // copies the interpreter locals and displaced headers where it wants.
2804 // Finally it calls back to free the temp buffer.
2805 //
2806 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2807 
2808 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2809 
2810 #ifdef IA64
2811   ShouldNotReachHere(); // NYI
2812 #endif /* IA64 */
2813 
2814   //
2815   // This code is dependent on the memory layout of the interpreter local
2816   // array and the monitors. On all of our platforms the layout is identical
2817   // so this code is shared. If some platform lays the their arrays out
2818   // differently then this code could move to platform specific code or
2819   // the code here could be modified to copy items one at a time using
2820   // frame accessor methods and be platform independent.
2821 
2822   frame fr = thread->last_frame();
2823   assert( fr.is_interpreted_frame(), "" );
2824   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2825 
2826   // Figure out how many monitors are active.
2827   int active_monitor_count = 0;
2828   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2829        kptr < fr.interpreter_frame_monitor_begin();
2830        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2831     if( kptr->obj() != NULL ) active_monitor_count++;
2832   }
2833 
2834   // QQQ we could place number of active monitors in the array so that compiled code
2835   // could double check it.
2836 
2837   methodOop moop = fr.interpreter_frame_method();
2838   int max_locals = moop->max_locals();
2839   // Allocate temp buffer, 1 word per local & 2 per active monitor
2840   int buf_size_words = max_locals + active_monitor_count*2;
2841   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2842 
2843   // Copy the locals.  Order is preserved so that loading of longs works.
2844   // Since there's no GC I can copy the oops blindly.
2845   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2846   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2847                        (HeapWord*)&buf[0],
2848                        max_locals);
2849 
2850   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2851   int i = max_locals;
2852   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2853        kptr2 < fr.interpreter_frame_monitor_begin();
2854        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2855     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2856       BasicLock *lock = kptr2->lock();
2857       // Inflate so the displaced header becomes position-independent
2858       if (lock->displaced_header()->is_unlocked())
2859         ObjectSynchronizer::inflate_helper(kptr2->obj());
2860       // Now the displaced header is free to move
2861       buf[i++] = (intptr_t)lock->displaced_header();
2862       buf[i++] = (intptr_t)kptr2->obj();
2863     }
2864   }
2865   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2866 
2867   return buf;
2868 JRT_END
2869 
2870 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2871   FREE_C_HEAP_ARRAY(intptr_t,buf);
2872 JRT_END
2873 
2874 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2875   AdapterHandlerTableIterator iter(_adapters);
2876   while (iter.has_next()) {
2877     AdapterHandlerEntry* a = iter.next();
2878     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2879   }
2880   return false;
2881 }
2882 
2883 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2884   AdapterHandlerTableIterator iter(_adapters);
2885   while (iter.has_next()) {
2886     AdapterHandlerEntry* a = iter.next();
2887     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2888       st->print("Adapter for signature: ");
2889       st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2890                    a->fingerprint()->as_string(),
2891                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2892 
2893       return;
2894     }
2895   }
2896   assert(false, "Should have found handler");
2897 }
2898 
2899 #ifndef PRODUCT
2900 
2901 void AdapterHandlerLibrary::print_statistics() {
2902   _adapters->print_statistics();
2903 }
2904 
2905 #endif /* PRODUCT */