1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/exceptionHandlerTable.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/block.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/callGenerator.hpp"
  36 #include "opto/callnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/chaitin.hpp"
  39 #include "opto/compile.hpp"
  40 #include "opto/connode.hpp"
  41 #include "opto/divnode.hpp"
  42 #include "opto/escape.hpp"
  43 #include "opto/idealGraphPrinter.hpp"
  44 #include "opto/loopnode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/macro.hpp"
  47 #include "opto/matcher.hpp"
  48 #include "opto/memnode.hpp"
  49 #include "opto/mulnode.hpp"
  50 #include "opto/node.hpp"
  51 #include "opto/opcodes.hpp"
  52 #include "opto/output.hpp"
  53 #include "opto/parse.hpp"
  54 #include "opto/phaseX.hpp"
  55 #include "opto/rootnode.hpp"
  56 #include "opto/runtime.hpp"
  57 #include "opto/stringopts.hpp"
  58 #include "opto/type.hpp"
  59 #include "opto/vectornode.hpp"
  60 #include "runtime/arguments.hpp"
  61 #include "runtime/signature.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "utilities/copy.hpp"
  65 #ifdef TARGET_ARCH_MODEL_x86_32
  66 # include "adfiles/ad_x86_32.hpp"
  67 #endif
  68 #ifdef TARGET_ARCH_MODEL_x86_64
  69 # include "adfiles/ad_x86_64.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_MODEL_sparc
  72 # include "adfiles/ad_sparc.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_zero
  75 # include "adfiles/ad_zero.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_arm
  78 # include "adfiles/ad_arm.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_ppc
  81 # include "adfiles/ad_ppc.hpp"
  82 #endif
  83 
  84 
  85 // -------------------- Compile::mach_constant_base_node -----------------------
  86 // Constant table base node singleton.
  87 MachConstantBaseNode* Compile::mach_constant_base_node() {
  88   if (_mach_constant_base_node == NULL) {
  89     _mach_constant_base_node = new (C) MachConstantBaseNode();
  90     _mach_constant_base_node->add_req(C->root());
  91   }
  92   return _mach_constant_base_node;
  93 }
  94 
  95 
  96 /// Support for intrinsics.
  97 
  98 // Return the index at which m must be inserted (or already exists).
  99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 100 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 101 #ifdef ASSERT
 102   for (int i = 1; i < _intrinsics->length(); i++) {
 103     CallGenerator* cg1 = _intrinsics->at(i-1);
 104     CallGenerator* cg2 = _intrinsics->at(i);
 105     assert(cg1->method() != cg2->method()
 106            ? cg1->method()     < cg2->method()
 107            : cg1->is_virtual() < cg2->is_virtual(),
 108            "compiler intrinsics list must stay sorted");
 109   }
 110 #endif
 111   // Binary search sorted list, in decreasing intervals [lo, hi].
 112   int lo = 0, hi = _intrinsics->length()-1;
 113   while (lo <= hi) {
 114     int mid = (uint)(hi + lo) / 2;
 115     ciMethod* mid_m = _intrinsics->at(mid)->method();
 116     if (m < mid_m) {
 117       hi = mid-1;
 118     } else if (m > mid_m) {
 119       lo = mid+1;
 120     } else {
 121       // look at minor sort key
 122       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 123       if (is_virtual < mid_virt) {
 124         hi = mid-1;
 125       } else if (is_virtual > mid_virt) {
 126         lo = mid+1;
 127       } else {
 128         return mid;  // exact match
 129       }
 130     }
 131   }
 132   return lo;  // inexact match
 133 }
 134 
 135 void Compile::register_intrinsic(CallGenerator* cg) {
 136   if (_intrinsics == NULL) {
 137     _intrinsics = new GrowableArray<CallGenerator*>(60);
 138   }
 139   // This code is stolen from ciObjectFactory::insert.
 140   // Really, GrowableArray should have methods for
 141   // insert_at, remove_at, and binary_search.
 142   int len = _intrinsics->length();
 143   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 144   if (index == len) {
 145     _intrinsics->append(cg);
 146   } else {
 147 #ifdef ASSERT
 148     CallGenerator* oldcg = _intrinsics->at(index);
 149     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 150 #endif
 151     _intrinsics->append(_intrinsics->at(len-1));
 152     int pos;
 153     for (pos = len-2; pos >= index; pos--) {
 154       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 155     }
 156     _intrinsics->at_put(index, cg);
 157   }
 158   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 159 }
 160 
 161 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 162   assert(m->is_loaded(), "don't try this on unloaded methods");
 163   if (_intrinsics != NULL) {
 164     int index = intrinsic_insertion_index(m, is_virtual);
 165     if (index < _intrinsics->length()
 166         && _intrinsics->at(index)->method() == m
 167         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 168       return _intrinsics->at(index);
 169     }
 170   }
 171   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 172   if (m->intrinsic_id() != vmIntrinsics::_none &&
 173       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 174     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 175     if (cg != NULL) {
 176       // Save it for next time:
 177       register_intrinsic(cg);
 178       return cg;
 179     } else {
 180       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 181     }
 182   }
 183   return NULL;
 184 }
 185 
 186 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 187 // in library_call.cpp.
 188 
 189 
 190 #ifndef PRODUCT
 191 // statistics gathering...
 192 
 193 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 194 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 195 
 196 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 197   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 198   int oflags = _intrinsic_hist_flags[id];
 199   assert(flags != 0, "what happened?");
 200   if (is_virtual) {
 201     flags |= _intrinsic_virtual;
 202   }
 203   bool changed = (flags != oflags);
 204   if ((flags & _intrinsic_worked) != 0) {
 205     juint count = (_intrinsic_hist_count[id] += 1);
 206     if (count == 1) {
 207       changed = true;           // first time
 208     }
 209     // increment the overall count also:
 210     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 211   }
 212   if (changed) {
 213     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 214       // Something changed about the intrinsic's virtuality.
 215       if ((flags & _intrinsic_virtual) != 0) {
 216         // This is the first use of this intrinsic as a virtual call.
 217         if (oflags != 0) {
 218           // We already saw it as a non-virtual, so note both cases.
 219           flags |= _intrinsic_both;
 220         }
 221       } else if ((oflags & _intrinsic_both) == 0) {
 222         // This is the first use of this intrinsic as a non-virtual
 223         flags |= _intrinsic_both;
 224       }
 225     }
 226     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 227   }
 228   // update the overall flags also:
 229   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 230   return changed;
 231 }
 232 
 233 static char* format_flags(int flags, char* buf) {
 234   buf[0] = 0;
 235   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 236   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 237   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 238   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 239   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 240   if (buf[0] == 0)  strcat(buf, ",");
 241   assert(buf[0] == ',', "must be");
 242   return &buf[1];
 243 }
 244 
 245 void Compile::print_intrinsic_statistics() {
 246   char flagsbuf[100];
 247   ttyLocker ttyl;
 248   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 249   tty->print_cr("Compiler intrinsic usage:");
 250   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 251   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 252   #define PRINT_STAT_LINE(name, c, f) \
 253     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 254   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 255     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 256     int   flags = _intrinsic_hist_flags[id];
 257     juint count = _intrinsic_hist_count[id];
 258     if ((flags | count) != 0) {
 259       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 260     }
 261   }
 262   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 263   if (xtty != NULL)  xtty->tail("statistics");
 264 }
 265 
 266 void Compile::print_statistics() {
 267   { ttyLocker ttyl;
 268     if (xtty != NULL)  xtty->head("statistics type='opto'");
 269     Parse::print_statistics();
 270     PhaseCCP::print_statistics();
 271     PhaseRegAlloc::print_statistics();
 272     Scheduling::print_statistics();
 273     PhasePeephole::print_statistics();
 274     PhaseIdealLoop::print_statistics();
 275     if (xtty != NULL)  xtty->tail("statistics");
 276   }
 277   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 278     // put this under its own <statistics> element.
 279     print_intrinsic_statistics();
 280   }
 281 }
 282 #endif //PRODUCT
 283 
 284 // Support for bundling info
 285 Bundle* Compile::node_bundling(const Node *n) {
 286   assert(valid_bundle_info(n), "oob");
 287   return &_node_bundling_base[n->_idx];
 288 }
 289 
 290 bool Compile::valid_bundle_info(const Node *n) {
 291   return (_node_bundling_limit > n->_idx);
 292 }
 293 
 294 
 295 void Compile::gvn_replace_by(Node* n, Node* nn) {
 296   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 297     Node* use = n->last_out(i);
 298     bool is_in_table = initial_gvn()->hash_delete(use);
 299     uint uses_found = 0;
 300     for (uint j = 0; j < use->len(); j++) {
 301       if (use->in(j) == n) {
 302         if (j < use->req())
 303           use->set_req(j, nn);
 304         else
 305           use->set_prec(j, nn);
 306         uses_found++;
 307       }
 308     }
 309     if (is_in_table) {
 310       // reinsert into table
 311       initial_gvn()->hash_find_insert(use);
 312     }
 313     record_for_igvn(use);
 314     i -= uses_found;    // we deleted 1 or more copies of this edge
 315   }
 316 }
 317 
 318 
 319 
 320 
 321 // Identify all nodes that are reachable from below, useful.
 322 // Use breadth-first pass that records state in a Unique_Node_List,
 323 // recursive traversal is slower.
 324 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 325   int estimated_worklist_size = unique();
 326   useful.map( estimated_worklist_size, NULL );  // preallocate space
 327 
 328   // Initialize worklist
 329   if (root() != NULL)     { useful.push(root()); }
 330   // If 'top' is cached, declare it useful to preserve cached node
 331   if( cached_top_node() ) { useful.push(cached_top_node()); }
 332 
 333   // Push all useful nodes onto the list, breadthfirst
 334   for( uint next = 0; next < useful.size(); ++next ) {
 335     assert( next < unique(), "Unique useful nodes < total nodes");
 336     Node *n  = useful.at(next);
 337     uint max = n->len();
 338     for( uint i = 0; i < max; ++i ) {
 339       Node *m = n->in(i);
 340       if( m == NULL ) continue;
 341       useful.push(m);
 342     }
 343   }
 344 }
 345 
 346 // Disconnect all useless nodes by disconnecting those at the boundary.
 347 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 348   uint next = 0;
 349   while( next < useful.size() ) {
 350     Node *n = useful.at(next++);
 351     // Use raw traversal of out edges since this code removes out edges
 352     int max = n->outcnt();
 353     for (int j = 0; j < max; ++j ) {
 354       Node* child = n->raw_out(j);
 355       if( ! useful.member(child) ) {
 356         assert( !child->is_top() || child != top(),
 357                 "If top is cached in Compile object it is in useful list");
 358         // Only need to remove this out-edge to the useless node
 359         n->raw_del_out(j);
 360         --j;
 361         --max;
 362       }
 363     }
 364     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 365       record_for_igvn( n->unique_out() );
 366     }
 367   }
 368   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 369 }
 370 
 371 //------------------------------frame_size_in_words-----------------------------
 372 // frame_slots in units of words
 373 int Compile::frame_size_in_words() const {
 374   // shift is 0 in LP32 and 1 in LP64
 375   const int shift = (LogBytesPerWord - LogBytesPerInt);
 376   int words = _frame_slots >> shift;
 377   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 378   return words;
 379 }
 380 
 381 // ============================================================================
 382 //------------------------------CompileWrapper---------------------------------
 383 class CompileWrapper : public StackObj {
 384   Compile *const _compile;
 385  public:
 386   CompileWrapper(Compile* compile);
 387 
 388   ~CompileWrapper();
 389 };
 390 
 391 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 392   // the Compile* pointer is stored in the current ciEnv:
 393   ciEnv* env = compile->env();
 394   assert(env == ciEnv::current(), "must already be a ciEnv active");
 395   assert(env->compiler_data() == NULL, "compile already active?");
 396   env->set_compiler_data(compile);
 397   assert(compile == Compile::current(), "sanity");
 398 
 399   compile->set_type_dict(NULL);
 400   compile->set_type_hwm(NULL);
 401   compile->set_type_last_size(0);
 402   compile->set_last_tf(NULL, NULL);
 403   compile->set_indexSet_arena(NULL);
 404   compile->set_indexSet_free_block_list(NULL);
 405   compile->init_type_arena();
 406   Type::Initialize(compile);
 407   _compile->set_scratch_buffer_blob(NULL);
 408   _compile->begin_method();
 409 }
 410 CompileWrapper::~CompileWrapper() {
 411   _compile->end_method();
 412   if (_compile->scratch_buffer_blob() != NULL)
 413     BufferBlob::free(_compile->scratch_buffer_blob());
 414   _compile->env()->set_compiler_data(NULL);
 415 }
 416 
 417 
 418 //----------------------------print_compile_messages---------------------------
 419 void Compile::print_compile_messages() {
 420 #ifndef PRODUCT
 421   // Check if recompiling
 422   if (_subsume_loads == false && PrintOpto) {
 423     // Recompiling without allowing machine instructions to subsume loads
 424     tty->print_cr("*********************************************************");
 425     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 426     tty->print_cr("*********************************************************");
 427   }
 428   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 429     // Recompiling without escape analysis
 430     tty->print_cr("*********************************************************");
 431     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 432     tty->print_cr("*********************************************************");
 433   }
 434   if (env()->break_at_compile()) {
 435     // Open the debugger when compiling this method.
 436     tty->print("### Breaking when compiling: ");
 437     method()->print_short_name();
 438     tty->cr();
 439     BREAKPOINT;
 440   }
 441 
 442   if( PrintOpto ) {
 443     if (is_osr_compilation()) {
 444       tty->print("[OSR]%3d", _compile_id);
 445     } else {
 446       tty->print("%3d", _compile_id);
 447     }
 448   }
 449 #endif
 450 }
 451 
 452 
 453 //-----------------------init_scratch_buffer_blob------------------------------
 454 // Construct a temporary BufferBlob and cache it for this compile.
 455 void Compile::init_scratch_buffer_blob(int const_size) {
 456   // If there is already a scratch buffer blob allocated and the
 457   // constant section is big enough, use it.  Otherwise free the
 458   // current and allocate a new one.
 459   BufferBlob* blob = scratch_buffer_blob();
 460   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 461     // Use the current blob.
 462   } else {
 463     if (blob != NULL) {
 464       BufferBlob::free(blob);
 465     }
 466 
 467     ResourceMark rm;
 468     _scratch_const_size = const_size;
 469     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 470     blob = BufferBlob::create("Compile::scratch_buffer", size);
 471     // Record the buffer blob for next time.
 472     set_scratch_buffer_blob(blob);
 473     // Have we run out of code space?
 474     if (scratch_buffer_blob() == NULL) {
 475       // Let CompilerBroker disable further compilations.
 476       record_failure("Not enough space for scratch buffer in CodeCache");
 477       return;
 478     }
 479   }
 480 
 481   // Initialize the relocation buffers
 482   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 483   set_scratch_locs_memory(locs_buf);
 484 }
 485 
 486 
 487 //-----------------------scratch_emit_size-------------------------------------
 488 // Helper function that computes size by emitting code
 489 uint Compile::scratch_emit_size(const Node* n) {
 490   // Start scratch_emit_size section.
 491   set_in_scratch_emit_size(true);
 492 
 493   // Emit into a trash buffer and count bytes emitted.
 494   // This is a pretty expensive way to compute a size,
 495   // but it works well enough if seldom used.
 496   // All common fixed-size instructions are given a size
 497   // method by the AD file.
 498   // Note that the scratch buffer blob and locs memory are
 499   // allocated at the beginning of the compile task, and
 500   // may be shared by several calls to scratch_emit_size.
 501   // The allocation of the scratch buffer blob is particularly
 502   // expensive, since it has to grab the code cache lock.
 503   BufferBlob* blob = this->scratch_buffer_blob();
 504   assert(blob != NULL, "Initialize BufferBlob at start");
 505   assert(blob->size() > MAX_inst_size, "sanity");
 506   relocInfo* locs_buf = scratch_locs_memory();
 507   address blob_begin = blob->content_begin();
 508   address blob_end   = (address)locs_buf;
 509   assert(blob->content_contains(blob_end), "sanity");
 510   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 511   buf.initialize_consts_size(_scratch_const_size);
 512   buf.initialize_stubs_size(MAX_stubs_size);
 513   assert(locs_buf != NULL, "sanity");
 514   int lsize = MAX_locs_size / 3;
 515   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 516   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 517   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 518 
 519   // Do the emission.
 520 
 521   Label fakeL; // Fake label for branch instructions.
 522   Label*   saveL = NULL;
 523   uint save_bnum = 0;
 524   bool is_branch = n->is_MachBranch();
 525   if (is_branch) {
 526     MacroAssembler masm(&buf);
 527     masm.bind(fakeL);
 528     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 529     n->as_MachBranch()->label_set(&fakeL, 0);
 530   }
 531   n->emit(buf, this->regalloc());
 532   if (is_branch) // Restore label.
 533     n->as_MachBranch()->label_set(saveL, save_bnum);
 534 
 535   // End scratch_emit_size section.
 536   set_in_scratch_emit_size(false);
 537 
 538   return buf.insts_size();
 539 }
 540 
 541 
 542 // ============================================================================
 543 //------------------------------Compile standard-------------------------------
 544 debug_only( int Compile::_debug_idx = 100000; )
 545 
 546 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 547 // the continuation bci for on stack replacement.
 548 
 549 
 550 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
 551                 : Phase(Compiler),
 552                   _env(ci_env),
 553                   _log(ci_env->log()),
 554                   _compile_id(ci_env->compile_id()),
 555                   _save_argument_registers(false),
 556                   _stub_name(NULL),
 557                   _stub_function(NULL),
 558                   _stub_entry_point(NULL),
 559                   _method(target),
 560                   _entry_bci(osr_bci),
 561                   _initial_gvn(NULL),
 562                   _for_igvn(NULL),
 563                   _warm_calls(NULL),
 564                   _subsume_loads(subsume_loads),
 565                   _do_escape_analysis(do_escape_analysis),
 566                   _failure_reason(NULL),
 567                   _code_buffer("Compile::Fill_buffer"),
 568                   _orig_pc_slot(0),
 569                   _orig_pc_slot_offset_in_bytes(0),
 570                   _has_method_handle_invokes(false),
 571                   _mach_constant_base_node(NULL),
 572                   _node_bundling_limit(0),
 573                   _node_bundling_base(NULL),
 574                   _java_calls(0),
 575                   _inner_loops(0),
 576                   _scratch_const_size(-1),
 577                   _in_scratch_emit_size(false),
 578 #ifndef PRODUCT
 579                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 580                   _printer(IdealGraphPrinter::printer()),
 581 #endif
 582                   _congraph(NULL) {
 583   C = this;
 584 
 585   CompileWrapper cw(this);
 586 #ifndef PRODUCT
 587   if (TimeCompiler2) {
 588     tty->print(" ");
 589     target->holder()->name()->print();
 590     tty->print(".");
 591     target->print_short_name();
 592     tty->print("  ");
 593   }
 594   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 595   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 596   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 597   if (!print_opto_assembly) {
 598     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 599     if (print_assembly && !Disassembler::can_decode()) {
 600       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 601       print_opto_assembly = true;
 602     }
 603   }
 604   set_print_assembly(print_opto_assembly);
 605   set_parsed_irreducible_loop(false);
 606 #endif
 607 
 608   if (ProfileTraps) {
 609     // Make sure the method being compiled gets its own MDO,
 610     // so we can at least track the decompile_count().
 611     method()->ensure_method_data();
 612   }
 613 
 614   Init(::AliasLevel);
 615 
 616 
 617   print_compile_messages();
 618 
 619   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
 620     _ilt = InlineTree::build_inline_tree_root();
 621   else
 622     _ilt = NULL;
 623 
 624   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 625   assert(num_alias_types() >= AliasIdxRaw, "");
 626 
 627 #define MINIMUM_NODE_HASH  1023
 628   // Node list that Iterative GVN will start with
 629   Unique_Node_List for_igvn(comp_arena());
 630   set_for_igvn(&for_igvn);
 631 
 632   // GVN that will be run immediately on new nodes
 633   uint estimated_size = method()->code_size()*4+64;
 634   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 635   PhaseGVN gvn(node_arena(), estimated_size);
 636   set_initial_gvn(&gvn);
 637 
 638   { // Scope for timing the parser
 639     TracePhase t3("parse", &_t_parser, true);
 640 
 641     // Put top into the hash table ASAP.
 642     initial_gvn()->transform_no_reclaim(top());
 643 
 644     // Set up tf(), start(), and find a CallGenerator.
 645     CallGenerator* cg = NULL;
 646     if (is_osr_compilation()) {
 647       const TypeTuple *domain = StartOSRNode::osr_domain();
 648       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 649       init_tf(TypeFunc::make(domain, range));
 650       StartNode* s = new (this, 2) StartOSRNode(root(), domain);
 651       initial_gvn()->set_type_bottom(s);
 652       init_start(s);
 653       cg = CallGenerator::for_osr(method(), entry_bci());
 654     } else {
 655       // Normal case.
 656       init_tf(TypeFunc::make(method()));
 657       StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
 658       initial_gvn()->set_type_bottom(s);
 659       init_start(s);
 660       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 661         // With java.lang.ref.reference.get() we must go through the
 662         // intrinsic when G1 is enabled - even when get() is the root
 663         // method of the compile - so that, if necessary, the value in
 664         // the referent field of the reference object gets recorded by
 665         // the pre-barrier code.
 666         // Specifically, if G1 is enabled, the value in the referent
 667         // field is recorded by the G1 SATB pre barrier. This will
 668         // result in the referent being marked live and the reference
 669         // object removed from the list of discovered references during
 670         // reference processing.
 671         cg = find_intrinsic(method(), false);
 672       }
 673       if (cg == NULL) {
 674         float past_uses = method()->interpreter_invocation_count();
 675         float expected_uses = past_uses;
 676         cg = CallGenerator::for_inline(method(), expected_uses);
 677       }
 678     }
 679     if (failing())  return;
 680     if (cg == NULL) {
 681       record_method_not_compilable_all_tiers("cannot parse method");
 682       return;
 683     }
 684     JVMState* jvms = build_start_state(start(), tf());
 685     if ((jvms = cg->generate(jvms)) == NULL) {
 686       record_method_not_compilable("method parse failed");
 687       return;
 688     }
 689     GraphKit kit(jvms);
 690 
 691     if (!kit.stopped()) {
 692       // Accept return values, and transfer control we know not where.
 693       // This is done by a special, unique ReturnNode bound to root.
 694       return_values(kit.jvms());
 695     }
 696 
 697     if (kit.has_exceptions()) {
 698       // Any exceptions that escape from this call must be rethrown
 699       // to whatever caller is dynamically above us on the stack.
 700       // This is done by a special, unique RethrowNode bound to root.
 701       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 702     }
 703 
 704     if (!failing() && has_stringbuilder()) {
 705       {
 706         // remove useless nodes to make the usage analysis simpler
 707         ResourceMark rm;
 708         PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 709       }
 710 
 711       {
 712         ResourceMark rm;
 713         print_method("Before StringOpts", 3);
 714         PhaseStringOpts pso(initial_gvn(), &for_igvn);
 715         print_method("After StringOpts", 3);
 716       }
 717 
 718       // now inline anything that we skipped the first time around
 719       while (_late_inlines.length() > 0) {
 720         CallGenerator* cg = _late_inlines.pop();
 721         cg->do_late_inline();
 722       }
 723     }
 724     assert(_late_inlines.length() == 0, "should have been processed");
 725 
 726     print_method("Before RemoveUseless", 3);
 727 
 728     // Remove clutter produced by parsing.
 729     if (!failing()) {
 730       ResourceMark rm;
 731       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 732     }
 733   }
 734 
 735   // Note:  Large methods are capped off in do_one_bytecode().
 736   if (failing())  return;
 737 
 738   // After parsing, node notes are no longer automagic.
 739   // They must be propagated by register_new_node_with_optimizer(),
 740   // clone(), or the like.
 741   set_default_node_notes(NULL);
 742 
 743   for (;;) {
 744     int successes = Inline_Warm();
 745     if (failing())  return;
 746     if (successes == 0)  break;
 747   }
 748 
 749   // Drain the list.
 750   Finish_Warm();
 751 #ifndef PRODUCT
 752   if (_printer) {
 753     _printer->print_inlining(this);
 754   }
 755 #endif
 756 
 757   if (failing())  return;
 758   NOT_PRODUCT( verify_graph_edges(); )
 759 
 760   // Now optimize
 761   Optimize();
 762   if (failing())  return;
 763   NOT_PRODUCT( verify_graph_edges(); )
 764 
 765 #ifndef PRODUCT
 766   if (PrintIdeal) {
 767     ttyLocker ttyl;  // keep the following output all in one block
 768     // This output goes directly to the tty, not the compiler log.
 769     // To enable tools to match it up with the compilation activity,
 770     // be sure to tag this tty output with the compile ID.
 771     if (xtty != NULL) {
 772       xtty->head("ideal compile_id='%d'%s", compile_id(),
 773                  is_osr_compilation()    ? " compile_kind='osr'" :
 774                  "");
 775     }
 776     root()->dump(9999);
 777     if (xtty != NULL) {
 778       xtty->tail("ideal");
 779     }
 780   }
 781 #endif
 782 
 783   // Now that we know the size of all the monitors we can add a fixed slot
 784   // for the original deopt pc.
 785 
 786   _orig_pc_slot =  fixed_slots();
 787   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 788   set_fixed_slots(next_slot);
 789 
 790   // Now generate code
 791   Code_Gen();
 792   if (failing())  return;
 793 
 794   // Check if we want to skip execution of all compiled code.
 795   {
 796 #ifndef PRODUCT
 797     if (OptoNoExecute) {
 798       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 799       return;
 800     }
 801     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 802 #endif
 803 
 804     if (is_osr_compilation()) {
 805       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 806       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 807     } else {
 808       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 809       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 810     }
 811 
 812     env()->register_method(_method, _entry_bci,
 813                            &_code_offsets,
 814                            _orig_pc_slot_offset_in_bytes,
 815                            code_buffer(),
 816                            frame_size_in_words(), _oop_map_set,
 817                            &_handler_table, &_inc_table,
 818                            compiler,
 819                            env()->comp_level(),
 820                            has_unsafe_access()
 821                            );
 822   }
 823 }
 824 
 825 //------------------------------Compile----------------------------------------
 826 // Compile a runtime stub
 827 Compile::Compile( ciEnv* ci_env,
 828                   TypeFunc_generator generator,
 829                   address stub_function,
 830                   const char *stub_name,
 831                   int is_fancy_jump,
 832                   bool pass_tls,
 833                   bool save_arg_registers,
 834                   bool return_pc )
 835   : Phase(Compiler),
 836     _env(ci_env),
 837     _log(ci_env->log()),
 838     _compile_id(-1),
 839     _save_argument_registers(save_arg_registers),
 840     _method(NULL),
 841     _stub_name(stub_name),
 842     _stub_function(stub_function),
 843     _stub_entry_point(NULL),
 844     _entry_bci(InvocationEntryBci),
 845     _initial_gvn(NULL),
 846     _for_igvn(NULL),
 847     _warm_calls(NULL),
 848     _orig_pc_slot(0),
 849     _orig_pc_slot_offset_in_bytes(0),
 850     _subsume_loads(true),
 851     _do_escape_analysis(false),
 852     _failure_reason(NULL),
 853     _code_buffer("Compile::Fill_buffer"),
 854     _has_method_handle_invokes(false),
 855     _mach_constant_base_node(NULL),
 856     _node_bundling_limit(0),
 857     _node_bundling_base(NULL),
 858     _java_calls(0),
 859     _inner_loops(0),
 860 #ifndef PRODUCT
 861     _trace_opto_output(TraceOptoOutput),
 862     _printer(NULL),
 863 #endif
 864     _congraph(NULL) {
 865   C = this;
 866 
 867 #ifndef PRODUCT
 868   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 869   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 870   set_print_assembly(PrintFrameConverterAssembly);
 871   set_parsed_irreducible_loop(false);
 872 #endif
 873   CompileWrapper cw(this);
 874   Init(/*AliasLevel=*/ 0);
 875   init_tf((*generator)());
 876 
 877   {
 878     // The following is a dummy for the sake of GraphKit::gen_stub
 879     Unique_Node_List for_igvn(comp_arena());
 880     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 881     PhaseGVN gvn(Thread::current()->resource_area(),255);
 882     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 883     gvn.transform_no_reclaim(top());
 884 
 885     GraphKit kit;
 886     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 887   }
 888 
 889   NOT_PRODUCT( verify_graph_edges(); )
 890   Code_Gen();
 891   if (failing())  return;
 892 
 893 
 894   // Entry point will be accessed using compile->stub_entry_point();
 895   if (code_buffer() == NULL) {
 896     Matcher::soft_match_failure();
 897   } else {
 898     if (PrintAssembly && (WizardMode || Verbose))
 899       tty->print_cr("### Stub::%s", stub_name);
 900 
 901     if (!failing()) {
 902       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 903 
 904       // Make the NMethod
 905       // For now we mark the frame as never safe for profile stackwalking
 906       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
 907                                                       code_buffer(),
 908                                                       CodeOffsets::frame_never_safe,
 909                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
 910                                                       frame_size_in_words(),
 911                                                       _oop_map_set,
 912                                                       save_arg_registers);
 913       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
 914 
 915       _stub_entry_point = rs->entry_point();
 916     }
 917   }
 918 }
 919 
 920 #ifndef PRODUCT
 921 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
 922   if(PrintOpto && Verbose) {
 923     tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
 924   }
 925 }
 926 #endif
 927 
 928 void Compile::print_codes() {
 929 }
 930 
 931 //------------------------------Init-------------------------------------------
 932 // Prepare for a single compilation
 933 void Compile::Init(int aliaslevel) {
 934   _unique  = 0;
 935   _regalloc = NULL;
 936 
 937   _tf      = NULL;  // filled in later
 938   _top     = NULL;  // cached later
 939   _matcher = NULL;  // filled in later
 940   _cfg     = NULL;  // filled in later
 941 
 942   set_24_bit_selection_and_mode(Use24BitFP, false);
 943 
 944   _node_note_array = NULL;
 945   _default_node_notes = NULL;
 946 
 947   _immutable_memory = NULL; // filled in at first inquiry
 948 
 949   // Globally visible Nodes
 950   // First set TOP to NULL to give safe behavior during creation of RootNode
 951   set_cached_top_node(NULL);
 952   set_root(new (this, 3) RootNode());
 953   // Now that you have a Root to point to, create the real TOP
 954   set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
 955   set_recent_alloc(NULL, NULL);
 956 
 957   // Create Debug Information Recorder to record scopes, oopmaps, etc.
 958   env()->set_oop_recorder(new OopRecorder(comp_arena()));
 959   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
 960   env()->set_dependencies(new Dependencies(env()));
 961 
 962   _fixed_slots = 0;
 963   set_has_split_ifs(false);
 964   set_has_loops(has_method() && method()->has_loops()); // first approximation
 965   set_has_stringbuilder(false);
 966   _trap_can_recompile = false;  // no traps emitted yet
 967   _major_progress = true; // start out assuming good things will happen
 968   set_has_unsafe_access(false);
 969   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
 970   set_decompile_count(0);
 971 
 972   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
 973   set_num_loop_opts(LoopOptsCount);
 974   set_do_inlining(Inline);
 975   set_max_inline_size(MaxInlineSize);
 976   set_freq_inline_size(FreqInlineSize);
 977   set_do_scheduling(OptoScheduling);
 978   set_do_count_invocations(false);
 979   set_do_method_data_update(false);
 980 
 981   if (debug_info()->recording_non_safepoints()) {
 982     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
 983                         (comp_arena(), 8, 0, NULL));
 984     set_default_node_notes(Node_Notes::make(this));
 985   }
 986 
 987   // // -- Initialize types before each compile --
 988   // // Update cached type information
 989   // if( _method && _method->constants() )
 990   //   Type::update_loaded_types(_method, _method->constants());
 991 
 992   // Init alias_type map.
 993   if (!_do_escape_analysis && aliaslevel == 3)
 994     aliaslevel = 2;  // No unique types without escape analysis
 995   _AliasLevel = aliaslevel;
 996   const int grow_ats = 16;
 997   _max_alias_types = grow_ats;
 998   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
 999   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1000   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1001   {
1002     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1003   }
1004   // Initialize the first few types.
1005   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1006   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1007   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1008   _num_alias_types = AliasIdxRaw+1;
1009   // Zero out the alias type cache.
1010   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1011   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1012   probe_alias_cache(NULL)->_index = AliasIdxTop;
1013 
1014   _intrinsics = NULL;
1015   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1016   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1017   register_library_intrinsics();
1018 }
1019 
1020 //---------------------------init_start----------------------------------------
1021 // Install the StartNode on this compile object.
1022 void Compile::init_start(StartNode* s) {
1023   if (failing())
1024     return; // already failing
1025   assert(s == start(), "");
1026 }
1027 
1028 StartNode* Compile::start() const {
1029   assert(!failing(), "");
1030   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1031     Node* start = root()->fast_out(i);
1032     if( start->is_Start() )
1033       return start->as_Start();
1034   }
1035   ShouldNotReachHere();
1036   return NULL;
1037 }
1038 
1039 //-------------------------------immutable_memory-------------------------------------
1040 // Access immutable memory
1041 Node* Compile::immutable_memory() {
1042   if (_immutable_memory != NULL) {
1043     return _immutable_memory;
1044   }
1045   StartNode* s = start();
1046   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1047     Node *p = s->fast_out(i);
1048     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1049       _immutable_memory = p;
1050       return _immutable_memory;
1051     }
1052   }
1053   ShouldNotReachHere();
1054   return NULL;
1055 }
1056 
1057 //----------------------set_cached_top_node------------------------------------
1058 // Install the cached top node, and make sure Node::is_top works correctly.
1059 void Compile::set_cached_top_node(Node* tn) {
1060   if (tn != NULL)  verify_top(tn);
1061   Node* old_top = _top;
1062   _top = tn;
1063   // Calling Node::setup_is_top allows the nodes the chance to adjust
1064   // their _out arrays.
1065   if (_top != NULL)     _top->setup_is_top();
1066   if (old_top != NULL)  old_top->setup_is_top();
1067   assert(_top == NULL || top()->is_top(), "");
1068 }
1069 
1070 #ifndef PRODUCT
1071 void Compile::verify_top(Node* tn) const {
1072   if (tn != NULL) {
1073     assert(tn->is_Con(), "top node must be a constant");
1074     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1075     assert(tn->in(0) != NULL, "must have live top node");
1076   }
1077 }
1078 #endif
1079 
1080 
1081 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1082 
1083 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1084   guarantee(arr != NULL, "");
1085   int num_blocks = arr->length();
1086   if (grow_by < num_blocks)  grow_by = num_blocks;
1087   int num_notes = grow_by * _node_notes_block_size;
1088   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1089   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1090   while (num_notes > 0) {
1091     arr->append(notes);
1092     notes     += _node_notes_block_size;
1093     num_notes -= _node_notes_block_size;
1094   }
1095   assert(num_notes == 0, "exact multiple, please");
1096 }
1097 
1098 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1099   if (source == NULL || dest == NULL)  return false;
1100 
1101   if (dest->is_Con())
1102     return false;               // Do not push debug info onto constants.
1103 
1104 #ifdef ASSERT
1105   // Leave a bread crumb trail pointing to the original node:
1106   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1107     dest->set_debug_orig(source);
1108   }
1109 #endif
1110 
1111   if (node_note_array() == NULL)
1112     return false;               // Not collecting any notes now.
1113 
1114   // This is a copy onto a pre-existing node, which may already have notes.
1115   // If both nodes have notes, do not overwrite any pre-existing notes.
1116   Node_Notes* source_notes = node_notes_at(source->_idx);
1117   if (source_notes == NULL || source_notes->is_clear())  return false;
1118   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1119   if (dest_notes == NULL || dest_notes->is_clear()) {
1120     return set_node_notes_at(dest->_idx, source_notes);
1121   }
1122 
1123   Node_Notes merged_notes = (*source_notes);
1124   // The order of operations here ensures that dest notes will win...
1125   merged_notes.update_from(dest_notes);
1126   return set_node_notes_at(dest->_idx, &merged_notes);
1127 }
1128 
1129 
1130 //--------------------------allow_range_check_smearing-------------------------
1131 // Gating condition for coalescing similar range checks.
1132 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1133 // single covering check that is at least as strong as any of them.
1134 // If the optimization succeeds, the simplified (strengthened) range check
1135 // will always succeed.  If it fails, we will deopt, and then give up
1136 // on the optimization.
1137 bool Compile::allow_range_check_smearing() const {
1138   // If this method has already thrown a range-check,
1139   // assume it was because we already tried range smearing
1140   // and it failed.
1141   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1142   return !already_trapped;
1143 }
1144 
1145 
1146 //------------------------------flatten_alias_type-----------------------------
1147 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1148   int offset = tj->offset();
1149   TypePtr::PTR ptr = tj->ptr();
1150 
1151   // Known instance (scalarizable allocation) alias only with itself.
1152   bool is_known_inst = tj->isa_oopptr() != NULL &&
1153                        tj->is_oopptr()->is_known_instance();
1154 
1155   // Process weird unsafe references.
1156   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1157     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1158     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1159     tj = TypeOopPtr::BOTTOM;
1160     ptr = tj->ptr();
1161     offset = tj->offset();
1162   }
1163 
1164   // Array pointers need some flattening
1165   const TypeAryPtr *ta = tj->isa_aryptr();
1166   if( ta && is_known_inst ) {
1167     if ( offset != Type::OffsetBot &&
1168          offset > arrayOopDesc::length_offset_in_bytes() ) {
1169       offset = Type::OffsetBot; // Flatten constant access into array body only
1170       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1171     }
1172   } else if( ta && _AliasLevel >= 2 ) {
1173     // For arrays indexed by constant indices, we flatten the alias
1174     // space to include all of the array body.  Only the header, klass
1175     // and array length can be accessed un-aliased.
1176     if( offset != Type::OffsetBot ) {
1177       if( ta->const_oop() ) { // methodDataOop or methodOop
1178         offset = Type::OffsetBot;   // Flatten constant access into array body
1179         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1180       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1181         // range is OK as-is.
1182         tj = ta = TypeAryPtr::RANGE;
1183       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1184         tj = TypeInstPtr::KLASS; // all klass loads look alike
1185         ta = TypeAryPtr::RANGE; // generic ignored junk
1186         ptr = TypePtr::BotPTR;
1187       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1188         tj = TypeInstPtr::MARK;
1189         ta = TypeAryPtr::RANGE; // generic ignored junk
1190         ptr = TypePtr::BotPTR;
1191       } else {                  // Random constant offset into array body
1192         offset = Type::OffsetBot;   // Flatten constant access into array body
1193         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1194       }
1195     }
1196     // Arrays of fixed size alias with arrays of unknown size.
1197     if (ta->size() != TypeInt::POS) {
1198       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1199       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1200     }
1201     // Arrays of known objects become arrays of unknown objects.
1202     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1203       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1204       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1205     }
1206     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1207       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1208       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1209     }
1210     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1211     // cannot be distinguished by bytecode alone.
1212     if (ta->elem() == TypeInt::BOOL) {
1213       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1214       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1215       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1216     }
1217     // During the 2nd round of IterGVN, NotNull castings are removed.
1218     // Make sure the Bottom and NotNull variants alias the same.
1219     // Also, make sure exact and non-exact variants alias the same.
1220     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1221       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1222     }
1223   }
1224 
1225   // Oop pointers need some flattening
1226   const TypeInstPtr *to = tj->isa_instptr();
1227   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1228     ciInstanceKlass *k = to->klass()->as_instance_klass();
1229     if( ptr == TypePtr::Constant ) {
1230       if (to->klass() != ciEnv::current()->Class_klass() ||
1231           offset < k->size_helper() * wordSize) {
1232         // No constant oop pointers (such as Strings); they alias with
1233         // unknown strings.
1234         assert(!is_known_inst, "not scalarizable allocation");
1235         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1236       }
1237     } else if( is_known_inst ) {
1238       tj = to; // Keep NotNull and klass_is_exact for instance type
1239     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1240       // During the 2nd round of IterGVN, NotNull castings are removed.
1241       // Make sure the Bottom and NotNull variants alias the same.
1242       // Also, make sure exact and non-exact variants alias the same.
1243       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1244     }
1245     // Canonicalize the holder of this field
1246     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1247       // First handle header references such as a LoadKlassNode, even if the
1248       // object's klass is unloaded at compile time (4965979).
1249       if (!is_known_inst) { // Do it only for non-instance types
1250         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1251       }
1252     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1253       // Static fields are in the space above the normal instance
1254       // fields in the java.lang.Class instance.
1255       if (to->klass() != ciEnv::current()->Class_klass()) {
1256         to = NULL;
1257         tj = TypeOopPtr::BOTTOM;
1258         offset = tj->offset();
1259       }
1260     } else {
1261       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1262       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1263         if( is_known_inst ) {
1264           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1265         } else {
1266           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1267         }
1268       }
1269     }
1270   }
1271 
1272   // Klass pointers to object array klasses need some flattening
1273   const TypeKlassPtr *tk = tj->isa_klassptr();
1274   if( tk ) {
1275     // If we are referencing a field within a Klass, we need
1276     // to assume the worst case of an Object.  Both exact and
1277     // inexact types must flatten to the same alias class.
1278     // Since the flattened result for a klass is defined to be
1279     // precisely java.lang.Object, use a constant ptr.
1280     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1281 
1282       tj = tk = TypeKlassPtr::make(TypePtr::Constant,
1283                                    TypeKlassPtr::OBJECT->klass(),
1284                                    offset);
1285     }
1286 
1287     ciKlass* klass = tk->klass();
1288     if( klass->is_obj_array_klass() ) {
1289       ciKlass* k = TypeAryPtr::OOPS->klass();
1290       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1291         k = TypeInstPtr::BOTTOM->klass();
1292       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1293     }
1294 
1295     // Check for precise loads from the primary supertype array and force them
1296     // to the supertype cache alias index.  Check for generic array loads from
1297     // the primary supertype array and also force them to the supertype cache
1298     // alias index.  Since the same load can reach both, we need to merge
1299     // these 2 disparate memories into the same alias class.  Since the
1300     // primary supertype array is read-only, there's no chance of confusion
1301     // where we bypass an array load and an array store.
1302     uint off2 = offset - Klass::primary_supers_offset_in_bytes();
1303     if( offset == Type::OffsetBot ||
1304         off2 < Klass::primary_super_limit()*wordSize ) {
1305       offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
1306       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1307     }
1308   }
1309 
1310   // Flatten all Raw pointers together.
1311   if (tj->base() == Type::RawPtr)
1312     tj = TypeRawPtr::BOTTOM;
1313 
1314   if (tj->base() == Type::AnyPtr)
1315     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1316 
1317   // Flatten all to bottom for now
1318   switch( _AliasLevel ) {
1319   case 0:
1320     tj = TypePtr::BOTTOM;
1321     break;
1322   case 1:                       // Flatten to: oop, static, field or array
1323     switch (tj->base()) {
1324     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1325     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1326     case Type::AryPtr:   // do not distinguish arrays at all
1327     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1328     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1329     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1330     default: ShouldNotReachHere();
1331     }
1332     break;
1333   case 2:                       // No collapsing at level 2; keep all splits
1334   case 3:                       // No collapsing at level 3; keep all splits
1335     break;
1336   default:
1337     Unimplemented();
1338   }
1339 
1340   offset = tj->offset();
1341   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1342 
1343   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1344           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1345           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1346           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1347           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1348           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1349           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1350           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1351   assert( tj->ptr() != TypePtr::TopPTR &&
1352           tj->ptr() != TypePtr::AnyNull &&
1353           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1354 //    assert( tj->ptr() != TypePtr::Constant ||
1355 //            tj->base() == Type::RawPtr ||
1356 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1357 
1358   return tj;
1359 }
1360 
1361 void Compile::AliasType::Init(int i, const TypePtr* at) {
1362   _index = i;
1363   _adr_type = at;
1364   _field = NULL;
1365   _is_rewritable = true; // default
1366   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1367   if (atoop != NULL && atoop->is_known_instance()) {
1368     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1369     _general_index = Compile::current()->get_alias_index(gt);
1370   } else {
1371     _general_index = 0;
1372   }
1373 }
1374 
1375 //---------------------------------print_on------------------------------------
1376 #ifndef PRODUCT
1377 void Compile::AliasType::print_on(outputStream* st) {
1378   if (index() < 10)
1379         st->print("@ <%d> ", index());
1380   else  st->print("@ <%d>",  index());
1381   st->print(is_rewritable() ? "   " : " RO");
1382   int offset = adr_type()->offset();
1383   if (offset == Type::OffsetBot)
1384         st->print(" +any");
1385   else  st->print(" +%-3d", offset);
1386   st->print(" in ");
1387   adr_type()->dump_on(st);
1388   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1389   if (field() != NULL && tjp) {
1390     if (tjp->klass()  != field()->holder() ||
1391         tjp->offset() != field()->offset_in_bytes()) {
1392       st->print(" != ");
1393       field()->print();
1394       st->print(" ***");
1395     }
1396   }
1397 }
1398 
1399 void print_alias_types() {
1400   Compile* C = Compile::current();
1401   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1402   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1403     C->alias_type(idx)->print_on(tty);
1404     tty->cr();
1405   }
1406 }
1407 #endif
1408 
1409 
1410 //----------------------------probe_alias_cache--------------------------------
1411 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1412   intptr_t key = (intptr_t) adr_type;
1413   key ^= key >> logAliasCacheSize;
1414   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1415 }
1416 
1417 
1418 //-----------------------------grow_alias_types--------------------------------
1419 void Compile::grow_alias_types() {
1420   const int old_ats  = _max_alias_types; // how many before?
1421   const int new_ats  = old_ats;          // how many more?
1422   const int grow_ats = old_ats+new_ats;  // how many now?
1423   _max_alias_types = grow_ats;
1424   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1425   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1426   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1427   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1428 }
1429 
1430 
1431 //--------------------------------find_alias_type------------------------------
1432 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1433   if (_AliasLevel == 0)
1434     return alias_type(AliasIdxBot);
1435 
1436   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1437   if (ace->_adr_type == adr_type) {
1438     return alias_type(ace->_index);
1439   }
1440 
1441   // Handle special cases.
1442   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1443   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1444 
1445   // Do it the slow way.
1446   const TypePtr* flat = flatten_alias_type(adr_type);
1447 
1448 #ifdef ASSERT
1449   assert(flat == flatten_alias_type(flat), "idempotent");
1450   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1451   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1452     const TypeOopPtr* foop = flat->is_oopptr();
1453     // Scalarizable allocations have exact klass always.
1454     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1455     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1456     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1457   }
1458   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1459 #endif
1460 
1461   int idx = AliasIdxTop;
1462   for (int i = 0; i < num_alias_types(); i++) {
1463     if (alias_type(i)->adr_type() == flat) {
1464       idx = i;
1465       break;
1466     }
1467   }
1468 
1469   if (idx == AliasIdxTop) {
1470     if (no_create)  return NULL;
1471     // Grow the array if necessary.
1472     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1473     // Add a new alias type.
1474     idx = _num_alias_types++;
1475     _alias_types[idx]->Init(idx, flat);
1476     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1477     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1478     if (flat->isa_instptr()) {
1479       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1480           && flat->is_instptr()->klass() == env()->Class_klass())
1481         alias_type(idx)->set_rewritable(false);
1482     }
1483     if (flat->isa_klassptr()) {
1484       if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
1485         alias_type(idx)->set_rewritable(false);
1486       if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1487         alias_type(idx)->set_rewritable(false);
1488       if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1489         alias_type(idx)->set_rewritable(false);
1490       if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
1491         alias_type(idx)->set_rewritable(false);
1492     }
1493     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1494     // but the base pointer type is not distinctive enough to identify
1495     // references into JavaThread.)
1496 
1497     // Check for final fields.
1498     const TypeInstPtr* tinst = flat->isa_instptr();
1499     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1500       ciField* field;
1501       if (tinst->const_oop() != NULL &&
1502           tinst->klass() == ciEnv::current()->Class_klass() &&
1503           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1504         // static field
1505         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1506         field = k->get_field_by_offset(tinst->offset(), true);
1507       } else {
1508         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1509         field = k->get_field_by_offset(tinst->offset(), false);
1510       }
1511       assert(field == NULL ||
1512              original_field == NULL ||
1513              (field->holder() == original_field->holder() &&
1514               field->offset() == original_field->offset() &&
1515               field->is_static() == original_field->is_static()), "wrong field?");
1516       // Set field() and is_rewritable() attributes.
1517       if (field != NULL)  alias_type(idx)->set_field(field);
1518     }
1519   }
1520 
1521   // Fill the cache for next time.
1522   ace->_adr_type = adr_type;
1523   ace->_index    = idx;
1524   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1525 
1526   // Might as well try to fill the cache for the flattened version, too.
1527   AliasCacheEntry* face = probe_alias_cache(flat);
1528   if (face->_adr_type == NULL) {
1529     face->_adr_type = flat;
1530     face->_index    = idx;
1531     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1532   }
1533 
1534   return alias_type(idx);
1535 }
1536 
1537 
1538 Compile::AliasType* Compile::alias_type(ciField* field) {
1539   const TypeOopPtr* t;
1540   if (field->is_static())
1541     t = TypeInstPtr::make(field->holder()->java_mirror());
1542   else
1543     t = TypeOopPtr::make_from_klass_raw(field->holder());
1544   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1545   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1546   return atp;
1547 }
1548 
1549 
1550 //------------------------------have_alias_type--------------------------------
1551 bool Compile::have_alias_type(const TypePtr* adr_type) {
1552   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1553   if (ace->_adr_type == adr_type) {
1554     return true;
1555   }
1556 
1557   // Handle special cases.
1558   if (adr_type == NULL)             return true;
1559   if (adr_type == TypePtr::BOTTOM)  return true;
1560 
1561   return find_alias_type(adr_type, true, NULL) != NULL;
1562 }
1563 
1564 //-----------------------------must_alias--------------------------------------
1565 // True if all values of the given address type are in the given alias category.
1566 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1567   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1568   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1569   if (alias_idx == AliasIdxTop)         return false; // the empty category
1570   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1571 
1572   // the only remaining possible overlap is identity
1573   int adr_idx = get_alias_index(adr_type);
1574   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1575   assert(adr_idx == alias_idx ||
1576          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1577           && adr_type                       != TypeOopPtr::BOTTOM),
1578          "should not be testing for overlap with an unsafe pointer");
1579   return adr_idx == alias_idx;
1580 }
1581 
1582 //------------------------------can_alias--------------------------------------
1583 // True if any values of the given address type are in the given alias category.
1584 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1585   if (alias_idx == AliasIdxTop)         return false; // the empty category
1586   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1587   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1588   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1589 
1590   // the only remaining possible overlap is identity
1591   int adr_idx = get_alias_index(adr_type);
1592   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1593   return adr_idx == alias_idx;
1594 }
1595 
1596 
1597 
1598 //---------------------------pop_warm_call-------------------------------------
1599 WarmCallInfo* Compile::pop_warm_call() {
1600   WarmCallInfo* wci = _warm_calls;
1601   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1602   return wci;
1603 }
1604 
1605 //----------------------------Inline_Warm--------------------------------------
1606 int Compile::Inline_Warm() {
1607   // If there is room, try to inline some more warm call sites.
1608   // %%% Do a graph index compaction pass when we think we're out of space?
1609   if (!InlineWarmCalls)  return 0;
1610 
1611   int calls_made_hot = 0;
1612   int room_to_grow   = NodeCountInliningCutoff - unique();
1613   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1614   int amount_grown   = 0;
1615   WarmCallInfo* call;
1616   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1617     int est_size = (int)call->size();
1618     if (est_size > (room_to_grow - amount_grown)) {
1619       // This one won't fit anyway.  Get rid of it.
1620       call->make_cold();
1621       continue;
1622     }
1623     call->make_hot();
1624     calls_made_hot++;
1625     amount_grown   += est_size;
1626     amount_to_grow -= est_size;
1627   }
1628 
1629   if (calls_made_hot > 0)  set_major_progress();
1630   return calls_made_hot;
1631 }
1632 
1633 
1634 //----------------------------Finish_Warm--------------------------------------
1635 void Compile::Finish_Warm() {
1636   if (!InlineWarmCalls)  return;
1637   if (failing())  return;
1638   if (warm_calls() == NULL)  return;
1639 
1640   // Clean up loose ends, if we are out of space for inlining.
1641   WarmCallInfo* call;
1642   while ((call = pop_warm_call()) != NULL) {
1643     call->make_cold();
1644   }
1645 }
1646 
1647 //---------------------cleanup_loop_predicates-----------------------
1648 // Remove the opaque nodes that protect the predicates so that all unused
1649 // checks and uncommon_traps will be eliminated from the ideal graph
1650 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1651   if (predicate_count()==0) return;
1652   for (int i = predicate_count(); i > 0; i--) {
1653     Node * n = predicate_opaque1_node(i-1);
1654     assert(n->Opcode() == Op_Opaque1, "must be");
1655     igvn.replace_node(n, n->in(1));
1656   }
1657   assert(predicate_count()==0, "should be clean!");
1658 }
1659 
1660 //------------------------------Optimize---------------------------------------
1661 // Given a graph, optimize it.
1662 void Compile::Optimize() {
1663   TracePhase t1("optimizer", &_t_optimizer, true);
1664 
1665 #ifndef PRODUCT
1666   if (env()->break_at_compile()) {
1667     BREAKPOINT;
1668   }
1669 
1670 #endif
1671 
1672   ResourceMark rm;
1673   int          loop_opts_cnt;
1674 
1675   NOT_PRODUCT( verify_graph_edges(); )
1676 
1677   print_method("After Parsing");
1678 
1679  {
1680   // Iterative Global Value Numbering, including ideal transforms
1681   // Initialize IterGVN with types and values from parse-time GVN
1682   PhaseIterGVN igvn(initial_gvn());
1683   {
1684     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1685     igvn.optimize();
1686   }
1687 
1688   print_method("Iter GVN 1", 2);
1689 
1690   if (failing())  return;
1691 
1692   // Perform escape analysis
1693   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
1694     TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
1695     ConnectionGraph::do_analysis(this, &igvn);
1696 
1697     if (failing())  return;
1698 
1699     igvn.optimize();
1700     print_method("Iter GVN 3", 2);
1701 
1702     if (failing())  return;
1703 
1704   }
1705 
1706   // Loop transforms on the ideal graph.  Range Check Elimination,
1707   // peeling, unrolling, etc.
1708 
1709   // Set loop opts counter
1710   loop_opts_cnt = num_loop_opts();
1711   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
1712     {
1713       TracePhase t2("idealLoop", &_t_idealLoop, true);
1714       PhaseIdealLoop ideal_loop( igvn, true );
1715       loop_opts_cnt--;
1716       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
1717       if (failing())  return;
1718     }
1719     // Loop opts pass if partial peeling occurred in previous pass
1720     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
1721       TracePhase t3("idealLoop", &_t_idealLoop, true);
1722       PhaseIdealLoop ideal_loop( igvn, false );
1723       loop_opts_cnt--;
1724       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
1725       if (failing())  return;
1726     }
1727     // Loop opts pass for loop-unrolling before CCP
1728     if(major_progress() && (loop_opts_cnt > 0)) {
1729       TracePhase t4("idealLoop", &_t_idealLoop, true);
1730       PhaseIdealLoop ideal_loop( igvn, false );
1731       loop_opts_cnt--;
1732       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
1733     }
1734     if (!failing()) {
1735       // Verify that last round of loop opts produced a valid graph
1736       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1737       PhaseIdealLoop::verify(igvn);
1738     }
1739   }
1740   if (failing())  return;
1741 
1742   // Conditional Constant Propagation;
1743   PhaseCCP ccp( &igvn );
1744   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
1745   {
1746     TracePhase t2("ccp", &_t_ccp, true);
1747     ccp.do_transform();
1748   }
1749   print_method("PhaseCPP 1", 2);
1750 
1751   assert( true, "Break here to ccp.dump_old2new_map()");
1752 
1753   // Iterative Global Value Numbering, including ideal transforms
1754   {
1755     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
1756     igvn = ccp;
1757     igvn.optimize();
1758   }
1759 
1760   print_method("Iter GVN 2", 2);
1761 
1762   if (failing())  return;
1763 
1764   // Loop transforms on the ideal graph.  Range Check Elimination,
1765   // peeling, unrolling, etc.
1766   if(loop_opts_cnt > 0) {
1767     debug_only( int cnt = 0; );
1768     while(major_progress() && (loop_opts_cnt > 0)) {
1769       TracePhase t2("idealLoop", &_t_idealLoop, true);
1770       assert( cnt++ < 40, "infinite cycle in loop optimization" );
1771       PhaseIdealLoop ideal_loop( igvn, true);
1772       loop_opts_cnt--;
1773       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
1774       if (failing())  return;
1775     }
1776   }
1777 
1778   {
1779     // Verify that all previous optimizations produced a valid graph
1780     // at least to this point, even if no loop optimizations were done.
1781     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1782     PhaseIdealLoop::verify(igvn);
1783   }
1784 
1785   {
1786     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
1787     PhaseMacroExpand  mex(igvn);
1788     if (mex.expand_macro_nodes()) {
1789       assert(failing(), "must bail out w/ explicit message");
1790       return;
1791     }
1792   }
1793 
1794  } // (End scope of igvn; run destructor if necessary for asserts.)
1795 
1796   // A method with only infinite loops has no edges entering loops from root
1797   {
1798     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
1799     if (final_graph_reshaping()) {
1800       assert(failing(), "must bail out w/ explicit message");
1801       return;
1802     }
1803   }
1804 
1805   print_method("Optimize finished", 2);
1806 }
1807 
1808 
1809 //------------------------------Code_Gen---------------------------------------
1810 // Given a graph, generate code for it
1811 void Compile::Code_Gen() {
1812   if (failing())  return;
1813 
1814   // Perform instruction selection.  You might think we could reclaim Matcher
1815   // memory PDQ, but actually the Matcher is used in generating spill code.
1816   // Internals of the Matcher (including some VectorSets) must remain live
1817   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
1818   // set a bit in reclaimed memory.
1819 
1820   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1821   // nodes.  Mapping is only valid at the root of each matched subtree.
1822   NOT_PRODUCT( verify_graph_edges(); )
1823 
1824   Node_List proj_list;
1825   Matcher m(proj_list);
1826   _matcher = &m;
1827   {
1828     TracePhase t2("matcher", &_t_matcher, true);
1829     m.match();
1830   }
1831   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1832   // nodes.  Mapping is only valid at the root of each matched subtree.
1833   NOT_PRODUCT( verify_graph_edges(); )
1834 
1835   // If you have too many nodes, or if matching has failed, bail out
1836   check_node_count(0, "out of nodes matching instructions");
1837   if (failing())  return;
1838 
1839   // Build a proper-looking CFG
1840   PhaseCFG cfg(node_arena(), root(), m);
1841   _cfg = &cfg;
1842   {
1843     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
1844     cfg.Dominators();
1845     if (failing())  return;
1846 
1847     NOT_PRODUCT( verify_graph_edges(); )
1848 
1849     cfg.Estimate_Block_Frequency();
1850     cfg.GlobalCodeMotion(m,unique(),proj_list);
1851 
1852     print_method("Global code motion", 2);
1853 
1854     if (failing())  return;
1855     NOT_PRODUCT( verify_graph_edges(); )
1856 
1857     debug_only( cfg.verify(); )
1858   }
1859   NOT_PRODUCT( verify_graph_edges(); )
1860 
1861   PhaseChaitin regalloc(unique(),cfg,m);
1862   _regalloc = &regalloc;
1863   {
1864     TracePhase t2("regalloc", &_t_registerAllocation, true);
1865     // Perform any platform dependent preallocation actions.  This is used,
1866     // for example, to avoid taking an implicit null pointer exception
1867     // using the frame pointer on win95.
1868     _regalloc->pd_preallocate_hook();
1869 
1870     // Perform register allocation.  After Chaitin, use-def chains are
1871     // no longer accurate (at spill code) and so must be ignored.
1872     // Node->LRG->reg mappings are still accurate.
1873     _regalloc->Register_Allocate();
1874 
1875     // Bail out if the allocator builds too many nodes
1876     if (failing())  return;
1877   }
1878 
1879   // Prior to register allocation we kept empty basic blocks in case the
1880   // the allocator needed a place to spill.  After register allocation we
1881   // are not adding any new instructions.  If any basic block is empty, we
1882   // can now safely remove it.
1883   {
1884     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
1885     cfg.remove_empty();
1886     if (do_freq_based_layout()) {
1887       PhaseBlockLayout layout(cfg);
1888     } else {
1889       cfg.set_loop_alignment();
1890     }
1891     cfg.fixup_flow();
1892   }
1893 
1894   // Perform any platform dependent postallocation verifications.
1895   debug_only( _regalloc->pd_postallocate_verify_hook(); )
1896 
1897   // Apply peephole optimizations
1898   if( OptoPeephole ) {
1899     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
1900     PhasePeephole peep( _regalloc, cfg);
1901     peep.do_transform();
1902   }
1903 
1904   // Convert Nodes to instruction bits in a buffer
1905   {
1906     // %%%% workspace merge brought two timers together for one job
1907     TracePhase t2a("output", &_t_output, true);
1908     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
1909     Output();
1910   }
1911 
1912   print_method("Final Code");
1913 
1914   // He's dead, Jim.
1915   _cfg     = (PhaseCFG*)0xdeadbeef;
1916   _regalloc = (PhaseChaitin*)0xdeadbeef;
1917 }
1918 
1919 
1920 //------------------------------dump_asm---------------------------------------
1921 // Dump formatted assembly
1922 #ifndef PRODUCT
1923 void Compile::dump_asm(int *pcs, uint pc_limit) {
1924   bool cut_short = false;
1925   tty->print_cr("#");
1926   tty->print("#  ");  _tf->dump();  tty->cr();
1927   tty->print_cr("#");
1928 
1929   // For all blocks
1930   int pc = 0x0;                 // Program counter
1931   char starts_bundle = ' ';
1932   _regalloc->dump_frame();
1933 
1934   Node *n = NULL;
1935   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1936     if (VMThread::should_terminate()) { cut_short = true; break; }
1937     Block *b = _cfg->_blocks[i];
1938     if (b->is_connector() && !Verbose) continue;
1939     n = b->_nodes[0];
1940     if (pcs && n->_idx < pc_limit)
1941       tty->print("%3.3x   ", pcs[n->_idx]);
1942     else
1943       tty->print("      ");
1944     b->dump_head( &_cfg->_bbs );
1945     if (b->is_connector()) {
1946       tty->print_cr("        # Empty connector block");
1947     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
1948       tty->print_cr("        # Block is sole successor of call");
1949     }
1950 
1951     // For all instructions
1952     Node *delay = NULL;
1953     for( uint j = 0; j<b->_nodes.size(); j++ ) {
1954       if (VMThread::should_terminate()) { cut_short = true; break; }
1955       n = b->_nodes[j];
1956       if (valid_bundle_info(n)) {
1957         Bundle *bundle = node_bundling(n);
1958         if (bundle->used_in_unconditional_delay()) {
1959           delay = n;
1960           continue;
1961         }
1962         if (bundle->starts_bundle())
1963           starts_bundle = '+';
1964       }
1965 
1966       if (WizardMode) n->dump();
1967 
1968       if( !n->is_Region() &&    // Dont print in the Assembly
1969           !n->is_Phi() &&       // a few noisely useless nodes
1970           !n->is_Proj() &&
1971           !n->is_MachTemp() &&
1972           !n->is_SafePointScalarObject() &&
1973           !n->is_Catch() &&     // Would be nice to print exception table targets
1974           !n->is_MergeMem() &&  // Not very interesting
1975           !n->is_top() &&       // Debug info table constants
1976           !(n->is_Con() && !n->is_Mach())// Debug info table constants
1977           ) {
1978         if (pcs && n->_idx < pc_limit)
1979           tty->print("%3.3x", pcs[n->_idx]);
1980         else
1981           tty->print("   ");
1982         tty->print(" %c ", starts_bundle);
1983         starts_bundle = ' ';
1984         tty->print("\t");
1985         n->format(_regalloc, tty);
1986         tty->cr();
1987       }
1988 
1989       // If we have an instruction with a delay slot, and have seen a delay,
1990       // then back up and print it
1991       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1992         assert(delay != NULL, "no unconditional delay instruction");
1993         if (WizardMode) delay->dump();
1994 
1995         if (node_bundling(delay)->starts_bundle())
1996           starts_bundle = '+';
1997         if (pcs && n->_idx < pc_limit)
1998           tty->print("%3.3x", pcs[n->_idx]);
1999         else
2000           tty->print("   ");
2001         tty->print(" %c ", starts_bundle);
2002         starts_bundle = ' ';
2003         tty->print("\t");
2004         delay->format(_regalloc, tty);
2005         tty->print_cr("");
2006         delay = NULL;
2007       }
2008 
2009       // Dump the exception table as well
2010       if( n->is_Catch() && (Verbose || WizardMode) ) {
2011         // Print the exception table for this offset
2012         _handler_table.print_subtable_for(pc);
2013       }
2014     }
2015 
2016     if (pcs && n->_idx < pc_limit)
2017       tty->print_cr("%3.3x", pcs[n->_idx]);
2018     else
2019       tty->print_cr("");
2020 
2021     assert(cut_short || delay == NULL, "no unconditional delay branch");
2022 
2023   } // End of per-block dump
2024   tty->print_cr("");
2025 
2026   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2027 }
2028 #endif
2029 
2030 //------------------------------Final_Reshape_Counts---------------------------
2031 // This class defines counters to help identify when a method
2032 // may/must be executed using hardware with only 24-bit precision.
2033 struct Final_Reshape_Counts : public StackObj {
2034   int  _call_count;             // count non-inlined 'common' calls
2035   int  _float_count;            // count float ops requiring 24-bit precision
2036   int  _double_count;           // count double ops requiring more precision
2037   int  _java_call_count;        // count non-inlined 'java' calls
2038   int  _inner_loop_count;       // count loops which need alignment
2039   VectorSet _visited;           // Visitation flags
2040   Node_List _tests;             // Set of IfNodes & PCTableNodes
2041 
2042   Final_Reshape_Counts() :
2043     _call_count(0), _float_count(0), _double_count(0),
2044     _java_call_count(0), _inner_loop_count(0),
2045     _visited( Thread::current()->resource_area() ) { }
2046 
2047   void inc_call_count  () { _call_count  ++; }
2048   void inc_float_count () { _float_count ++; }
2049   void inc_double_count() { _double_count++; }
2050   void inc_java_call_count() { _java_call_count++; }
2051   void inc_inner_loop_count() { _inner_loop_count++; }
2052 
2053   int  get_call_count  () const { return _call_count  ; }
2054   int  get_float_count () const { return _float_count ; }
2055   int  get_double_count() const { return _double_count; }
2056   int  get_java_call_count() const { return _java_call_count; }
2057   int  get_inner_loop_count() const { return _inner_loop_count; }
2058 };
2059 
2060 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2061   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2062   // Make sure the offset goes inside the instance layout.
2063   return k->contains_field_offset(tp->offset());
2064   // Note that OffsetBot and OffsetTop are very negative.
2065 }
2066 
2067 // Eliminate trivially redundant StoreCMs and accumulate their
2068 // precedence edges.
2069 static void eliminate_redundant_card_marks(Node* n) {
2070   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2071   if (n->in(MemNode::Address)->outcnt() > 1) {
2072     // There are multiple users of the same address so it might be
2073     // possible to eliminate some of the StoreCMs
2074     Node* mem = n->in(MemNode::Memory);
2075     Node* adr = n->in(MemNode::Address);
2076     Node* val = n->in(MemNode::ValueIn);
2077     Node* prev = n;
2078     bool done = false;
2079     // Walk the chain of StoreCMs eliminating ones that match.  As
2080     // long as it's a chain of single users then the optimization is
2081     // safe.  Eliminating partially redundant StoreCMs would require
2082     // cloning copies down the other paths.
2083     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2084       if (adr == mem->in(MemNode::Address) &&
2085           val == mem->in(MemNode::ValueIn)) {
2086         // redundant StoreCM
2087         if (mem->req() > MemNode::OopStore) {
2088           // Hasn't been processed by this code yet.
2089           n->add_prec(mem->in(MemNode::OopStore));
2090         } else {
2091           // Already converted to precedence edge
2092           for (uint i = mem->req(); i < mem->len(); i++) {
2093             // Accumulate any precedence edges
2094             if (mem->in(i) != NULL) {
2095               n->add_prec(mem->in(i));
2096             }
2097           }
2098           // Everything above this point has been processed.
2099           done = true;
2100         }
2101         // Eliminate the previous StoreCM
2102         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2103         assert(mem->outcnt() == 0, "should be dead");
2104         mem->disconnect_inputs(NULL);
2105       } else {
2106         prev = mem;
2107       }
2108       mem = prev->in(MemNode::Memory);
2109     }
2110   }
2111 }
2112 
2113 //------------------------------final_graph_reshaping_impl----------------------
2114 // Implement items 1-5 from final_graph_reshaping below.
2115 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
2116 
2117   if ( n->outcnt() == 0 ) return; // dead node
2118   uint nop = n->Opcode();
2119 
2120   // Check for 2-input instruction with "last use" on right input.
2121   // Swap to left input.  Implements item (2).
2122   if( n->req() == 3 &&          // two-input instruction
2123       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2124       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2125       n->in(2)->outcnt() == 1 &&// right use IS a last use
2126       !n->in(2)->is_Con() ) {   // right use is not a constant
2127     // Check for commutative opcode
2128     switch( nop ) {
2129     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2130     case Op_MaxI:  case Op_MinI:
2131     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2132     case Op_AndL:  case Op_XorL:  case Op_OrL:
2133     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2134       // Move "last use" input to left by swapping inputs
2135       n->swap_edges(1, 2);
2136       break;
2137     }
2138     default:
2139       break;
2140     }
2141   }
2142 
2143 #ifdef ASSERT
2144   if( n->is_Mem() ) {
2145     Compile* C = Compile::current();
2146     int alias_idx = C->get_alias_index(n->as_Mem()->adr_type());
2147     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2148             // oop will be recorded in oop map if load crosses safepoint
2149             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2150                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2151             "raw memory operations should have control edge");
2152   }
2153 #endif
2154   // Count FPU ops and common calls, implements item (3)
2155   switch( nop ) {
2156   // Count all float operations that may use FPU
2157   case Op_AddF:
2158   case Op_SubF:
2159   case Op_MulF:
2160   case Op_DivF:
2161   case Op_NegF:
2162   case Op_ModF:
2163   case Op_ConvI2F:
2164   case Op_ConF:
2165   case Op_CmpF:
2166   case Op_CmpF3:
2167   // case Op_ConvL2F: // longs are split into 32-bit halves
2168     frc.inc_float_count();
2169     break;
2170 
2171   case Op_ConvF2D:
2172   case Op_ConvD2F:
2173     frc.inc_float_count();
2174     frc.inc_double_count();
2175     break;
2176 
2177   // Count all double operations that may use FPU
2178   case Op_AddD:
2179   case Op_SubD:
2180   case Op_MulD:
2181   case Op_DivD:
2182   case Op_NegD:
2183   case Op_ModD:
2184   case Op_ConvI2D:
2185   case Op_ConvD2I:
2186   // case Op_ConvL2D: // handled by leaf call
2187   // case Op_ConvD2L: // handled by leaf call
2188   case Op_ConD:
2189   case Op_CmpD:
2190   case Op_CmpD3:
2191     frc.inc_double_count();
2192     break;
2193   case Op_Opaque1:              // Remove Opaque Nodes before matching
2194   case Op_Opaque2:              // Remove Opaque Nodes before matching
2195     n->subsume_by(n->in(1));
2196     break;
2197   case Op_CallStaticJava:
2198   case Op_CallJava:
2199   case Op_CallDynamicJava:
2200     frc.inc_java_call_count(); // Count java call site;
2201   case Op_CallRuntime:
2202   case Op_CallLeaf:
2203   case Op_CallLeafNoFP: {
2204     assert( n->is_Call(), "" );
2205     CallNode *call = n->as_Call();
2206     // Count call sites where the FP mode bit would have to be flipped.
2207     // Do not count uncommon runtime calls:
2208     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2209     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2210     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2211       frc.inc_call_count();   // Count the call site
2212     } else {                  // See if uncommon argument is shared
2213       Node *n = call->in(TypeFunc::Parms);
2214       int nop = n->Opcode();
2215       // Clone shared simple arguments to uncommon calls, item (1).
2216       if( n->outcnt() > 1 &&
2217           !n->is_Proj() &&
2218           nop != Op_CreateEx &&
2219           nop != Op_CheckCastPP &&
2220           nop != Op_DecodeN &&
2221           !n->is_Mem() ) {
2222         Node *x = n->clone();
2223         call->set_req( TypeFunc::Parms, x );
2224       }
2225     }
2226     break;
2227   }
2228 
2229   case Op_StoreD:
2230   case Op_LoadD:
2231   case Op_LoadD_unaligned:
2232     frc.inc_double_count();
2233     goto handle_mem;
2234   case Op_StoreF:
2235   case Op_LoadF:
2236     frc.inc_float_count();
2237     goto handle_mem;
2238 
2239   case Op_StoreCM:
2240     {
2241       // Convert OopStore dependence into precedence edge
2242       Node* prec = n->in(MemNode::OopStore);
2243       n->del_req(MemNode::OopStore);
2244       n->add_prec(prec);
2245       eliminate_redundant_card_marks(n);
2246     }
2247 
2248     // fall through
2249 
2250   case Op_StoreB:
2251   case Op_StoreC:
2252   case Op_StorePConditional:
2253   case Op_StoreI:
2254   case Op_StoreL:
2255   case Op_StoreIConditional:
2256   case Op_StoreLConditional:
2257   case Op_CompareAndSwapI:
2258   case Op_CompareAndSwapL:
2259   case Op_CompareAndSwapP:
2260   case Op_CompareAndSwapN:
2261   case Op_StoreP:
2262   case Op_StoreN:
2263   case Op_LoadB:
2264   case Op_LoadUB:
2265   case Op_LoadUS:
2266   case Op_LoadI:
2267   case Op_LoadUI2L:
2268   case Op_LoadKlass:
2269   case Op_LoadNKlass:
2270   case Op_LoadL:
2271   case Op_LoadL_unaligned:
2272   case Op_LoadPLocked:
2273   case Op_LoadLLocked:
2274   case Op_LoadP:
2275   case Op_LoadN:
2276   case Op_LoadRange:
2277   case Op_LoadS: {
2278   handle_mem:
2279 #ifdef ASSERT
2280     if( VerifyOptoOopOffsets ) {
2281       assert( n->is_Mem(), "" );
2282       MemNode *mem  = (MemNode*)n;
2283       // Check to see if address types have grounded out somehow.
2284       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2285       assert( !tp || oop_offset_is_sane(tp), "" );
2286     }
2287 #endif
2288     break;
2289   }
2290 
2291   case Op_AddP: {               // Assert sane base pointers
2292     Node *addp = n->in(AddPNode::Address);
2293     assert( !addp->is_AddP() ||
2294             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2295             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2296             "Base pointers must match" );
2297 #ifdef _LP64
2298     if (UseCompressedOops &&
2299         addp->Opcode() == Op_ConP &&
2300         addp == n->in(AddPNode::Base) &&
2301         n->in(AddPNode::Offset)->is_Con()) {
2302       // Use addressing with narrow klass to load with offset on x86.
2303       // On sparc loading 32-bits constant and decoding it have less
2304       // instructions (4) then load 64-bits constant (7).
2305       // Do this transformation here since IGVN will convert ConN back to ConP.
2306       const Type* t = addp->bottom_type();
2307       if (t->isa_oopptr()) {
2308         Node* nn = NULL;
2309 
2310         // Look for existing ConN node of the same exact type.
2311         Compile* C = Compile::current();
2312         Node* r  = C->root();
2313         uint cnt = r->outcnt();
2314         for (uint i = 0; i < cnt; i++) {
2315           Node* m = r->raw_out(i);
2316           if (m!= NULL && m->Opcode() == Op_ConN &&
2317               m->bottom_type()->make_ptr() == t) {
2318             nn = m;
2319             break;
2320           }
2321         }
2322         if (nn != NULL) {
2323           // Decode a narrow oop to match address
2324           // [R12 + narrow_oop_reg<<3 + offset]
2325           nn = new (C,  2) DecodeNNode(nn, t);
2326           n->set_req(AddPNode::Base, nn);
2327           n->set_req(AddPNode::Address, nn);
2328           if (addp->outcnt() == 0) {
2329             addp->disconnect_inputs(NULL);
2330           }
2331         }
2332       }
2333     }
2334 #endif
2335     break;
2336   }
2337 
2338 #ifdef _LP64
2339   case Op_CastPP:
2340     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2341       Compile* C = Compile::current();
2342       Node* in1 = n->in(1);
2343       const Type* t = n->bottom_type();
2344       Node* new_in1 = in1->clone();
2345       new_in1->as_DecodeN()->set_type(t);
2346 
2347       if (!Matcher::narrow_oop_use_complex_address()) {
2348         //
2349         // x86, ARM and friends can handle 2 adds in addressing mode
2350         // and Matcher can fold a DecodeN node into address by using
2351         // a narrow oop directly and do implicit NULL check in address:
2352         //
2353         // [R12 + narrow_oop_reg<<3 + offset]
2354         // NullCheck narrow_oop_reg
2355         //
2356         // On other platforms (Sparc) we have to keep new DecodeN node and
2357         // use it to do implicit NULL check in address:
2358         //
2359         // decode_not_null narrow_oop_reg, base_reg
2360         // [base_reg + offset]
2361         // NullCheck base_reg
2362         //
2363         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2364         // to keep the information to which NULL check the new DecodeN node
2365         // corresponds to use it as value in implicit_null_check().
2366         //
2367         new_in1->set_req(0, n->in(0));
2368       }
2369 
2370       n->subsume_by(new_in1);
2371       if (in1->outcnt() == 0) {
2372         in1->disconnect_inputs(NULL);
2373       }
2374     }
2375     break;
2376 
2377   case Op_CmpP:
2378     // Do this transformation here to preserve CmpPNode::sub() and
2379     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2380     if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
2381       Node* in1 = n->in(1);
2382       Node* in2 = n->in(2);
2383       if (!in1->is_DecodeN()) {
2384         in2 = in1;
2385         in1 = n->in(2);
2386       }
2387       assert(in1->is_DecodeN(), "sanity");
2388 
2389       Compile* C = Compile::current();
2390       Node* new_in2 = NULL;
2391       if (in2->is_DecodeN()) {
2392         new_in2 = in2->in(1);
2393       } else if (in2->Opcode() == Op_ConP) {
2394         const Type* t = in2->bottom_type();
2395         if (t == TypePtr::NULL_PTR) {
2396           // Don't convert CmpP null check into CmpN if compressed
2397           // oops implicit null check is not generated.
2398           // This will allow to generate normal oop implicit null check.
2399           if (Matcher::gen_narrow_oop_implicit_null_checks())
2400             new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
2401           //
2402           // This transformation together with CastPP transformation above
2403           // will generated code for implicit NULL checks for compressed oops.
2404           //
2405           // The original code after Optimize()
2406           //
2407           //    LoadN memory, narrow_oop_reg
2408           //    decode narrow_oop_reg, base_reg
2409           //    CmpP base_reg, NULL
2410           //    CastPP base_reg // NotNull
2411           //    Load [base_reg + offset], val_reg
2412           //
2413           // after these transformations will be
2414           //
2415           //    LoadN memory, narrow_oop_reg
2416           //    CmpN narrow_oop_reg, NULL
2417           //    decode_not_null narrow_oop_reg, base_reg
2418           //    Load [base_reg + offset], val_reg
2419           //
2420           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2421           // since narrow oops can be used in debug info now (see the code in
2422           // final_graph_reshaping_walk()).
2423           //
2424           // At the end the code will be matched to
2425           // on x86:
2426           //
2427           //    Load_narrow_oop memory, narrow_oop_reg
2428           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2429           //    NullCheck narrow_oop_reg
2430           //
2431           // and on sparc:
2432           //
2433           //    Load_narrow_oop memory, narrow_oop_reg
2434           //    decode_not_null narrow_oop_reg, base_reg
2435           //    Load [base_reg + offset], val_reg
2436           //    NullCheck base_reg
2437           //
2438         } else if (t->isa_oopptr()) {
2439           new_in2 = ConNode::make(C, t->make_narrowoop());
2440         }
2441       }
2442       if (new_in2 != NULL) {
2443         Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
2444         n->subsume_by( cmpN );
2445         if (in1->outcnt() == 0) {
2446           in1->disconnect_inputs(NULL);
2447         }
2448         if (in2->outcnt() == 0) {
2449           in2->disconnect_inputs(NULL);
2450         }
2451       }
2452     }
2453     break;
2454 
2455   case Op_DecodeN:
2456     assert(!n->in(1)->is_EncodeP(), "should be optimized out");
2457     // DecodeN could be pinned when it can't be fold into
2458     // an address expression, see the code for Op_CastPP above.
2459     assert(n->in(0) == NULL || !Matcher::narrow_oop_use_complex_address(), "no control");
2460     break;
2461 
2462   case Op_EncodeP: {
2463     Node* in1 = n->in(1);
2464     if (in1->is_DecodeN()) {
2465       n->subsume_by(in1->in(1));
2466     } else if (in1->Opcode() == Op_ConP) {
2467       Compile* C = Compile::current();
2468       const Type* t = in1->bottom_type();
2469       if (t == TypePtr::NULL_PTR) {
2470         n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
2471       } else if (t->isa_oopptr()) {
2472         n->subsume_by(ConNode::make(C, t->make_narrowoop()));
2473       }
2474     }
2475     if (in1->outcnt() == 0) {
2476       in1->disconnect_inputs(NULL);
2477     }
2478     break;
2479   }
2480 
2481   case Op_Proj: {
2482     if (OptimizeStringConcat) {
2483       ProjNode* p = n->as_Proj();
2484       if (p->_is_io_use) {
2485         // Separate projections were used for the exception path which
2486         // are normally removed by a late inline.  If it wasn't inlined
2487         // then they will hang around and should just be replaced with
2488         // the original one.
2489         Node* proj = NULL;
2490         // Replace with just one
2491         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2492           Node *use = i.get();
2493           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2494             proj = use;
2495             break;
2496           }
2497         }
2498         assert(p != NULL, "must be found");
2499         p->subsume_by(proj);
2500       }
2501     }
2502     break;
2503   }
2504 
2505   case Op_Phi:
2506     if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
2507       // The EncodeP optimization may create Phi with the same edges
2508       // for all paths. It is not handled well by Register Allocator.
2509       Node* unique_in = n->in(1);
2510       assert(unique_in != NULL, "");
2511       uint cnt = n->req();
2512       for (uint i = 2; i < cnt; i++) {
2513         Node* m = n->in(i);
2514         assert(m != NULL, "");
2515         if (unique_in != m)
2516           unique_in = NULL;
2517       }
2518       if (unique_in != NULL) {
2519         n->subsume_by(unique_in);
2520       }
2521     }
2522     break;
2523 
2524 #endif
2525 
2526   case Op_ModI:
2527     if (UseDivMod) {
2528       // Check if a%b and a/b both exist
2529       Node* d = n->find_similar(Op_DivI);
2530       if (d) {
2531         // Replace them with a fused divmod if supported
2532         Compile* C = Compile::current();
2533         if (Matcher::has_match_rule(Op_DivModI)) {
2534           DivModINode* divmod = DivModINode::make(C, n);
2535           d->subsume_by(divmod->div_proj());
2536           n->subsume_by(divmod->mod_proj());
2537         } else {
2538           // replace a%b with a-((a/b)*b)
2539           Node* mult = new (C, 3) MulINode(d, d->in(2));
2540           Node* sub  = new (C, 3) SubINode(d->in(1), mult);
2541           n->subsume_by( sub );
2542         }
2543       }
2544     }
2545     break;
2546 
2547   case Op_ModL:
2548     if (UseDivMod) {
2549       // Check if a%b and a/b both exist
2550       Node* d = n->find_similar(Op_DivL);
2551       if (d) {
2552         // Replace them with a fused divmod if supported
2553         Compile* C = Compile::current();
2554         if (Matcher::has_match_rule(Op_DivModL)) {
2555           DivModLNode* divmod = DivModLNode::make(C, n);
2556           d->subsume_by(divmod->div_proj());
2557           n->subsume_by(divmod->mod_proj());
2558         } else {
2559           // replace a%b with a-((a/b)*b)
2560           Node* mult = new (C, 3) MulLNode(d, d->in(2));
2561           Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
2562           n->subsume_by( sub );
2563         }
2564       }
2565     }
2566     break;
2567 
2568   case Op_Load16B:
2569   case Op_Load8B:
2570   case Op_Load4B:
2571   case Op_Load8S:
2572   case Op_Load4S:
2573   case Op_Load2S:
2574   case Op_Load8C:
2575   case Op_Load4C:
2576   case Op_Load2C:
2577   case Op_Load4I:
2578   case Op_Load2I:
2579   case Op_Load2L:
2580   case Op_Load4F:
2581   case Op_Load2F:
2582   case Op_Load2D:
2583   case Op_Store16B:
2584   case Op_Store8B:
2585   case Op_Store4B:
2586   case Op_Store8C:
2587   case Op_Store4C:
2588   case Op_Store2C:
2589   case Op_Store4I:
2590   case Op_Store2I:
2591   case Op_Store2L:
2592   case Op_Store4F:
2593   case Op_Store2F:
2594   case Op_Store2D:
2595     break;
2596 
2597   case Op_PackB:
2598   case Op_PackS:
2599   case Op_PackC:
2600   case Op_PackI:
2601   case Op_PackF:
2602   case Op_PackL:
2603   case Op_PackD:
2604     if (n->req()-1 > 2) {
2605       // Replace many operand PackNodes with a binary tree for matching
2606       PackNode* p = (PackNode*) n;
2607       Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
2608       n->subsume_by(btp);
2609     }
2610     break;
2611   case Op_Loop:
2612   case Op_CountedLoop:
2613     if (n->as_Loop()->is_inner_loop()) {
2614       frc.inc_inner_loop_count();
2615     }
2616     break;
2617   case Op_LShiftI:
2618   case Op_RShiftI:
2619   case Op_URShiftI:
2620   case Op_LShiftL:
2621   case Op_RShiftL:
2622   case Op_URShiftL:
2623     if (Matcher::need_masked_shift_count) {
2624       // The cpu's shift instructions don't restrict the count to the
2625       // lower 5/6 bits. We need to do the masking ourselves.
2626       Node* in2 = n->in(2);
2627       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2628       const TypeInt* t = in2->find_int_type();
2629       if (t != NULL && t->is_con()) {
2630         juint shift = t->get_con();
2631         if (shift > mask) { // Unsigned cmp
2632           Compile* C = Compile::current();
2633           n->set_req(2, ConNode::make(C, TypeInt::make(shift & mask)));
2634         }
2635       } else {
2636         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2637           Compile* C = Compile::current();
2638           Node* shift = new (C, 3) AndINode(in2, ConNode::make(C, TypeInt::make(mask)));
2639           n->set_req(2, shift);
2640         }
2641       }
2642       if (in2->outcnt() == 0) { // Remove dead node
2643         in2->disconnect_inputs(NULL);
2644       }
2645     }
2646     break;
2647   default:
2648     assert( !n->is_Call(), "" );
2649     assert( !n->is_Mem(), "" );
2650     break;
2651   }
2652 
2653   // Collect CFG split points
2654   if (n->is_MultiBranch())
2655     frc._tests.push(n);
2656 }
2657 
2658 //------------------------------final_graph_reshaping_walk---------------------
2659 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2660 // requires that the walk visits a node's inputs before visiting the node.
2661 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
2662   ResourceArea *area = Thread::current()->resource_area();
2663   Unique_Node_List sfpt(area);
2664 
2665   frc._visited.set(root->_idx); // first, mark node as visited
2666   uint cnt = root->req();
2667   Node *n = root;
2668   uint  i = 0;
2669   while (true) {
2670     if (i < cnt) {
2671       // Place all non-visited non-null inputs onto stack
2672       Node* m = n->in(i);
2673       ++i;
2674       if (m != NULL && !frc._visited.test_set(m->_idx)) {
2675         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
2676           sfpt.push(m);
2677         cnt = m->req();
2678         nstack.push(n, i); // put on stack parent and next input's index
2679         n = m;
2680         i = 0;
2681       }
2682     } else {
2683       // Now do post-visit work
2684       final_graph_reshaping_impl( n, frc );
2685       if (nstack.is_empty())
2686         break;             // finished
2687       n = nstack.node();   // Get node from stack
2688       cnt = n->req();
2689       i = nstack.index();
2690       nstack.pop();        // Shift to the next node on stack
2691     }
2692   }
2693 
2694   // Skip next transformation if compressed oops are not used.
2695   if (!UseCompressedOops || !Matcher::gen_narrow_oop_implicit_null_checks())
2696     return;
2697 
2698   // Go over safepoints nodes to skip DecodeN nodes for debug edges.
2699   // It could be done for an uncommon traps or any safepoints/calls
2700   // if the DecodeN node is referenced only in a debug info.
2701   while (sfpt.size() > 0) {
2702     n = sfpt.pop();
2703     JVMState *jvms = n->as_SafePoint()->jvms();
2704     assert(jvms != NULL, "sanity");
2705     int start = jvms->debug_start();
2706     int end   = n->req();
2707     bool is_uncommon = (n->is_CallStaticJava() &&
2708                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
2709     for (int j = start; j < end; j++) {
2710       Node* in = n->in(j);
2711       if (in->is_DecodeN()) {
2712         bool safe_to_skip = true;
2713         if (!is_uncommon ) {
2714           // Is it safe to skip?
2715           for (uint i = 0; i < in->outcnt(); i++) {
2716             Node* u = in->raw_out(i);
2717             if (!u->is_SafePoint() ||
2718                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
2719               safe_to_skip = false;
2720             }
2721           }
2722         }
2723         if (safe_to_skip) {
2724           n->set_req(j, in->in(1));
2725         }
2726         if (in->outcnt() == 0) {
2727           in->disconnect_inputs(NULL);
2728         }
2729       }
2730     }
2731   }
2732 }
2733 
2734 //------------------------------final_graph_reshaping--------------------------
2735 // Final Graph Reshaping.
2736 //
2737 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
2738 //     and not commoned up and forced early.  Must come after regular
2739 //     optimizations to avoid GVN undoing the cloning.  Clone constant
2740 //     inputs to Loop Phis; these will be split by the allocator anyways.
2741 //     Remove Opaque nodes.
2742 // (2) Move last-uses by commutative operations to the left input to encourage
2743 //     Intel update-in-place two-address operations and better register usage
2744 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
2745 //     calls canonicalizing them back.
2746 // (3) Count the number of double-precision FP ops, single-precision FP ops
2747 //     and call sites.  On Intel, we can get correct rounding either by
2748 //     forcing singles to memory (requires extra stores and loads after each
2749 //     FP bytecode) or we can set a rounding mode bit (requires setting and
2750 //     clearing the mode bit around call sites).  The mode bit is only used
2751 //     if the relative frequency of single FP ops to calls is low enough.
2752 //     This is a key transform for SPEC mpeg_audio.
2753 // (4) Detect infinite loops; blobs of code reachable from above but not
2754 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
2755 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
2756 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
2757 //     Detection is by looking for IfNodes where only 1 projection is
2758 //     reachable from below or CatchNodes missing some targets.
2759 // (5) Assert for insane oop offsets in debug mode.
2760 
2761 bool Compile::final_graph_reshaping() {
2762   // an infinite loop may have been eliminated by the optimizer,
2763   // in which case the graph will be empty.
2764   if (root()->req() == 1) {
2765     record_method_not_compilable("trivial infinite loop");
2766     return true;
2767   }
2768 
2769   Final_Reshape_Counts frc;
2770 
2771   // Visit everybody reachable!
2772   // Allocate stack of size C->unique()/2 to avoid frequent realloc
2773   Node_Stack nstack(unique() >> 1);
2774   final_graph_reshaping_walk(nstack, root(), frc);
2775 
2776   // Check for unreachable (from below) code (i.e., infinite loops).
2777   for( uint i = 0; i < frc._tests.size(); i++ ) {
2778     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
2779     // Get number of CFG targets.
2780     // Note that PCTables include exception targets after calls.
2781     uint required_outcnt = n->required_outcnt();
2782     if (n->outcnt() != required_outcnt) {
2783       // Check for a few special cases.  Rethrow Nodes never take the
2784       // 'fall-thru' path, so expected kids is 1 less.
2785       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
2786         if (n->in(0)->in(0)->is_Call()) {
2787           CallNode *call = n->in(0)->in(0)->as_Call();
2788           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2789             required_outcnt--;      // Rethrow always has 1 less kid
2790           } else if (call->req() > TypeFunc::Parms &&
2791                      call->is_CallDynamicJava()) {
2792             // Check for null receiver. In such case, the optimizer has
2793             // detected that the virtual call will always result in a null
2794             // pointer exception. The fall-through projection of this CatchNode
2795             // will not be populated.
2796             Node *arg0 = call->in(TypeFunc::Parms);
2797             if (arg0->is_Type() &&
2798                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
2799               required_outcnt--;
2800             }
2801           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
2802                      call->req() > TypeFunc::Parms+1 &&
2803                      call->is_CallStaticJava()) {
2804             // Check for negative array length. In such case, the optimizer has
2805             // detected that the allocation attempt will always result in an
2806             // exception. There is no fall-through projection of this CatchNode .
2807             Node *arg1 = call->in(TypeFunc::Parms+1);
2808             if (arg1->is_Type() &&
2809                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
2810               required_outcnt--;
2811             }
2812           }
2813         }
2814       }
2815       // Recheck with a better notion of 'required_outcnt'
2816       if (n->outcnt() != required_outcnt) {
2817         record_method_not_compilable("malformed control flow");
2818         return true;            // Not all targets reachable!
2819       }
2820     }
2821     // Check that I actually visited all kids.  Unreached kids
2822     // must be infinite loops.
2823     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
2824       if (!frc._visited.test(n->fast_out(j)->_idx)) {
2825         record_method_not_compilable("infinite loop");
2826         return true;            // Found unvisited kid; must be unreach
2827       }
2828   }
2829 
2830   // If original bytecodes contained a mixture of floats and doubles
2831   // check if the optimizer has made it homogenous, item (3).
2832   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
2833       frc.get_float_count() > 32 &&
2834       frc.get_double_count() == 0 &&
2835       (10 * frc.get_call_count() < frc.get_float_count()) ) {
2836     set_24_bit_selection_and_mode( false,  true );
2837   }
2838 
2839   set_java_calls(frc.get_java_call_count());
2840   set_inner_loops(frc.get_inner_loop_count());
2841 
2842   // No infinite loops, no reason to bail out.
2843   return false;
2844 }
2845 
2846 //-----------------------------too_many_traps----------------------------------
2847 // Report if there are too many traps at the current method and bci.
2848 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
2849 bool Compile::too_many_traps(ciMethod* method,
2850                              int bci,
2851                              Deoptimization::DeoptReason reason) {
2852   ciMethodData* md = method->method_data();
2853   if (md->is_empty()) {
2854     // Assume the trap has not occurred, or that it occurred only
2855     // because of a transient condition during start-up in the interpreter.
2856     return false;
2857   }
2858   if (md->has_trap_at(bci, reason) != 0) {
2859     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
2860     // Also, if there are multiple reasons, or if there is no per-BCI record,
2861     // assume the worst.
2862     if (log())
2863       log()->elem("observe trap='%s' count='%d'",
2864                   Deoptimization::trap_reason_name(reason),
2865                   md->trap_count(reason));
2866     return true;
2867   } else {
2868     // Ignore method/bci and see if there have been too many globally.
2869     return too_many_traps(reason, md);
2870   }
2871 }
2872 
2873 // Less-accurate variant which does not require a method and bci.
2874 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
2875                              ciMethodData* logmd) {
2876  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
2877     // Too many traps globally.
2878     // Note that we use cumulative trap_count, not just md->trap_count.
2879     if (log()) {
2880       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
2881       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
2882                   Deoptimization::trap_reason_name(reason),
2883                   mcount, trap_count(reason));
2884     }
2885     return true;
2886   } else {
2887     // The coast is clear.
2888     return false;
2889   }
2890 }
2891 
2892 //--------------------------too_many_recompiles--------------------------------
2893 // Report if there are too many recompiles at the current method and bci.
2894 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
2895 // Is not eager to return true, since this will cause the compiler to use
2896 // Action_none for a trap point, to avoid too many recompilations.
2897 bool Compile::too_many_recompiles(ciMethod* method,
2898                                   int bci,
2899                                   Deoptimization::DeoptReason reason) {
2900   ciMethodData* md = method->method_data();
2901   if (md->is_empty()) {
2902     // Assume the trap has not occurred, or that it occurred only
2903     // because of a transient condition during start-up in the interpreter.
2904     return false;
2905   }
2906   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
2907   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
2908   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
2909   Deoptimization::DeoptReason per_bc_reason
2910     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
2911   if ((per_bc_reason == Deoptimization::Reason_none
2912        || md->has_trap_at(bci, reason) != 0)
2913       // The trap frequency measure we care about is the recompile count:
2914       && md->trap_recompiled_at(bci)
2915       && md->overflow_recompile_count() >= bc_cutoff) {
2916     // Do not emit a trap here if it has already caused recompilations.
2917     // Also, if there are multiple reasons, or if there is no per-BCI record,
2918     // assume the worst.
2919     if (log())
2920       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
2921                   Deoptimization::trap_reason_name(reason),
2922                   md->trap_count(reason),
2923                   md->overflow_recompile_count());
2924     return true;
2925   } else if (trap_count(reason) != 0
2926              && decompile_count() >= m_cutoff) {
2927     // Too many recompiles globally, and we have seen this sort of trap.
2928     // Use cumulative decompile_count, not just md->decompile_count.
2929     if (log())
2930       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
2931                   Deoptimization::trap_reason_name(reason),
2932                   md->trap_count(reason), trap_count(reason),
2933                   md->decompile_count(), decompile_count());
2934     return true;
2935   } else {
2936     // The coast is clear.
2937     return false;
2938   }
2939 }
2940 
2941 
2942 #ifndef PRODUCT
2943 //------------------------------verify_graph_edges---------------------------
2944 // Walk the Graph and verify that there is a one-to-one correspondence
2945 // between Use-Def edges and Def-Use edges in the graph.
2946 void Compile::verify_graph_edges(bool no_dead_code) {
2947   if (VerifyGraphEdges) {
2948     ResourceArea *area = Thread::current()->resource_area();
2949     Unique_Node_List visited(area);
2950     // Call recursive graph walk to check edges
2951     _root->verify_edges(visited);
2952     if (no_dead_code) {
2953       // Now make sure that no visited node is used by an unvisited node.
2954       bool dead_nodes = 0;
2955       Unique_Node_List checked(area);
2956       while (visited.size() > 0) {
2957         Node* n = visited.pop();
2958         checked.push(n);
2959         for (uint i = 0; i < n->outcnt(); i++) {
2960           Node* use = n->raw_out(i);
2961           if (checked.member(use))  continue;  // already checked
2962           if (visited.member(use))  continue;  // already in the graph
2963           if (use->is_Con())        continue;  // a dead ConNode is OK
2964           // At this point, we have found a dead node which is DU-reachable.
2965           if (dead_nodes++ == 0)
2966             tty->print_cr("*** Dead nodes reachable via DU edges:");
2967           use->dump(2);
2968           tty->print_cr("---");
2969           checked.push(use);  // No repeats; pretend it is now checked.
2970         }
2971       }
2972       assert(dead_nodes == 0, "using nodes must be reachable from root");
2973     }
2974   }
2975 }
2976 #endif
2977 
2978 // The Compile object keeps track of failure reasons separately from the ciEnv.
2979 // This is required because there is not quite a 1-1 relation between the
2980 // ciEnv and its compilation task and the Compile object.  Note that one
2981 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
2982 // to backtrack and retry without subsuming loads.  Other than this backtracking
2983 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
2984 // by the logic in C2Compiler.
2985 void Compile::record_failure(const char* reason) {
2986   if (log() != NULL) {
2987     log()->elem("failure reason='%s' phase='compile'", reason);
2988   }
2989   if (_failure_reason == NULL) {
2990     // Record the first failure reason.
2991     _failure_reason = reason;
2992   }
2993   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
2994     C->print_method(_failure_reason);
2995   }
2996   _root = NULL;  // flush the graph, too
2997 }
2998 
2999 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3000   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
3001 {
3002   if (dolog) {
3003     C = Compile::current();
3004     _log = C->log();
3005   } else {
3006     C = NULL;
3007     _log = NULL;
3008   }
3009   if (_log != NULL) {
3010     _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
3011     _log->stamp();
3012     _log->end_head();
3013   }
3014 }
3015 
3016 Compile::TracePhase::~TracePhase() {
3017   if (_log != NULL) {
3018     _log->done("phase nodes='%d'", C->unique());
3019   }
3020 }
3021 
3022 //=============================================================================
3023 // Two Constant's are equal when the type and the value are equal.
3024 bool Compile::Constant::operator==(const Constant& other) {
3025   if (type()          != other.type()         )  return false;
3026   if (can_be_reused() != other.can_be_reused())  return false;
3027   // For floating point values we compare the bit pattern.
3028   switch (type()) {
3029   case T_FLOAT:   return (_value.i == other._value.i);
3030   case T_LONG:
3031   case T_DOUBLE:  return (_value.j == other._value.j);
3032   case T_OBJECT:
3033   case T_ADDRESS: return (_value.l == other._value.l);
3034   case T_VOID:    return (_value.l == other._value.l);  // jump-table entries
3035   default: ShouldNotReachHere();
3036   }
3037   return false;
3038 }
3039 
3040 // Emit constants grouped in the following order:
3041 static BasicType type_order[] = {
3042   T_FLOAT,    // 32-bit
3043   T_OBJECT,   // 32 or 64-bit
3044   T_ADDRESS,  // 32 or 64-bit
3045   T_DOUBLE,   // 64-bit
3046   T_LONG,     // 64-bit
3047   T_VOID,     // 32 or 64-bit (jump-tables are at the end of the constant table for code emission reasons)
3048   T_ILLEGAL
3049 };
3050 
3051 static int type_to_size_in_bytes(BasicType t) {
3052   switch (t) {
3053   case T_LONG:    return sizeof(jlong  );
3054   case T_FLOAT:   return sizeof(jfloat );
3055   case T_DOUBLE:  return sizeof(jdouble);
3056     // We use T_VOID as marker for jump-table entries (labels) which
3057     // need an interal word relocation.
3058   case T_VOID:
3059   case T_ADDRESS:
3060   case T_OBJECT:  return sizeof(jobject);
3061   }
3062 
3063   ShouldNotReachHere();
3064   return -1;
3065 }
3066 
3067 void Compile::ConstantTable::calculate_offsets_and_size() {
3068   int size = 0;
3069   for (int t = 0; type_order[t] != T_ILLEGAL; t++) {
3070     BasicType type = type_order[t];
3071 
3072     for (int i = 0; i < _constants.length(); i++) {
3073       Constant con = _constants.at(i);
3074       if (con.type() != type)  continue;  // Skip other types.
3075 
3076       // Align size for type.
3077       int typesize = type_to_size_in_bytes(con.type());
3078       size = align_size_up(size, typesize);
3079 
3080       // Set offset.
3081       con.set_offset(size);
3082       _constants.at_put(i, con);
3083 
3084       // Add type size.
3085       size = size + typesize;
3086     }
3087   }
3088 
3089   // Align size up to the next section start (which is insts; see
3090   // CodeBuffer::align_at_start).
3091   assert(_size == -1, "already set?");
3092   _size = align_size_up(size, CodeEntryAlignment);
3093 
3094   if (Matcher::constant_table_absolute_addressing) {
3095     set_table_base_offset(0);  // No table base offset required
3096   } else {
3097     if (UseRDPCForConstantTableBase) {
3098       // table base offset is set in MachConstantBaseNode::emit
3099     } else {
3100       // When RDPC is not used, the table base is set into the middle of
3101       // the constant table.
3102       int half_size = _size / 2;
3103       assert(half_size * 2 == _size, "sanity");
3104       set_table_base_offset(-half_size);
3105     }
3106   }
3107 }
3108 
3109 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3110   MacroAssembler _masm(&cb);
3111   for (int t = 0; type_order[t] != T_ILLEGAL; t++) {
3112     BasicType type = type_order[t];
3113 
3114     for (int i = 0; i < _constants.length(); i++) {
3115       Constant con = _constants.at(i);
3116       if (con.type() != type)  continue;  // Skip other types.
3117 
3118       address constant_addr;
3119       switch (con.type()) {
3120       case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3121       case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3122       case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3123       case T_OBJECT: {
3124         jobject obj = con.get_jobject();
3125         int oop_index = _masm.oop_recorder()->find_index(obj);
3126         constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3127         break;
3128       }
3129       case T_ADDRESS: {
3130         address addr = (address) con.get_jobject();
3131         constant_addr = _masm.address_constant(addr);
3132         break;
3133       }
3134       // We use T_VOID as marker for jump-table entries (labels) which
3135       // need an interal word relocation.
3136       case T_VOID: {
3137         // Write a dummy word.  The real value is filled in later
3138         // in fill_jump_table_in_constant_table.
3139         address addr = (address) con.get_jobject();
3140         constant_addr = _masm.address_constant(addr);
3141         break;
3142       }
3143       default: ShouldNotReachHere();
3144       }
3145       assert(constant_addr != NULL, "consts section too small");
3146       assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3147     }
3148   }
3149 }
3150 
3151 int Compile::ConstantTable::find_offset(Constant& con) const {
3152   int idx = _constants.find(con);
3153   assert(idx != -1, "constant must be in constant table");
3154   int offset = _constants.at(idx).offset();
3155   assert(offset != -1, "constant table not emitted yet?");
3156   return offset;
3157 }
3158 
3159 void Compile::ConstantTable::add(Constant& con) {
3160   if (con.can_be_reused()) {
3161     int idx = _constants.find(con);
3162     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3163       return;
3164     }
3165   }
3166   (void) _constants.append(con);
3167 }
3168 
3169 Compile::Constant Compile::ConstantTable::add(BasicType type, jvalue value) {
3170   Constant con(type, value);
3171   add(con);
3172   return con;
3173 }
3174 
3175 Compile::Constant Compile::ConstantTable::add(MachOper* oper) {
3176   jvalue value;
3177   BasicType type = oper->type()->basic_type();
3178   switch (type) {
3179   case T_LONG:    value.j = oper->constantL(); break;
3180   case T_FLOAT:   value.f = oper->constantF(); break;
3181   case T_DOUBLE:  value.d = oper->constantD(); break;
3182   case T_OBJECT:
3183   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3184   default: ShouldNotReachHere();
3185   }
3186   return add(type, value);
3187 }
3188 
3189 Compile::Constant Compile::ConstantTable::allocate_jump_table(MachConstantNode* n) {
3190   jvalue value;
3191   // We can use the node pointer here to identify the right jump-table
3192   // as this method is called from Compile::Fill_buffer right before
3193   // the MachNodes are emitted and the jump-table is filled (means the
3194   // MachNode pointers do not change anymore).
3195   value.l = (jobject) n;
3196   Constant con(T_VOID, value, false);  // Labels of a jump-table cannot be reused.
3197   for (uint i = 0; i < n->outcnt(); i++) {
3198     add(con);
3199   }
3200   return con;
3201 }
3202 
3203 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3204   // If called from Compile::scratch_emit_size do nothing.
3205   if (Compile::current()->in_scratch_emit_size())  return;
3206 
3207   assert(labels.is_nonempty(), "must be");
3208   assert((uint) labels.length() == n->outcnt(), err_msg("must be equal: %d == %d", labels.length(), n->outcnt()));
3209 
3210   // Since MachConstantNode::constant_offset() also contains
3211   // table_base_offset() we need to subtract the table_base_offset()
3212   // to get the plain offset into the constant table.
3213   int offset = n->constant_offset() - table_base_offset();
3214 
3215   MacroAssembler _masm(&cb);
3216   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3217 
3218   for (int i = 0; i < labels.length(); i++) {
3219     address* constant_addr = &jump_table_base[i];
3220     assert(*constant_addr == (address) n, "all jump-table entries must contain node pointer");
3221     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3222     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3223   }
3224 }