1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
  26 #define SHARE_VM_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/type.hpp"
  34 
  35 // Portions of code courtesy of Clifford Click
  36 
  37 // Optimization - Graph Style
  38 
  39 class Chaitin;
  40 class NamedCounter;
  41 class MultiNode;
  42 class  SafePointNode;
  43 class   CallNode;
  44 class     CallJavaNode;
  45 class       CallStaticJavaNode;
  46 class       CallDynamicJavaNode;
  47 class     CallRuntimeNode;
  48 class       CallLeafNode;
  49 class         CallLeafNoFPNode;
  50 class     AllocateNode;
  51 class       AllocateArrayNode;
  52 class     LockNode;
  53 class     UnlockNode;
  54 class JVMState;
  55 class OopMap;
  56 class State;
  57 class StartNode;
  58 class MachCallNode;
  59 class FastLockNode;
  60 
  61 //------------------------------StartNode--------------------------------------
  62 // The method start node
  63 class StartNode : public MultiNode {
  64   virtual uint cmp( const Node &n ) const;
  65   virtual uint size_of() const; // Size is bigger
  66 public:
  67   const TypeTuple *_domain;
  68   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  69     init_class_id(Class_Start);
  70     init_req(0,this);
  71     init_req(1,root);
  72   }
  73   virtual int Opcode() const;
  74   virtual bool pinned() const { return true; };
  75   virtual const Type *bottom_type() const;
  76   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  77   virtual const Type *Value( PhaseTransform *phase ) const;
  78   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  79   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  80   virtual const RegMask &in_RegMask(uint) const;
  81   virtual Node *match( const ProjNode *proj, const Matcher *m );
  82   virtual uint ideal_reg() const { return 0; }
  83 #ifndef PRODUCT
  84   virtual void  dump_spec(outputStream *st) const;
  85 #endif
  86 };
  87 
  88 //------------------------------StartOSRNode-----------------------------------
  89 // The method start node for on stack replacement code
  90 class StartOSRNode : public StartNode {
  91 public:
  92   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  93   virtual int   Opcode() const;
  94   static  const TypeTuple *osr_domain();
  95 };
  96 
  97 
  98 //------------------------------ParmNode---------------------------------------
  99 // Incoming parameters
 100 class ParmNode : public ProjNode {
 101   static const char * const names[TypeFunc::Parms+1];
 102 public:
 103   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 104     init_class_id(Class_Parm);
 105   }
 106   virtual int Opcode() const;
 107   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 108   virtual uint ideal_reg() const;
 109 #ifndef PRODUCT
 110   virtual void dump_spec(outputStream *st) const;
 111 #endif
 112 };
 113 
 114 
 115 //------------------------------ReturnNode-------------------------------------
 116 // Return from subroutine node
 117 class ReturnNode : public Node {
 118 public:
 119   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 120   virtual int Opcode() const;
 121   virtual bool  is_CFG() const { return true; }
 122   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 123   virtual bool depends_only_on_test() const { return false; }
 124   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 125   virtual const Type *Value( PhaseTransform *phase ) const;
 126   virtual uint ideal_reg() const { return NotAMachineReg; }
 127   virtual uint match_edge(uint idx) const;
 128 #ifndef PRODUCT
 129   virtual void dump_req() const;
 130 #endif
 131 };
 132 
 133 
 134 //------------------------------RethrowNode------------------------------------
 135 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 136 // ends the current basic block like a ReturnNode.  Restores registers and
 137 // unwinds stack.  Rethrow happens in the caller's method.
 138 class RethrowNode : public Node {
 139  public:
 140   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 141   virtual int Opcode() const;
 142   virtual bool  is_CFG() const { return true; }
 143   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 144   virtual bool depends_only_on_test() const { return false; }
 145   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 146   virtual const Type *Value( PhaseTransform *phase ) const;
 147   virtual uint match_edge(uint idx) const;
 148   virtual uint ideal_reg() const { return NotAMachineReg; }
 149 #ifndef PRODUCT
 150   virtual void dump_req() const;
 151 #endif
 152 };
 153 
 154 
 155 //------------------------------TailCallNode-----------------------------------
 156 // Pop stack frame and jump indirect
 157 class TailCallNode : public ReturnNode {
 158 public:
 159   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 160     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 161     init_req(TypeFunc::Parms, target);
 162     init_req(TypeFunc::Parms+1, moop);
 163   }
 164 
 165   virtual int Opcode() const;
 166   virtual uint match_edge(uint idx) const;
 167 };
 168 
 169 //------------------------------TailJumpNode-----------------------------------
 170 // Pop stack frame and jump indirect
 171 class TailJumpNode : public ReturnNode {
 172 public:
 173   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 174     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 175     init_req(TypeFunc::Parms, target);
 176     init_req(TypeFunc::Parms+1, ex_oop);
 177   }
 178 
 179   virtual int Opcode() const;
 180   virtual uint match_edge(uint idx) const;
 181 };
 182 
 183 //-------------------------------JVMState-------------------------------------
 184 // A linked list of JVMState nodes captures the whole interpreter state,
 185 // plus GC roots, for all active calls at some call site in this compilation
 186 // unit.  (If there is no inlining, then the list has exactly one link.)
 187 // This provides a way to map the optimized program back into the interpreter,
 188 // or to let the GC mark the stack.
 189 class JVMState : public ResourceObj {
 190   friend class VMStructs;
 191 public:
 192   typedef enum {
 193     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 194     Reexecute_False     =  0, // false       -- do not reexecute
 195     Reexecute_True      =  1  // true        -- reexecute the bytecode
 196   } ReexecuteState; //Reexecute State
 197 
 198 private:
 199   JVMState*         _caller;    // List pointer for forming scope chains
 200   uint              _depth;     // One mroe than caller depth, or one.
 201   uint              _locoff;    // Offset to locals in input edge mapping
 202   uint              _stkoff;    // Offset to stack in input edge mapping
 203   uint              _monoff;    // Offset to monitors in input edge mapping
 204   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 205   uint              _endoff;    // Offset to end of input edge mapping
 206   uint              _sp;        // Jave Expression Stack Pointer for this state
 207   int               _bci;       // Byte Code Index of this JVM point
 208   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 209   ciMethod*         _method;    // Method Pointer
 210   SafePointNode*    _map;       // Map node associated with this scope
 211 public:
 212   friend class Compile;
 213   friend class PreserveReexecuteState;
 214 
 215   // Because JVMState objects live over the entire lifetime of the
 216   // Compile object, they are allocated into the comp_arena, which
 217   // does not get resource marked or reset during the compile process
 218   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
 219   void operator delete( void * ) { } // fast deallocation
 220 
 221   // Create a new JVMState, ready for abstract interpretation.
 222   JVMState(ciMethod* method, JVMState* caller);
 223   JVMState(int stack_size);  // root state; has a null method
 224 
 225   // Access functions for the JVM
 226   uint              locoff() const { return _locoff; }
 227   uint              stkoff() const { return _stkoff; }
 228   uint              argoff() const { return _stkoff + _sp; }
 229   uint              monoff() const { return _monoff; }
 230   uint              scloff() const { return _scloff; }
 231   uint              endoff() const { return _endoff; }
 232   uint              oopoff() const { return debug_end(); }
 233 
 234   int            loc_size() const { return _stkoff - _locoff; }
 235   int            stk_size() const { return _monoff - _stkoff; }
 236   int            mon_size() const { return _scloff - _monoff; }
 237   int            scl_size() const { return _endoff - _scloff; }
 238 
 239   bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
 240   bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
 241   bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
 242   bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }
 243 
 244   uint                      sp() const { return _sp; }
 245   int                      bci() const { return _bci; }
 246   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 247   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 248   bool              has_method() const { return _method != NULL; }
 249   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 250   JVMState*             caller() const { return _caller; }
 251   SafePointNode*           map() const { return _map; }
 252   uint                   depth() const { return _depth; }
 253   uint             debug_start() const; // returns locoff of root caller
 254   uint               debug_end() const; // returns endoff of self
 255   uint              debug_size() const {
 256     return loc_size() + sp() + mon_size() + scl_size();
 257   }
 258   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 259 
 260   // Returns the JVM state at the desired depth (1 == root).
 261   JVMState* of_depth(int d) const;
 262 
 263   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 264   bool same_calls_as(const JVMState* that) const;
 265 
 266   // Monitors (monitors are stored as (boxNode, objNode) pairs
 267   enum { logMonitorEdges = 1 };
 268   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 269   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 270   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 271   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 272   bool is_monitor_box(uint off)    const {
 273     assert(is_mon(off), "should be called only for monitor edge");
 274     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 275   }
 276   bool is_monitor_use(uint off)    const { return (is_mon(off)
 277                                                    && is_monitor_box(off))
 278                                              || (caller() && caller()->is_monitor_use(off)); }
 279 
 280   // Initialization functions for the JVM
 281   void              set_locoff(uint off) { _locoff = off; }
 282   void              set_stkoff(uint off) { _stkoff = off; }
 283   void              set_monoff(uint off) { _monoff = off; }
 284   void              set_scloff(uint off) { _scloff = off; }
 285   void              set_endoff(uint off) { _endoff = off; }
 286   void              set_offsets(uint off) {
 287     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 288   }
 289   void              set_map(SafePointNode *map) { _map = map; }
 290   void              set_sp(uint sp) { _sp = sp; }
 291                     // _reexecute is initialized to "undefined" for a new bci
 292   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 293   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 294 
 295   // Miscellaneous utility functions
 296   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 297   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 298 
 299 #ifndef PRODUCT
 300   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 301   void      dump_spec(outputStream *st) const;
 302   void      dump_on(outputStream* st) const;
 303   void      dump() const {
 304     dump_on(tty);
 305   }
 306 #endif
 307 };
 308 
 309 //------------------------------SafePointNode----------------------------------
 310 // A SafePointNode is a subclass of a MultiNode for convenience (and
 311 // potential code sharing) only - conceptually it is independent of
 312 // the Node semantics.
 313 class SafePointNode : public MultiNode {
 314   virtual uint           cmp( const Node &n ) const;
 315   virtual uint           size_of() const;       // Size is bigger
 316 
 317 public:
 318   SafePointNode(uint edges, JVMState* jvms,
 319                 // A plain safepoint advertises no memory effects (NULL):
 320                 const TypePtr* adr_type = NULL)
 321     : MultiNode( edges ),
 322       _jvms(jvms),
 323       _oop_map(NULL),
 324       _adr_type(adr_type)
 325   {
 326     init_class_id(Class_SafePoint);
 327   }
 328 
 329   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 330   JVMState* const _jvms;      // Pointer to list of JVM State objects
 331   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 332 
 333   // Many calls take *all* of memory as input,
 334   // but some produce a limited subset of that memory as output.
 335   // The adr_type reports the call's behavior as a store, not a load.
 336 
 337   virtual JVMState* jvms() const { return _jvms; }
 338   void set_jvms(JVMState* s) {
 339     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 340   }
 341   OopMap *oop_map() const { return _oop_map; }
 342   void set_oop_map(OopMap *om) { _oop_map = om; }
 343 
 344   // Functionality from old debug nodes which has changed
 345   Node *local(JVMState* jvms, uint idx) const {
 346     assert(verify_jvms(jvms), "jvms must match");
 347     return in(jvms->locoff() + idx);
 348   }
 349   Node *stack(JVMState* jvms, uint idx) const {
 350     assert(verify_jvms(jvms), "jvms must match");
 351     return in(jvms->stkoff() + idx);
 352   }
 353   Node *argument(JVMState* jvms, uint idx) const {
 354     assert(verify_jvms(jvms), "jvms must match");
 355     return in(jvms->argoff() + idx);
 356   }
 357   Node *monitor_box(JVMState* jvms, uint idx) const {
 358     assert(verify_jvms(jvms), "jvms must match");
 359     return in(jvms->monitor_box_offset(idx));
 360   }
 361   Node *monitor_obj(JVMState* jvms, uint idx) const {
 362     assert(verify_jvms(jvms), "jvms must match");
 363     return in(jvms->monitor_obj_offset(idx));
 364   }
 365 
 366   void  set_local(JVMState* jvms, uint idx, Node *c);
 367 
 368   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 369     assert(verify_jvms(jvms), "jvms must match");
 370     set_req(jvms->stkoff() + idx, c);
 371   }
 372   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 373     assert(verify_jvms(jvms), "jvms must match");
 374     set_req(jvms->argoff() + idx, c);
 375   }
 376   void ensure_stack(JVMState* jvms, uint stk_size) {
 377     assert(verify_jvms(jvms), "jvms must match");
 378     int grow_by = (int)stk_size - (int)jvms->stk_size();
 379     if (grow_by > 0)  grow_stack(jvms, grow_by);
 380   }
 381   void grow_stack(JVMState* jvms, uint grow_by);
 382   // Handle monitor stack
 383   void push_monitor( const FastLockNode *lock );
 384   void pop_monitor ();
 385   Node *peek_monitor_box() const;
 386   Node *peek_monitor_obj() const;
 387 
 388   // Access functions for the JVM
 389   Node *control  () const { return in(TypeFunc::Control  ); }
 390   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 391   Node *memory   () const { return in(TypeFunc::Memory   ); }
 392   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 393   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 394 
 395   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 396   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 397   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 398 
 399   MergeMemNode* merged_memory() const {
 400     return in(TypeFunc::Memory)->as_MergeMem();
 401   }
 402 
 403   // The parser marks useless maps as dead when it's done with them:
 404   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 405 
 406   // Exception states bubbling out of subgraphs such as inlined calls
 407   // are recorded here.  (There might be more than one, hence the "next".)
 408   // This feature is used only for safepoints which serve as "maps"
 409   // for JVM states during parsing, intrinsic expansion, etc.
 410   SafePointNode*         next_exception() const;
 411   void               set_next_exception(SafePointNode* n);
 412   bool                   has_exceptions() const { return next_exception() != NULL; }
 413 
 414   // Standard Node stuff
 415   virtual int            Opcode() const;
 416   virtual bool           pinned() const { return true; }
 417   virtual const Type    *Value( PhaseTransform *phase ) const;
 418   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 419   virtual const TypePtr *adr_type() const { return _adr_type; }
 420   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 421   virtual Node          *Identity( PhaseTransform *phase );
 422   virtual uint           ideal_reg() const { return 0; }
 423   virtual const RegMask &in_RegMask(uint) const;
 424   virtual const RegMask &out_RegMask() const;
 425   virtual uint           match_edge(uint idx) const;
 426 
 427   static  bool           needs_polling_address_input();
 428 
 429 #ifndef PRODUCT
 430   virtual void              dump_spec(outputStream *st) const;
 431 #endif
 432 };
 433 
 434 //------------------------------SafePointScalarObjectNode----------------------
 435 // A SafePointScalarObjectNode represents the state of a scalarized object
 436 // at a safepoint.
 437 
 438 class SafePointScalarObjectNode: public TypeNode {
 439   uint _first_index; // First input edge index of a SafePoint node where
 440                      // states of the scalarized object fields are collected.
 441   uint _n_fields;    // Number of non-static fields of the scalarized object.
 442   DEBUG_ONLY(AllocateNode* _alloc;)
 443 public:
 444   SafePointScalarObjectNode(const TypeOopPtr* tp,
 445 #ifdef ASSERT
 446                             AllocateNode* alloc,
 447 #endif
 448                             uint first_index, uint n_fields);
 449   virtual int Opcode() const;
 450   virtual uint           ideal_reg() const;
 451   virtual const RegMask &in_RegMask(uint) const;
 452   virtual const RegMask &out_RegMask() const;
 453   virtual uint           match_edge(uint idx) const;
 454 
 455   uint first_index() const { return _first_index; }
 456   uint n_fields()    const { return _n_fields; }
 457   DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
 458 
 459   // SafePointScalarObject should be always pinned to the control edge
 460   // of the SafePoint node for which it was generated.
 461   virtual bool pinned() const; // { return true; }
 462 
 463   // SafePointScalarObject depends on the SafePoint node
 464   // for which it was generated.
 465   virtual bool depends_only_on_test() const; // { return false; }
 466 
 467   virtual uint size_of() const { return sizeof(*this); }
 468 
 469   // Assumes that "this" is an argument to a safepoint node "s", and that
 470   // "new_call" is being created to correspond to "s".  But the difference
 471   // between the start index of the jvmstates of "new_call" and "s" is
 472   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 473   // corresponds appropriately to "this" in "new_call".  Assumes that
 474   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 475   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 476   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
 477 
 478 #ifndef PRODUCT
 479   virtual void              dump_spec(outputStream *st) const;
 480 #endif
 481 };
 482 
 483 
 484 // Simple container for the outgoing projections of a call.  Useful
 485 // for serious surgery on calls.
 486 class CallProjections : public StackObj {
 487 public:
 488   Node* fallthrough_proj;
 489   Node* fallthrough_catchproj;
 490   Node* fallthrough_memproj;
 491   Node* fallthrough_ioproj;
 492   Node* catchall_catchproj;
 493   Node* catchall_memproj;
 494   Node* catchall_ioproj;
 495   Node* resproj;
 496   Node* exobj;
 497 };
 498 
 499 
 500 //------------------------------CallNode---------------------------------------
 501 // Call nodes now subsume the function of debug nodes at callsites, so they
 502 // contain the functionality of a full scope chain of debug nodes.
 503 class CallNode : public SafePointNode {
 504   friend class VMStructs;
 505 public:
 506   const TypeFunc *_tf;        // Function type
 507   address      _entry_point;  // Address of method being called
 508   float        _cnt;          // Estimate of number of times called
 509 
 510   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 511     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 512       _tf(tf),
 513       _entry_point(addr),
 514       _cnt(COUNT_UNKNOWN)
 515   {
 516     init_class_id(Class_Call);
 517   }
 518 
 519   const TypeFunc* tf()        const { return _tf; }
 520   const address entry_point() const { return _entry_point; }
 521   const float   cnt()         const { return _cnt; }
 522 
 523   void set_tf(const TypeFunc* tf) { _tf = tf; }
 524   void set_entry_point(address p) { _entry_point = p; }
 525   void set_cnt(float c)           { _cnt = c; }
 526 
 527   virtual const Type *bottom_type() const;
 528   virtual const Type *Value( PhaseTransform *phase ) const;
 529   virtual Node *Identity( PhaseTransform *phase ) { return this; }
 530   virtual uint        cmp( const Node &n ) const;
 531   virtual uint        size_of() const = 0;
 532   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 533   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 534   virtual uint        ideal_reg() const { return NotAMachineReg; }
 535   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 536   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 537   virtual bool        guaranteed_safepoint()  { return true; }
 538   // For macro nodes, the JVMState gets modified during expansion, so when cloning
 539   // the node the JVMState must be cloned.
 540   virtual void        clone_jvms() { }   // default is not to clone
 541 
 542   // Returns true if the call may modify n
 543   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
 544   // Does this node have a use of n other than in debug information?
 545   bool                has_non_debug_use(Node *n);
 546   // Returns the unique CheckCastPP of a call
 547   // or result projection is there are several CheckCastPP
 548   // or returns NULL if there is no one.
 549   Node *result_cast();
 550 
 551   // Collect all the interesting edges from a call for use in
 552   // replacing the call by something else.  Used by macro expansion
 553   // and the late inlining support.
 554   void extract_projections(CallProjections* projs, bool separate_io_proj);
 555 
 556   virtual uint match_edge(uint idx) const;
 557 
 558 #ifndef PRODUCT
 559   virtual void        dump_req()  const;
 560   virtual void        dump_spec(outputStream *st) const;
 561 #endif
 562 };
 563 
 564 
 565 //------------------------------CallJavaNode-----------------------------------
 566 // Make a static or dynamic subroutine call node using Java calling
 567 // convention.  (The "Java" calling convention is the compiler's calling
 568 // convention, as opposed to the interpreter's or that of native C.)
 569 class CallJavaNode : public CallNode {
 570   friend class VMStructs;
 571 protected:
 572   virtual uint cmp( const Node &n ) const;
 573   virtual uint size_of() const; // Size is bigger
 574 
 575   bool    _optimized_virtual;
 576   bool    _method_handle_invoke;
 577   ciMethod* _method;            // Method being direct called
 578 public:
 579   const int       _bci;         // Byte Code Index of call byte code
 580   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 581     : CallNode(tf, addr, TypePtr::BOTTOM),
 582       _method(method), _bci(bci),
 583       _optimized_virtual(false),
 584       _method_handle_invoke(false)
 585   {
 586     init_class_id(Class_CallJava);
 587   }
 588 
 589   virtual int   Opcode() const;
 590   ciMethod* method() const                { return _method; }
 591   void  set_method(ciMethod *m)           { _method = m; }
 592   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
 593   bool  is_optimized_virtual() const      { return _optimized_virtual; }
 594   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
 595   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
 596 
 597 #ifndef PRODUCT
 598   virtual void  dump_spec(outputStream *st) const;
 599 #endif
 600 };
 601 
 602 //------------------------------CallStaticJavaNode-----------------------------
 603 // Make a direct subroutine call using Java calling convention (for static
 604 // calls and optimized virtual calls, plus calls to wrappers for run-time
 605 // routines); generates static stub.
 606 class CallStaticJavaNode : public CallJavaNode {
 607   virtual uint cmp( const Node &n ) const;
 608   virtual uint size_of() const; // Size is bigger
 609 public:
 610   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
 611     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
 612     init_class_id(Class_CallStaticJava);
 613   }
 614   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 615                      const TypePtr* adr_type)
 616     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
 617     init_class_id(Class_CallStaticJava);
 618     // This node calls a runtime stub, which often has narrow memory effects.
 619     _adr_type = adr_type;
 620   }
 621   const char *_name;            // Runtime wrapper name
 622 
 623   // If this is an uncommon trap, return the request code, else zero.
 624   int uncommon_trap_request() const;
 625   static int extract_uncommon_trap_request(const Node* call);
 626 
 627   virtual int         Opcode() const;
 628 #ifndef PRODUCT
 629   virtual void        dump_spec(outputStream *st) const;
 630 #endif
 631 };
 632 
 633 //------------------------------CallDynamicJavaNode----------------------------
 634 // Make a dispatched call using Java calling convention.
 635 class CallDynamicJavaNode : public CallJavaNode {
 636   virtual uint cmp( const Node &n ) const;
 637   virtual uint size_of() const; // Size is bigger
 638 public:
 639   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 640     init_class_id(Class_CallDynamicJava);
 641   }
 642 
 643   int _vtable_index;
 644   virtual int   Opcode() const;
 645 #ifndef PRODUCT
 646   virtual void  dump_spec(outputStream *st) const;
 647 #endif
 648 };
 649 
 650 //------------------------------CallRuntimeNode--------------------------------
 651 // Make a direct subroutine call node into compiled C++ code.
 652 class CallRuntimeNode : public CallNode {
 653   virtual uint cmp( const Node &n ) const;
 654   virtual uint size_of() const; // Size is bigger
 655 public:
 656   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 657                   const TypePtr* adr_type)
 658     : CallNode(tf, addr, adr_type),
 659       _name(name)
 660   {
 661     init_class_id(Class_CallRuntime);
 662   }
 663 
 664   const char *_name;            // Printable name, if _method is NULL
 665   virtual int   Opcode() const;
 666   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 667 
 668 #ifndef PRODUCT
 669   virtual void  dump_spec(outputStream *st) const;
 670 #endif
 671 };
 672 
 673 //------------------------------CallLeafNode-----------------------------------
 674 // Make a direct subroutine call node into compiled C++ code, without
 675 // safepoints
 676 class CallLeafNode : public CallRuntimeNode {
 677 public:
 678   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 679                const TypePtr* adr_type)
 680     : CallRuntimeNode(tf, addr, name, adr_type)
 681   {
 682     init_class_id(Class_CallLeaf);
 683   }
 684   virtual int   Opcode() const;
 685   virtual bool        guaranteed_safepoint()  { return false; }
 686 #ifndef PRODUCT
 687   virtual void  dump_spec(outputStream *st) const;
 688 #endif
 689 };
 690 
 691 //------------------------------CallLeafNoFPNode-------------------------------
 692 // CallLeafNode, not using floating point or using it in the same manner as
 693 // the generated code
 694 class CallLeafNoFPNode : public CallLeafNode {
 695 public:
 696   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 697                    const TypePtr* adr_type)
 698     : CallLeafNode(tf, addr, name, adr_type)
 699   {
 700   }
 701   virtual int   Opcode() const;
 702 };
 703 
 704 
 705 //------------------------------Allocate---------------------------------------
 706 // High-level memory allocation
 707 //
 708 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 709 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 710 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 711 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 712 //  order to differentiate the uses of the projection on the normal control path from
 713 //  those on the exception return path.
 714 //
 715 class AllocateNode : public CallNode {
 716 public:
 717   enum {
 718     // Output:
 719     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 720     // Inputs:
 721     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 722     KlassNode,                        // type (maybe dynamic) of the obj.
 723     InitialTest,                      // slow-path test (may be constant)
 724     ALength,                          // array length (or TOP if none)
 725     ParmLimit
 726   };
 727 
 728   static const TypeFunc* alloc_type() {
 729     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 730     fields[AllocSize]   = TypeInt::POS;
 731     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 732     fields[InitialTest] = TypeInt::BOOL;
 733     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
 734 
 735     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 736 
 737     // create result type (range)
 738     fields = TypeTuple::fields(1);
 739     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 740 
 741     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 742 
 743     return TypeFunc::make(domain, range);
 744   }
 745 
 746   bool _is_scalar_replaceable;  // Result of Escape Analysis
 747 
 748   virtual uint size_of() const; // Size is bigger
 749   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 750                Node *size, Node *klass_node, Node *initial_test);
 751   // Expansion modifies the JVMState, so we need to clone it
 752   virtual void  clone_jvms() {
 753     set_jvms(jvms()->clone_deep(Compile::current()));
 754   }
 755   virtual int Opcode() const;
 756   virtual uint ideal_reg() const { return Op_RegP; }
 757   virtual bool        guaranteed_safepoint()  { return false; }
 758 
 759   // allocations do not modify their arguments
 760   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
 761 
 762   // Pattern-match a possible usage of AllocateNode.
 763   // Return null if no allocation is recognized.
 764   // The operand is the pointer produced by the (possible) allocation.
 765   // It must be a projection of the Allocate or its subsequent CastPP.
 766   // (Note:  This function is defined in file graphKit.cpp, near
 767   // GraphKit::new_instance/new_array, whose output it recognizes.)
 768   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 769   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 770 
 771   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 772   // an offset, which is reported back to the caller.
 773   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 774   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 775                                         intptr_t& offset);
 776 
 777   // Dig the klass operand out of a (possible) allocation site.
 778   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 779     AllocateNode* allo = Ideal_allocation(ptr, phase);
 780     return (allo == NULL) ? NULL : allo->in(KlassNode);
 781   }
 782 
 783   // Conservatively small estimate of offset of first non-header byte.
 784   int minimum_header_size() {
 785     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 786                                 instanceOopDesc::base_offset_in_bytes();
 787   }
 788 
 789   // Return the corresponding initialization barrier (or null if none).
 790   // Walks out edges to find it...
 791   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 792   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 793   InitializeNode* initialization();
 794 
 795   // Convenience for initialization->maybe_set_complete(phase)
 796   bool maybe_set_complete(PhaseGVN* phase);
 797 };
 798 
 799 //------------------------------AllocateArray---------------------------------
 800 //
 801 // High-level array allocation
 802 //
 803 class AllocateArrayNode : public AllocateNode {
 804 public:
 805   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 806                     Node* size, Node* klass_node, Node* initial_test,
 807                     Node* count_val
 808                     )
 809     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 810                    initial_test)
 811   {
 812     init_class_id(Class_AllocateArray);
 813     set_req(AllocateNode::ALength,        count_val);
 814   }
 815   virtual int Opcode() const;
 816   virtual uint size_of() const; // Size is bigger
 817   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 818 
 819   // Dig the length operand out of a array allocation site.
 820   Node* Ideal_length() {
 821     return in(AllocateNode::ALength);
 822   }
 823 
 824   // Dig the length operand out of a array allocation site and narrow the
 825   // type with a CastII, if necesssary
 826   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 827 
 828   // Pattern-match a possible usage of AllocateArrayNode.
 829   // Return null if no allocation is recognized.
 830   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 831     AllocateNode* allo = Ideal_allocation(ptr, phase);
 832     return (allo == NULL || !allo->is_AllocateArray())
 833            ? NULL : allo->as_AllocateArray();
 834   }
 835 };
 836 
 837 //------------------------------AbstractLockNode-----------------------------------
 838 class AbstractLockNode: public CallNode {
 839 private:
 840   bool _eliminate;    // indicates this lock can be safely eliminated
 841   bool _coarsened;    // indicates this lock was coarsened
 842 #ifndef PRODUCT
 843   NamedCounter* _counter;
 844 #endif
 845 
 846 protected:
 847   // helper functions for lock elimination
 848   //
 849 
 850   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
 851                             GrowableArray<AbstractLockNode*> &lock_ops);
 852   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
 853                                        GrowableArray<AbstractLockNode*> &lock_ops);
 854   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
 855                                GrowableArray<AbstractLockNode*> &lock_ops);
 856   LockNode *find_matching_lock(UnlockNode* unlock);
 857 
 858 
 859 public:
 860   AbstractLockNode(const TypeFunc *tf)
 861     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
 862       _coarsened(false),
 863       _eliminate(false)
 864   {
 865 #ifndef PRODUCT
 866     _counter = NULL;
 867 #endif
 868   }
 869   virtual int Opcode() const = 0;
 870   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
 871   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
 872   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
 873   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
 874 
 875   virtual uint size_of() const { return sizeof(*this); }
 876 
 877   bool is_eliminated()         {return _eliminate; }
 878   // mark node as eliminated and update the counter if there is one
 879   void set_eliminated();
 880 
 881   bool is_coarsened()  { return _coarsened; }
 882   void set_coarsened() { _coarsened = true; }
 883 
 884   // locking does not modify its arguments
 885   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
 886 
 887 #ifndef PRODUCT
 888   void create_lock_counter(JVMState* s);
 889   NamedCounter* counter() const { return _counter; }
 890 #endif
 891 };
 892 
 893 //------------------------------Lock---------------------------------------
 894 // High-level lock operation
 895 //
 896 // This is a subclass of CallNode because it is a macro node which gets expanded
 897 // into a code sequence containing a call.  This node takes 3 "parameters":
 898 //    0  -  object to lock
 899 //    1 -   a BoxLockNode
 900 //    2 -   a FastLockNode
 901 //
 902 class LockNode : public AbstractLockNode {
 903 public:
 904 
 905   static const TypeFunc *lock_type() {
 906     // create input type (domain)
 907     const Type **fields = TypeTuple::fields(3);
 908     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 909     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
 910     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
 911     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
 912 
 913     // create result type (range)
 914     fields = TypeTuple::fields(0);
 915 
 916     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 917 
 918     return TypeFunc::make(domain,range);
 919   }
 920 
 921   virtual int Opcode() const;
 922   virtual uint size_of() const; // Size is bigger
 923   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 924     init_class_id(Class_Lock);
 925     init_flags(Flag_is_macro);
 926     C->add_macro_node(this);
 927   }
 928   virtual bool        guaranteed_safepoint()  { return false; }
 929 
 930   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 931   // Expansion modifies the JVMState, so we need to clone it
 932   virtual void  clone_jvms() {
 933     set_jvms(jvms()->clone_deep(Compile::current()));
 934   }
 935 };
 936 
 937 //------------------------------Unlock---------------------------------------
 938 // High-level unlock operation
 939 class UnlockNode : public AbstractLockNode {
 940 public:
 941   virtual int Opcode() const;
 942   virtual uint size_of() const; // Size is bigger
 943   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 944     init_class_id(Class_Unlock);
 945     init_flags(Flag_is_macro);
 946     C->add_macro_node(this);
 947   }
 948   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 949   // unlock is never a safepoint
 950   virtual bool        guaranteed_safepoint()  { return false; }
 951 };
 952 
 953 #endif // SHARE_VM_OPTO_CALLNODE_HPP