1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_NODE_HPP
  26 #define SHARE_VM_OPTO_NODE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 class AbstractLockNode;
  39 class AddNode;
  40 class AddPNode;
  41 class AliasInfo;
  42 class AllocateArrayNode;
  43 class AllocateNode;
  44 class Block;
  45 class Block_Array;
  46 class BoolNode;
  47 class BoxLockNode;
  48 class CMoveNode;
  49 class CallDynamicJavaNode;
  50 class CallJavaNode;
  51 class CallLeafNode;
  52 class CallNode;
  53 class CallRuntimeNode;
  54 class CallStaticJavaNode;
  55 class CatchNode;
  56 class CatchProjNode;
  57 class CheckCastPPNode;
  58 class ClearArrayNode;
  59 class CmpNode;
  60 class CodeBuffer;
  61 class ConstraintCastNode;
  62 class ConNode;
  63 class CountedLoopNode;
  64 class CountedLoopEndNode;
  65 class DecodeNNode;
  66 class EncodePNode;
  67 class FastLockNode;
  68 class FastUnlockNode;
  69 class IfNode;
  70 class IfFalseNode;
  71 class IfTrueNode;
  72 class InitializeNode;
  73 class JVMState;
  74 class JumpNode;
  75 class JumpProjNode;
  76 class LoadNode;
  77 class LoadStoreNode;
  78 class LockNode;
  79 class LoopNode;
  80 class MachBranchNode;
  81 class MachCallDynamicJavaNode;
  82 class MachCallJavaNode;
  83 class MachCallLeafNode;
  84 class MachCallNode;
  85 class MachCallRuntimeNode;
  86 class MachCallStaticJavaNode;
  87 class MachConstantBaseNode;
  88 class MachConstantNode;
  89 class MachGotoNode;
  90 class MachIfNode;
  91 class MachNode;
  92 class MachNullCheckNode;
  93 class MachProjNode;
  94 class MachReturnNode;
  95 class MachSafePointNode;
  96 class MachSpillCopyNode;
  97 class MachTempNode;
  98 class Matcher;
  99 class MemBarNode;
 100 class MemNode;
 101 class MergeMemNode;
 102 class MultiNode;
 103 class MultiBranchNode;
 104 class NeverBranchNode;
 105 class Node;
 106 class Node_Array;
 107 class Node_List;
 108 class Node_Stack;
 109 class NullCheckNode;
 110 class OopMap;
 111 class ParmNode;
 112 class PCTableNode;
 113 class PhaseCCP;
 114 class PhaseGVN;
 115 class PhaseIterGVN;
 116 class PhaseRegAlloc;
 117 class PhaseTransform;
 118 class PhaseValues;
 119 class PhiNode;
 120 class Pipeline;
 121 class ProjNode;
 122 class RegMask;
 123 class RegionNode;
 124 class RootNode;
 125 class SafePointNode;
 126 class SafePointScalarObjectNode;
 127 class StartNode;
 128 class State;
 129 class StoreNode;
 130 class SubNode;
 131 class Type;
 132 class TypeNode;
 133 class UnlockNode;
 134 class VectorNode;
 135 class VectorLoadNode;
 136 class VectorStoreNode;
 137 class VectorSet;
 138 typedef void (*NFunc)(Node&,void*);
 139 extern "C" {
 140   typedef int (*C_sort_func_t)(const void *, const void *);
 141 }
 142 
 143 // The type of all node counts and indexes.
 144 // It must hold at least 16 bits, but must also be fast to load and store.
 145 // This type, if less than 32 bits, could limit the number of possible nodes.
 146 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 147 typedef unsigned int node_idx_t;
 148 
 149 
 150 #ifndef OPTO_DU_ITERATOR_ASSERT
 151 #ifdef ASSERT
 152 #define OPTO_DU_ITERATOR_ASSERT 1
 153 #else
 154 #define OPTO_DU_ITERATOR_ASSERT 0
 155 #endif
 156 #endif //OPTO_DU_ITERATOR_ASSERT
 157 
 158 #if OPTO_DU_ITERATOR_ASSERT
 159 class DUIterator;
 160 class DUIterator_Fast;
 161 class DUIterator_Last;
 162 #else
 163 typedef uint   DUIterator;
 164 typedef Node** DUIterator_Fast;
 165 typedef Node** DUIterator_Last;
 166 #endif
 167 
 168 // Node Sentinel
 169 #define NodeSentinel (Node*)-1
 170 
 171 // Unknown count frequency
 172 #define COUNT_UNKNOWN (-1.0f)
 173 
 174 //------------------------------Node-------------------------------------------
 175 // Nodes define actions in the program.  They create values, which have types.
 176 // They are both vertices in a directed graph and program primitives.  Nodes
 177 // are labeled; the label is the "opcode", the primitive function in the lambda
 178 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 179 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 180 // the Node's function.  These inputs also define a Type equation for the Node.
 181 // Solving these Type equations amounts to doing dataflow analysis.
 182 // Control and data are uniformly represented in the graph.  Finally, Nodes
 183 // have a unique dense integer index which is used to index into side arrays
 184 // whenever I have phase-specific information.
 185 
 186 class Node {
 187   // Lots of restrictions on cloning Nodes
 188   Node(const Node&);            // not defined; linker error to use these
 189   Node &operator=(const Node &rhs);
 190 
 191 public:
 192   friend class Compile;
 193   #if OPTO_DU_ITERATOR_ASSERT
 194   friend class DUIterator_Common;
 195   friend class DUIterator;
 196   friend class DUIterator_Fast;
 197   friend class DUIterator_Last;
 198   #endif
 199 
 200   // Because Nodes come and go, I define an Arena of Node structures to pull
 201   // from.  This should allow fast access to node creation & deletion.  This
 202   // field is a local cache of a value defined in some "program fragment" for
 203   // which these Nodes are just a part of.
 204 
 205   // New Operator that takes a Compile pointer, this will eventually
 206   // be the "new" New operator.
 207   inline void* operator new( size_t x, Compile* C) {
 208     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 209 #ifdef ASSERT
 210     n->_in = (Node**)n; // magic cookie for assertion check
 211 #endif
 212     n->_out = (Node**)C;
 213     return (void*)n;
 214   }
 215 
 216   // New Operator that takes a Compile pointer, this will eventually
 217   // be the "new" New operator.
 218   inline void* operator new( size_t x, Compile* C, int y) {
 219     Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
 220     n->_in = (Node**)(((char*)n) + x);
 221 #ifdef ASSERT
 222     n->_in[y-1] = n; // magic cookie for assertion check
 223 #endif
 224     n->_out = (Node**)C;
 225     return (void*)n;
 226   }
 227 
 228   // Delete is a NOP
 229   void operator delete( void *ptr ) {}
 230   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 231   void destruct();
 232 
 233   // Create a new Node.  Required is the number is of inputs required for
 234   // semantic correctness.
 235   Node( uint required );
 236 
 237   // Create a new Node with given input edges.
 238   // This version requires use of the "edge-count" new.
 239   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 240   Node( Node *n0 );
 241   Node( Node *n0, Node *n1 );
 242   Node( Node *n0, Node *n1, Node *n2 );
 243   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 244   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 245   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 246   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 247             Node *n4, Node *n5, Node *n6 );
 248 
 249   // Clone an inherited Node given only the base Node type.
 250   Node* clone() const;
 251 
 252   // Clone a Node, immediately supplying one or two new edges.
 253   // The first and second arguments, if non-null, replace in(1) and in(2),
 254   // respectively.
 255   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 256     Node* nn = clone();
 257     if (in1 != NULL)  nn->set_req(1, in1);
 258     if (in2 != NULL)  nn->set_req(2, in2);
 259     return nn;
 260   }
 261 
 262 private:
 263   // Shared setup for the above constructors.
 264   // Handles all interactions with Compile::current.
 265   // Puts initial values in all Node fields except _idx.
 266   // Returns the initial value for _idx, which cannot
 267   // be initialized by assignment.
 268   inline int Init(int req, Compile* C);
 269 
 270 //----------------- input edge handling
 271 protected:
 272   friend class PhaseCFG;        // Access to address of _in array elements
 273   Node **_in;                   // Array of use-def references to Nodes
 274   Node **_out;                  // Array of def-use references to Nodes
 275 
 276   // Input edges are split into two categories.  Required edges are required
 277   // for semantic correctness; order is important and NULLs are allowed.
 278   // Precedence edges are used to help determine execution order and are
 279   // added, e.g., for scheduling purposes.  They are unordered and not
 280   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 281   // are required, from _cnt to _max-1 are precedence edges.
 282   node_idx_t _cnt;              // Total number of required Node inputs.
 283 
 284   node_idx_t _max;              // Actual length of input array.
 285 
 286   // Output edges are an unordered list of def-use edges which exactly
 287   // correspond to required input edges which point from other nodes
 288   // to this one.  Thus the count of the output edges is the number of
 289   // users of this node.
 290   node_idx_t _outcnt;           // Total number of Node outputs.
 291 
 292   node_idx_t _outmax;           // Actual length of output array.
 293 
 294   // Grow the actual input array to the next larger power-of-2 bigger than len.
 295   void grow( uint len );
 296   // Grow the output array to the next larger power-of-2 bigger than len.
 297   void out_grow( uint len );
 298 
 299  public:
 300   // Each Node is assigned a unique small/dense number.  This number is used
 301   // to index into auxiliary arrays of data and bitvectors.
 302   // It is declared const to defend against inadvertant assignment,
 303   // since it is used by clients as a naked field.
 304   const node_idx_t _idx;
 305 
 306   // Get the (read-only) number of input edges
 307   uint req() const { return _cnt; }
 308   uint len() const { return _max; }
 309   // Get the (read-only) number of output edges
 310   uint outcnt() const { return _outcnt; }
 311 
 312 #if OPTO_DU_ITERATOR_ASSERT
 313   // Iterate over the out-edges of this node.  Deletions are illegal.
 314   inline DUIterator outs() const;
 315   // Use this when the out array might have changed to suppress asserts.
 316   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 317   // Does the node have an out at this position?  (Used for iteration.)
 318   inline bool has_out(DUIterator& i) const;
 319   inline Node*    out(DUIterator& i) const;
 320   // Iterate over the out-edges of this node.  All changes are illegal.
 321   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 322   inline Node*    fast_out(DUIterator_Fast& i) const;
 323   // Iterate over the out-edges of this node, deleting one at a time.
 324   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 325   inline Node*    last_out(DUIterator_Last& i) const;
 326   // The inline bodies of all these methods are after the iterator definitions.
 327 #else
 328   // Iterate over the out-edges of this node.  Deletions are illegal.
 329   // This iteration uses integral indexes, to decouple from array reallocations.
 330   DUIterator outs() const  { return 0; }
 331   // Use this when the out array might have changed to suppress asserts.
 332   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 333 
 334   // Reference to the i'th output Node.  Error if out of bounds.
 335   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 336   // Does the node have an out at this position?  (Used for iteration.)
 337   bool has_out(DUIterator i) const { return i < _outcnt; }
 338 
 339   // Iterate over the out-edges of this node.  All changes are illegal.
 340   // This iteration uses a pointer internal to the out array.
 341   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 342     Node** out = _out;
 343     // Assign a limit pointer to the reference argument:
 344     max = out + (ptrdiff_t)_outcnt;
 345     // Return the base pointer:
 346     return out;
 347   }
 348   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 349   // Iterate over the out-edges of this node, deleting one at a time.
 350   // This iteration uses a pointer internal to the out array.
 351   DUIterator_Last last_outs(DUIterator_Last& min) const {
 352     Node** out = _out;
 353     // Assign a limit pointer to the reference argument:
 354     min = out;
 355     // Return the pointer to the start of the iteration:
 356     return out + (ptrdiff_t)_outcnt - 1;
 357   }
 358   Node*    last_out(DUIterator_Last i) const  { return *i; }
 359 #endif
 360 
 361   // Reference to the i'th input Node.  Error if out of bounds.
 362   Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
 363   // Reference to the i'th output Node.  Error if out of bounds.
 364   // Use this accessor sparingly.  We are going trying to use iterators instead.
 365   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 366   // Return the unique out edge.
 367   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 368   // Delete out edge at position 'i' by moving last out edge to position 'i'
 369   void  raw_del_out(uint i) {
 370     assert(i < _outcnt,"oob");
 371     assert(_outcnt > 0,"oob");
 372     #if OPTO_DU_ITERATOR_ASSERT
 373     // Record that a change happened here.
 374     debug_only(_last_del = _out[i]; ++_del_tick);
 375     #endif
 376     _out[i] = _out[--_outcnt];
 377     // Smash the old edge so it can't be used accidentally.
 378     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 379   }
 380 
 381 #ifdef ASSERT
 382   bool is_dead() const;
 383 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 384 #endif
 385 
 386   // Set a required input edge, also updates corresponding output edge
 387   void add_req( Node *n ); // Append a NEW required input
 388   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 389   void del_req( uint idx ); // Delete required edge & compact
 390   void ins_req( uint i, Node *n ); // Insert a NEW required input
 391   void set_req( uint i, Node *n ) {
 392     assert( is_not_dead(n), "can not use dead node");
 393     assert( i < _cnt, "oob");
 394     assert( !VerifyHashTableKeys || _hash_lock == 0,
 395             "remove node from hash table before modifying it");
 396     Node** p = &_in[i];    // cache this._in, across the del_out call
 397     if (*p != NULL)  (*p)->del_out((Node *)this);
 398     (*p) = n;
 399     if (n != NULL)      n->add_out((Node *)this);
 400   }
 401   // Light version of set_req() to init inputs after node creation.
 402   void init_req( uint i, Node *n ) {
 403     assert( i == 0 && this == n ||
 404             is_not_dead(n), "can not use dead node");
 405     assert( i < _cnt, "oob");
 406     assert( !VerifyHashTableKeys || _hash_lock == 0,
 407             "remove node from hash table before modifying it");
 408     assert( _in[i] == NULL, "sanity");
 409     _in[i] = n;
 410     if (n != NULL)      n->add_out((Node *)this);
 411   }
 412   // Find first occurrence of n among my edges:
 413   int find_edge(Node* n);
 414   int replace_edge(Node* old, Node* neww);
 415   // NULL out all inputs to eliminate incoming Def-Use edges.
 416   // Return the number of edges between 'n' and 'this'
 417   int  disconnect_inputs(Node *n);
 418 
 419   // Quickly, return true if and only if I am Compile::current()->top().
 420   bool is_top() const {
 421     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 422     return (_out == NULL);
 423   }
 424   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 425   void setup_is_top();
 426 
 427   // Strip away casting.  (It is depth-limited.)
 428   Node* uncast() const;
 429 
 430 private:
 431   static Node* uncast_helper(const Node* n);
 432 
 433   // Add an output edge to the end of the list
 434   void add_out( Node *n ) {
 435     if (is_top())  return;
 436     if( _outcnt == _outmax ) out_grow(_outcnt);
 437     _out[_outcnt++] = n;
 438   }
 439   // Delete an output edge
 440   void del_out( Node *n ) {
 441     if (is_top())  return;
 442     Node** outp = &_out[_outcnt];
 443     // Find and remove n
 444     do {
 445       assert(outp > _out, "Missing Def-Use edge");
 446     } while (*--outp != n);
 447     *outp = _out[--_outcnt];
 448     // Smash the old edge so it can't be used accidentally.
 449     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 450     // Record that a change happened here.
 451     #if OPTO_DU_ITERATOR_ASSERT
 452     debug_only(_last_del = n; ++_del_tick);
 453     #endif
 454   }
 455 
 456 public:
 457   // Globally replace this node by a given new node, updating all uses.
 458   void replace_by(Node* new_node);
 459   // Globally replace this node by a given new node, updating all uses
 460   // and cutting input edges of old node.
 461   void subsume_by(Node* new_node) {
 462     replace_by(new_node);
 463     disconnect_inputs(NULL);
 464   }
 465   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 466   // Find the one non-null required input.  RegionNode only
 467   Node *nonnull_req() const;
 468   // Add or remove precedence edges
 469   void add_prec( Node *n );
 470   void rm_prec( uint i );
 471   void set_prec( uint i, Node *n ) {
 472     assert( is_not_dead(n), "can not use dead node");
 473     assert( i >= _cnt, "not a precedence edge");
 474     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 475     _in[i] = n;
 476     if (n != NULL) n->add_out((Node *)this);
 477   }
 478   // Set this node's index, used by cisc_version to replace current node
 479   void set_idx(uint new_idx) {
 480     const node_idx_t* ref = &_idx;
 481     *(node_idx_t*)ref = new_idx;
 482   }
 483   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 484   void swap_edges(uint i1, uint i2) {
 485     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 486     // Def-Use info is unchanged
 487     Node* n1 = in(i1);
 488     Node* n2 = in(i2);
 489     _in[i1] = n2;
 490     _in[i2] = n1;
 491     // If this node is in the hash table, make sure it doesn't need a rehash.
 492     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 493   }
 494 
 495   // Iterators over input Nodes for a Node X are written as:
 496   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 497   // NOTE: Required edges can contain embedded NULL pointers.
 498 
 499 //----------------- Other Node Properties
 500 
 501   // Generate class id for some ideal nodes to avoid virtual query
 502   // methods is_<Node>().
 503   // Class id is the set of bits corresponded to the node class and all its
 504   // super classes so that queries for super classes are also valid.
 505   // Subclasses of the same super class have different assigned bit
 506   // (the third parameter in the macro DEFINE_CLASS_ID).
 507   // Classes with deeper hierarchy are declared first.
 508   // Classes with the same hierarchy depth are sorted by usage frequency.
 509   //
 510   // The query method masks the bits to cut off bits of subclasses
 511   // and then compare the result with the class id
 512   // (see the macro DEFINE_CLASS_QUERY below).
 513   //
 514   //  Class_MachCall=30, ClassMask_MachCall=31
 515   // 12               8               4               0
 516   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 517   //                                  |   |   |   |
 518   //                                  |   |   |   Bit_Mach=2
 519   //                                  |   |   Bit_MachReturn=4
 520   //                                  |   Bit_MachSafePoint=8
 521   //                                  Bit_MachCall=16
 522   //
 523   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 524   // 12               8               4               0
 525   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 526   //                              |   |   |
 527   //                              |   |   Bit_Region=8
 528   //                              |   Bit_Loop=16
 529   //                              Bit_CountedLoop=32
 530 
 531   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 532   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 533   Class_##cl = Class_##supcl + Bit_##cl , \
 534   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 535 
 536   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 537   // so that it's values fits into 16 bits.
 538   enum NodeClasses {
 539     Bit_Node   = 0x0000,
 540     Class_Node = 0x0000,
 541     ClassMask_Node = 0xFFFF,
 542 
 543     DEFINE_CLASS_ID(Multi, Node, 0)
 544       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 545         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 546           DEFINE_CLASS_ID(CallJava,         Call, 0)
 547             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 548             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 549           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 550             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 551           DEFINE_CLASS_ID(Allocate,         Call, 2)
 552             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 553           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 554             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 555             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 556       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 557         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 558           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 559           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 560         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 561           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
 562         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 563       DEFINE_CLASS_ID(Start,       Multi, 2)
 564       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 565         DEFINE_CLASS_ID(Initialize,    MemBar, 0)
 566 
 567     DEFINE_CLASS_ID(Mach,  Node, 1)
 568       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 569         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 570           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 571             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 572               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 573               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 574             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 575               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 576       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 577         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 578         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 579         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 580       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 581       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 582       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 583       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 584 
 585     DEFINE_CLASS_ID(Type,  Node, 2)
 586       DEFINE_CLASS_ID(Phi,   Type, 0)
 587       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 588       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
 589       DEFINE_CLASS_ID(CMove, Type, 3)
 590       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 591       DEFINE_CLASS_ID(DecodeN, Type, 5)
 592       DEFINE_CLASS_ID(EncodeP, Type, 6)
 593 
 594     DEFINE_CLASS_ID(Proj,  Node, 3)
 595       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 596       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 597       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
 598       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
 599       DEFINE_CLASS_ID(Parm,      Proj, 4)
 600       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 601 
 602     DEFINE_CLASS_ID(Mem,   Node, 4)
 603       DEFINE_CLASS_ID(Load,  Mem, 0)
 604         DEFINE_CLASS_ID(VectorLoad,  Load, 0)
 605       DEFINE_CLASS_ID(Store, Mem, 1)
 606         DEFINE_CLASS_ID(VectorStore, Store, 0)
 607       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 608 
 609     DEFINE_CLASS_ID(Region, Node, 5)
 610       DEFINE_CLASS_ID(Loop, Region, 0)
 611         DEFINE_CLASS_ID(Root,        Loop, 0)
 612         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
 613 
 614     DEFINE_CLASS_ID(Sub,   Node, 6)
 615       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 616         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 617         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 618 
 619     DEFINE_CLASS_ID(MergeMem, Node, 7)
 620     DEFINE_CLASS_ID(Bool,     Node, 8)
 621     DEFINE_CLASS_ID(AddP,     Node, 9)
 622     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 623     DEFINE_CLASS_ID(Add,      Node, 11)
 624     DEFINE_CLASS_ID(Vector,   Node, 12)
 625     DEFINE_CLASS_ID(ClearArray, Node, 13)
 626 
 627     _max_classes  = ClassMask_ClearArray
 628   };
 629   #undef DEFINE_CLASS_ID
 630 
 631   // Flags are sorted by usage frequency.
 632   enum NodeFlags {
 633     Flag_is_Copy             = 0x01, // should be first bit to avoid shift
 634     Flag_rematerialize       = Flag_is_Copy << 1,
 635     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 636     Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
 637     Flag_is_Con              = Flag_is_macro << 1,
 638     Flag_is_cisc_alternate   = Flag_is_Con << 1,
 639     Flag_is_dead_loop_safe   = Flag_is_cisc_alternate << 1,
 640     Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
 641     Flag_avoid_back_to_back  = Flag_may_be_short_branch << 1,
 642     _max_flags = (Flag_avoid_back_to_back << 1) - 1 // allow flags combination
 643   };
 644 
 645 private:
 646   jushort _class_id;
 647   jushort _flags;
 648 
 649 protected:
 650   // These methods should be called from constructors only.
 651   void init_class_id(jushort c) {
 652     assert(c <= _max_classes, "invalid node class");
 653     _class_id = c; // cast out const
 654   }
 655   void init_flags(jushort fl) {
 656     assert(fl <= _max_flags, "invalid node flag");
 657     _flags |= fl;
 658   }
 659   void clear_flag(jushort fl) {
 660     assert(fl <= _max_flags, "invalid node flag");
 661     _flags &= ~fl;
 662   }
 663 
 664 public:
 665   const jushort class_id() const { return _class_id; }
 666 
 667   const jushort flags() const { return _flags; }
 668 
 669   // Return a dense integer opcode number
 670   virtual int Opcode() const;
 671 
 672   // Virtual inherited Node size
 673   virtual uint size_of() const;
 674 
 675   // Other interesting Node properties
 676   #define DEFINE_CLASS_QUERY(type)                           \
 677   bool is_##type() const {                                   \
 678     return ((_class_id & ClassMask_##type) == Class_##type); \
 679   }                                                          \
 680   type##Node *as_##type() const {                            \
 681     assert(is_##type(), "invalid node class");               \
 682     return (type##Node*)this;                                \
 683   }                                                          \
 684   type##Node* isa_##type() const {                           \
 685     return (is_##type()) ? as_##type() : NULL;               \
 686   }
 687 
 688   DEFINE_CLASS_QUERY(AbstractLock)
 689   DEFINE_CLASS_QUERY(Add)
 690   DEFINE_CLASS_QUERY(AddP)
 691   DEFINE_CLASS_QUERY(Allocate)
 692   DEFINE_CLASS_QUERY(AllocateArray)
 693   DEFINE_CLASS_QUERY(Bool)
 694   DEFINE_CLASS_QUERY(BoxLock)
 695   DEFINE_CLASS_QUERY(Call)
 696   DEFINE_CLASS_QUERY(CallDynamicJava)
 697   DEFINE_CLASS_QUERY(CallJava)
 698   DEFINE_CLASS_QUERY(CallLeaf)
 699   DEFINE_CLASS_QUERY(CallRuntime)
 700   DEFINE_CLASS_QUERY(CallStaticJava)
 701   DEFINE_CLASS_QUERY(Catch)
 702   DEFINE_CLASS_QUERY(CatchProj)
 703   DEFINE_CLASS_QUERY(CheckCastPP)
 704   DEFINE_CLASS_QUERY(ConstraintCast)
 705   DEFINE_CLASS_QUERY(ClearArray)
 706   DEFINE_CLASS_QUERY(CMove)
 707   DEFINE_CLASS_QUERY(Cmp)
 708   DEFINE_CLASS_QUERY(CountedLoop)
 709   DEFINE_CLASS_QUERY(CountedLoopEnd)
 710   DEFINE_CLASS_QUERY(DecodeN)
 711   DEFINE_CLASS_QUERY(EncodeP)
 712   DEFINE_CLASS_QUERY(FastLock)
 713   DEFINE_CLASS_QUERY(FastUnlock)
 714   DEFINE_CLASS_QUERY(If)
 715   DEFINE_CLASS_QUERY(IfFalse)
 716   DEFINE_CLASS_QUERY(IfTrue)
 717   DEFINE_CLASS_QUERY(Initialize)
 718   DEFINE_CLASS_QUERY(Jump)
 719   DEFINE_CLASS_QUERY(JumpProj)
 720   DEFINE_CLASS_QUERY(Load)
 721   DEFINE_CLASS_QUERY(LoadStore)
 722   DEFINE_CLASS_QUERY(Lock)
 723   DEFINE_CLASS_QUERY(Loop)
 724   DEFINE_CLASS_QUERY(Mach)
 725   DEFINE_CLASS_QUERY(MachBranch)
 726   DEFINE_CLASS_QUERY(MachCall)
 727   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 728   DEFINE_CLASS_QUERY(MachCallJava)
 729   DEFINE_CLASS_QUERY(MachCallLeaf)
 730   DEFINE_CLASS_QUERY(MachCallRuntime)
 731   DEFINE_CLASS_QUERY(MachCallStaticJava)
 732   DEFINE_CLASS_QUERY(MachConstantBase)
 733   DEFINE_CLASS_QUERY(MachConstant)
 734   DEFINE_CLASS_QUERY(MachGoto)
 735   DEFINE_CLASS_QUERY(MachIf)
 736   DEFINE_CLASS_QUERY(MachNullCheck)
 737   DEFINE_CLASS_QUERY(MachProj)
 738   DEFINE_CLASS_QUERY(MachReturn)
 739   DEFINE_CLASS_QUERY(MachSafePoint)
 740   DEFINE_CLASS_QUERY(MachSpillCopy)
 741   DEFINE_CLASS_QUERY(MachTemp)
 742   DEFINE_CLASS_QUERY(Mem)
 743   DEFINE_CLASS_QUERY(MemBar)
 744   DEFINE_CLASS_QUERY(MergeMem)
 745   DEFINE_CLASS_QUERY(Multi)
 746   DEFINE_CLASS_QUERY(MultiBranch)
 747   DEFINE_CLASS_QUERY(Parm)
 748   DEFINE_CLASS_QUERY(PCTable)
 749   DEFINE_CLASS_QUERY(Phi)
 750   DEFINE_CLASS_QUERY(Proj)
 751   DEFINE_CLASS_QUERY(Region)
 752   DEFINE_CLASS_QUERY(Root)
 753   DEFINE_CLASS_QUERY(SafePoint)
 754   DEFINE_CLASS_QUERY(SafePointScalarObject)
 755   DEFINE_CLASS_QUERY(Start)
 756   DEFINE_CLASS_QUERY(Store)
 757   DEFINE_CLASS_QUERY(Sub)
 758   DEFINE_CLASS_QUERY(Type)
 759   DEFINE_CLASS_QUERY(Vector)
 760   DEFINE_CLASS_QUERY(VectorLoad)
 761   DEFINE_CLASS_QUERY(VectorStore)
 762   DEFINE_CLASS_QUERY(Unlock)
 763 
 764   #undef DEFINE_CLASS_QUERY
 765 
 766   // duplicate of is_MachSpillCopy()
 767   bool is_SpillCopy () const {
 768     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 769   }
 770 
 771   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 772   // The data node which is safe to leave in dead loop during IGVN optimization.
 773   bool is_dead_loop_safe() const {
 774     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 775            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 776             (!is_Proj() || !in(0)->is_Allocate()));
 777   }
 778 
 779   // is_Copy() returns copied edge index (0 or 1)
 780   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 781 
 782   virtual bool is_CFG() const { return false; }
 783 
 784   // If this node is control-dependent on a test, can it be
 785   // rerouted to a dominating equivalent test?  This is usually
 786   // true of non-CFG nodes, but can be false for operations which
 787   // depend for their correct sequencing on more than one test.
 788   // (In that case, hoisting to a dominating test may silently
 789   // skip some other important test.)
 790   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 791 
 792   // When building basic blocks, I need to have a notion of block beginning
 793   // Nodes, next block selector Nodes (block enders), and next block
 794   // projections.  These calls need to work on their machine equivalents.  The
 795   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 796   bool is_block_start() const {
 797     if ( is_Region() )
 798       return this == (const Node*)in(0);
 799     else
 800       return is_Start();
 801   }
 802 
 803   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 804   // Goto and Return.  This call also returns the block ending Node.
 805   virtual const Node *is_block_proj() const;
 806 
 807   // The node is a "macro" node which needs to be expanded before matching
 808   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 809 
 810 //----------------- Optimization
 811 
 812   // Get the worst-case Type output for this Node.
 813   virtual const class Type *bottom_type() const;
 814 
 815   // If we find a better type for a node, try to record it permanently.
 816   // Return true if this node actually changed.
 817   // Be sure to do the hash_delete game in the "rehash" variant.
 818   void raise_bottom_type(const Type* new_type);
 819 
 820   // Get the address type with which this node uses and/or defs memory,
 821   // or NULL if none.  The address type is conservatively wide.
 822   // Returns non-null for calls, membars, loads, stores, etc.
 823   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 824   virtual const class TypePtr *adr_type() const { return NULL; }
 825 
 826   // Return an existing node which computes the same function as this node.
 827   // The optimistic combined algorithm requires this to return a Node which
 828   // is a small number of steps away (e.g., one of my inputs).
 829   virtual Node *Identity( PhaseTransform *phase );
 830 
 831   // Return the set of values this Node can take on at runtime.
 832   virtual const Type *Value( PhaseTransform *phase ) const;
 833 
 834   // Return a node which is more "ideal" than the current node.
 835   // The invariants on this call are subtle.  If in doubt, read the
 836   // treatise in node.cpp above the default implemention AND TEST WITH
 837   // +VerifyIterativeGVN!
 838   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 839 
 840   // Some nodes have specific Ideal subgraph transformations only if they are
 841   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 842   // for the transformations to happen.
 843   bool has_special_unique_user() const;
 844 
 845   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 846   Node* find_exact_control(Node* ctrl);
 847 
 848   // Check if 'this' node dominates or equal to 'sub'.
 849   bool dominates(Node* sub, Node_List &nlist);
 850 
 851 protected:
 852   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 853 public:
 854 
 855   // Idealize graph, using DU info.  Done after constant propagation
 856   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
 857 
 858   // See if there is valid pipeline info
 859   static  const Pipeline *pipeline_class();
 860   virtual const Pipeline *pipeline() const;
 861 
 862   // Compute the latency from the def to this instruction of the ith input node
 863   uint latency(uint i);
 864 
 865   // Hash & compare functions, for pessimistic value numbering
 866 
 867   // If the hash function returns the special sentinel value NO_HASH,
 868   // the node is guaranteed never to compare equal to any other node.
 869   // If we accidentally generate a hash with value NO_HASH the node
 870   // won't go into the table and we'll lose a little optimization.
 871   enum { NO_HASH = 0 };
 872   virtual uint hash() const;
 873   virtual uint cmp( const Node &n ) const;
 874 
 875   // Operation appears to be iteratively computed (such as an induction variable)
 876   // It is possible for this operation to return false for a loop-varying
 877   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
 878   bool is_iteratively_computed();
 879 
 880   // Determine if a node is Counted loop induction variable.
 881   // The method is defined in loopnode.cpp.
 882   const Node* is_loop_iv() const;
 883 
 884   // Return a node with opcode "opc" and same inputs as "this" if one can
 885   // be found; Otherwise return NULL;
 886   Node* find_similar(int opc);
 887 
 888   // Return the unique control out if only one. Null if none or more than one.
 889   Node* unique_ctrl_out();
 890 
 891 //----------------- Code Generation
 892 
 893   // Ideal register class for Matching.  Zero means unmatched instruction
 894   // (these are cloned instead of converted to machine nodes).
 895   virtual uint ideal_reg() const;
 896 
 897   static const uint NotAMachineReg;   // must be > max. machine register
 898 
 899   // Do we Match on this edge index or not?  Generally false for Control
 900   // and true for everything else.  Weird for calls & returns.
 901   virtual uint match_edge(uint idx) const;
 902 
 903   // Register class output is returned in
 904   virtual const RegMask &out_RegMask() const;
 905   // Register class input is expected in
 906   virtual const RegMask &in_RegMask(uint) const;
 907   // Should we clone rather than spill this instruction?
 908   bool rematerialize() const;
 909 
 910   // Return JVM State Object if this Node carries debug info, or NULL otherwise
 911   virtual JVMState* jvms() const;
 912 
 913   // Print as assembly
 914   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
 915   // Emit bytes starting at parameter 'ptr'
 916   // Bump 'ptr' by the number of output bytes
 917   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
 918   // Size of instruction in bytes
 919   virtual uint size(PhaseRegAlloc *ra_) const;
 920 
 921   // Convenience function to extract an integer constant from a node.
 922   // If it is not an integer constant (either Con, CastII, or Mach),
 923   // return value_if_unknown.
 924   jint find_int_con(jint value_if_unknown) const {
 925     const TypeInt* t = find_int_type();
 926     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 927   }
 928   // Return the constant, knowing it is an integer constant already
 929   jint get_int() const {
 930     const TypeInt* t = find_int_type();
 931     guarantee(t != NULL, "must be con");
 932     return t->get_con();
 933   }
 934   // Here's where the work is done.  Can produce non-constant int types too.
 935   const TypeInt* find_int_type() const;
 936 
 937   // Same thing for long (and intptr_t, via type.hpp):
 938   jlong get_long() const {
 939     const TypeLong* t = find_long_type();
 940     guarantee(t != NULL, "must be con");
 941     return t->get_con();
 942   }
 943   jlong find_long_con(jint value_if_unknown) const {
 944     const TypeLong* t = find_long_type();
 945     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 946   }
 947   const TypeLong* find_long_type() const;
 948 
 949   // These guys are called by code generated by ADLC:
 950   intptr_t get_ptr() const;
 951   intptr_t get_narrowcon() const;
 952   jdouble getd() const;
 953   jfloat getf() const;
 954 
 955   // Nodes which are pinned into basic blocks
 956   virtual bool pinned() const { return false; }
 957 
 958   // Nodes which use memory without consuming it, hence need antidependences
 959   // More specifically, needs_anti_dependence_check returns true iff the node
 960   // (a) does a load, and (b) does not perform a store (except perhaps to a
 961   // stack slot or some other unaliased location).
 962   bool needs_anti_dependence_check() const;
 963 
 964   // Return which operand this instruction may cisc-spill. In other words,
 965   // return operand position that can convert from reg to memory access
 966   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
 967   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
 968 
 969 //----------------- Graph walking
 970 public:
 971   // Walk and apply member functions recursively.
 972   // Supplied (this) pointer is root.
 973   void walk(NFunc pre, NFunc post, void *env);
 974   static void nop(Node &, void*); // Dummy empty function
 975   static void packregion( Node &n, void* );
 976 private:
 977   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
 978 
 979 //----------------- Printing, etc
 980 public:
 981 #ifndef PRODUCT
 982   Node* find(int idx) const;         // Search the graph for the given idx.
 983   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
 984   void dump() const;                 // Print this node,
 985   void dump(int depth) const;        // Print this node, recursively to depth d
 986   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
 987   virtual void dump_req() const;     // Print required-edge info
 988   virtual void dump_prec() const;    // Print precedence-edge info
 989   virtual void dump_out() const;     // Print the output edge info
 990   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
 991   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
 992   void verify() const;               // Check Def-Use info for my subgraph
 993   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
 994 
 995   // This call defines a class-unique string used to identify class instances
 996   virtual const char *Name() const;
 997 
 998   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
 999   // RegMask Print Functions
1000   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1001   void dump_out_regmask() { out_RegMask().dump(); }
1002   static int _in_dump_cnt;
1003   static bool in_dump() { return _in_dump_cnt > 0; }
1004   void fast_dump() const {
1005     tty->print("%4d: %-17s", _idx, Name());
1006     for (uint i = 0; i < len(); i++)
1007       if (in(i))
1008         tty->print(" %4d", in(i)->_idx);
1009       else
1010         tty->print(" NULL");
1011     tty->print("\n");
1012   }
1013 #endif
1014 #ifdef ASSERT
1015   void verify_construction();
1016   bool verify_jvms(const JVMState* jvms) const;
1017   int  _debug_idx;                     // Unique value assigned to every node.
1018   int   debug_idx() const              { return _debug_idx; }
1019   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1020 
1021   Node* _debug_orig;                   // Original version of this, if any.
1022   Node*  debug_orig() const            { return _debug_orig; }
1023   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1024 
1025   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1026   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1027   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1028 
1029   static void init_NodeProperty();
1030 
1031   #if OPTO_DU_ITERATOR_ASSERT
1032   const Node* _last_del;               // The last deleted node.
1033   uint        _del_tick;               // Bumped when a deletion happens..
1034   #endif
1035 #endif
1036 };
1037 
1038 //-----------------------------------------------------------------------------
1039 // Iterators over DU info, and associated Node functions.
1040 
1041 #if OPTO_DU_ITERATOR_ASSERT
1042 
1043 // Common code for assertion checking on DU iterators.
1044 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1045 #ifdef ASSERT
1046  protected:
1047   bool         _vdui;               // cached value of VerifyDUIterators
1048   const Node*  _node;               // the node containing the _out array
1049   uint         _outcnt;             // cached node->_outcnt
1050   uint         _del_tick;           // cached node->_del_tick
1051   Node*        _last;               // last value produced by the iterator
1052 
1053   void sample(const Node* node);    // used by c'tor to set up for verifies
1054   void verify(const Node* node, bool at_end_ok = false);
1055   void verify_resync();
1056   void reset(const DUIterator_Common& that);
1057 
1058 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1059   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1060 #else
1061   #define I_VDUI_ONLY(i,x) { }
1062 #endif //ASSERT
1063 };
1064 
1065 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1066 
1067 // Default DU iterator.  Allows appends onto the out array.
1068 // Allows deletion from the out array only at the current point.
1069 // Usage:
1070 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1071 //    Node* y = x->out(i);
1072 //    ...
1073 //  }
1074 // Compiles in product mode to a unsigned integer index, which indexes
1075 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1076 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1077 // before continuing the loop.  You must delete only the last-produced
1078 // edge.  You must delete only a single copy of the last-produced edge,
1079 // or else you must delete all copies at once (the first time the edge
1080 // is produced by the iterator).
1081 class DUIterator : public DUIterator_Common {
1082   friend class Node;
1083 
1084   // This is the index which provides the product-mode behavior.
1085   // Whatever the product-mode version of the system does to the
1086   // DUI index is done to this index.  All other fields in
1087   // this class are used only for assertion checking.
1088   uint         _idx;
1089 
1090   #ifdef ASSERT
1091   uint         _refresh_tick;    // Records the refresh activity.
1092 
1093   void sample(const Node* node); // Initialize _refresh_tick etc.
1094   void verify(const Node* node, bool at_end_ok = false);
1095   void verify_increment();       // Verify an increment operation.
1096   void verify_resync();          // Verify that we can back up over a deletion.
1097   void verify_finish();          // Verify that the loop terminated properly.
1098   void refresh();                // Resample verification info.
1099   void reset(const DUIterator& that);  // Resample after assignment.
1100   #endif
1101 
1102   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1103     { _idx = 0;                         debug_only(sample(node)); }
1104 
1105  public:
1106   // initialize to garbage; clear _vdui to disable asserts
1107   DUIterator()
1108     { /*initialize to garbage*/         debug_only(_vdui = false); }
1109 
1110   void operator++(int dummy_to_specify_postfix_op)
1111     { _idx++;                           VDUI_ONLY(verify_increment()); }
1112 
1113   void operator--()
1114     { VDUI_ONLY(verify_resync());       --_idx; }
1115 
1116   ~DUIterator()
1117     { VDUI_ONLY(verify_finish()); }
1118 
1119   void operator=(const DUIterator& that)
1120     { _idx = that._idx;                 debug_only(reset(that)); }
1121 };
1122 
1123 DUIterator Node::outs() const
1124   { return DUIterator(this, 0); }
1125 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1126   { I_VDUI_ONLY(i, i.refresh());        return i; }
1127 bool Node::has_out(DUIterator& i) const
1128   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1129 Node*    Node::out(DUIterator& i) const
1130   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1131 
1132 
1133 // Faster DU iterator.  Disallows insertions into the out array.
1134 // Allows deletion from the out array only at the current point.
1135 // Usage:
1136 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1137 //    Node* y = x->fast_out(i);
1138 //    ...
1139 //  }
1140 // Compiles in product mode to raw Node** pointer arithmetic, with
1141 // no reloading of pointers from the original node x.  If you delete,
1142 // you must perform "--i; --imax" just before continuing the loop.
1143 // If you delete multiple copies of the same edge, you must decrement
1144 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1145 class DUIterator_Fast : public DUIterator_Common {
1146   friend class Node;
1147   friend class DUIterator_Last;
1148 
1149   // This is the pointer which provides the product-mode behavior.
1150   // Whatever the product-mode version of the system does to the
1151   // DUI pointer is done to this pointer.  All other fields in
1152   // this class are used only for assertion checking.
1153   Node**       _outp;
1154 
1155   #ifdef ASSERT
1156   void verify(const Node* node, bool at_end_ok = false);
1157   void verify_limit();
1158   void verify_resync();
1159   void verify_relimit(uint n);
1160   void reset(const DUIterator_Fast& that);
1161   #endif
1162 
1163   // Note:  offset must be signed, since -1 is sometimes passed
1164   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1165     { _outp = node->_out + offset;      debug_only(sample(node)); }
1166 
1167  public:
1168   // initialize to garbage; clear _vdui to disable asserts
1169   DUIterator_Fast()
1170     { /*initialize to garbage*/         debug_only(_vdui = false); }
1171 
1172   void operator++(int dummy_to_specify_postfix_op)
1173     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1174 
1175   void operator--()
1176     { VDUI_ONLY(verify_resync());       --_outp; }
1177 
1178   void operator-=(uint n)   // applied to the limit only
1179     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1180 
1181   bool operator<(DUIterator_Fast& limit) {
1182     I_VDUI_ONLY(*this, this->verify(_node, true));
1183     I_VDUI_ONLY(limit, limit.verify_limit());
1184     return _outp < limit._outp;
1185   }
1186 
1187   void operator=(const DUIterator_Fast& that)
1188     { _outp = that._outp;               debug_only(reset(that)); }
1189 };
1190 
1191 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1192   // Assign a limit pointer to the reference argument:
1193   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1194   // Return the base pointer:
1195   return DUIterator_Fast(this, 0);
1196 }
1197 Node* Node::fast_out(DUIterator_Fast& i) const {
1198   I_VDUI_ONLY(i, i.verify(this));
1199   return debug_only(i._last=) *i._outp;
1200 }
1201 
1202 
1203 // Faster DU iterator.  Requires each successive edge to be removed.
1204 // Does not allow insertion of any edges.
1205 // Usage:
1206 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1207 //    Node* y = x->last_out(i);
1208 //    ...
1209 //  }
1210 // Compiles in product mode to raw Node** pointer arithmetic, with
1211 // no reloading of pointers from the original node x.
1212 class DUIterator_Last : private DUIterator_Fast {
1213   friend class Node;
1214 
1215   #ifdef ASSERT
1216   void verify(const Node* node, bool at_end_ok = false);
1217   void verify_limit();
1218   void verify_step(uint num_edges);
1219   #endif
1220 
1221   // Note:  offset must be signed, since -1 is sometimes passed
1222   DUIterator_Last(const Node* node, ptrdiff_t offset)
1223     : DUIterator_Fast(node, offset) { }
1224 
1225   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1226   void operator<(int)                              {} // do not use
1227 
1228  public:
1229   DUIterator_Last() { }
1230   // initialize to garbage
1231 
1232   void operator--()
1233     { _outp--;              VDUI_ONLY(verify_step(1));  }
1234 
1235   void operator-=(uint n)
1236     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1237 
1238   bool operator>=(DUIterator_Last& limit) {
1239     I_VDUI_ONLY(*this, this->verify(_node, true));
1240     I_VDUI_ONLY(limit, limit.verify_limit());
1241     return _outp >= limit._outp;
1242   }
1243 
1244   void operator=(const DUIterator_Last& that)
1245     { DUIterator_Fast::operator=(that); }
1246 };
1247 
1248 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1249   // Assign a limit pointer to the reference argument:
1250   imin = DUIterator_Last(this, 0);
1251   // Return the initial pointer:
1252   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1253 }
1254 Node* Node::last_out(DUIterator_Last& i) const {
1255   I_VDUI_ONLY(i, i.verify(this));
1256   return debug_only(i._last=) *i._outp;
1257 }
1258 
1259 #endif //OPTO_DU_ITERATOR_ASSERT
1260 
1261 #undef I_VDUI_ONLY
1262 #undef VDUI_ONLY
1263 
1264 // An Iterator that truly follows the iterator pattern.  Doesn't
1265 // support deletion but could be made to.
1266 //
1267 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1268 //     Node* m = i.get();
1269 //
1270 class SimpleDUIterator : public StackObj {
1271  private:
1272   Node* node;
1273   DUIterator_Fast i;
1274   DUIterator_Fast imax;
1275  public:
1276   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1277   bool has_next() { return i < imax; }
1278   void next() { i++; }
1279   Node* get() { return node->fast_out(i); }
1280 };
1281 
1282 
1283 //-----------------------------------------------------------------------------
1284 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1285 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1286 // Note that the constructor just zeros things, and since I use Arena
1287 // allocation I do not need a destructor to reclaim storage.
1288 class Node_Array : public ResourceObj {
1289 protected:
1290   Arena *_a;                    // Arena to allocate in
1291   uint   _max;
1292   Node **_nodes;
1293   void   grow( uint i );        // Grow array node to fit
1294 public:
1295   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1296     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1297     for( int i = 0; i < OptoNodeListSize; i++ ) {
1298       _nodes[i] = NULL;
1299     }
1300   }
1301 
1302   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1303   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1304   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1305   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1306   Node **adr() { return _nodes; }
1307   // Extend the mapping: index i maps to Node *n.
1308   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1309   void insert( uint i, Node *n );
1310   void remove( uint i );        // Remove, preserving order
1311   void sort( C_sort_func_t func);
1312   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1313   void clear();                 // Set all entries to NULL, keep storage
1314   uint Size() const { return _max; }
1315   void dump() const;
1316 };
1317 
1318 class Node_List : public Node_Array {
1319   uint _cnt;
1320 public:
1321   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1322   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1323   bool contains(Node* n) {
1324     for (uint e = 0; e < size(); e++) {
1325       if (at(e) == n) return true;
1326     }
1327     return false;
1328   }
1329   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1330   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1331   void push( Node *b ) { map(_cnt++,b); }
1332   void yank( Node *n );         // Find and remove
1333   Node *pop() { return _nodes[--_cnt]; }
1334   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1335   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1336   uint size() const { return _cnt; }
1337   void dump() const;
1338 };
1339 
1340 //------------------------------Unique_Node_List-------------------------------
1341 class Unique_Node_List : public Node_List {
1342   VectorSet _in_worklist;
1343   uint _clock_index;            // Index in list where to pop from next
1344 public:
1345   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1346   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1347 
1348   void remove( Node *n );
1349   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1350   VectorSet &member_set(){ return _in_worklist; }
1351 
1352   void push( Node *b ) {
1353     if( !_in_worklist.test_set(b->_idx) )
1354       Node_List::push(b);
1355   }
1356   Node *pop() {
1357     if( _clock_index >= size() ) _clock_index = 0;
1358     Node *b = at(_clock_index);
1359     map( _clock_index, Node_List::pop());
1360     if (size() != 0) _clock_index++; // Always start from 0
1361     _in_worklist >>= b->_idx;
1362     return b;
1363   }
1364   Node *remove( uint i ) {
1365     Node *b = Node_List::at(i);
1366     _in_worklist >>= b->_idx;
1367     map(i,Node_List::pop());
1368     return b;
1369   }
1370   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1371   void  clear() {
1372     _in_worklist.Clear();        // Discards storage but grows automatically
1373     Node_List::clear();
1374     _clock_index = 0;
1375   }
1376 
1377   // Used after parsing to remove useless nodes before Iterative GVN
1378   void remove_useless_nodes(VectorSet &useful);
1379 
1380 #ifndef PRODUCT
1381   void print_set() const { _in_worklist.print(); }
1382 #endif
1383 };
1384 
1385 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1386 inline void Compile::record_for_igvn(Node* n) {
1387   _for_igvn->push(n);
1388 }
1389 
1390 //------------------------------Node_Stack-------------------------------------
1391 class Node_Stack {
1392 protected:
1393   struct INode {
1394     Node *node; // Processed node
1395     uint  indx; // Index of next node's child
1396   };
1397   INode *_inode_top; // tos, stack grows up
1398   INode *_inode_max; // End of _inodes == _inodes + _max
1399   INode *_inodes;    // Array storage for the stack
1400   Arena *_a;         // Arena to allocate in
1401   void grow();
1402 public:
1403   Node_Stack(int size) {
1404     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1405     _a = Thread::current()->resource_area();
1406     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1407     _inode_max = _inodes + max;
1408     _inode_top = _inodes - 1; // stack is empty
1409   }
1410 
1411   Node_Stack(Arena *a, int size) : _a(a) {
1412     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1413     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1414     _inode_max = _inodes + max;
1415     _inode_top = _inodes - 1; // stack is empty
1416   }
1417 
1418   void pop() {
1419     assert(_inode_top >= _inodes, "node stack underflow");
1420     --_inode_top;
1421   }
1422   void push(Node *n, uint i) {
1423     ++_inode_top;
1424     if (_inode_top >= _inode_max) grow();
1425     INode *top = _inode_top; // optimization
1426     top->node = n;
1427     top->indx = i;
1428   }
1429   Node *node() const {
1430     return _inode_top->node;
1431   }
1432   Node* node_at(uint i) const {
1433     assert(_inodes + i <= _inode_top, "in range");
1434     return _inodes[i].node;
1435   }
1436   uint index() const {
1437     return _inode_top->indx;
1438   }
1439   uint index_at(uint i) const {
1440     assert(_inodes + i <= _inode_top, "in range");
1441     return _inodes[i].indx;
1442   }
1443   void set_node(Node *n) {
1444     _inode_top->node = n;
1445   }
1446   void set_index(uint i) {
1447     _inode_top->indx = i;
1448   }
1449   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1450   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1451   bool is_nonempty() const { return (_inode_top >= _inodes); }
1452   bool is_empty() const { return (_inode_top < _inodes); }
1453   void clear() { _inode_top = _inodes - 1; } // retain storage
1454 
1455   // Node_Stack is used to map nodes.
1456   Node* find(uint idx) const;
1457 };
1458 
1459 
1460 //-----------------------------Node_Notes--------------------------------------
1461 // Debugging or profiling annotations loosely and sparsely associated
1462 // with some nodes.  See Compile::node_notes_at for the accessor.
1463 class Node_Notes VALUE_OBJ_CLASS_SPEC {
1464   JVMState* _jvms;
1465 
1466 public:
1467   Node_Notes(JVMState* jvms = NULL) {
1468     _jvms = jvms;
1469   }
1470 
1471   JVMState* jvms()            { return _jvms; }
1472   void  set_jvms(JVMState* x) {        _jvms = x; }
1473 
1474   // True if there is nothing here.
1475   bool is_clear() {
1476     return (_jvms == NULL);
1477   }
1478 
1479   // Make there be nothing here.
1480   void clear() {
1481     _jvms = NULL;
1482   }
1483 
1484   // Make a new, clean node notes.
1485   static Node_Notes* make(Compile* C) {
1486     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1487     nn->clear();
1488     return nn;
1489   }
1490 
1491   Node_Notes* clone(Compile* C) {
1492     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1493     (*nn) = (*this);
1494     return nn;
1495   }
1496 
1497   // Absorb any information from source.
1498   bool update_from(Node_Notes* source) {
1499     bool changed = false;
1500     if (source != NULL) {
1501       if (source->jvms() != NULL) {
1502         set_jvms(source->jvms());
1503         changed = true;
1504       }
1505     }
1506     return changed;
1507   }
1508 };
1509 
1510 // Inlined accessors for Compile::node_nodes that require the preceding class:
1511 inline Node_Notes*
1512 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1513                            int idx, bool can_grow) {
1514   assert(idx >= 0, "oob");
1515   int block_idx = (idx >> _log2_node_notes_block_size);
1516   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1517   if (grow_by >= 0) {
1518     if (!can_grow)  return NULL;
1519     grow_node_notes(arr, grow_by + 1);
1520   }
1521   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1522   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1523 }
1524 
1525 inline bool
1526 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1527   if (value == NULL || value->is_clear())
1528     return false;  // nothing to write => write nothing
1529   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1530   assert(loc != NULL, "");
1531   return loc->update_from(value);
1532 }
1533 
1534 
1535 //------------------------------TypeNode---------------------------------------
1536 // Node with a Type constant.
1537 class TypeNode : public Node {
1538 protected:
1539   virtual uint hash() const;    // Check the type
1540   virtual uint cmp( const Node &n ) const;
1541   virtual uint size_of() const; // Size is bigger
1542   const Type* const _type;
1543 public:
1544   void set_type(const Type* t) {
1545     assert(t != NULL, "sanity");
1546     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1547     *(const Type**)&_type = t;   // cast away const-ness
1548     // If this node is in the hash table, make sure it doesn't need a rehash.
1549     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1550   }
1551   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1552   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1553     init_class_id(Class_Type);
1554   }
1555   virtual const Type *Value( PhaseTransform *phase ) const;
1556   virtual const Type *bottom_type() const;
1557   virtual       uint  ideal_reg() const;
1558 #ifndef PRODUCT
1559   virtual void dump_spec(outputStream *st) const;
1560 #endif
1561 };
1562 
1563 #endif // SHARE_VM_OPTO_NODE_HPP