1 /*
   2  * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_OPTOREG_HPP
  26 #define SHARE_VM_OPTO_OPTOREG_HPP
  27 
  28 //------------------------------OptoReg----------------------------------------
  29 // We eventually need Registers for the Real World.  Registers are essentially
  30 // non-SSA names.  A Register is represented as a number.  Non-regular values
  31 // (e.g., Control, Memory, I/O) use the Special register.  The actual machine
  32 // registers (as described in the ADL file for a machine) start at zero.
  33 // Stack-slots (spill locations) start at the nest Chunk past the last machine
  34 // register.
  35 //
  36 // Note that stack spill-slots are treated as a very large register set.
  37 // They have all the correct properties for a Register: not aliased (unique
  38 // named).  There is some simple mapping from a stack-slot register number
  39 // to the actual location on the stack; this mapping depends on the calling
  40 // conventions and is described in the ADL.
  41 //
  42 // Note that Name is not enum. C++ standard defines that the range of enum
  43 // is the range of smallest bit-field that can represent all enumerators
  44 // declared in the enum. The result of assigning a value to enum is undefined
  45 // if the value is outside the enumeration's valid range. OptoReg::Name is
  46 // typedef'ed as int, because it needs to be able to represent spill-slots.
  47 //
  48 class OptoReg VALUE_OBJ_CLASS_SPEC {
  49 
  50  friend class C2Compiler;
  51  public:
  52   typedef int Name;
  53   enum {
  54     // Chunk 0
  55     Physical = AdlcVMDeps::Physical, // Start of physical regs
  56     // A few oddballs at the edge of the world
  57     Special = -2,               // All special (not allocated) values
  58     Bad = -1                    // Not a register
  59   };
  60 
  61  private:
  62 
  63  static const VMReg opto2vm[REG_COUNT];
  64  static Name vm2opto[ConcreteRegisterImpl::number_of_registers];
  65 
  66  public:
  67 
  68   // Stack pointer register
  69   static OptoReg::Name c_frame_pointer;
  70 
  71 
  72 
  73   // Increment a register number.  As in:
  74   //    "for ( OptoReg::Name i; i=Control; i = add(i,1) ) ..."
  75   static Name add( Name x, int y ) { return Name(x+y); }
  76 
  77   // (We would like to have an operator+ for RegName, but it is not
  78   // a class, so this would be illegal in C++.)
  79 
  80   static void dump( int );
  81 
  82   // Get the stack slot number of an OptoReg::Name
  83   static unsigned int reg2stack( OptoReg::Name r) {
  84     assert( r >= stack0(), " must be");
  85     return r - stack0();
  86   }
  87 
  88   // convert a stack slot number into an OptoReg::Name
  89   static OptoReg::Name stack2reg( int idx) {
  90     return Name(stack0() + idx);
  91   }
  92 
  93   static bool is_stack(Name n) {
  94     return n >= stack0();
  95   }
  96 
  97   static bool is_valid(Name n) {
  98     return (n != Bad);
  99   }
 100 
 101   static bool is_reg(Name n) {
 102     return  is_valid(n) && !is_stack(n);
 103   }
 104 
 105   static VMReg as_VMReg(OptoReg::Name n) {
 106     if (is_reg(n)) {
 107       // Must use table, it'd be nice if Bad was indexable...
 108       return opto2vm[n];
 109     } else {
 110       assert(!is_stack(n), "must un warp");
 111       return VMRegImpl::Bad();
 112     }
 113   }
 114 
 115   // Can un-warp a stack slot or convert a register or Bad
 116   static VMReg as_VMReg(OptoReg::Name n, int frame_size, int arg_count) {
 117     if (is_reg(n)) {
 118       // Must use table, it'd be nice if Bad was indexable...
 119       return opto2vm[n];
 120     } else if (is_stack(n)) {
 121       int stack_slot = reg2stack(n);
 122       if (stack_slot < arg_count) {
 123         return VMRegImpl::stack2reg(stack_slot + frame_size);
 124       }
 125       return VMRegImpl::stack2reg(stack_slot - arg_count);
 126       // return return VMRegImpl::stack2reg(reg2stack(OptoReg::add(n, -arg_count)));
 127     } else {
 128       return VMRegImpl::Bad();
 129     }
 130   }
 131 
 132   static OptoReg::Name as_OptoReg(VMReg r) {
 133     if (r->is_stack()) {
 134       assert(false, "must warp");
 135       return stack2reg(r->reg2stack());
 136     } else if (r->is_valid()) {
 137       // Must use table, it'd be nice if Bad was indexable...
 138       return vm2opto[r->value()];
 139     } else {
 140       return Bad;
 141     }
 142   }
 143 
 144   static OptoReg::Name stack0() {
 145     return VMRegImpl::stack0->value();
 146   }
 147 
 148   static const char* regname(OptoReg::Name n) {
 149     return as_VMReg(n)->name();
 150   }
 151 
 152 };
 153 
 154 //---------------------------OptoRegPair-------------------------------------------
 155 // Pairs of 32-bit registers for the allocator.
 156 // This is a very similar class to VMRegPair. C2 only interfaces with VMRegPair
 157 // via the calling convention code which is shared between the compilers.
 158 // Since C2 uses OptoRegs for register allocation it is more efficient to use
 159 // VMRegPair internally for nodes that can contain a pair of OptoRegs rather
 160 // than use VMRegPair and continually be converting back and forth. So normally
 161 // C2 will take in a VMRegPair from the calling convention code and immediately
 162 // convert them to an OptoRegPair and stay in the OptoReg world. The only over
 163 // conversion between OptoRegs and VMRegs is for debug info and oopMaps. This
 164 // is not a high bandwidth spot and so it is not an issue.
 165 // Note that onde other consequence of staying in the OptoReg world with OptoRegPairs
 166 // is that there are "physical" OptoRegs that are not representable in the VMReg
 167 // world, notably flags. [ But by design there is "space" in the VMReg world
 168 // for such registers they just may not be concrete ]. So if we were to use VMRegPair
 169 // then the VMReg world would have to have a representation for these registers
 170 // so that a OptoReg->VMReg->OptoReg would reproduce ther original OptoReg. As it
 171 // stands if you convert a flag (condition code) to a VMReg you will get VMRegImpl::Bad
 172 // and converting that will return OptoReg::Bad losing the identity of the OptoReg.
 173 
 174 class OptoRegPair {
 175 private:
 176   short _second;
 177   short _first;
 178 public:
 179   void set_bad (                   ) { _second = OptoReg::Bad; _first = OptoReg::Bad; }
 180   void set1    ( OptoReg::Name n  ) { _second = OptoReg::Bad; _first = n; }
 181   void set2    ( OptoReg::Name n  ) { _second = n + 1;       _first = n; }
 182   void set_pair( OptoReg::Name second, OptoReg::Name first    ) { _second= second;    _first= first; }
 183   void set_ptr ( OptoReg::Name ptr ) {
 184 #ifdef _LP64
 185     _second = ptr+1;
 186 #else
 187     _second = OptoReg::Bad;
 188 #endif
 189     _first = ptr;
 190   }
 191 
 192   OptoReg::Name second() const { return _second; }
 193   OptoReg::Name first() const { return _first; }
 194   OptoRegPair(OptoReg::Name second, OptoReg::Name first) {  _second = second; _first = first; }
 195   OptoRegPair(OptoReg::Name f) { _second = OptoReg::Bad; _first = f; }
 196   OptoRegPair() { _second = OptoReg::Bad; _first = OptoReg::Bad; }
 197 };
 198 
 199 #endif // SHARE_VM_OPTO_OPTOREG_HPP