1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_TYPE_HPP
  26 #define SHARE_VM_OPTO_TYPE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 // This class defines a Type lattice.  The lattice is used in the constant
  38 // propagation algorithms, and for some type-checking of the iloc code.
  39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  40 // float & double precision constants, sets of data-labels and code-labels.
  41 // The complete lattice is described below.  Subtypes have no relationship to
  42 // up or down in the lattice; that is entirely determined by the behavior of
  43 // the MEET/JOIN functions.
  44 
  45 class Dict;
  46 class Type;
  47 class   TypeD;
  48 class   TypeF;
  49 class   TypeInt;
  50 class   TypeLong;
  51 class   TypeNarrowOop;
  52 class   TypeAry;
  53 class   TypeTuple;
  54 class   TypePtr;
  55 class     TypeRawPtr;
  56 class     TypeOopPtr;
  57 class       TypeInstPtr;
  58 class       TypeAryPtr;
  59 class       TypeKlassPtr;
  60 
  61 //------------------------------Type-------------------------------------------
  62 // Basic Type object, represents a set of primitive Values.
  63 // Types are hash-cons'd into a private class dictionary, so only one of each
  64 // different kind of Type exists.  Types are never modified after creation, so
  65 // all their interesting fields are constant.
  66 class Type {
  67 public:
  68   enum TYPES {
  69     Bad=0,                      // Type check
  70     Control,                    // Control of code (not in lattice)
  71     Top,                        // Top of the lattice
  72     Int,                        // Integer range (lo-hi)
  73     Long,                       // Long integer range (lo-hi)
  74     Half,                       // Placeholder half of doubleword
  75     NarrowOop,                  // Compressed oop pointer
  76 
  77     Tuple,                      // Method signature or object layout
  78     Array,                      // Array types
  79 
  80     AnyPtr,                     // Any old raw, klass, inst, or array pointer
  81     RawPtr,                     // Raw (non-oop) pointers
  82     OopPtr,                     // Any and all Java heap entities
  83     InstPtr,                    // Instance pointers (non-array objects)
  84     AryPtr,                     // Array pointers
  85     KlassPtr,                   // Klass pointers
  86     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
  87 
  88     Function,                   // Function signature
  89     Abio,                       // Abstract I/O
  90     Return_Address,             // Subroutine return address
  91     Memory,                     // Abstract store
  92     FloatTop,                   // No float value
  93     FloatCon,                   // Floating point constant
  94     FloatBot,                   // Any float value
  95     DoubleTop,                  // No double value
  96     DoubleCon,                  // Double precision constant
  97     DoubleBot,                  // Any double value
  98     Bottom,                     // Bottom of lattice
  99     lastype                     // Bogus ending type (not in lattice)
 100   };
 101 
 102   // Signal values for offsets from a base pointer
 103   enum OFFSET_SIGNALS {
 104     OffsetTop = -2000000000,    // undefined offset
 105     OffsetBot = -2000000001     // any possible offset
 106   };
 107 
 108   // Min and max WIDEN values.
 109   enum WIDEN {
 110     WidenMin = 0,
 111     WidenMax = 3
 112   };
 113 
 114 private:
 115   // Dictionary of types shared among compilations.
 116   static Dict* _shared_type_dict;
 117 
 118   static int uhash( const Type *const t );
 119   // Structural equality check.  Assumes that cmp() has already compared
 120   // the _base types and thus knows it can cast 't' appropriately.
 121   virtual bool eq( const Type *t ) const;
 122 
 123   // Top-level hash-table of types
 124   static Dict *type_dict() {
 125     return Compile::current()->type_dict();
 126   }
 127 
 128   // DUAL operation: reflect around lattice centerline.  Used instead of
 129   // join to ensure my lattice is symmetric up and down.  Dual is computed
 130   // lazily, on demand, and cached in _dual.
 131   const Type *_dual;            // Cached dual value
 132   // Table for efficient dualing of base types
 133   static const TYPES dual_type[lastype];
 134 
 135 protected:
 136   // Each class of type is also identified by its base.
 137   const TYPES _base;            // Enum of Types type
 138 
 139   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 140   // ~Type();                   // Use fast deallocation
 141   const Type *hashcons();       // Hash-cons the type
 142 
 143 public:
 144 
 145   inline void* operator new( size_t x ) {
 146     Compile* compile = Compile::current();
 147     compile->set_type_last_size(x);
 148     void *temp = compile->type_arena()->Amalloc_D(x);
 149     compile->set_type_hwm(temp);
 150     return temp;
 151   }
 152   inline void operator delete( void* ptr ) {
 153     Compile* compile = Compile::current();
 154     compile->type_arena()->Afree(ptr,compile->type_last_size());
 155   }
 156 
 157   // Initialize the type system for a particular compilation.
 158   static void Initialize(Compile* compile);
 159 
 160   // Initialize the types shared by all compilations.
 161   static void Initialize_shared(Compile* compile);
 162 
 163   TYPES base() const {
 164     assert(_base > Bad && _base < lastype, "sanity");
 165     return _base;
 166   }
 167 
 168   // Create a new hash-consd type
 169   static const Type *make(enum TYPES);
 170   // Test for equivalence of types
 171   static int cmp( const Type *const t1, const Type *const t2 );
 172   // Test for higher or equal in lattice
 173   int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
 174 
 175   // MEET operation; lower in lattice.
 176   const Type *meet( const Type *t ) const;
 177   // WIDEN: 'widens' for Ints and other range types
 178   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 179   // NARROW: complement for widen, used by pessimistic phases
 180   virtual const Type *narrow( const Type *old ) const { return this; }
 181 
 182   // DUAL operation: reflect around lattice centerline.  Used instead of
 183   // join to ensure my lattice is symmetric up and down.
 184   const Type *dual() const { return _dual; }
 185 
 186   // Compute meet dependent on base type
 187   virtual const Type *xmeet( const Type *t ) const;
 188   virtual const Type *xdual() const;    // Compute dual right now.
 189 
 190   // JOIN operation; higher in lattice.  Done by finding the dual of the
 191   // meet of the dual of the 2 inputs.
 192   const Type *join( const Type *t ) const {
 193     return dual()->meet(t->dual())->dual(); }
 194 
 195   // Modified version of JOIN adapted to the needs Node::Value.
 196   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 197   // Currently, it also works around limitations involving interface types.
 198   virtual const Type *filter( const Type *kills ) const;
 199 
 200 #ifdef ASSERT
 201   // One type is interface, the other is oop
 202   virtual bool interface_vs_oop(const Type *t) const;
 203 #endif
 204 
 205   // Returns true if this pointer points at memory which contains a
 206   // compressed oop references.
 207   bool is_ptr_to_narrowoop() const;
 208 
 209   // Convenience access
 210   float getf() const;
 211   double getd() const;
 212 
 213   const TypeInt    *is_int() const;
 214   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 215   const TypeLong   *is_long() const;
 216   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 217   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 218   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 219   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 220   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 221   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 222   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 223   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 224   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 225   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 226   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 227   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 228   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 229   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 230   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 231   const TypeKlassPtr *isa_klassptr() const;      // Returns NULL if not KlassPtr
 232   const TypeKlassPtr *is_klassptr() const;       // assert if not KlassPtr
 233   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 234   const TypeInstPtr  *is_instptr() const;        // Instance
 235   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 236   const TypeAryPtr   *is_aryptr() const;         // Array oop
 237   virtual bool      is_finite() const;           // Has a finite value
 238   virtual bool      is_nan()    const;           // Is not a number (NaN)
 239 
 240   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 241   const TypePtr* make_ptr() const;
 242 
 243   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 244   // Asserts if the underlying type is not an oopptr or narrowoop.
 245   const TypeOopPtr* make_oopptr() const;
 246 
 247   // Returns this compressed pointer or the equivalent compressed version
 248   // of this pointer type.
 249   const TypeNarrowOop* make_narrowoop() const;
 250 
 251   // Special test for register pressure heuristic
 252   bool is_floatingpoint() const;        // True if Float or Double base type
 253 
 254   // Do you have memory, directly or through a tuple?
 255   bool has_memory( ) const;
 256 
 257   // Are you a pointer type or not?
 258   bool isa_oop_ptr() const;
 259 
 260   // TRUE if type is a singleton
 261   virtual bool singleton(void) const;
 262 
 263   // TRUE if type is above the lattice centerline, and is therefore vacuous
 264   virtual bool empty(void) const;
 265 
 266   // Return a hash for this type.  The hash function is public so ConNode
 267   // (constants) can hash on their constant, which is represented by a Type.
 268   virtual int hash() const;
 269 
 270   // Map ideal registers (machine types) to ideal types
 271   static const Type *mreg2type[];
 272 
 273   // Printing, statistics
 274   static const char * const msg[lastype]; // Printable strings
 275 #ifndef PRODUCT
 276   void         dump_on(outputStream *st) const;
 277   void         dump() const {
 278     dump_on(tty);
 279   }
 280   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 281   static  void dump_stats();
 282   static  void verify_lastype();          // Check that arrays match type enum
 283 #endif
 284   void typerr(const Type *t) const; // Mixing types error
 285 
 286   // Create basic type
 287   static const Type* get_const_basic_type(BasicType type) {
 288     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 289     return _const_basic_type[type];
 290   }
 291 
 292   // Mapping to the array element's basic type.
 293   BasicType array_element_basic_type() const;
 294 
 295   // Create standard type for a ciType:
 296   static const Type* get_const_type(ciType* type);
 297 
 298   // Create standard zero value:
 299   static const Type* get_zero_type(BasicType type) {
 300     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 301     return _zero_type[type];
 302   }
 303 
 304   // Report if this is a zero value (not top).
 305   bool is_zero_type() const {
 306     BasicType type = basic_type();
 307     if (type == T_VOID || type >= T_CONFLICT)
 308       return false;
 309     else
 310       return (this == _zero_type[type]);
 311   }
 312 
 313   // Convenience common pre-built types.
 314   static const Type *ABIO;
 315   static const Type *BOTTOM;
 316   static const Type *CONTROL;
 317   static const Type *DOUBLE;
 318   static const Type *FLOAT;
 319   static const Type *HALF;
 320   static const Type *MEMORY;
 321   static const Type *MULTI;
 322   static const Type *RETURN_ADDRESS;
 323   static const Type *TOP;
 324 
 325   // Mapping from compiler type to VM BasicType
 326   BasicType basic_type() const { return _basic_type[_base]; }
 327 
 328   // Mapping from CI type system to compiler type:
 329   static const Type* get_typeflow_type(ciType* type);
 330 
 331 private:
 332   // support arrays
 333   static const BasicType _basic_type[];
 334   static const Type*        _zero_type[T_CONFLICT+1];
 335   static const Type* _const_basic_type[T_CONFLICT+1];
 336 };
 337 
 338 //------------------------------TypeF------------------------------------------
 339 // Class of Float-Constant Types.
 340 class TypeF : public Type {
 341   TypeF( float f ) : Type(FloatCon), _f(f) {};
 342 public:
 343   virtual bool eq( const Type *t ) const;
 344   virtual int  hash() const;             // Type specific hashing
 345   virtual bool singleton(void) const;    // TRUE if type is a singleton
 346   virtual bool empty(void) const;        // TRUE if type is vacuous
 347 public:
 348   const float _f;               // Float constant
 349 
 350   static const TypeF *make(float f);
 351 
 352   virtual bool        is_finite() const;  // Has a finite value
 353   virtual bool        is_nan()    const;  // Is not a number (NaN)
 354 
 355   virtual const Type *xmeet( const Type *t ) const;
 356   virtual const Type *xdual() const;    // Compute dual right now.
 357   // Convenience common pre-built types.
 358   static const TypeF *ZERO; // positive zero only
 359   static const TypeF *ONE;
 360 #ifndef PRODUCT
 361   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 362 #endif
 363 };
 364 
 365 //------------------------------TypeD------------------------------------------
 366 // Class of Double-Constant Types.
 367 class TypeD : public Type {
 368   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 369 public:
 370   virtual bool eq( const Type *t ) const;
 371   virtual int  hash() const;             // Type specific hashing
 372   virtual bool singleton(void) const;    // TRUE if type is a singleton
 373   virtual bool empty(void) const;        // TRUE if type is vacuous
 374 public:
 375   const double _d;              // Double constant
 376 
 377   static const TypeD *make(double d);
 378 
 379   virtual bool        is_finite() const;  // Has a finite value
 380   virtual bool        is_nan()    const;  // Is not a number (NaN)
 381 
 382   virtual const Type *xmeet( const Type *t ) const;
 383   virtual const Type *xdual() const;    // Compute dual right now.
 384   // Convenience common pre-built types.
 385   static const TypeD *ZERO; // positive zero only
 386   static const TypeD *ONE;
 387 #ifndef PRODUCT
 388   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 389 #endif
 390 };
 391 
 392 //------------------------------TypeInt----------------------------------------
 393 // Class of integer ranges, the set of integers between a lower bound and an
 394 // upper bound, inclusive.
 395 class TypeInt : public Type {
 396   TypeInt( jint lo, jint hi, int w );
 397 public:
 398   virtual bool eq( const Type *t ) const;
 399   virtual int  hash() const;             // Type specific hashing
 400   virtual bool singleton(void) const;    // TRUE if type is a singleton
 401   virtual bool empty(void) const;        // TRUE if type is vacuous
 402 public:
 403   const jint _lo, _hi;          // Lower bound, upper bound
 404   const short _widen;           // Limit on times we widen this sucker
 405 
 406   static const TypeInt *make(jint lo);
 407   // must always specify w
 408   static const TypeInt *make(jint lo, jint hi, int w);
 409 
 410   // Check for single integer
 411   int is_con() const { return _lo==_hi; }
 412   bool is_con(int i) const { return is_con() && _lo == i; }
 413   jint get_con() const { assert( is_con(), "" );  return _lo; }
 414 
 415   virtual bool        is_finite() const;  // Has a finite value
 416 
 417   virtual const Type *xmeet( const Type *t ) const;
 418   virtual const Type *xdual() const;    // Compute dual right now.
 419   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 420   virtual const Type *narrow( const Type *t ) const;
 421   // Do not kill _widen bits.
 422   virtual const Type *filter( const Type *kills ) const;
 423   // Convenience common pre-built types.
 424   static const TypeInt *MINUS_1;
 425   static const TypeInt *ZERO;
 426   static const TypeInt *ONE;
 427   static const TypeInt *BOOL;
 428   static const TypeInt *CC;
 429   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 430   static const TypeInt *CC_GT;  // [1]   == ONE
 431   static const TypeInt *CC_EQ;  // [0]   == ZERO
 432   static const TypeInt *CC_LE;  // [-1,0]
 433   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 434   static const TypeInt *BYTE;
 435   static const TypeInt *UBYTE;
 436   static const TypeInt *CHAR;
 437   static const TypeInt *SHORT;
 438   static const TypeInt *POS;
 439   static const TypeInt *POS1;
 440   static const TypeInt *INT;
 441   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 442 #ifndef PRODUCT
 443   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 444 #endif
 445 };
 446 
 447 
 448 //------------------------------TypeLong---------------------------------------
 449 // Class of long integer ranges, the set of integers between a lower bound and
 450 // an upper bound, inclusive.
 451 class TypeLong : public Type {
 452   TypeLong( jlong lo, jlong hi, int w );
 453 public:
 454   virtual bool eq( const Type *t ) const;
 455   virtual int  hash() const;             // Type specific hashing
 456   virtual bool singleton(void) const;    // TRUE if type is a singleton
 457   virtual bool empty(void) const;        // TRUE if type is vacuous
 458 public:
 459   const jlong _lo, _hi;         // Lower bound, upper bound
 460   const short _widen;           // Limit on times we widen this sucker
 461 
 462   static const TypeLong *make(jlong lo);
 463   // must always specify w
 464   static const TypeLong *make(jlong lo, jlong hi, int w);
 465 
 466   // Check for single integer
 467   int is_con() const { return _lo==_hi; }
 468   bool is_con(int i) const { return is_con() && _lo == i; }
 469   jlong get_con() const { assert( is_con(), "" ); return _lo; }
 470 
 471   virtual bool        is_finite() const;  // Has a finite value
 472 
 473   virtual const Type *xmeet( const Type *t ) const;
 474   virtual const Type *xdual() const;    // Compute dual right now.
 475   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 476   virtual const Type *narrow( const Type *t ) const;
 477   // Do not kill _widen bits.
 478   virtual const Type *filter( const Type *kills ) const;
 479   // Convenience common pre-built types.
 480   static const TypeLong *MINUS_1;
 481   static const TypeLong *ZERO;
 482   static const TypeLong *ONE;
 483   static const TypeLong *POS;
 484   static const TypeLong *LONG;
 485   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 486   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 487 #ifndef PRODUCT
 488   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 489 #endif
 490 };
 491 
 492 //------------------------------TypeTuple--------------------------------------
 493 // Class of Tuple Types, essentially type collections for function signatures
 494 // and class layouts.  It happens to also be a fast cache for the HotSpot
 495 // signature types.
 496 class TypeTuple : public Type {
 497   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 498 public:
 499   virtual bool eq( const Type *t ) const;
 500   virtual int  hash() const;             // Type specific hashing
 501   virtual bool singleton(void) const;    // TRUE if type is a singleton
 502   virtual bool empty(void) const;        // TRUE if type is vacuous
 503 
 504 public:
 505   const uint          _cnt;              // Count of fields
 506   const Type ** const _fields;           // Array of field types
 507 
 508   // Accessors:
 509   uint cnt() const { return _cnt; }
 510   const Type* field_at(uint i) const {
 511     assert(i < _cnt, "oob");
 512     return _fields[i];
 513   }
 514   void set_field_at(uint i, const Type* t) {
 515     assert(i < _cnt, "oob");
 516     _fields[i] = t;
 517   }
 518 
 519   static const TypeTuple *make( uint cnt, const Type **fields );
 520   static const TypeTuple *make_range(ciSignature *sig);
 521   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
 522 
 523   // Subroutine call type with space allocated for argument types
 524   static const Type **fields( uint arg_cnt );
 525 
 526   virtual const Type *xmeet( const Type *t ) const;
 527   virtual const Type *xdual() const;    // Compute dual right now.
 528   // Convenience common pre-built types.
 529   static const TypeTuple *IFBOTH;
 530   static const TypeTuple *IFFALSE;
 531   static const TypeTuple *IFTRUE;
 532   static const TypeTuple *IFNEITHER;
 533   static const TypeTuple *LOOPBODY;
 534   static const TypeTuple *MEMBAR;
 535   static const TypeTuple *STORECONDITIONAL;
 536   static const TypeTuple *START_I2C;
 537   static const TypeTuple *INT_PAIR;
 538   static const TypeTuple *LONG_PAIR;
 539 #ifndef PRODUCT
 540   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 541 #endif
 542 };
 543 
 544 //------------------------------TypeAry----------------------------------------
 545 // Class of Array Types
 546 class TypeAry : public Type {
 547   TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
 548     _elem(elem), _size(size) {}
 549 public:
 550   virtual bool eq( const Type *t ) const;
 551   virtual int  hash() const;             // Type specific hashing
 552   virtual bool singleton(void) const;    // TRUE if type is a singleton
 553   virtual bool empty(void) const;        // TRUE if type is vacuous
 554 
 555 private:
 556   const Type *_elem;            // Element type of array
 557   const TypeInt *_size;         // Elements in array
 558   friend class TypeAryPtr;
 559 
 560 public:
 561   static const TypeAry *make(  const Type *elem, const TypeInt *size);
 562 
 563   virtual const Type *xmeet( const Type *t ) const;
 564   virtual const Type *xdual() const;    // Compute dual right now.
 565   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 566 #ifdef ASSERT
 567   // One type is interface, the other is oop
 568   virtual bool interface_vs_oop(const Type *t) const;
 569 #endif
 570 #ifndef PRODUCT
 571   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 572 #endif
 573 };
 574 
 575 //------------------------------TypePtr----------------------------------------
 576 // Class of machine Pointer Types: raw data, instances or arrays.
 577 // If the _base enum is AnyPtr, then this refers to all of the above.
 578 // Otherwise the _base will indicate which subset of pointers is affected,
 579 // and the class will be inherited from.
 580 class TypePtr : public Type {
 581   friend class TypeNarrowOop;
 582 public:
 583   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 584 protected:
 585   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
 586   virtual bool eq( const Type *t ) const;
 587   virtual int  hash() const;             // Type specific hashing
 588   static const PTR ptr_meet[lastPTR][lastPTR];
 589   static const PTR ptr_dual[lastPTR];
 590   static const char * const ptr_msg[lastPTR];
 591 
 592 public:
 593   const int _offset;            // Offset into oop, with TOP & BOT
 594   const PTR _ptr;               // Pointer equivalence class
 595 
 596   const int offset() const { return _offset; }
 597   const PTR ptr()    const { return _ptr; }
 598 
 599   static const TypePtr *make( TYPES t, PTR ptr, int offset );
 600 
 601   // Return a 'ptr' version of this type
 602   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 603 
 604   virtual intptr_t get_con() const;
 605 
 606   int xadd_offset( intptr_t offset ) const;
 607   virtual const TypePtr *add_offset( intptr_t offset ) const;
 608 
 609   virtual bool singleton(void) const;    // TRUE if type is a singleton
 610   virtual bool empty(void) const;        // TRUE if type is vacuous
 611   virtual const Type *xmeet( const Type *t ) const;
 612   int meet_offset( int offset ) const;
 613   int dual_offset( ) const;
 614   virtual const Type *xdual() const;    // Compute dual right now.
 615 
 616   // meet, dual and join over pointer equivalence sets
 617   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 618   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 619 
 620   // This is textually confusing unless one recalls that
 621   // join(t) == dual()->meet(t->dual())->dual().
 622   PTR join_ptr( const PTR in_ptr ) const {
 623     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 624   }
 625 
 626   // Tests for relation to centerline of type lattice:
 627   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 628   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 629   // Convenience common pre-built types.
 630   static const TypePtr *NULL_PTR;
 631   static const TypePtr *NOTNULL;
 632   static const TypePtr *BOTTOM;
 633 #ifndef PRODUCT
 634   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 635 #endif
 636 };
 637 
 638 //------------------------------TypeRawPtr-------------------------------------
 639 // Class of raw pointers, pointers to things other than Oops.  Examples
 640 // include the stack pointer, top of heap, card-marking area, handles, etc.
 641 class TypeRawPtr : public TypePtr {
 642 protected:
 643   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
 644 public:
 645   virtual bool eq( const Type *t ) const;
 646   virtual int  hash() const;     // Type specific hashing
 647 
 648   const address _bits;          // Constant value, if applicable
 649 
 650   static const TypeRawPtr *make( PTR ptr );
 651   static const TypeRawPtr *make( address bits );
 652 
 653   // Return a 'ptr' version of this type
 654   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 655 
 656   virtual intptr_t get_con() const;
 657 
 658   virtual const TypePtr *add_offset( intptr_t offset ) const;
 659 
 660   virtual const Type *xmeet( const Type *t ) const;
 661   virtual const Type *xdual() const;    // Compute dual right now.
 662   // Convenience common pre-built types.
 663   static const TypeRawPtr *BOTTOM;
 664   static const TypeRawPtr *NOTNULL;
 665 #ifndef PRODUCT
 666   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 667 #endif
 668 };
 669 
 670 //------------------------------TypeOopPtr-------------------------------------
 671 // Some kind of oop (Java pointer), either klass or instance or array.
 672 class TypeOopPtr : public TypePtr {
 673 protected:
 674   TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
 675 public:
 676   virtual bool eq( const Type *t ) const;
 677   virtual int  hash() const;             // Type specific hashing
 678   virtual bool singleton(void) const;    // TRUE if type is a singleton
 679   enum {
 680    InstanceTop = -1,   // undefined instance
 681    InstanceBot = 0     // any possible instance
 682   };
 683 protected:
 684 
 685   // Oop is NULL, unless this is a constant oop.
 686   ciObject*     _const_oop;   // Constant oop
 687   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
 688   ciKlass*      _klass;       // Klass object
 689   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
 690   bool          _klass_is_exact;
 691   bool          _is_ptr_to_narrowoop;
 692 
 693   // If not InstanceTop or InstanceBot, indicates that this is
 694   // a particular instance of this type which is distinct.
 695   // This is the the node index of the allocation node creating this instance.
 696   int           _instance_id;
 697 
 698   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
 699 
 700   int dual_instance_id() const;
 701   int meet_instance_id(int uid) const;
 702 
 703 public:
 704   // Creates a type given a klass. Correctly handles multi-dimensional arrays
 705   // Respects UseUniqueSubclasses.
 706   // If the klass is final, the resulting type will be exact.
 707   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
 708     return make_from_klass_common(klass, true, false);
 709   }
 710   // Same as before, but will produce an exact type, even if
 711   // the klass is not final, as long as it has exactly one implementation.
 712   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
 713     return make_from_klass_common(klass, true, true);
 714   }
 715   // Same as before, but does not respects UseUniqueSubclasses.
 716   // Use this only for creating array element types.
 717   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
 718     return make_from_klass_common(klass, false, false);
 719   }
 720   // Creates a singleton type given an object.
 721   // If the object cannot be rendered as a constant,
 722   // may return a non-singleton type.
 723   // If require_constant, produce a NULL if a singleton is not possible.
 724   static const TypeOopPtr* make_from_constant(ciObject* o, bool require_constant = false);
 725 
 726   // Make a generic (unclassed) pointer to an oop.
 727   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id);
 728 
 729   ciObject* const_oop()    const { return _const_oop; }
 730   virtual ciKlass* klass() const { return _klass;     }
 731   bool klass_is_exact()    const { return _klass_is_exact; }
 732 
 733   // Returns true if this pointer points at memory which contains a
 734   // compressed oop references.
 735   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
 736 
 737   bool is_known_instance()       const { return _instance_id > 0; }
 738   int  instance_id()             const { return _instance_id; }
 739   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
 740 
 741   virtual intptr_t get_con() const;
 742 
 743   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 744 
 745   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 746 
 747   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 748 
 749   // corresponding pointer to klass, for a given instance
 750   const TypeKlassPtr* as_klass_type() const;
 751 
 752   virtual const TypePtr *add_offset( intptr_t offset ) const;
 753 
 754   virtual const Type *xmeet( const Type *t ) const;
 755   virtual const Type *xdual() const;    // Compute dual right now.
 756 
 757   // Do not allow interface-vs.-noninterface joins to collapse to top.
 758   virtual const Type *filter( const Type *kills ) const;
 759 
 760   // Convenience common pre-built type.
 761   static const TypeOopPtr *BOTTOM;
 762 #ifndef PRODUCT
 763   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 764 #endif
 765 };
 766 
 767 //------------------------------TypeInstPtr------------------------------------
 768 // Class of Java object pointers, pointing either to non-array Java instances
 769 // or to a klassOop (including array klasses).
 770 class TypeInstPtr : public TypeOopPtr {
 771   TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
 772   virtual bool eq( const Type *t ) const;
 773   virtual int  hash() const;             // Type specific hashing
 774 
 775   ciSymbol*  _name;        // class name
 776 
 777  public:
 778   ciSymbol* name()         const { return _name; }
 779 
 780   bool  is_loaded() const { return _klass->is_loaded(); }
 781 
 782   // Make a pointer to a constant oop.
 783   static const TypeInstPtr *make(ciObject* o) {
 784     return make(TypePtr::Constant, o->klass(), true, o, 0);
 785   }
 786 
 787   // Make a pointer to a constant oop with offset.
 788   static const TypeInstPtr *make(ciObject* o, int offset) {
 789     return make(TypePtr::Constant, o->klass(), true, o, offset);
 790   }
 791 
 792   // Make a pointer to some value of type klass.
 793   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
 794     return make(ptr, klass, false, NULL, 0);
 795   }
 796 
 797   // Make a pointer to some non-polymorphic value of exactly type klass.
 798   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
 799     return make(ptr, klass, true, NULL, 0);
 800   }
 801 
 802   // Make a pointer to some value of type klass with offset.
 803   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
 804     return make(ptr, klass, false, NULL, offset);
 805   }
 806 
 807   // Make a pointer to an oop.
 808   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
 809 
 810   // If this is a java.lang.Class constant, return the type for it or NULL.
 811   // Pass to Type::get_const_type to turn it to a type, which will usually
 812   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
 813   ciType* java_mirror_type() const;
 814 
 815   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 816 
 817   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 818 
 819   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 820 
 821   virtual const TypePtr *add_offset( intptr_t offset ) const;
 822 
 823   virtual const Type *xmeet( const Type *t ) const;
 824   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
 825   virtual const Type *xdual() const;    // Compute dual right now.
 826 
 827   // Convenience common pre-built types.
 828   static const TypeInstPtr *NOTNULL;
 829   static const TypeInstPtr *BOTTOM;
 830   static const TypeInstPtr *MIRROR;
 831   static const TypeInstPtr *MARK;
 832   static const TypeInstPtr *KLASS;
 833 #ifndef PRODUCT
 834   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
 835 #endif
 836 };
 837 
 838 //------------------------------TypeAryPtr-------------------------------------
 839 // Class of Java array pointers
 840 class TypeAryPtr : public TypeOopPtr {
 841   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {
 842 #ifdef ASSERT
 843     if (k != NULL) {
 844       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
 845       ciKlass* ck = compute_klass(true);
 846       if (k != ck) {
 847         this->dump(); tty->cr();
 848         tty->print(" k: ");
 849         k->print(); tty->cr();
 850         tty->print("ck: ");
 851         if (ck != NULL) ck->print();
 852         else tty->print("<NULL>");
 853         tty->cr();
 854         assert(false, "unexpected TypeAryPtr::_klass");
 855       }
 856     }
 857 #endif
 858   }
 859   virtual bool eq( const Type *t ) const;
 860   virtual int hash() const;     // Type specific hashing
 861   const TypeAry *_ary;          // Array we point into
 862 
 863   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
 864 
 865 public:
 866   // Accessors
 867   ciKlass* klass() const;
 868   const TypeAry* ary() const  { return _ary; }
 869   const Type*    elem() const { return _ary->_elem; }
 870   const TypeInt* size() const { return _ary->_size; }
 871 
 872   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
 873   // Constant pointer to array
 874   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
 875 
 876   // Return a 'ptr' version of this type
 877   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 878 
 879   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 880 
 881   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 882 
 883   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
 884   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
 885 
 886   virtual bool empty(void) const;        // TRUE if type is vacuous
 887   virtual const TypePtr *add_offset( intptr_t offset ) const;
 888 
 889   virtual const Type *xmeet( const Type *t ) const;
 890   virtual const Type *xdual() const;    // Compute dual right now.
 891 
 892   // Convenience common pre-built types.
 893   static const TypeAryPtr *RANGE;
 894   static const TypeAryPtr *OOPS;
 895   static const TypeAryPtr *NARROWOOPS;
 896   static const TypeAryPtr *BYTES;
 897   static const TypeAryPtr *SHORTS;
 898   static const TypeAryPtr *CHARS;
 899   static const TypeAryPtr *INTS;
 900   static const TypeAryPtr *LONGS;
 901   static const TypeAryPtr *FLOATS;
 902   static const TypeAryPtr *DOUBLES;
 903   // selects one of the above:
 904   static const TypeAryPtr *get_array_body_type(BasicType elem) {
 905     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
 906     return _array_body_type[elem];
 907   }
 908   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
 909   // sharpen the type of an int which is used as an array size
 910 #ifdef ASSERT
 911   // One type is interface, the other is oop
 912   virtual bool interface_vs_oop(const Type *t) const;
 913 #endif
 914 #ifndef PRODUCT
 915   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
 916 #endif
 917 };
 918 
 919 //------------------------------TypeKlassPtr-----------------------------------
 920 // Class of Java Klass pointers
 921 class TypeKlassPtr : public TypeOopPtr {
 922   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
 923 
 924   virtual bool eq( const Type *t ) const;
 925   virtual int hash() const;             // Type specific hashing
 926 
 927 public:
 928   ciSymbol* name()  const { return _klass->name(); }
 929 
 930   bool  is_loaded() const { return _klass->is_loaded(); }
 931 
 932   // ptr to klass 'k'
 933   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
 934   // ptr to klass 'k' with offset
 935   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
 936   // ptr to klass 'k' or sub-klass
 937   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
 938 
 939   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 940 
 941   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 942 
 943   // corresponding pointer to instance, for a given class
 944   const TypeOopPtr* as_instance_type() const;
 945 
 946   virtual const TypePtr *add_offset( intptr_t offset ) const;
 947   virtual const Type    *xmeet( const Type *t ) const;
 948   virtual const Type    *xdual() const;      // Compute dual right now.
 949 
 950   // Convenience common pre-built types.
 951   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
 952   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
 953 #ifndef PRODUCT
 954   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
 955 #endif
 956 };
 957 
 958 //------------------------------TypeNarrowOop----------------------------------
 959 // A compressed reference to some kind of Oop.  This type wraps around
 960 // a preexisting TypeOopPtr and forwards most of it's operations to
 961 // the underlying type.  It's only real purpose is to track the
 962 // oopness of the compressed oop value when we expose the conversion
 963 // between the normal and the compressed form.
 964 class TypeNarrowOop : public Type {
 965 protected:
 966   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
 967 
 968   TypeNarrowOop( const TypePtr* ptrtype): Type(NarrowOop),
 969     _ptrtype(ptrtype) {
 970     assert(ptrtype->offset() == 0 ||
 971            ptrtype->offset() == OffsetBot ||
 972            ptrtype->offset() == OffsetTop, "no real offsets");
 973   }
 974 public:
 975   virtual bool eq( const Type *t ) const;
 976   virtual int  hash() const;             // Type specific hashing
 977   virtual bool singleton(void) const;    // TRUE if type is a singleton
 978 
 979   virtual const Type *xmeet( const Type *t ) const;
 980   virtual const Type *xdual() const;    // Compute dual right now.
 981 
 982   virtual intptr_t get_con() const;
 983 
 984   // Do not allow interface-vs.-noninterface joins to collapse to top.
 985   virtual const Type *filter( const Type *kills ) const;
 986 
 987   virtual bool empty(void) const;        // TRUE if type is vacuous
 988 
 989   static const TypeNarrowOop *make( const TypePtr* type);
 990 
 991   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
 992     return make(TypeOopPtr::make_from_constant(con, require_constant));
 993   }
 994 
 995   // returns the equivalent ptr type for this compressed pointer
 996   const TypePtr *get_ptrtype() const {
 997     return _ptrtype;
 998   }
 999 
1000   static const TypeNarrowOop *BOTTOM;
1001   static const TypeNarrowOop *NULL_PTR;
1002 
1003 #ifndef PRODUCT
1004   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1005 #endif
1006 };
1007 
1008 //------------------------------TypeFunc---------------------------------------
1009 // Class of Array Types
1010 class TypeFunc : public Type {
1011   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
1012   virtual bool eq( const Type *t ) const;
1013   virtual int  hash() const;             // Type specific hashing
1014   virtual bool singleton(void) const;    // TRUE if type is a singleton
1015   virtual bool empty(void) const;        // TRUE if type is vacuous
1016 public:
1017   // Constants are shared among ADLC and VM
1018   enum { Control    = AdlcVMDeps::Control,
1019          I_O        = AdlcVMDeps::I_O,
1020          Memory     = AdlcVMDeps::Memory,
1021          FramePtr   = AdlcVMDeps::FramePtr,
1022          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1023          Parms      = AdlcVMDeps::Parms
1024   };
1025 
1026   const TypeTuple* const _domain;     // Domain of inputs
1027   const TypeTuple* const _range;      // Range of results
1028 
1029   // Accessors:
1030   const TypeTuple* domain() const { return _domain; }
1031   const TypeTuple* range()  const { return _range; }
1032 
1033   static const TypeFunc *make(ciMethod* method);
1034   static const TypeFunc *make(ciSignature signature, const Type* extra);
1035   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1036 
1037   virtual const Type *xmeet( const Type *t ) const;
1038   virtual const Type *xdual() const;    // Compute dual right now.
1039 
1040   BasicType return_type() const;
1041 
1042 #ifndef PRODUCT
1043   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1044   void print_flattened() const; // Print a 'flattened' signature
1045 #endif
1046   // Convenience common pre-built types.
1047 };
1048 
1049 //------------------------------accessors--------------------------------------
1050 inline bool Type::is_ptr_to_narrowoop() const {
1051 #ifdef _LP64
1052   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1053 #else
1054   return false;
1055 #endif
1056 }
1057 
1058 inline float Type::getf() const {
1059   assert( _base == FloatCon, "Not a FloatCon" );
1060   return ((TypeF*)this)->_f;
1061 }
1062 
1063 inline double Type::getd() const {
1064   assert( _base == DoubleCon, "Not a DoubleCon" );
1065   return ((TypeD*)this)->_d;
1066 }
1067 
1068 inline const TypeF *Type::is_float_constant() const {
1069   assert( _base == FloatCon, "Not a Float" );
1070   return (TypeF*)this;
1071 }
1072 
1073 inline const TypeF *Type::isa_float_constant() const {
1074   return ( _base == FloatCon ? (TypeF*)this : NULL);
1075 }
1076 
1077 inline const TypeD *Type::is_double_constant() const {
1078   assert( _base == DoubleCon, "Not a Double" );
1079   return (TypeD*)this;
1080 }
1081 
1082 inline const TypeD *Type::isa_double_constant() const {
1083   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1084 }
1085 
1086 inline const TypeInt *Type::is_int() const {
1087   assert( _base == Int, "Not an Int" );
1088   return (TypeInt*)this;
1089 }
1090 
1091 inline const TypeInt *Type::isa_int() const {
1092   return ( _base == Int ? (TypeInt*)this : NULL);
1093 }
1094 
1095 inline const TypeLong *Type::is_long() const {
1096   assert( _base == Long, "Not a Long" );
1097   return (TypeLong*)this;
1098 }
1099 
1100 inline const TypeLong *Type::isa_long() const {
1101   return ( _base == Long ? (TypeLong*)this : NULL);
1102 }
1103 
1104 inline const TypeTuple *Type::is_tuple() const {
1105   assert( _base == Tuple, "Not a Tuple" );
1106   return (TypeTuple*)this;
1107 }
1108 
1109 inline const TypeAry *Type::is_ary() const {
1110   assert( _base == Array , "Not an Array" );
1111   return (TypeAry*)this;
1112 }
1113 
1114 inline const TypePtr *Type::is_ptr() const {
1115   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1116   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1117   return (TypePtr*)this;
1118 }
1119 
1120 inline const TypePtr *Type::isa_ptr() const {
1121   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1122   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1123 }
1124 
1125 inline const TypeOopPtr *Type::is_oopptr() const {
1126   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1127   assert(_base >= OopPtr && _base <= KlassPtr, "Not a Java pointer" ) ;
1128   return (TypeOopPtr*)this;
1129 }
1130 
1131 inline const TypeOopPtr *Type::isa_oopptr() const {
1132   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1133   return (_base >= OopPtr && _base <= KlassPtr) ? (TypeOopPtr*)this : NULL;
1134 }
1135 
1136 inline const TypeRawPtr *Type::isa_rawptr() const {
1137   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1138 }
1139 
1140 inline const TypeRawPtr *Type::is_rawptr() const {
1141   assert( _base == RawPtr, "Not a raw pointer" );
1142   return (TypeRawPtr*)this;
1143 }
1144 
1145 inline const TypeInstPtr *Type::isa_instptr() const {
1146   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1147 }
1148 
1149 inline const TypeInstPtr *Type::is_instptr() const {
1150   assert( _base == InstPtr, "Not an object pointer" );
1151   return (TypeInstPtr*)this;
1152 }
1153 
1154 inline const TypeAryPtr *Type::isa_aryptr() const {
1155   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1156 }
1157 
1158 inline const TypeAryPtr *Type::is_aryptr() const {
1159   assert( _base == AryPtr, "Not an array pointer" );
1160   return (TypeAryPtr*)this;
1161 }
1162 
1163 inline const TypeNarrowOop *Type::is_narrowoop() const {
1164   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1165   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1166   return (TypeNarrowOop*)this;
1167 }
1168 
1169 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1170   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1171   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1172 }
1173 
1174 inline const TypeKlassPtr *Type::isa_klassptr() const {
1175   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1176 }
1177 
1178 inline const TypeKlassPtr *Type::is_klassptr() const {
1179   assert( _base == KlassPtr, "Not a klass pointer" );
1180   return (TypeKlassPtr*)this;
1181 }
1182 
1183 inline const TypePtr* Type::make_ptr() const {
1184   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1185                                 (isa_ptr() ? is_ptr() : NULL);
1186 }
1187 
1188 inline const TypeOopPtr* Type::make_oopptr() const {
1189   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
1190 }
1191 
1192 inline const TypeNarrowOop* Type::make_narrowoop() const {
1193   return (_base == NarrowOop) ? is_narrowoop() :
1194                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1195 }
1196 
1197 inline bool Type::is_floatingpoint() const {
1198   if( (_base == FloatCon)  || (_base == FloatBot) ||
1199       (_base == DoubleCon) || (_base == DoubleBot) )
1200     return true;
1201   return false;
1202 }
1203 
1204 
1205 // ===============================================================
1206 // Things that need to be 64-bits in the 64-bit build but
1207 // 32-bits in the 32-bit build.  Done this way to get full
1208 // optimization AND strong typing.
1209 #ifdef _LP64
1210 
1211 // For type queries and asserts
1212 #define is_intptr_t  is_long
1213 #define isa_intptr_t isa_long
1214 #define find_intptr_t_type find_long_type
1215 #define find_intptr_t_con  find_long_con
1216 #define TypeX        TypeLong
1217 #define Type_X       Type::Long
1218 #define TypeX_X      TypeLong::LONG
1219 #define TypeX_ZERO   TypeLong::ZERO
1220 // For 'ideal_reg' machine registers
1221 #define Op_RegX      Op_RegL
1222 // For phase->intcon variants
1223 #define MakeConX     longcon
1224 #define ConXNode     ConLNode
1225 // For array index arithmetic
1226 #define MulXNode     MulLNode
1227 #define AndXNode     AndLNode
1228 #define OrXNode      OrLNode
1229 #define CmpXNode     CmpLNode
1230 #define SubXNode     SubLNode
1231 #define LShiftXNode  LShiftLNode
1232 // For object size computation:
1233 #define AddXNode     AddLNode
1234 #define RShiftXNode  RShiftLNode
1235 // For card marks and hashcodes
1236 #define URShiftXNode URShiftLNode
1237 // UseOptoBiasInlining
1238 #define XorXNode     XorLNode
1239 #define StoreXConditionalNode StoreLConditionalNode
1240 // Opcodes
1241 #define Op_LShiftX   Op_LShiftL
1242 #define Op_AndX      Op_AndL
1243 #define Op_AddX      Op_AddL
1244 #define Op_SubX      Op_SubL
1245 #define Op_XorX      Op_XorL
1246 #define Op_URShiftX  Op_URShiftL
1247 // conversions
1248 #define ConvI2X(x)   ConvI2L(x)
1249 #define ConvL2X(x)   (x)
1250 #define ConvX2I(x)   ConvL2I(x)
1251 #define ConvX2L(x)   (x)
1252 
1253 #else
1254 
1255 // For type queries and asserts
1256 #define is_intptr_t  is_int
1257 #define isa_intptr_t isa_int
1258 #define find_intptr_t_type find_int_type
1259 #define find_intptr_t_con  find_int_con
1260 #define TypeX        TypeInt
1261 #define Type_X       Type::Int
1262 #define TypeX_X      TypeInt::INT
1263 #define TypeX_ZERO   TypeInt::ZERO
1264 // For 'ideal_reg' machine registers
1265 #define Op_RegX      Op_RegI
1266 // For phase->intcon variants
1267 #define MakeConX     intcon
1268 #define ConXNode     ConINode
1269 // For array index arithmetic
1270 #define MulXNode     MulINode
1271 #define AndXNode     AndINode
1272 #define OrXNode      OrINode
1273 #define CmpXNode     CmpINode
1274 #define SubXNode     SubINode
1275 #define LShiftXNode  LShiftINode
1276 // For object size computation:
1277 #define AddXNode     AddINode
1278 #define RShiftXNode  RShiftINode
1279 // For card marks and hashcodes
1280 #define URShiftXNode URShiftINode
1281 // UseOptoBiasInlining
1282 #define XorXNode     XorINode
1283 #define StoreXConditionalNode StoreIConditionalNode
1284 // Opcodes
1285 #define Op_LShiftX   Op_LShiftI
1286 #define Op_AndX      Op_AndI
1287 #define Op_AddX      Op_AddI
1288 #define Op_SubX      Op_SubI
1289 #define Op_XorX      Op_XorI
1290 #define Op_URShiftX  Op_URShiftI
1291 // conversions
1292 #define ConvI2X(x)   (x)
1293 #define ConvL2X(x)   ConvL2I(x)
1294 #define ConvX2I(x)   (x)
1295 #define ConvX2L(x)   ConvI2L(x)
1296 
1297 #endif
1298 
1299 #endif // SHARE_VM_OPTO_TYPE_HPP