1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "assembler_x86.inline.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "runtime/java.hpp"
  29 #include "runtime/stubCodeGenerator.hpp"
  30 #include "vm_version_x86.hpp"
  31 #ifdef TARGET_OS_FAMILY_linux
  32 # include "os_linux.inline.hpp"
  33 #endif
  34 #ifdef TARGET_OS_FAMILY_solaris
  35 # include "os_solaris.inline.hpp"
  36 #endif
  37 #ifdef TARGET_OS_FAMILY_windows
  38 # include "os_windows.inline.hpp"
  39 #endif
  40 #ifdef TARGET_OS_FAMILY_bsd
  41 # include "os_bsd.inline.hpp"
  42 #endif
  43 
  44 
  45 int VM_Version::_cpu;
  46 int VM_Version::_model;
  47 int VM_Version::_stepping;
  48 int VM_Version::_cpuFeatures;
  49 const char*           VM_Version::_features_str = "";
  50 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
  51 
  52 static BufferBlob* stub_blob;
  53 static const int stub_size = 400;
  54 
  55 extern "C" {
  56   typedef void (*getPsrInfo_stub_t)(void*);
  57 }
  58 static getPsrInfo_stub_t getPsrInfo_stub = NULL;
  59 
  60 
  61 class VM_Version_StubGenerator: public StubCodeGenerator {
  62  public:
  63 
  64   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
  65 
  66   address generate_getPsrInfo() {
  67     // Flags to test CPU type.
  68     const uint32_t EFL_AC           = 0x40000;
  69     const uint32_t EFL_ID           = 0x200000;
  70     // Values for when we don't have a CPUID instruction.
  71     const int      CPU_FAMILY_SHIFT = 8;
  72     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
  73     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
  74 
  75     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
  76     Label ext_cpuid1, ext_cpuid5, done;
  77 
  78     StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
  79 #   define __ _masm->
  80 
  81     address start = __ pc();
  82 
  83     //
  84     // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
  85     //
  86     // LP64: rcx and rdx are first and second argument registers on windows
  87 
  88     __ push(rbp);
  89 #ifdef _LP64
  90     __ mov(rbp, c_rarg0); // cpuid_info address
  91 #else
  92     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
  93 #endif
  94     __ push(rbx);
  95     __ push(rsi);
  96     __ pushf();          // preserve rbx, and flags
  97     __ pop(rax);
  98     __ push(rax);
  99     __ mov(rcx, rax);
 100     //
 101     // if we are unable to change the AC flag, we have a 386
 102     //
 103     __ xorl(rax, EFL_AC);
 104     __ push(rax);
 105     __ popf();
 106     __ pushf();
 107     __ pop(rax);
 108     __ cmpptr(rax, rcx);
 109     __ jccb(Assembler::notEqual, detect_486);
 110 
 111     __ movl(rax, CPU_FAMILY_386);
 112     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 113     __ jmp(done);
 114 
 115     //
 116     // If we are unable to change the ID flag, we have a 486 which does
 117     // not support the "cpuid" instruction.
 118     //
 119     __ bind(detect_486);
 120     __ mov(rax, rcx);
 121     __ xorl(rax, EFL_ID);
 122     __ push(rax);
 123     __ popf();
 124     __ pushf();
 125     __ pop(rax);
 126     __ cmpptr(rcx, rax);
 127     __ jccb(Assembler::notEqual, detect_586);
 128 
 129     __ bind(cpu486);
 130     __ movl(rax, CPU_FAMILY_486);
 131     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 132     __ jmp(done);
 133 
 134     //
 135     // At this point, we have a chip which supports the "cpuid" instruction
 136     //
 137     __ bind(detect_586);
 138     __ xorl(rax, rax);
 139     __ cpuid();
 140     __ orl(rax, rax);
 141     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
 142                                         // value of at least 1, we give up and
 143                                         // assume a 486
 144     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
 145     __ movl(Address(rsi, 0), rax);
 146     __ movl(Address(rsi, 4), rbx);
 147     __ movl(Address(rsi, 8), rcx);
 148     __ movl(Address(rsi,12), rdx);
 149 
 150     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
 151     __ jccb(Assembler::belowEqual, std_cpuid4);
 152 
 153     //
 154     // cpuid(0xB) Processor Topology
 155     //
 156     __ movl(rax, 0xb);
 157     __ xorl(rcx, rcx);   // Threads level
 158     __ cpuid();
 159 
 160     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
 161     __ movl(Address(rsi, 0), rax);
 162     __ movl(Address(rsi, 4), rbx);
 163     __ movl(Address(rsi, 8), rcx);
 164     __ movl(Address(rsi,12), rdx);
 165 
 166     __ movl(rax, 0xb);
 167     __ movl(rcx, 1);     // Cores level
 168     __ cpuid();
 169     __ push(rax);
 170     __ andl(rax, 0x1f);  // Determine if valid topology level
 171     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 172     __ andl(rax, 0xffff);
 173     __ pop(rax);
 174     __ jccb(Assembler::equal, std_cpuid4);
 175 
 176     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
 177     __ movl(Address(rsi, 0), rax);
 178     __ movl(Address(rsi, 4), rbx);
 179     __ movl(Address(rsi, 8), rcx);
 180     __ movl(Address(rsi,12), rdx);
 181 
 182     __ movl(rax, 0xb);
 183     __ movl(rcx, 2);     // Packages level
 184     __ cpuid();
 185     __ push(rax);
 186     __ andl(rax, 0x1f);  // Determine if valid topology level
 187     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 188     __ andl(rax, 0xffff);
 189     __ pop(rax);
 190     __ jccb(Assembler::equal, std_cpuid4);
 191 
 192     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
 193     __ movl(Address(rsi, 0), rax);
 194     __ movl(Address(rsi, 4), rbx);
 195     __ movl(Address(rsi, 8), rcx);
 196     __ movl(Address(rsi,12), rdx);
 197 
 198     //
 199     // cpuid(0x4) Deterministic cache params
 200     //
 201     __ bind(std_cpuid4);
 202     __ movl(rax, 4);
 203     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
 204     __ jccb(Assembler::greater, std_cpuid1);
 205 
 206     __ xorl(rcx, rcx);   // L1 cache
 207     __ cpuid();
 208     __ push(rax);
 209     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
 210     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
 211     __ pop(rax);
 212     __ jccb(Assembler::equal, std_cpuid1);
 213 
 214     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
 215     __ movl(Address(rsi, 0), rax);
 216     __ movl(Address(rsi, 4), rbx);
 217     __ movl(Address(rsi, 8), rcx);
 218     __ movl(Address(rsi,12), rdx);
 219 
 220     //
 221     // Standard cpuid(0x1)
 222     //
 223     __ bind(std_cpuid1);
 224     __ movl(rax, 1);
 225     __ cpuid();
 226     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 227     __ movl(Address(rsi, 0), rax);
 228     __ movl(Address(rsi, 4), rbx);
 229     __ movl(Address(rsi, 8), rcx);
 230     __ movl(Address(rsi,12), rdx);
 231 
 232     __ movl(rax, 0x80000000);
 233     __ cpuid();
 234     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
 235     __ jcc(Assembler::belowEqual, done);
 236     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
 237     __ jccb(Assembler::belowEqual, ext_cpuid1);
 238     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
 239     __ jccb(Assembler::belowEqual, ext_cpuid5);
 240     //
 241     // Extended cpuid(0x80000008)
 242     //
 243     __ movl(rax, 0x80000008);
 244     __ cpuid();
 245     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
 246     __ movl(Address(rsi, 0), rax);
 247     __ movl(Address(rsi, 4), rbx);
 248     __ movl(Address(rsi, 8), rcx);
 249     __ movl(Address(rsi,12), rdx);
 250 
 251     //
 252     // Extended cpuid(0x80000005)
 253     //
 254     __ bind(ext_cpuid5);
 255     __ movl(rax, 0x80000005);
 256     __ cpuid();
 257     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
 258     __ movl(Address(rsi, 0), rax);
 259     __ movl(Address(rsi, 4), rbx);
 260     __ movl(Address(rsi, 8), rcx);
 261     __ movl(Address(rsi,12), rdx);
 262 
 263     //
 264     // Extended cpuid(0x80000001)
 265     //
 266     __ bind(ext_cpuid1);
 267     __ movl(rax, 0x80000001);
 268     __ cpuid();
 269     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
 270     __ movl(Address(rsi, 0), rax);
 271     __ movl(Address(rsi, 4), rbx);
 272     __ movl(Address(rsi, 8), rcx);
 273     __ movl(Address(rsi,12), rdx);
 274 
 275     //
 276     // return
 277     //
 278     __ bind(done);
 279     __ popf();
 280     __ pop(rsi);
 281     __ pop(rbx);
 282     __ pop(rbp);
 283     __ ret(0);
 284 
 285 #   undef __
 286 
 287     return start;
 288   };
 289 };
 290 
 291 
 292 void VM_Version::get_processor_features() {
 293 
 294   _cpu = 4; // 486 by default
 295   _model = 0;
 296   _stepping = 0;
 297   _cpuFeatures = 0;
 298   _logical_processors_per_package = 1;
 299 
 300   if (!Use486InstrsOnly) {
 301     // Get raw processor info
 302     getPsrInfo_stub(&_cpuid_info);
 303     assert_is_initialized();
 304     _cpu = extended_cpu_family();
 305     _model = extended_cpu_model();
 306     _stepping = cpu_stepping();
 307 
 308     if (cpu_family() > 4) { // it supports CPUID
 309       _cpuFeatures = feature_flags();
 310       // Logical processors are only available on P4s and above,
 311       // and only if hyperthreading is available.
 312       _logical_processors_per_package = logical_processor_count();
 313     }
 314   }
 315 
 316   _supports_cx8 = supports_cmpxchg8();
 317 
 318 #ifdef _LP64
 319   // OS should support SSE for x64 and hardware should support at least SSE2.
 320   if (!VM_Version::supports_sse2()) {
 321     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
 322   }
 323   // in 64 bit the use of SSE2 is the minimum
 324   if (UseSSE < 2) UseSSE = 2;
 325 #endif
 326 
 327 #ifdef AMD64
 328   // flush_icache_stub have to be generated first.
 329   // That is why Icache line size is hard coded in ICache class,
 330   // see icache_x86.hpp. It is also the reason why we can't use
 331   // clflush instruction in 32-bit VM since it could be running
 332   // on CPU which does not support it.
 333   //
 334   // The only thing we can do is to verify that flushed
 335   // ICache::line_size has correct value.
 336   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
 337   // clflush_size is size in quadwords (8 bytes).
 338   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
 339 #endif
 340 
 341   // If the OS doesn't support SSE, we can't use this feature even if the HW does
 342   if (!os::supports_sse())
 343     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
 344 
 345   if (UseSSE < 4) {
 346     _cpuFeatures &= ~CPU_SSE4_1;
 347     _cpuFeatures &= ~CPU_SSE4_2;
 348   }
 349 
 350   if (UseSSE < 3) {
 351     _cpuFeatures &= ~CPU_SSE3;
 352     _cpuFeatures &= ~CPU_SSSE3;
 353     _cpuFeatures &= ~CPU_SSE4A;
 354   }
 355 
 356   if (UseSSE < 2)
 357     _cpuFeatures &= ~CPU_SSE2;
 358 
 359   if (UseSSE < 1)
 360     _cpuFeatures &= ~CPU_SSE;
 361 
 362   if (logical_processors_per_package() == 1) {
 363     // HT processor could be installed on a system which doesn't support HT.
 364     _cpuFeatures &= ~CPU_HT;
 365   }
 366 
 367   char buf[256];
 368   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
 369                cores_per_cpu(), threads_per_core(),
 370                cpu_family(), _model, _stepping,
 371                (supports_cmov() ? ", cmov" : ""),
 372                (supports_cmpxchg8() ? ", cx8" : ""),
 373                (supports_fxsr() ? ", fxsr" : ""),
 374                (supports_mmx()  ? ", mmx"  : ""),
 375                (supports_sse()  ? ", sse"  : ""),
 376                (supports_sse2() ? ", sse2" : ""),
 377                (supports_sse3() ? ", sse3" : ""),
 378                (supports_ssse3()? ", ssse3": ""),
 379                (supports_sse4_1() ? ", sse4.1" : ""),
 380                (supports_sse4_2() ? ", sse4.2" : ""),
 381                (supports_popcnt() ? ", popcnt" : ""),
 382                (supports_mmx_ext() ? ", mmxext" : ""),
 383                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
 384                (supports_lzcnt()   ? ", lzcnt": ""),
 385                (supports_sse4a()   ? ", sse4a": ""),
 386                (supports_ht() ? ", ht": ""));
 387   _features_str = strdup(buf);
 388 
 389   // UseSSE is set to the smaller of what hardware supports and what
 390   // the command line requires.  I.e., you cannot set UseSSE to 2 on
 391   // older Pentiums which do not support it.
 392   if( UseSSE > 4 ) UseSSE=4;
 393   if( UseSSE < 0 ) UseSSE=0;
 394   if( !supports_sse4_1() ) // Drop to 3 if no SSE4 support
 395     UseSSE = MIN2((intx)3,UseSSE);
 396   if( !supports_sse3() ) // Drop to 2 if no SSE3 support
 397     UseSSE = MIN2((intx)2,UseSSE);
 398   if( !supports_sse2() ) // Drop to 1 if no SSE2 support
 399     UseSSE = MIN2((intx)1,UseSSE);
 400   if( !supports_sse () ) // Drop to 0 if no SSE  support
 401     UseSSE = 0;
 402 
 403   // On new cpus instructions which update whole XMM register should be used
 404   // to prevent partial register stall due to dependencies on high half.
 405   //
 406   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
 407   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
 408   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
 409   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
 410 
 411   if( is_amd() ) { // AMD cpus specific settings
 412     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
 413       // Use it on new AMD cpus starting from Opteron.
 414       UseAddressNop = true;
 415     }
 416     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
 417       // Use it on new AMD cpus starting from Opteron.
 418       UseNewLongLShift = true;
 419     }
 420     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
 421       if( supports_sse4a() ) {
 422         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
 423       } else {
 424         UseXmmLoadAndClearUpper = false;
 425       }
 426     }
 427     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
 428       if( supports_sse4a() ) {
 429         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
 430       } else {
 431         UseXmmRegToRegMoveAll = false;
 432       }
 433     }
 434     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
 435       if( supports_sse4a() ) {
 436         UseXmmI2F = true;
 437       } else {
 438         UseXmmI2F = false;
 439       }
 440     }
 441     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
 442       if( supports_sse4a() ) {
 443         UseXmmI2D = true;
 444       } else {
 445         UseXmmI2D = false;
 446       }
 447     }
 448     if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
 449       if( supports_sse4_2() && UseSSE >= 4 ) {
 450         UseSSE42Intrinsics = true;
 451       }
 452     }
 453 
 454     // Use count leading zeros count instruction if available.
 455     if (supports_lzcnt()) {
 456       if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
 457         UseCountLeadingZerosInstruction = true;
 458       }
 459     }
 460 
 461     // some defaults for AMD family 15h
 462     if ( cpu_family() == 0x15 ) {
 463       // On family 15h processors default is no sw prefetch
 464       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
 465         AllocatePrefetchStyle = 0;
 466       }
 467       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
 468       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
 469         AllocatePrefetchInstr = 3;
 470       }
 471       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
 472       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
 473         UseXMMForArrayCopy = true;
 474       }
 475       if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
 476         UseUnalignedLoadStores = true;
 477       }
 478     }
 479 
 480   }
 481 
 482   if( is_intel() ) { // Intel cpus specific settings
 483     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
 484       UseStoreImmI16 = false; // don't use it on Intel cpus
 485     }
 486     if( cpu_family() == 6 || cpu_family() == 15 ) {
 487       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
 488         // Use it on all Intel cpus starting from PentiumPro
 489         UseAddressNop = true;
 490       }
 491     }
 492     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
 493       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
 494     }
 495     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
 496       if( supports_sse3() ) {
 497         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
 498       } else {
 499         UseXmmRegToRegMoveAll = false;
 500       }
 501     }
 502     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
 503 #ifdef COMPILER2
 504       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
 505         // For new Intel cpus do the next optimization:
 506         // don't align the beginning of a loop if there are enough instructions
 507         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
 508         // in current fetch line (OptoLoopAlignment) or the padding
 509         // is big (> MaxLoopPad).
 510         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
 511         // generated NOP instructions. 11 is the largest size of one
 512         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
 513         MaxLoopPad = 11;
 514       }
 515 #endif // COMPILER2
 516       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
 517         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
 518       }
 519       if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
 520         if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
 521           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
 522         }
 523       }
 524       if( supports_sse4_2() && UseSSE >= 4 ) {
 525         if( FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
 526           UseSSE42Intrinsics = true;
 527         }
 528       }
 529     }
 530   }
 531 
 532   // Use population count instruction if available.
 533   if (supports_popcnt()) {
 534     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
 535       UsePopCountInstruction = true;
 536     }
 537   }
 538 
 539 #ifdef COMPILER2
 540   if (UseFPUForSpilling) {
 541     if (UseSSE < 2) {
 542       // Only supported with SSE2+
 543       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
 544     }
 545   }
 546 #endif
 547 
 548   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
 549   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
 550 
 551   // set valid Prefetch instruction
 552   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
 553   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
 554   if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
 555   if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
 556 
 557   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
 558   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
 559   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
 560   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
 561 
 562   // Allocation prefetch settings
 563   intx cache_line_size = prefetch_data_size();
 564   if( cache_line_size > AllocatePrefetchStepSize )
 565     AllocatePrefetchStepSize = cache_line_size;
 566 
 567   assert(AllocatePrefetchLines > 0, "invalid value");
 568   if( AllocatePrefetchLines < 1 )     // set valid value in product VM
 569     AllocatePrefetchLines = 3;
 570   assert(AllocateInstancePrefetchLines > 0, "invalid value");
 571   if( AllocateInstancePrefetchLines < 1 ) // set valid value in product VM
 572     AllocateInstancePrefetchLines = 1;
 573 
 574   AllocatePrefetchDistance = allocate_prefetch_distance();
 575   AllocatePrefetchStyle    = allocate_prefetch_style();
 576 
 577   if( is_intel() && cpu_family() == 6 && supports_sse3() ) {
 578     if( AllocatePrefetchStyle == 2 ) { // watermark prefetching on Core
 579 #ifdef _LP64
 580       AllocatePrefetchDistance = 384;
 581 #else
 582       AllocatePrefetchDistance = 320;
 583 #endif
 584     }
 585     if( supports_sse4_2() && supports_ht() ) { // Nehalem based cpus
 586       AllocatePrefetchDistance = 192;
 587       AllocatePrefetchLines = 4;
 588 #ifdef COMPILER2
 589       if (AggressiveOpts && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
 590         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
 591       }
 592 #endif
 593     }
 594   }
 595   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
 596 
 597 #ifdef _LP64
 598   // Prefetch settings
 599   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
 600   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
 601   PrefetchFieldsAhead         = prefetch_fields_ahead();
 602 #endif
 603 
 604 #ifndef PRODUCT
 605   if (PrintMiscellaneous && Verbose) {
 606     tty->print_cr("Logical CPUs per core: %u",
 607                   logical_processors_per_package());
 608     tty->print_cr("UseSSE=%d",UseSSE);
 609     tty->print("Allocation");
 610     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
 611       tty->print_cr(": no prefetching");
 612     } else {
 613       tty->print(" prefetching: ");
 614       if (UseSSE == 0 && supports_3dnow_prefetch()) {
 615         tty->print("PREFETCHW");
 616       } else if (UseSSE >= 1) {
 617         if (AllocatePrefetchInstr == 0) {
 618           tty->print("PREFETCHNTA");
 619         } else if (AllocatePrefetchInstr == 1) {
 620           tty->print("PREFETCHT0");
 621         } else if (AllocatePrefetchInstr == 2) {
 622           tty->print("PREFETCHT2");
 623         } else if (AllocatePrefetchInstr == 3) {
 624           tty->print("PREFETCHW");
 625         }
 626       }
 627       if (AllocatePrefetchLines > 1) {
 628         tty->print_cr(" at distance %d, %d lines of %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
 629       } else {
 630         tty->print_cr(" at distance %d, one line of %d bytes", AllocatePrefetchDistance, AllocatePrefetchStepSize);
 631       }
 632     }
 633 
 634     if (PrefetchCopyIntervalInBytes > 0) {
 635       tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
 636     }
 637     if (PrefetchScanIntervalInBytes > 0) {
 638       tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
 639     }
 640     if (PrefetchFieldsAhead > 0) {
 641       tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
 642     }
 643   }
 644 #endif // !PRODUCT
 645 }
 646 
 647 void VM_Version::initialize() {
 648   ResourceMark rm;
 649   // Making this stub must be FIRST use of assembler
 650 
 651   stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
 652   if (stub_blob == NULL) {
 653     vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
 654   }
 655   CodeBuffer c(stub_blob);
 656   VM_Version_StubGenerator g(&c);
 657   getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
 658                                    g.generate_getPsrInfo());
 659 
 660   get_processor_features();
 661 }