1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "gc_implementation/shared/vmGCOperations.hpp"
  28 #include "gc_interface/collectedHeap.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "runtime/init.hpp"
  32 #include "services/heapDumper.hpp"
  33 #ifdef TARGET_OS_FAMILY_linux
  34 # include "thread_linux.inline.hpp"
  35 #endif
  36 #ifdef TARGET_OS_FAMILY_solaris
  37 # include "thread_solaris.inline.hpp"
  38 #endif
  39 #ifdef TARGET_OS_FAMILY_windows
  40 # include "thread_windows.inline.hpp"
  41 #endif
  42 
  43 
  44 #ifdef ASSERT
  45 int CollectedHeap::_fire_out_of_memory_count = 0;
  46 #endif
  47 
  48 size_t CollectedHeap::_filler_array_max_size = 0;
  49 
  50 // Memory state functions.
  51 
  52 
  53 CollectedHeap::CollectedHeap() : _n_par_threads(0)
  54 
  55 {
  56   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
  57   const size_t elements_per_word = HeapWordSize / sizeof(jint);
  58   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
  59                                              max_len * elements_per_word);
  60 
  61   _barrier_set = NULL;
  62   _is_gc_active = false;
  63   _total_collections = _total_full_collections = 0;
  64   _gc_cause = _gc_lastcause = GCCause::_no_gc;
  65   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
  66   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
  67 
  68   if (UsePerfData) {
  69     EXCEPTION_MARK;
  70 
  71     // create the gc cause jvmstat counters
  72     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
  73                              80, GCCause::to_string(_gc_cause), CHECK);
  74 
  75     _perf_gc_lastcause =
  76                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
  77                              80, GCCause::to_string(_gc_lastcause), CHECK);
  78   }
  79   _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
  80 }
  81 
  82 void CollectedHeap::pre_initialize() {
  83   // Used for ReduceInitialCardMarks (when COMPILER2 is used);
  84   // otherwise remains unused.
  85 #ifdef COMPILER2
  86   _defer_initial_card_mark =    ReduceInitialCardMarks && can_elide_tlab_store_barriers()
  87                              && (DeferInitialCardMark || card_mark_must_follow_store());
  88 #else
  89   assert(_defer_initial_card_mark == false, "Who would set it?");
  90 #endif
  91 }
  92 
  93 #ifndef PRODUCT
  94 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
  95   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
  96     for (size_t slot = 0; slot < size; slot += 1) {
  97       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
  98              "Found badHeapWordValue in post-allocation check");
  99     }
 100   }
 101 }
 102 
 103 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
 104   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 105     for (size_t slot = 0; slot < size; slot += 1) {
 106       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
 107              "Found non badHeapWordValue in pre-allocation check");
 108     }
 109   }
 110 }
 111 #endif // PRODUCT
 112 
 113 #ifdef ASSERT
 114 void CollectedHeap::check_for_valid_allocation_state() {
 115   Thread *thread = Thread::current();
 116   // How to choose between a pending exception and a potential
 117   // OutOfMemoryError?  Don't allow pending exceptions.
 118   // This is a VM policy failure, so how do we exhaustively test it?
 119   assert(!thread->has_pending_exception(),
 120          "shouldn't be allocating with pending exception");
 121   if (StrictSafepointChecks) {
 122     assert(thread->allow_allocation(),
 123            "Allocation done by thread for which allocation is blocked "
 124            "by No_Allocation_Verifier!");
 125     // Allocation of an oop can always invoke a safepoint,
 126     // hence, the true argument
 127     thread->check_for_valid_safepoint_state(true);
 128   }
 129 }
 130 #endif
 131 
 132 HeapWord* CollectedHeap::allocate_from_tlab_slow(Thread* thread, size_t size) {
 133 
 134   // Retain tlab and allocate object in shared space if
 135   // the amount free in the tlab is too large to discard.
 136   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
 137     thread->tlab().record_slow_allocation(size);
 138     return NULL;
 139   }
 140 
 141   // Discard tlab and allocate a new one.
 142   // To minimize fragmentation, the last TLAB may be smaller than the rest.
 143   size_t new_tlab_size = thread->tlab().compute_size(size);
 144 
 145   thread->tlab().clear_before_allocation();
 146 
 147   if (new_tlab_size == 0) {
 148     return NULL;
 149   }
 150 
 151   // Allocate a new TLAB...
 152   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
 153   if (obj == NULL) {
 154     return NULL;
 155   }
 156   if (ZeroTLAB) {
 157     // ..and clear it.
 158     Copy::zero_to_words(obj, new_tlab_size);
 159   } else {
 160     // ...and zap just allocated object.
 161 #ifdef ASSERT
 162     // Skip mangling the space corresponding to the object header to
 163     // ensure that the returned space is not considered parsable by
 164     // any concurrent GC thread.
 165     size_t hdr_size = oopDesc::header_size();
 166     Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
 167 #endif // ASSERT
 168   }
 169   thread->tlab().fill(obj, obj + size, new_tlab_size);
 170   return obj;
 171 }
 172 
 173 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
 174   MemRegion deferred = thread->deferred_card_mark();
 175   if (!deferred.is_empty()) {
 176     assert(_defer_initial_card_mark, "Otherwise should be empty");
 177     {
 178       // Verify that the storage points to a parsable object in heap
 179       DEBUG_ONLY(oop old_obj = oop(deferred.start());)
 180       assert(is_in(old_obj), "Not in allocated heap");
 181       assert(!can_elide_initializing_store_barrier(old_obj),
 182              "Else should have been filtered in new_store_pre_barrier()");
 183       assert(!is_in_permanent(old_obj), "Sanity: not expected");
 184       assert(old_obj->is_oop(true), "Not an oop");
 185       assert(old_obj->is_parsable(), "Will not be concurrently parsable");
 186       assert(deferred.word_size() == (size_t)(old_obj->size()),
 187              "Mismatch: multiple objects?");
 188     }
 189     BarrierSet* bs = barrier_set();
 190     assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
 191     bs->write_region(deferred);
 192     // "Clear" the deferred_card_mark field
 193     thread->set_deferred_card_mark(MemRegion());
 194   }
 195   assert(thread->deferred_card_mark().is_empty(), "invariant");
 196 }
 197 
 198 // Helper for ReduceInitialCardMarks. For performance,
 199 // compiled code may elide card-marks for initializing stores
 200 // to a newly allocated object along the fast-path. We
 201 // compensate for such elided card-marks as follows:
 202 // (a) Generational, non-concurrent collectors, such as
 203 //     GenCollectedHeap(ParNew,DefNew,Tenured) and
 204 //     ParallelScavengeHeap(ParallelGC, ParallelOldGC)
 205 //     need the card-mark if and only if the region is
 206 //     in the old gen, and do not care if the card-mark
 207 //     succeeds or precedes the initializing stores themselves,
 208 //     so long as the card-mark is completed before the next
 209 //     scavenge. For all these cases, we can do a card mark
 210 //     at the point at which we do a slow path allocation
 211 //     in the old gen, i.e. in this call.
 212 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
 213 //     in addition that the card-mark for an old gen allocated
 214 //     object strictly follow any associated initializing stores.
 215 //     In these cases, the memRegion remembered below is
 216 //     used to card-mark the entire region either just before the next
 217 //     slow-path allocation by this thread or just before the next scavenge or
 218 //     CMS-associated safepoint, whichever of these events happens first.
 219 //     (The implicit assumption is that the object has been fully
 220 //     initialized by this point, a fact that we assert when doing the
 221 //     card-mark.)
 222 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
 223 //     G1 concurrent marking is in progress an SATB (pre-write-)barrier is
 224 //     is used to remember the pre-value of any store. Initializing
 225 //     stores will not need this barrier, so we need not worry about
 226 //     compensating for the missing pre-barrier here. Turning now
 227 //     to the post-barrier, we note that G1 needs a RS update barrier
 228 //     which simply enqueues a (sequence of) dirty cards which may
 229 //     optionally be refined by the concurrent update threads. Note
 230 //     that this barrier need only be applied to a non-young write,
 231 //     but, like in CMS, because of the presence of concurrent refinement
 232 //     (much like CMS' precleaning), must strictly follow the oop-store.
 233 //     Thus, using the same protocol for maintaining the intended
 234 //     invariants turns out, serendepitously, to be the same for both
 235 //     G1 and CMS.
 236 //
 237 // For any future collector, this code should be reexamined with
 238 // that specific collector in mind, and the documentation above suitably
 239 // extended and updated.
 240 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
 241   // If a previous card-mark was deferred, flush it now.
 242   flush_deferred_store_barrier(thread);
 243   if (can_elide_initializing_store_barrier(new_obj)) {
 244     // The deferred_card_mark region should be empty
 245     // following the flush above.
 246     assert(thread->deferred_card_mark().is_empty(), "Error");
 247   } else {
 248     MemRegion mr((HeapWord*)new_obj, new_obj->size());
 249     assert(!mr.is_empty(), "Error");
 250     if (_defer_initial_card_mark) {
 251       // Defer the card mark
 252       thread->set_deferred_card_mark(mr);
 253     } else {
 254       // Do the card mark
 255       BarrierSet* bs = barrier_set();
 256       assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
 257       bs->write_region(mr);
 258     }
 259   }
 260   return new_obj;
 261 }
 262 
 263 size_t CollectedHeap::filler_array_hdr_size() {
 264   return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
 265 }
 266 
 267 size_t CollectedHeap::filler_array_min_size() {
 268   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
 269 }
 270 
 271 size_t CollectedHeap::filler_array_max_size() {
 272   return _filler_array_max_size;
 273 }
 274 
 275 #ifdef ASSERT
 276 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
 277 {
 278   assert(words >= min_fill_size(), "too small to fill");
 279   assert(words % MinObjAlignment == 0, "unaligned size");
 280   assert(Universe::heap()->is_in_reserved(start), "not in heap");
 281   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
 282 }
 283 
 284 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
 285 {
 286   if (ZapFillerObjects && zap) {
 287     Copy::fill_to_words(start + filler_array_hdr_size(),
 288                         words - filler_array_hdr_size(), 0XDEAFBABE);
 289   }
 290 }
 291 #endif // ASSERT
 292 
 293 void
 294 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
 295 {
 296   assert(words >= filler_array_min_size(), "too small for an array");
 297   assert(words <= filler_array_max_size(), "too big for a single object");
 298 
 299   const size_t payload_size = words - filler_array_hdr_size();
 300   const size_t len = payload_size * HeapWordSize / sizeof(jint);
 301 
 302   // Set the length first for concurrent GC.
 303   ((arrayOop)start)->set_length((int)len);
 304   post_allocation_setup_common(Universe::intArrayKlassObj(), start, words);
 305   DEBUG_ONLY(zap_filler_array(start, words, zap);)
 306 }
 307 
 308 void
 309 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
 310 {
 311   assert(words <= filler_array_max_size(), "too big for a single object");
 312 
 313   if (words >= filler_array_min_size()) {
 314     fill_with_array(start, words, zap);
 315   } else if (words > 0) {
 316     assert(words == min_fill_size(), "unaligned size");
 317     post_allocation_setup_common(SystemDictionary::Object_klass(), start,
 318                                  words);
 319   }
 320 }
 321 
 322 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
 323 {
 324   DEBUG_ONLY(fill_args_check(start, words);)
 325   HandleMark hm;  // Free handles before leaving.
 326   fill_with_object_impl(start, words, zap);
 327 }
 328 
 329 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
 330 {
 331   DEBUG_ONLY(fill_args_check(start, words);)
 332   HandleMark hm;  // Free handles before leaving.
 333 
 334 #ifdef _LP64
 335   // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
 336   // First fill with arrays, ensuring that any remaining space is big enough to
 337   // fill.  The remainder is filled with a single object.
 338   const size_t min = min_fill_size();
 339   const size_t max = filler_array_max_size();
 340   while (words > max) {
 341     const size_t cur = words - max >= min ? max : max - min;
 342     fill_with_array(start, cur, zap);
 343     start += cur;
 344     words -= cur;
 345   }
 346 #endif
 347 
 348   fill_with_object_impl(start, words, zap);
 349 }
 350 
 351 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
 352   guarantee(false, "thread-local allocation buffers not supported");
 353   return NULL;
 354 }
 355 
 356 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
 357   // The second disjunct in the assertion below makes a concession
 358   // for the start-up verification done while the VM is being
 359   // created. Callers be careful that you know that mutators
 360   // aren't going to interfere -- for instance, this is permissible
 361   // if we are still single-threaded and have either not yet
 362   // started allocating (nothing much to verify) or we have
 363   // started allocating but are now a full-fledged JavaThread
 364   // (and have thus made our TLAB's) available for filling.
 365   assert(SafepointSynchronize::is_at_safepoint() ||
 366          !is_init_completed(),
 367          "Should only be called at a safepoint or at start-up"
 368          " otherwise concurrent mutator activity may make heap "
 369          " unparsable again");
 370   const bool use_tlab = UseTLAB;
 371   const bool deferred = _defer_initial_card_mark;
 372   // The main thread starts allocating via a TLAB even before it
 373   // has added itself to the threads list at vm boot-up.
 374   assert(!use_tlab || Threads::first() != NULL,
 375          "Attempt to fill tlabs before main thread has been added"
 376          " to threads list is doomed to failure!");
 377   for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
 378      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
 379 #ifdef COMPILER2
 380      // The deferred store barriers must all have been flushed to the
 381      // card-table (or other remembered set structure) before GC starts
 382      // processing the card-table (or other remembered set).
 383      if (deferred) flush_deferred_store_barrier(thread);
 384 #else
 385      assert(!deferred, "Should be false");
 386      assert(thread->deferred_card_mark().is_empty(), "Should be empty");
 387 #endif
 388   }
 389 }
 390 
 391 void CollectedHeap::accumulate_statistics_all_tlabs() {
 392   if (UseTLAB) {
 393     assert(SafepointSynchronize::is_at_safepoint() ||
 394          !is_init_completed(),
 395          "should only accumulate statistics on tlabs at safepoint");
 396 
 397     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
 398   }
 399 }
 400 
 401 void CollectedHeap::resize_all_tlabs() {
 402   if (UseTLAB) {
 403     assert(SafepointSynchronize::is_at_safepoint() ||
 404          !is_init_completed(),
 405          "should only resize tlabs at safepoint");
 406 
 407     ThreadLocalAllocBuffer::resize_all_tlabs();
 408   }
 409 }
 410 
 411 void CollectedHeap::pre_full_gc_dump() {
 412   if (HeapDumpBeforeFullGC) {
 413     TraceTime tt("Heap Dump (before full gc): ", PrintGCDetails, false, gclog_or_tty);
 414     // We are doing a "major" collection and a heap dump before
 415     // major collection has been requested.
 416     HeapDumper::dump_heap();
 417   }
 418   if (PrintClassHistogramBeforeFullGC) {
 419     TraceTime tt("Class Histogram (before full gc): ", PrintGCDetails, true, gclog_or_tty);
 420     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
 421     inspector.doit();
 422   }
 423 }
 424 
 425 void CollectedHeap::post_full_gc_dump() {
 426   if (HeapDumpAfterFullGC) {
 427     TraceTime tt("Heap Dump (after full gc): ", PrintGCDetails, false, gclog_or_tty);
 428     HeapDumper::dump_heap();
 429   }
 430   if (PrintClassHistogramAfterFullGC) {
 431     TraceTime tt("Class Histogram (after full gc): ", PrintGCDetails, true, gclog_or_tty);
 432     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
 433     inspector.doit();
 434   }
 435 }