1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "runtime/os.hpp"
  30 #include "runtime/task.hpp"
  31 #include "runtime/threadCritical.hpp"
  32 #include "utilities/ostream.hpp"
  33 #ifdef TARGET_OS_FAMILY_linux
  34 # include "os_linux.inline.hpp"
  35 #endif
  36 #ifdef TARGET_OS_FAMILY_solaris
  37 # include "os_solaris.inline.hpp"
  38 #endif
  39 #ifdef TARGET_OS_FAMILY_windows
  40 # include "os_windows.inline.hpp"
  41 #endif
  42 #ifdef TARGET_OS_FAMILY_bsd
  43 # include "os_bsd.inline.hpp"
  44 #endif
  45 
  46 void* CHeapObj::operator new(size_t size){
  47   return (void *) AllocateHeap(size, "CHeapObj-new");
  48 }
  49 
  50 void* CHeapObj::operator new (size_t size, const std::nothrow_t&  nothrow_constant) {
  51   char* p = (char*) os::malloc(size);
  52 #ifdef ASSERT
  53   if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p);
  54 #endif
  55   return p;
  56 }
  57 
  58 void CHeapObj::operator delete(void* p){
  59  FreeHeap(p);
  60 }
  61 
  62 void* StackObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
  63 void  StackObj::operator delete(void* p)   { ShouldNotCallThis(); };
  64 void* _ValueObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
  65 void  _ValueObj::operator delete(void* p)   { ShouldNotCallThis(); };
  66 
  67 void* ResourceObj::operator new(size_t size, allocation_type type) {
  68   address res;
  69   switch (type) {
  70    case C_HEAP:
  71     res = (address)AllocateHeap(size, "C_Heap: ResourceOBJ");
  72     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
  73     break;
  74    case RESOURCE_AREA:
  75     // new(size) sets allocation type RESOURCE_AREA.
  76     res = (address)operator new(size);
  77     break;
  78    default:
  79     ShouldNotReachHere();
  80   }
  81   return res;
  82 }
  83 
  84 void ResourceObj::operator delete(void* p) {
  85   assert(((ResourceObj *)p)->allocated_on_C_heap(),
  86          "delete only allowed for C_HEAP objects");
  87   DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
  88   FreeHeap(p);
  89 }
  90 
  91 #ifdef ASSERT
  92 void ResourceObj::set_allocation_type(address res, allocation_type type) {
  93     // Set allocation type in the resource object
  94     uintptr_t allocation = (uintptr_t)res;
  95     assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
  96     assert(type <= allocation_mask, "incorrect allocation type");
  97     ResourceObj* resobj = (ResourceObj *)res;
  98     resobj->_allocation_t[0] = ~(allocation + type);
  99     if (type != STACK_OR_EMBEDDED) {
 100       // Called from operator new() and CollectionSetChooser(),
 101       // set verification value.
 102       resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
 103     }
 104 }
 105 
 106 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
 107     assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
 108     return (allocation_type)((~_allocation_t[0]) & allocation_mask);
 109 }
 110 
 111 bool ResourceObj::is_type_set() const {
 112     allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
 113     return get_allocation_type()  == type &&
 114            (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
 115 }
 116 
 117 ResourceObj::ResourceObj() { // default constructor
 118     if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
 119       // Operator new() is not called for allocations
 120       // on stack and for embedded objects.
 121       set_allocation_type((address)this, STACK_OR_EMBEDDED);
 122     } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
 123       // For some reason we got a value which resembles
 124       // an embedded or stack object (operator new() does not
 125       // set such type). Keep it since it is valid value
 126       // (even if it was garbage).
 127       // Ignore garbage in other fields.
 128     } else if (is_type_set()) {
 129       // Operator new() was called and type was set.
 130       assert(!allocated_on_stack(),
 131              err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
 132                      this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
 133     } else {
 134       // Operator new() was not called.
 135       // Assume that it is embedded or stack object.
 136       set_allocation_type((address)this, STACK_OR_EMBEDDED);
 137     }
 138     _allocation_t[1] = 0; // Zap verification value
 139 }
 140 
 141 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
 142     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
 143     // Note: garbage may resembles valid value.
 144     assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
 145            err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
 146                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
 147     set_allocation_type((address)this, STACK_OR_EMBEDDED);
 148     _allocation_t[1] = 0; // Zap verification value
 149 }
 150 
 151 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
 152     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
 153     assert(allocated_on_stack(),
 154            err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
 155                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
 156     // Keep current _allocation_t value;
 157     return *this;
 158 }
 159 
 160 ResourceObj::~ResourceObj() {
 161     // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
 162     if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
 163       _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
 164     }
 165 }
 166 #endif // ASSERT
 167 
 168 
 169 void trace_heap_malloc(size_t size, const char* name, void* p) {
 170   // A lock is not needed here - tty uses a lock internally
 171   tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
 172 }
 173 
 174 
 175 void trace_heap_free(void* p) {
 176   // A lock is not needed here - tty uses a lock internally
 177   tty->print_cr("Heap free   " INTPTR_FORMAT, p);
 178 }
 179 
 180 bool warn_new_operator = false; // see vm_main
 181 
 182 //--------------------------------------------------------------------------------------
 183 // ChunkPool implementation
 184 
 185 // MT-safe pool of chunks to reduce malloc/free thrashing
 186 // NB: not using Mutex because pools are used before Threads are initialized
 187 class ChunkPool {
 188   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
 189   size_t       _num_chunks;   // number of unused chunks in pool
 190   size_t       _num_used;     // number of chunks currently checked out
 191   const size_t _size;         // size of each chunk (must be uniform)
 192 
 193   // Our three static pools
 194   static ChunkPool* _large_pool;
 195   static ChunkPool* _medium_pool;
 196   static ChunkPool* _small_pool;
 197 
 198   // return first element or null
 199   void* get_first() {
 200     Chunk* c = _first;
 201     if (_first) {
 202       _first = _first->next();
 203       _num_chunks--;
 204     }
 205     return c;
 206   }
 207 
 208  public:
 209   // All chunks in a ChunkPool has the same size
 210    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
 211 
 212   // Allocate a new chunk from the pool (might expand the pool)
 213   void* allocate(size_t bytes) {
 214     assert(bytes == _size, "bad size");
 215     void* p = NULL;
 216     { ThreadCritical tc;
 217       _num_used++;
 218       p = get_first();
 219       if (p == NULL) p = os::malloc(bytes);
 220     }
 221     if (p == NULL)
 222       vm_exit_out_of_memory(bytes, "ChunkPool::allocate");
 223 
 224     return p;
 225   }
 226 
 227   // Return a chunk to the pool
 228   void free(Chunk* chunk) {
 229     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
 230     ThreadCritical tc;
 231     _num_used--;
 232 
 233     // Add chunk to list
 234     chunk->set_next(_first);
 235     _first = chunk;
 236     _num_chunks++;
 237   }
 238 
 239   // Prune the pool
 240   void free_all_but(size_t n) {
 241     // if we have more than n chunks, free all of them
 242     ThreadCritical tc;
 243     if (_num_chunks > n) {
 244       // free chunks at end of queue, for better locality
 245       Chunk* cur = _first;
 246       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
 247 
 248       if (cur != NULL) {
 249         Chunk* next = cur->next();
 250         cur->set_next(NULL);
 251         cur = next;
 252 
 253         // Free all remaining chunks
 254         while(cur != NULL) {
 255           next = cur->next();
 256           os::free(cur);
 257           _num_chunks--;
 258           cur = next;
 259         }
 260       }
 261     }
 262   }
 263 
 264   // Accessors to preallocated pool's
 265   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
 266   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
 267   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
 268 
 269   static void initialize() {
 270     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
 271     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
 272     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
 273   }
 274 
 275   static void clean() {
 276     enum { BlocksToKeep = 5 };
 277      _small_pool->free_all_but(BlocksToKeep);
 278      _medium_pool->free_all_but(BlocksToKeep);
 279      _large_pool->free_all_but(BlocksToKeep);
 280   }
 281 };
 282 
 283 ChunkPool* ChunkPool::_large_pool  = NULL;
 284 ChunkPool* ChunkPool::_medium_pool = NULL;
 285 ChunkPool* ChunkPool::_small_pool  = NULL;
 286 
 287 void chunkpool_init() {
 288   ChunkPool::initialize();
 289 }
 290 
 291 void
 292 Chunk::clean_chunk_pool() {
 293   ChunkPool::clean();
 294 }
 295 
 296 
 297 //--------------------------------------------------------------------------------------
 298 // ChunkPoolCleaner implementation
 299 //
 300 
 301 class ChunkPoolCleaner : public PeriodicTask {
 302   enum { CleaningInterval = 5000 };      // cleaning interval in ms
 303 
 304  public:
 305    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
 306    void task() {
 307      ChunkPool::clean();
 308    }
 309 };
 310 
 311 //--------------------------------------------------------------------------------------
 312 // Chunk implementation
 313 
 314 void* Chunk::operator new(size_t requested_size, size_t length) {
 315   // requested_size is equal to sizeof(Chunk) but in order for the arena
 316   // allocations to come out aligned as expected the size must be aligned
 317   // to expected arean alignment.
 318   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
 319   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
 320   size_t bytes = ARENA_ALIGN(requested_size) + length;
 321   switch (length) {
 322    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes);
 323    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
 324    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes);
 325    default: {
 326      void *p =  os::malloc(bytes);
 327      if (p == NULL)
 328        vm_exit_out_of_memory(bytes, "Chunk::new");
 329      return p;
 330    }
 331   }
 332 }
 333 
 334 void Chunk::operator delete(void* p) {
 335   Chunk* c = (Chunk*)p;
 336   switch (c->length()) {
 337    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
 338    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
 339    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
 340    default:                 os::free(c);
 341   }
 342 }
 343 
 344 Chunk::Chunk(size_t length) : _len(length) {
 345   _next = NULL;         // Chain on the linked list
 346 }
 347 
 348 
 349 void Chunk::chop() {
 350   Chunk *k = this;
 351   while( k ) {
 352     Chunk *tmp = k->next();
 353     // clear out this chunk (to detect allocation bugs)
 354     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
 355     delete k;                   // Free chunk (was malloc'd)
 356     k = tmp;
 357   }
 358 }
 359 
 360 void Chunk::next_chop() {
 361   _next->chop();
 362   _next = NULL;
 363 }
 364 
 365 
 366 void Chunk::start_chunk_pool_cleaner_task() {
 367 #ifdef ASSERT
 368   static bool task_created = false;
 369   assert(!task_created, "should not start chuck pool cleaner twice");
 370   task_created = true;
 371 #endif
 372   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
 373   cleaner->enroll();
 374 }
 375 
 376 //------------------------------Arena------------------------------------------
 377 
 378 Arena::Arena(size_t init_size) {
 379   size_t round_size = (sizeof (char *)) - 1;
 380   init_size = (init_size+round_size) & ~round_size;
 381   _first = _chunk = new (init_size) Chunk(init_size);
 382   _hwm = _chunk->bottom();      // Save the cached hwm, max
 383   _max = _chunk->top();
 384   set_size_in_bytes(init_size);
 385 }
 386 
 387 Arena::Arena() {
 388   _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
 389   _hwm = _chunk->bottom();      // Save the cached hwm, max
 390   _max = _chunk->top();
 391   set_size_in_bytes(Chunk::init_size);
 392 }
 393 
 394 Arena::Arena(Arena *a) : _chunk(a->_chunk), _hwm(a->_hwm), _max(a->_max), _first(a->_first) {
 395   set_size_in_bytes(a->size_in_bytes());
 396 }
 397 
 398 Arena *Arena::move_contents(Arena *copy) {
 399   copy->destruct_contents();
 400   copy->_chunk = _chunk;
 401   copy->_hwm   = _hwm;
 402   copy->_max   = _max;
 403   copy->_first = _first;
 404   copy->set_size_in_bytes(size_in_bytes());
 405   // Destroy original arena
 406   reset();
 407   return copy;            // Return Arena with contents
 408 }
 409 
 410 Arena::~Arena() {
 411   destruct_contents();
 412 }
 413 
 414 // Destroy this arenas contents and reset to empty
 415 void Arena::destruct_contents() {
 416   if (UseMallocOnly && _first != NULL) {
 417     char* end = _first->next() ? _first->top() : _hwm;
 418     free_malloced_objects(_first, _first->bottom(), end, _hwm);
 419   }
 420   _first->chop();
 421   reset();
 422 }
 423 
 424 
 425 // Total of all Chunks in arena
 426 size_t Arena::used() const {
 427   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
 428   register Chunk *k = _first;
 429   while( k != _chunk) {         // Whilst have Chunks in a row
 430     sum += k->length();         // Total size of this Chunk
 431     k = k->next();              // Bump along to next Chunk
 432   }
 433   return sum;                   // Return total consumed space.
 434 }
 435 
 436 void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
 437   vm_exit_out_of_memory(sz, whence);
 438 }
 439 
 440 // Grow a new Chunk
 441 void* Arena::grow( size_t x ) {
 442   // Get minimal required size.  Either real big, or even bigger for giant objs
 443   size_t len = MAX2(x, (size_t) Chunk::size);
 444 
 445   Chunk *k = _chunk;            // Get filled-up chunk address
 446   _chunk = new (len) Chunk(len);
 447 
 448   if (_chunk == NULL) {
 449     signal_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
 450   }
 451 
 452   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
 453   else _first = _chunk;
 454   _hwm  = _chunk->bottom();     // Save the cached hwm, max
 455   _max =  _chunk->top();
 456   set_size_in_bytes(size_in_bytes() + len);
 457   void* result = _hwm;
 458   _hwm += x;
 459   return result;
 460 }
 461 
 462 
 463 
 464 // Reallocate storage in Arena.
 465 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size) {
 466   assert(new_size >= 0, "bad size");
 467   if (new_size == 0) return NULL;
 468 #ifdef ASSERT
 469   if (UseMallocOnly) {
 470     // always allocate a new object  (otherwise we'll free this one twice)
 471     char* copy = (char*)Amalloc(new_size);
 472     size_t n = MIN2(old_size, new_size);
 473     if (n > 0) memcpy(copy, old_ptr, n);
 474     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
 475     return copy;
 476   }
 477 #endif
 478   char *c_old = (char*)old_ptr; // Handy name
 479   // Stupid fast special case
 480   if( new_size <= old_size ) {  // Shrink in-place
 481     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
 482       _hwm = c_old+new_size;    // Adjust hwm
 483     return c_old;
 484   }
 485 
 486   // make sure that new_size is legal
 487   size_t corrected_new_size = ARENA_ALIGN(new_size);
 488 
 489   // See if we can resize in-place
 490   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
 491       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
 492     _hwm = c_old+corrected_new_size;      // Adjust hwm
 493     return c_old;               // Return old pointer
 494   }
 495 
 496   // Oops, got to relocate guts
 497   void *new_ptr = Amalloc(new_size);
 498   memcpy( new_ptr, c_old, old_size );
 499   Afree(c_old,old_size);        // Mostly done to keep stats accurate
 500   return new_ptr;
 501 }
 502 
 503 
 504 // Determine if pointer belongs to this Arena or not.
 505 bool Arena::contains( const void *ptr ) const {
 506 #ifdef ASSERT
 507   if (UseMallocOnly) {
 508     // really slow, but not easy to make fast
 509     if (_chunk == NULL) return false;
 510     char** bottom = (char**)_chunk->bottom();
 511     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
 512       if (*p == ptr) return true;
 513     }
 514     for (Chunk *c = _first; c != NULL; c = c->next()) {
 515       if (c == _chunk) continue;  // current chunk has been processed
 516       char** bottom = (char**)c->bottom();
 517       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
 518         if (*p == ptr) return true;
 519       }
 520     }
 521     return false;
 522   }
 523 #endif
 524   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
 525     return true;                // Check for in this chunk
 526   for (Chunk *c = _first; c; c = c->next()) {
 527     if (c == _chunk) continue;  // current chunk has been processed
 528     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
 529       return true;              // Check for every chunk in Arena
 530     }
 531   }
 532   return false;                 // Not in any Chunk, so not in Arena
 533 }
 534 
 535 
 536 #ifdef ASSERT
 537 void* Arena::malloc(size_t size) {
 538   assert(UseMallocOnly, "shouldn't call");
 539   // use malloc, but save pointer in res. area for later freeing
 540   char** save = (char**)internal_malloc_4(sizeof(char*));
 541   return (*save = (char*)os::malloc(size));
 542 }
 543 
 544 // for debugging with UseMallocOnly
 545 void* Arena::internal_malloc_4(size_t x) {
 546   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
 547   check_for_overflow(x, "Arena::internal_malloc_4");
 548   if (_hwm + x > _max) {
 549     return grow(x);
 550   } else {
 551     char *old = _hwm;
 552     _hwm += x;
 553     return old;
 554   }
 555 }
 556 #endif
 557 
 558 
 559 //--------------------------------------------------------------------------------------
 560 // Non-product code
 561 
 562 #ifndef PRODUCT
 563 // The global operator new should never be called since it will usually indicate
 564 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
 565 // that they're allocated on the C heap.
 566 // Commented out in product version to avoid conflicts with third-party C++ native code.
 567 // %% note this is causing a problem on solaris debug build. the global
 568 // new is being called from jdk source and causing data corruption.
 569 // src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew
 570 // define CATCH_OPERATOR_NEW_USAGE if you want to use this.
 571 #ifdef CATCH_OPERATOR_NEW_USAGE
 572 void* operator new(size_t size){
 573   static bool warned = false;
 574   if (!warned && warn_new_operator)
 575     warning("should not call global (default) operator new");
 576   warned = true;
 577   return (void *) AllocateHeap(size, "global operator new");
 578 }
 579 #endif
 580 
 581 void AllocatedObj::print() const       { print_on(tty); }
 582 void AllocatedObj::print_value() const { print_value_on(tty); }
 583 
 584 void AllocatedObj::print_on(outputStream* st) const {
 585   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
 586 }
 587 
 588 void AllocatedObj::print_value_on(outputStream* st) const {
 589   st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
 590 }
 591 
 592 julong Arena::_bytes_allocated = 0;
 593 
 594 void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
 595 
 596 AllocStats::AllocStats() {
 597   start_mallocs      = os::num_mallocs;
 598   start_frees        = os::num_frees;
 599   start_malloc_bytes = os::alloc_bytes;
 600   start_mfree_bytes  = os::free_bytes;
 601   start_res_bytes    = Arena::_bytes_allocated;
 602 }
 603 
 604 julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
 605 julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
 606 julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
 607 julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
 608 julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
 609 void    AllocStats::print() {
 610   tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
 611                 UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
 612                 num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
 613 }
 614 
 615 
 616 // debugging code
 617 inline void Arena::free_all(char** start, char** end) {
 618   for (char** p = start; p < end; p++) if (*p) os::free(*p);
 619 }
 620 
 621 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
 622   assert(UseMallocOnly, "should not call");
 623   // free all objects malloced since resource mark was created; resource area
 624   // contains their addresses
 625   if (chunk->next()) {
 626     // this chunk is full, and some others too
 627     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
 628       char* top = c->top();
 629       if (c->next() == NULL) {
 630         top = hwm2;     // last junk is only used up to hwm2
 631         assert(c->contains(hwm2), "bad hwm2");
 632       }
 633       free_all((char**)c->bottom(), (char**)top);
 634     }
 635     assert(chunk->contains(hwm), "bad hwm");
 636     assert(chunk->contains(max), "bad max");
 637     free_all((char**)hwm, (char**)max);
 638   } else {
 639     // this chunk was partially used
 640     assert(chunk->contains(hwm), "bad hwm");
 641     assert(chunk->contains(hwm2), "bad hwm2");
 642     free_all((char**)hwm, (char**)hwm2);
 643   }
 644 }
 645 
 646 
 647 ReallocMark::ReallocMark() {
 648 #ifdef ASSERT
 649   Thread *thread = ThreadLocalStorage::get_thread_slow();
 650   _nesting = thread->resource_area()->nesting();
 651 #endif
 652 }
 653 
 654 void ReallocMark::check() {
 655 #ifdef ASSERT
 656   if (_nesting != Thread::current()->resource_area()->nesting()) {
 657     fatal("allocation bug: array could grow within nested ResourceMark");
 658   }
 659 #endif
 660 }
 661 
 662 #endif // Non-product