1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/vmThread.hpp"
  41 #ifdef TARGET_OS_FAMILY_linux
  42 # include "thread_linux.inline.hpp"
  43 #endif
  44 #ifdef TARGET_OS_FAMILY_solaris
  45 # include "thread_solaris.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_FAMILY_windows
  48 # include "thread_windows.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_FAMILY_bsd
  51 # include "thread_bsd.inline.hpp"
  52 #endif
  53 #ifndef SERIALGC
  54 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  55 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  56 #endif
  57 
  58 // CollectorPolicy methods.
  59 
  60 void CollectorPolicy::initialize_flags() {
  61   if (PermSize > MaxPermSize) {
  62     MaxPermSize = PermSize;
  63   }
  64   PermSize = MAX2(min_alignment(), align_size_down_(PermSize, min_alignment()));
  65   // Don't increase Perm size limit above specified.
  66   MaxPermSize = align_size_down(MaxPermSize, max_alignment());
  67   if (PermSize > MaxPermSize) {
  68     PermSize = MaxPermSize;
  69   }
  70 
  71   MinPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MinPermHeapExpansion, min_alignment()));
  72   MaxPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MaxPermHeapExpansion, min_alignment()));
  73 
  74   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
  75 
  76   SharedReadOnlySize = align_size_up(SharedReadOnlySize, max_alignment());
  77   SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment());
  78   SharedMiscDataSize = align_size_up(SharedMiscDataSize, max_alignment());
  79 
  80   assert(PermSize    % min_alignment() == 0, "permanent space alignment");
  81   assert(MaxPermSize % max_alignment() == 0, "maximum permanent space alignment");
  82   assert(SharedReadOnlySize % max_alignment() == 0, "read-only space alignment");
  83   assert(SharedReadWriteSize % max_alignment() == 0, "read-write space alignment");
  84   assert(SharedMiscDataSize % max_alignment() == 0, "misc-data space alignment");
  85   if (PermSize < M) {
  86     vm_exit_during_initialization("Too small initial permanent heap");
  87   }
  88 }
  89 
  90 void CollectorPolicy::initialize_size_info() {
  91   // User inputs from -mx and ms are aligned
  92   set_initial_heap_byte_size(InitialHeapSize);
  93   if (initial_heap_byte_size() == 0) {
  94     set_initial_heap_byte_size(NewSize + OldSize);
  95   }
  96   set_initial_heap_byte_size(align_size_up(_initial_heap_byte_size,
  97                                            min_alignment()));
  98 
  99   set_min_heap_byte_size(Arguments::min_heap_size());
 100   if (min_heap_byte_size() == 0) {
 101     set_min_heap_byte_size(NewSize + OldSize);
 102   }
 103   set_min_heap_byte_size(align_size_up(_min_heap_byte_size,
 104                                        min_alignment()));
 105 
 106   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
 107 
 108   // Check heap parameter properties
 109   if (initial_heap_byte_size() < M) {
 110     vm_exit_during_initialization("Too small initial heap");
 111   }
 112   // Check heap parameter properties
 113   if (min_heap_byte_size() < M) {
 114     vm_exit_during_initialization("Too small minimum heap");
 115   }
 116   if (initial_heap_byte_size() <= NewSize) {
 117      // make sure there is at least some room in old space
 118     vm_exit_during_initialization("Too small initial heap for new size specified");
 119   }
 120   if (max_heap_byte_size() < min_heap_byte_size()) {
 121     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 122   }
 123   if (initial_heap_byte_size() < min_heap_byte_size()) {
 124     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 125   }
 126   if (max_heap_byte_size() < initial_heap_byte_size()) {
 127     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
 128   }
 129 
 130   if (PrintGCDetails && Verbose) {
 131     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 132       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 133       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
 134   }
 135 }
 136 
 137 void CollectorPolicy::initialize_perm_generation(PermGen::Name pgnm) {
 138   _permanent_generation =
 139     new PermanentGenerationSpec(pgnm, PermSize, MaxPermSize,
 140                                 SharedReadOnlySize,
 141                                 SharedReadWriteSize,
 142                                 SharedMiscDataSize,
 143                                 SharedMiscCodeSize);
 144   if (_permanent_generation == NULL) {
 145     vm_exit_during_initialization("Unable to allocate gen spec");
 146   }
 147 }
 148 
 149 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 150   bool result = _should_clear_all_soft_refs;
 151   set_should_clear_all_soft_refs(false);
 152   return result;
 153 }
 154 
 155 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 156                                            int max_covered_regions) {
 157   switch (rem_set_name()) {
 158   case GenRemSet::CardTable: {
 159     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
 160     return res;
 161   }
 162   default:
 163     guarantee(false, "unrecognized GenRemSet::Name");
 164     return NULL;
 165   }
 166 }
 167 
 168 void CollectorPolicy::cleared_all_soft_refs() {
 169   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 170   // have been cleared in the last collection but if the gc overhear
 171   // limit continues to be near, SoftRefs should still be cleared.
 172   if (size_policy() != NULL) {
 173     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 174   }
 175   _all_soft_refs_clear = true;
 176 }
 177 
 178 
 179 // GenCollectorPolicy methods.
 180 
 181 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 182   size_t x = base_size / (NewRatio+1);
 183   size_t new_gen_size = x > min_alignment() ?
 184                      align_size_down(x, min_alignment()) :
 185                      min_alignment();
 186   return new_gen_size;
 187 }
 188 
 189 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 190                                                  size_t maximum_size) {
 191   size_t alignment = min_alignment();
 192   size_t max_minus = maximum_size - alignment;
 193   return desired_size < max_minus ? desired_size : max_minus;
 194 }
 195 
 196 
 197 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 198                                                 size_t init_promo_size,
 199                                                 size_t init_survivor_size) {
 200   const double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
 201   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 202                                         init_promo_size,
 203                                         init_survivor_size,
 204                                         max_gc_minor_pause_sec,
 205                                         GCTimeRatio);
 206 }
 207 
 208 size_t GenCollectorPolicy::compute_max_alignment() {
 209   // The card marking array and the offset arrays for old generations are
 210   // committed in os pages as well. Make sure they are entirely full (to
 211   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 212   // byte entry and the os page size is 4096, the maximum heap size should
 213   // be 512*4096 = 2MB aligned.
 214   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
 215 
 216   // Parallel GC does its own alignment of the generations to avoid requiring a
 217   // large page (256M on some platforms) for the permanent generation.  The
 218   // other collectors should also be updated to do their own alignment and then
 219   // this use of lcm() should be removed.
 220   if (UseLargePages && !UseParallelGC) {
 221       // in presence of large pages we have to make sure that our
 222       // alignment is large page aware
 223       alignment = lcm(os::large_page_size(), alignment);
 224   }
 225 
 226   return alignment;
 227 }
 228 
 229 void GenCollectorPolicy::initialize_flags() {
 230   // All sizes must be multiples of the generation granularity.
 231   set_min_alignment((uintx) Generation::GenGrain);
 232   set_max_alignment(compute_max_alignment());
 233   assert(max_alignment() >= min_alignment() &&
 234          max_alignment() % min_alignment() == 0,
 235          "invalid alignment constraints");
 236 
 237   CollectorPolicy::initialize_flags();
 238 
 239   // All generational heaps have a youngest gen; handle those flags here.
 240 
 241   // Adjust max size parameters
 242   if (NewSize > MaxNewSize) {
 243     MaxNewSize = NewSize;
 244   }
 245   NewSize = align_size_down(NewSize, min_alignment());
 246   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
 247 
 248   // Check validity of heap flags
 249   assert(NewSize     % min_alignment() == 0, "eden space alignment");
 250   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
 251 
 252   if (NewSize < 3*min_alignment()) {
 253      // make sure there room for eden and two survivor spaces
 254     vm_exit_during_initialization("Too small new size specified");
 255   }
 256   if (SurvivorRatio < 1 || NewRatio < 1) {
 257     vm_exit_during_initialization("Invalid heap ratio specified");
 258   }
 259 }
 260 
 261 void TwoGenerationCollectorPolicy::initialize_flags() {
 262   GenCollectorPolicy::initialize_flags();
 263 
 264   OldSize = align_size_down(OldSize, min_alignment());
 265   if (NewSize + OldSize > MaxHeapSize) {
 266     MaxHeapSize = NewSize + OldSize;
 267   }
 268   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 269 
 270   always_do_update_barrier = UseConcMarkSweepGC;
 271 
 272   // Check validity of heap flags
 273   assert(OldSize     % min_alignment() == 0, "old space alignment");
 274   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
 275 }
 276 
 277 // Values set on the command line win over any ergonomically
 278 // set command line parameters.
 279 // Ergonomic choice of parameters are done before this
 280 // method is called.  Values for command line parameters such as NewSize
 281 // and MaxNewSize feed those ergonomic choices into this method.
 282 // This method makes the final generation sizings consistent with
 283 // themselves and with overall heap sizings.
 284 // In the absence of explicitly set command line flags, policies
 285 // such as the use of NewRatio are used to size the generation.
 286 void GenCollectorPolicy::initialize_size_info() {
 287   CollectorPolicy::initialize_size_info();
 288 
 289   // min_alignment() is used for alignment within a generation.
 290   // There is additional alignment done down stream for some
 291   // collectors that sometimes causes unwanted rounding up of
 292   // generations sizes.
 293 
 294   // Determine maximum size of gen0
 295 
 296   size_t max_new_size = 0;
 297   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 298     if (MaxNewSize < min_alignment()) {
 299       max_new_size = min_alignment();
 300     }
 301     if (MaxNewSize >= max_heap_byte_size()) {
 302       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
 303                                      min_alignment());
 304       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 305         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 306         "new generation size of " SIZE_FORMAT "k will be used.",
 307         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
 308     } else {
 309       max_new_size = align_size_down(MaxNewSize, min_alignment());
 310     }
 311 
 312   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 313   // specially at this point to just use an ergonomically set
 314   // MaxNewSize to set max_new_size.  For cases with small
 315   // heaps such a policy often did not work because the MaxNewSize
 316   // was larger than the entire heap.  The interpretation given
 317   // to ergonomically set flags is that the flags are set
 318   // by different collectors for their own special needs but
 319   // are not allowed to badly shape the heap.  This allows the
 320   // different collectors to decide what's best for themselves
 321   // without having to factor in the overall heap shape.  It
 322   // can be the case in the future that the collectors would
 323   // only make "wise" ergonomics choices and this policy could
 324   // just accept those choices.  The choices currently made are
 325   // not always "wise".
 326   } else {
 327     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
 328     // Bound the maximum size by NewSize below (since it historically
 329     // would have been NewSize and because the NewRatio calculation could
 330     // yield a size that is too small) and bound it by MaxNewSize above.
 331     // Ergonomics plays here by previously calculating the desired
 332     // NewSize and MaxNewSize.
 333     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 334   }
 335   assert(max_new_size > 0, "All paths should set max_new_size");
 336 
 337   // Given the maximum gen0 size, determine the initial and
 338   // minimum gen0 sizes.
 339 
 340   if (max_heap_byte_size() == min_heap_byte_size()) {
 341     // The maximum and minimum heap sizes are the same so
 342     // the generations minimum and initial must be the
 343     // same as its maximum.
 344     set_min_gen0_size(max_new_size);
 345     set_initial_gen0_size(max_new_size);
 346     set_max_gen0_size(max_new_size);
 347   } else {
 348     size_t desired_new_size = 0;
 349     if (!FLAG_IS_DEFAULT(NewSize)) {
 350       // If NewSize is set ergonomically (for example by cms), it
 351       // would make sense to use it.  If it is used, also use it
 352       // to set the initial size.  Although there is no reason
 353       // the minimum size and the initial size have to be the same,
 354       // the current implementation gets into trouble during the calculation
 355       // of the tenured generation sizes if they are different.
 356       // Note that this makes the initial size and the minimum size
 357       // generally small compared to the NewRatio calculation.
 358       _min_gen0_size = NewSize;
 359       desired_new_size = NewSize;
 360       max_new_size = MAX2(max_new_size, NewSize);
 361     } else {
 362       // For the case where NewSize is the default, use NewRatio
 363       // to size the minimum and initial generation sizes.
 364       // Use the default NewSize as the floor for these values.  If
 365       // NewRatio is overly large, the resulting sizes can be too
 366       // small.
 367       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
 368                           NewSize);
 369       desired_new_size =
 370         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
 371              NewSize);
 372     }
 373 
 374     assert(_min_gen0_size > 0, "Sanity check");
 375     set_initial_gen0_size(desired_new_size);
 376     set_max_gen0_size(max_new_size);
 377 
 378     // At this point the desirable initial and minimum sizes have been
 379     // determined without regard to the maximum sizes.
 380 
 381     // Bound the sizes by the corresponding overall heap sizes.
 382     set_min_gen0_size(
 383       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
 384     set_initial_gen0_size(
 385       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
 386     set_max_gen0_size(
 387       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
 388 
 389     // At this point all three sizes have been checked against the
 390     // maximum sizes but have not been checked for consistency
 391     // among the three.
 392 
 393     // Final check min <= initial <= max
 394     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
 395     set_initial_gen0_size(
 396       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
 397     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
 398   }
 399 
 400   if (PrintGCDetails && Verbose) {
 401     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 402       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 403       min_gen0_size(), initial_gen0_size(), max_gen0_size());
 404   }
 405 }
 406 
 407 // Call this method during the sizing of the gen1 to make
 408 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 409 // the most freedom in sizing because it is done before the
 410 // policy for gen1 is applied.  Once gen1 policies have been applied,
 411 // there may be conflicts in the shape of the heap and this method
 412 // is used to make the needed adjustments.  The application of the
 413 // policies could be more sophisticated (iterative for example) but
 414 // keeping it simple also seems a worthwhile goal.
 415 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 416                                                      size_t* gen1_size_ptr,
 417                                                      size_t heap_size,
 418                                                      size_t min_gen0_size) {
 419   bool result = false;
 420   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 421     if (((*gen0_size_ptr + OldSize) > heap_size) &&
 422        (heap_size - min_gen0_size) >= min_alignment()) {
 423       // Adjust gen0 down to accomodate OldSize
 424       *gen0_size_ptr = heap_size - min_gen0_size;
 425       *gen0_size_ptr =
 426         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
 427              min_alignment());
 428       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 429       result = true;
 430     } else {
 431       *gen1_size_ptr = heap_size - *gen0_size_ptr;
 432       *gen1_size_ptr =
 433         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
 434                        min_alignment());
 435     }
 436   }
 437   return result;
 438 }
 439 
 440 // Minimum sizes of the generations may be different than
 441 // the initial sizes.  An inconsistently is permitted here
 442 // in the total size that can be specified explicitly by
 443 // command line specification of OldSize and NewSize and
 444 // also a command line specification of -Xms.  Issue a warning
 445 // but allow the values to pass.
 446 
 447 void TwoGenerationCollectorPolicy::initialize_size_info() {
 448   GenCollectorPolicy::initialize_size_info();
 449 
 450   // At this point the minimum, initial and maximum sizes
 451   // of the overall heap and of gen0 have been determined.
 452   // The maximum gen1 size can be determined from the maximum gen0
 453   // and maximum heap size since no explicit flags exits
 454   // for setting the gen1 maximum.
 455   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
 456   _max_gen1_size =
 457     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
 458          min_alignment());
 459   // If no explicit command line flag has been set for the
 460   // gen1 size, use what is left for gen1.
 461   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 462     // The user has not specified any value or ergonomics
 463     // has chosen a value (which may or may not be consistent
 464     // with the overall heap size).  In either case make
 465     // the minimum, maximum and initial sizes consistent
 466     // with the gen0 sizes and the overall heap sizes.
 467     assert(min_heap_byte_size() > _min_gen0_size,
 468       "gen0 has an unexpected minimum size");
 469     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
 470     set_min_gen1_size(
 471       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
 472            min_alignment()));
 473     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
 474     set_initial_gen1_size(
 475       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
 476            min_alignment()));
 477 
 478   } else {
 479     // It's been explicitly set on the command line.  Use the
 480     // OldSize and then determine the consequences.
 481     set_min_gen1_size(OldSize);
 482     set_initial_gen1_size(OldSize);
 483 
 484     // If the user has explicitly set an OldSize that is inconsistent
 485     // with other command line flags, issue a warning.
 486     // The generation minimums and the overall heap mimimum should
 487     // be within one heap alignment.
 488     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
 489            min_heap_byte_size()) {
 490       warning("Inconsistency between minimum heap size and minimum "
 491           "generation sizes: using minimum heap = " SIZE_FORMAT,
 492           min_heap_byte_size());
 493     }
 494     if ((OldSize > _max_gen1_size)) {
 495       warning("Inconsistency between maximum heap size and maximum "
 496           "generation sizes: using maximum heap = " SIZE_FORMAT
 497           " -XX:OldSize flag is being ignored",
 498           max_heap_byte_size());
 499     }
 500     // If there is an inconsistency between the OldSize and the minimum and/or
 501     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 502     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 503                           min_heap_byte_size(), OldSize)) {
 504       if (PrintGCDetails && Verbose) {
 505         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 506               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 507               min_gen0_size(), initial_gen0_size(), max_gen0_size());
 508       }
 509     }
 510     // Initial size
 511     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 512                          initial_heap_byte_size(), OldSize)) {
 513       if (PrintGCDetails && Verbose) {
 514         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 515           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 516           min_gen0_size(), initial_gen0_size(), max_gen0_size());
 517       }
 518     }
 519   }
 520   // Enforce the maximum gen1 size.
 521   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
 522 
 523   // Check that min gen1 <= initial gen1 <= max gen1
 524   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
 525   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
 526 
 527   if (PrintGCDetails && Verbose) {
 528     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 529       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 530       min_gen1_size(), initial_gen1_size(), max_gen1_size());
 531   }
 532 }
 533 
 534 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 535                                         bool is_tlab,
 536                                         bool* gc_overhead_limit_was_exceeded) {
 537   GenCollectedHeap *gch = GenCollectedHeap::heap();
 538 
 539   debug_only(gch->check_for_valid_allocation_state());
 540   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 541 
 542   // In general gc_overhead_limit_was_exceeded should be false so
 543   // set it so here and reset it to true only if the gc time
 544   // limit is being exceeded as checked below.
 545   *gc_overhead_limit_was_exceeded = false;
 546 
 547   HeapWord* result = NULL;
 548 
 549   // Loop until the allocation is satisified,
 550   // or unsatisfied after GC.
 551   for (int try_count = 1; /* return or throw */; try_count += 1) {
 552     HandleMark hm; // discard any handles allocated in each iteration
 553 
 554     // First allocation attempt is lock-free.
 555     Generation *gen0 = gch->get_gen(0);
 556     assert(gen0->supports_inline_contig_alloc(),
 557       "Otherwise, must do alloc within heap lock");
 558     if (gen0->should_allocate(size, is_tlab)) {
 559       result = gen0->par_allocate(size, is_tlab);
 560       if (result != NULL) {
 561         assert(gch->is_in_reserved(result), "result not in heap");
 562         return result;
 563       }
 564     }
 565     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 566     {
 567       MutexLocker ml(Heap_lock);
 568       if (PrintGC && Verbose) {
 569         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 570                       " attempting locked slow path allocation");
 571       }
 572       // Note that only large objects get a shot at being
 573       // allocated in later generations.
 574       bool first_only = ! should_try_older_generation_allocation(size);
 575 
 576       result = gch->attempt_allocation(size, is_tlab, first_only);
 577       if (result != NULL) {
 578         assert(gch->is_in_reserved(result), "result not in heap");
 579         return result;
 580       }
 581 
 582       if (GC_locker::is_active_and_needs_gc()) {
 583         if (is_tlab) {
 584           return NULL;  // Caller will retry allocating individual object
 585         }
 586         if (!gch->is_maximal_no_gc()) {
 587           // Try and expand heap to satisfy request
 588           result = expand_heap_and_allocate(size, is_tlab);
 589           // result could be null if we are out of space
 590           if (result != NULL) {
 591             return result;
 592           }
 593         }
 594 
 595         // If this thread is not in a jni critical section, we stall
 596         // the requestor until the critical section has cleared and
 597         // GC allowed. When the critical section clears, a GC is
 598         // initiated by the last thread exiting the critical section; so
 599         // we retry the allocation sequence from the beginning of the loop,
 600         // rather than causing more, now probably unnecessary, GC attempts.
 601         JavaThread* jthr = JavaThread::current();
 602         if (!jthr->in_critical()) {
 603           MutexUnlocker mul(Heap_lock);
 604           // Wait for JNI critical section to be exited
 605           GC_locker::stall_until_clear();
 606           continue;
 607         } else {
 608           if (CheckJNICalls) {
 609             fatal("Possible deadlock due to allocating while"
 610                   " in jni critical section");
 611           }
 612           return NULL;
 613         }
 614       }
 615 
 616       // Read the gc count while the heap lock is held.
 617       gc_count_before = Universe::heap()->total_collections();
 618     }
 619 
 620     VM_GenCollectForAllocation op(size,
 621                                   is_tlab,
 622                                   gc_count_before);
 623     VMThread::execute(&op);
 624     if (op.prologue_succeeded()) {
 625       result = op.result();
 626       if (op.gc_locked()) {
 627          assert(result == NULL, "must be NULL if gc_locked() is true");
 628          continue;  // retry and/or stall as necessary
 629       }
 630 
 631       // Allocation has failed and a collection
 632       // has been done.  If the gc time limit was exceeded the
 633       // this time, return NULL so that an out-of-memory
 634       // will be thrown.  Clear gc_overhead_limit_exceeded
 635       // so that the overhead exceeded does not persist.
 636 
 637       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 638       const bool softrefs_clear = all_soft_refs_clear();
 639       assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
 640       if (limit_exceeded && softrefs_clear) {
 641         *gc_overhead_limit_was_exceeded = true;
 642         size_policy()->set_gc_overhead_limit_exceeded(false);
 643         if (op.result() != NULL) {
 644           CollectedHeap::fill_with_object(op.result(), size);
 645         }
 646         return NULL;
 647       }
 648       assert(result == NULL || gch->is_in_reserved(result),
 649              "result not in heap");
 650       return result;
 651     }
 652 
 653     // Give a warning if we seem to be looping forever.
 654     if ((QueuedAllocationWarningCount > 0) &&
 655         (try_count % QueuedAllocationWarningCount == 0)) {
 656           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 657                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 658     }
 659   }
 660 }
 661 
 662 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 663                                                        bool   is_tlab) {
 664   GenCollectedHeap *gch = GenCollectedHeap::heap();
 665   HeapWord* result = NULL;
 666   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 667     Generation *gen = gch->get_gen(i);
 668     if (gen->should_allocate(size, is_tlab)) {
 669       result = gen->expand_and_allocate(size, is_tlab);
 670     }
 671   }
 672   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 673   return result;
 674 }
 675 
 676 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 677                                                         bool   is_tlab) {
 678   GenCollectedHeap *gch = GenCollectedHeap::heap();
 679   GCCauseSetter x(gch, GCCause::_allocation_failure);
 680   HeapWord* result = NULL;
 681 
 682   assert(size != 0, "Precondition violated");
 683   if (GC_locker::is_active_and_needs_gc()) {
 684     // GC locker is active; instead of a collection we will attempt
 685     // to expand the heap, if there's room for expansion.
 686     if (!gch->is_maximal_no_gc()) {
 687       result = expand_heap_and_allocate(size, is_tlab);
 688     }
 689     return result;   // could be null if we are out of space
 690   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 691     // Do an incremental collection.
 692     gch->do_collection(false            /* full */,
 693                        false            /* clear_all_soft_refs */,
 694                        size             /* size */,
 695                        is_tlab          /* is_tlab */,
 696                        number_of_generations() - 1 /* max_level */);
 697   } else {
 698     if (Verbose && PrintGCDetails) {
 699       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 700     }
 701     // Try a full collection; see delta for bug id 6266275
 702     // for the original code and why this has been simplified
 703     // with from-space allocation criteria modified and
 704     // such allocation moved out of the safepoint path.
 705     gch->do_collection(true             /* full */,
 706                        false            /* clear_all_soft_refs */,
 707                        size             /* size */,
 708                        is_tlab          /* is_tlab */,
 709                        number_of_generations() - 1 /* max_level */);
 710   }
 711 
 712   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 713 
 714   if (result != NULL) {
 715     assert(gch->is_in_reserved(result), "result not in heap");
 716     return result;
 717   }
 718 
 719   // OK, collection failed, try expansion.
 720   result = expand_heap_and_allocate(size, is_tlab);
 721   if (result != NULL) {
 722     return result;
 723   }
 724 
 725   // If we reach this point, we're really out of memory. Try every trick
 726   // we can to reclaim memory. Force collection of soft references. Force
 727   // a complete compaction of the heap. Any additional methods for finding
 728   // free memory should be here, especially if they are expensive. If this
 729   // attempt fails, an OOM exception will be thrown.
 730   {
 731     IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 732 
 733     gch->do_collection(true             /* full */,
 734                        true             /* clear_all_soft_refs */,
 735                        size             /* size */,
 736                        is_tlab          /* is_tlab */,
 737                        number_of_generations() - 1 /* max_level */);
 738   }
 739 
 740   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 741   if (result != NULL) {
 742     assert(gch->is_in_reserved(result), "result not in heap");
 743     return result;
 744   }
 745 
 746   assert(!should_clear_all_soft_refs(),
 747     "Flag should have been handled and cleared prior to this point");
 748 
 749   // What else?  We might try synchronous finalization later.  If the total
 750   // space available is large enough for the allocation, then a more
 751   // complete compaction phase than we've tried so far might be
 752   // appropriate.
 753   return NULL;
 754 }
 755 
 756 // Return true if any of the following is true:
 757 // . the allocation won't fit into the current young gen heap
 758 // . gc locker is occupied (jni critical section)
 759 // . heap memory is tight -- the most recent previous collection
 760 //   was a full collection because a partial collection (would
 761 //   have) failed and is likely to fail again
 762 bool GenCollectorPolicy::should_try_older_generation_allocation(
 763         size_t word_size) const {
 764   GenCollectedHeap* gch = GenCollectedHeap::heap();
 765   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 766   return    (word_size > heap_word_size(gen0_capacity))
 767          || GC_locker::is_active_and_needs_gc()
 768          || gch->incremental_collection_failed();
 769 }
 770 
 771 
 772 //
 773 // MarkSweepPolicy methods
 774 //
 775 
 776 MarkSweepPolicy::MarkSweepPolicy() {
 777   initialize_all();
 778 }
 779 
 780 void MarkSweepPolicy::initialize_generations() {
 781   initialize_perm_generation(PermGen::MarkSweepCompact);
 782   _generations = new GenerationSpecPtr[number_of_generations()];
 783   if (_generations == NULL)
 784     vm_exit_during_initialization("Unable to allocate gen spec");
 785 
 786   if (UseParNewGC && ParallelGCThreads > 0) {
 787     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 788   } else {
 789     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 790   }
 791   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 792 
 793   if (_generations[0] == NULL || _generations[1] == NULL)
 794     vm_exit_during_initialization("Unable to allocate gen spec");
 795 }
 796 
 797 void MarkSweepPolicy::initialize_gc_policy_counters() {
 798   // initialize the policy counters - 2 collectors, 3 generations
 799   if (UseParNewGC && ParallelGCThreads > 0) {
 800     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 801   }
 802   else {
 803     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 804   }
 805 }