1 /*
   2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/handles.inline.hpp"
  31 #include "runtime/interfaceSupport.hpp"
  32 #include "runtime/mutexLocker.hpp"
  33 #include "runtime/objectMonitor.hpp"
  34 #include "runtime/objectMonitor.inline.hpp"
  35 #include "runtime/osThread.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "runtime/thread.hpp"
  38 #include "services/threadService.hpp"
  39 #include "utilities/dtrace.hpp"
  40 #include "utilities/preserveException.hpp"
  41 #ifdef TARGET_OS_FAMILY_linux
  42 # include "os_linux.inline.hpp"
  43 # include "thread_linux.inline.hpp"
  44 #endif
  45 #ifdef TARGET_OS_FAMILY_solaris
  46 # include "os_solaris.inline.hpp"
  47 # include "thread_solaris.inline.hpp"
  48 #endif
  49 #ifdef TARGET_OS_FAMILY_windows
  50 # include "os_windows.inline.hpp"
  51 # include "thread_windows.inline.hpp"
  52 #endif
  53 #ifdef TARGET_OS_FAMILY_bsd
  54 # include "os_bsd.inline.hpp"
  55 # include "thread_bsd.inline.hpp"
  56 #endif
  57 
  58 #if defined(__GNUC__) && !defined(IA64)
  59   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  60   #define ATTR __attribute__((noinline))
  61 #else
  62   #define ATTR
  63 #endif
  64 
  65 
  66 #ifdef DTRACE_ENABLED
  67 
  68 // Only bother with this argument setup if dtrace is available
  69 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  70 
  71 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
  72   jlong, uintptr_t, char*, int);
  73 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
  74   jlong, uintptr_t, char*, int);
  75 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
  76   jlong, uintptr_t, char*, int);
  77 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
  78   jlong, uintptr_t, char*, int);
  79 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
  80   jlong, uintptr_t, char*, int);
  81 
  82 #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
  83   char* bytes = NULL;                                                      \
  84   int len = 0;                                                             \
  85   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  86   Symbol* klassname = ((oop)(klassOop))->klass()->klass_part()->name();    \
  87   if (klassname != NULL) {                                                 \
  88     bytes = (char*)klassname->bytes();                                     \
  89     len = klassname->utf8_length();                                        \
  90   }
  91 
  92 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
  93   {                                                                        \
  94     if (DTraceMonitorProbes) {                                            \
  95       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
  96       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
  97                        (monitor), bytes, len, (millis));                   \
  98     }                                                                      \
  99   }
 100 
 101 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
 102   {                                                                        \
 103     if (DTraceMonitorProbes) {                                            \
 104       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
 105       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
 106                        (uintptr_t)(monitor), bytes, len);                  \
 107     }                                                                      \
 108   }
 109 
 110 #else //  ndef DTRACE_ENABLED
 111 
 112 #define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
 113 #define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
 114 
 115 #endif // ndef DTRACE_ENABLED
 116 
 117 // Tunables ...
 118 // The knob* variables are effectively final.  Once set they should
 119 // never be modified hence.  Consider using __read_mostly with GCC.
 120 
 121 int ObjectMonitor::Knob_Verbose    = 0 ;
 122 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
 123 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
 124 static int Knob_HandOff            = 0 ;
 125 static int Knob_ReportSettings     = 0 ;
 126 
 127 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
 128 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
 129 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
 130 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
 131 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
 132 static int Knob_SpinEarly          = 1 ;
 133 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
 134 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
 135 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
 136 static int Knob_Bonus              = 100 ;     // spin success bonus
 137 static int Knob_BonusB             = 100 ;     // spin success bonus
 138 static int Knob_Penalty            = 200 ;     // spin failure penalty
 139 static int Knob_Poverty            = 1000 ;
 140 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
 141 static int Knob_FixedSpin          = 0 ;
 142 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
 143 static int Knob_UsePause           = 1 ;
 144 static int Knob_ExitPolicy         = 0 ;
 145 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
 146 static int Knob_ResetEvent         = 0 ;
 147 static int BackOffMask             = 0 ;
 148 
 149 static int Knob_FastHSSEC          = 0 ;
 150 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
 151 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
 152 static volatile int InitDone       = 0 ;
 153 
 154 #define TrySpin TrySpin_VaryDuration
 155 
 156 // -----------------------------------------------------------------------------
 157 // Theory of operations -- Monitors lists, thread residency, etc:
 158 //
 159 // * A thread acquires ownership of a monitor by successfully
 160 //   CAS()ing the _owner field from null to non-null.
 161 //
 162 // * Invariant: A thread appears on at most one monitor list --
 163 //   cxq, EntryList or WaitSet -- at any one time.
 164 //
 165 // * Contending threads "push" themselves onto the cxq with CAS
 166 //   and then spin/park.
 167 //
 168 // * After a contending thread eventually acquires the lock it must
 169 //   dequeue itself from either the EntryList or the cxq.
 170 //
 171 // * The exiting thread identifies and unparks an "heir presumptive"
 172 //   tentative successor thread on the EntryList.  Critically, the
 173 //   exiting thread doesn't unlink the successor thread from the EntryList.
 174 //   After having been unparked, the wakee will recontend for ownership of
 175 //   the monitor.   The successor (wakee) will either acquire the lock or
 176 //   re-park itself.
 177 //
 178 //   Succession is provided for by a policy of competitive handoff.
 179 //   The exiting thread does _not_ grant or pass ownership to the
 180 //   successor thread.  (This is also referred to as "handoff" succession").
 181 //   Instead the exiting thread releases ownership and possibly wakes
 182 //   a successor, so the successor can (re)compete for ownership of the lock.
 183 //   If the EntryList is empty but the cxq is populated the exiting
 184 //   thread will drain the cxq into the EntryList.  It does so by
 185 //   by detaching the cxq (installing null with CAS) and folding
 186 //   the threads from the cxq into the EntryList.  The EntryList is
 187 //   doubly linked, while the cxq is singly linked because of the
 188 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 189 //
 190 // * Concurrency invariants:
 191 //
 192 //   -- only the monitor owner may access or mutate the EntryList.
 193 //      The mutex property of the monitor itself protects the EntryList
 194 //      from concurrent interference.
 195 //   -- Only the monitor owner may detach the cxq.
 196 //
 197 // * The monitor entry list operations avoid locks, but strictly speaking
 198 //   they're not lock-free.  Enter is lock-free, exit is not.
 199 //   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
 200 //
 201 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 202 //   detaching thread.  This mechanism is immune from the ABA corruption.
 203 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 204 //
 205 // * Taken together, the cxq and the EntryList constitute or form a
 206 //   single logical queue of threads stalled trying to acquire the lock.
 207 //   We use two distinct lists to improve the odds of a constant-time
 208 //   dequeue operation after acquisition (in the ::enter() epilog) and
 209 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 210 //   A key desideratum is to minimize queue & monitor metadata manipulation
 211 //   that occurs while holding the monitor lock -- that is, we want to
 212 //   minimize monitor lock holds times.  Note that even a small amount of
 213 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 214 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 215 //   locks and monitor metadata.
 216 //
 217 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
 218 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 219 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 220 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 221 //
 222 //   The EntryList is ordered by the prevailing queue discipline and
 223 //   can be organized in any convenient fashion, such as a doubly-linked list or
 224 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 225 //   to operate in constant-time.  If we need a priority queue then something akin
 226 //   to Solaris' sleepq would work nicely.  Viz.,
 227 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 228 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 229 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 230 //   EntryList accordingly.
 231 //
 232 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 233 //   somewhat similar to an elevator-scan.
 234 //
 235 // * The monitor synchronization subsystem avoids the use of native
 236 //   synchronization primitives except for the narrow platform-specific
 237 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 238 //   the semantics of park-unpark.  Put another way, this monitor implementation
 239 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 240 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 241 //   underlying OS manages the READY<->RUN transitions.
 242 //
 243 // * Waiting threads reside on the WaitSet list -- wait() puts
 244 //   the caller onto the WaitSet.
 245 //
 246 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 247 //   either the EntryList or cxq.  Subsequent exit() operations will
 248 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 249 //   it's likely the notifyee would simply impale itself on the lock held
 250 //   by the notifier.
 251 //
 252 // * An interesting alternative is to encode cxq as (List,LockByte) where
 253 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 254 //   variable, like _recursions, in the scheme.  The threads or Events that form
 255 //   the list would have to be aligned in 256-byte addresses.  A thread would
 256 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 257 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 258 //   Note that is is *not* word-tearing, but it does presume that full-word
 259 //   CAS operations are coherent with intermix with STB operations.  That's true
 260 //   on most common processors.
 261 //
 262 // * See also http://blogs.sun.com/dave
 263 
 264 
 265 // -----------------------------------------------------------------------------
 266 // Enter support
 267 
 268 bool ObjectMonitor::try_enter(Thread* THREAD) {
 269   if (THREAD != _owner) {
 270     if (THREAD->is_lock_owned ((address)_owner)) {
 271        assert(_recursions == 0, "internal state error");
 272        _owner = THREAD ;
 273        _recursions = 1 ;
 274        OwnerIsThread = 1 ;
 275        return true;
 276     }
 277     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
 278       return false;
 279     }
 280     return true;
 281   } else {
 282     _recursions++;
 283     return true;
 284   }
 285 }
 286 
 287 void ATTR ObjectMonitor::enter(TRAPS) {
 288   // The following code is ordered to check the most common cases first
 289   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 290   Thread * const Self = THREAD ;
 291   void * cur ;
 292 
 293   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
 294   if (cur == NULL) {
 295      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 296      assert (_recursions == 0   , "invariant") ;
 297      assert (_owner      == Self, "invariant") ;
 298      // CONSIDER: set or assert OwnerIsThread == 1
 299      return ;
 300   }
 301 
 302   if (cur == Self) {
 303      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 304      _recursions ++ ;
 305      return ;
 306   }
 307 
 308   if (Self->is_lock_owned ((address)cur)) {
 309     assert (_recursions == 0, "internal state error");
 310     _recursions = 1 ;
 311     // Commute owner from a thread-specific on-stack BasicLockObject address to
 312     // a full-fledged "Thread *".
 313     _owner = Self ;
 314     OwnerIsThread = 1 ;
 315     return ;
 316   }
 317 
 318   // We've encountered genuine contention.
 319   assert (Self->_Stalled == 0, "invariant") ;
 320   Self->_Stalled = intptr_t(this) ;
 321 
 322   // Try one round of spinning *before* enqueueing Self
 323   // and before going through the awkward and expensive state
 324   // transitions.  The following spin is strictly optional ...
 325   // Note that if we acquire the monitor from an initial spin
 326   // we forgo posting JVMTI events and firing DTRACE probes.
 327   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 328      assert (_owner == Self      , "invariant") ;
 329      assert (_recursions == 0    , "invariant") ;
 330      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 331      Self->_Stalled = 0 ;
 332      return ;
 333   }
 334 
 335   assert (_owner != Self          , "invariant") ;
 336   assert (_succ  != Self          , "invariant") ;
 337   assert (Self->is_Java_thread()  , "invariant") ;
 338   JavaThread * jt = (JavaThread *) Self ;
 339   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
 340   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
 341   assert (this->object() != NULL  , "invariant") ;
 342   assert (_count >= 0, "invariant") ;
 343 
 344   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 345   // Ensure the object-monitor relationship remains stable while there's contention.
 346   Atomic::inc_ptr(&_count);
 347 
 348   { // Change java thread status to indicate blocked on monitor enter.
 349     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 350 
 351     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 352     if (JvmtiExport::should_post_monitor_contended_enter()) {
 353       JvmtiExport::post_monitor_contended_enter(jt, this);
 354     }
 355 
 356     OSThreadContendState osts(Self->osthread());
 357     ThreadBlockInVM tbivm(jt);
 358 
 359     Self->set_current_pending_monitor(this);
 360 
 361     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 362     for (;;) {
 363       jt->set_suspend_equivalent();
 364       // cleared by handle_special_suspend_equivalent_condition()
 365       // or java_suspend_self()
 366 
 367       EnterI (THREAD) ;
 368 
 369       if (!ExitSuspendEquivalent(jt)) break ;
 370 
 371       //
 372       // We have acquired the contended monitor, but while we were
 373       // waiting another thread suspended us. We don't want to enter
 374       // the monitor while suspended because that would surprise the
 375       // thread that suspended us.
 376       //
 377           _recursions = 0 ;
 378       _succ = NULL ;
 379       exit (Self) ;
 380 
 381       jt->java_suspend_self();
 382     }
 383     Self->set_current_pending_monitor(NULL);
 384   }
 385 
 386   Atomic::dec_ptr(&_count);
 387   assert (_count >= 0, "invariant") ;
 388   Self->_Stalled = 0 ;
 389 
 390   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 391   assert (_recursions == 0     , "invariant") ;
 392   assert (_owner == Self       , "invariant") ;
 393   assert (_succ  != Self       , "invariant") ;
 394   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 395 
 396   // The thread -- now the owner -- is back in vm mode.
 397   // Report the glorious news via TI,DTrace and jvmstat.
 398   // The probe effect is non-trivial.  All the reportage occurs
 399   // while we hold the monitor, increasing the length of the critical
 400   // section.  Amdahl's parallel speedup law comes vividly into play.
 401   //
 402   // Another option might be to aggregate the events (thread local or
 403   // per-monitor aggregation) and defer reporting until a more opportune
 404   // time -- such as next time some thread encounters contention but has
 405   // yet to acquire the lock.  While spinning that thread could
 406   // spinning we could increment JVMStat counters, etc.
 407 
 408   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 409   if (JvmtiExport::should_post_monitor_contended_entered()) {
 410     JvmtiExport::post_monitor_contended_entered(jt, this);
 411   }
 412   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
 413      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
 414   }
 415 }
 416 
 417 
 418 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 419 // Callers must compensate as needed.
 420 
 421 int ObjectMonitor::TryLock (Thread * Self) {
 422    for (;;) {
 423       void * own = _owner ;
 424       if (own != NULL) return 0 ;
 425       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
 426          // Either guarantee _recursions == 0 or set _recursions = 0.
 427          assert (_recursions == 0, "invariant") ;
 428          assert (_owner == Self, "invariant") ;
 429          // CONSIDER: set or assert that OwnerIsThread == 1
 430          return 1 ;
 431       }
 432       // The lock had been free momentarily, but we lost the race to the lock.
 433       // Interference -- the CAS failed.
 434       // We can either return -1 or retry.
 435       // Retry doesn't make as much sense because the lock was just acquired.
 436       if (true) return -1 ;
 437    }
 438 }
 439 
 440 void ATTR ObjectMonitor::EnterI (TRAPS) {
 441     Thread * Self = THREAD ;
 442     assert (Self->is_Java_thread(), "invariant") ;
 443     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
 444 
 445     // Try the lock - TATAS
 446     if (TryLock (Self) > 0) {
 447         assert (_succ != Self              , "invariant") ;
 448         assert (_owner == Self             , "invariant") ;
 449         assert (_Responsible != Self       , "invariant") ;
 450         return ;
 451     }
 452 
 453     DeferredInitialize () ;
 454 
 455     // We try one round of spinning *before* enqueueing Self.
 456     //
 457     // If the _owner is ready but OFFPROC we could use a YieldTo()
 458     // operation to donate the remainder of this thread's quantum
 459     // to the owner.  This has subtle but beneficial affinity
 460     // effects.
 461 
 462     if (TrySpin (Self) > 0) {
 463         assert (_owner == Self        , "invariant") ;
 464         assert (_succ != Self         , "invariant") ;
 465         assert (_Responsible != Self  , "invariant") ;
 466         return ;
 467     }
 468 
 469     // The Spin failed -- Enqueue and park the thread ...
 470     assert (_succ  != Self            , "invariant") ;
 471     assert (_owner != Self            , "invariant") ;
 472     assert (_Responsible != Self      , "invariant") ;
 473 
 474     // Enqueue "Self" on ObjectMonitor's _cxq.
 475     //
 476     // Node acts as a proxy for Self.
 477     // As an aside, if were to ever rewrite the synchronization code mostly
 478     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 479     // Java objects.  This would avoid awkward lifecycle and liveness issues,
 480     // as well as eliminate a subset of ABA issues.
 481     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 482     //
 483 
 484     ObjectWaiter node(Self) ;
 485     Self->_ParkEvent->reset() ;
 486     node._prev   = (ObjectWaiter *) 0xBAD ;
 487     node.TState  = ObjectWaiter::TS_CXQ ;
 488 
 489     // Push "Self" onto the front of the _cxq.
 490     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 491     // Note that spinning tends to reduce the rate at which threads
 492     // enqueue and dequeue on EntryList|cxq.
 493     ObjectWaiter * nxt ;
 494     for (;;) {
 495         node._next = nxt = _cxq ;
 496         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
 497 
 498         // Interference - the CAS failed because _cxq changed.  Just retry.
 499         // As an optional optimization we retry the lock.
 500         if (TryLock (Self) > 0) {
 501             assert (_succ != Self         , "invariant") ;
 502             assert (_owner == Self        , "invariant") ;
 503             assert (_Responsible != Self  , "invariant") ;
 504             return ;
 505         }
 506     }
 507 
 508     // Check for cxq|EntryList edge transition to non-null.  This indicates
 509     // the onset of contention.  While contention persists exiting threads
 510     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 511     // operations revert to the faster 1-0 mode.  This enter operation may interleave
 512     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 513     // arrange for one of the contending thread to use a timed park() operations
 514     // to detect and recover from the race.  (Stranding is form of progress failure
 515     // where the monitor is unlocked but all the contending threads remain parked).
 516     // That is, at least one of the contended threads will periodically poll _owner.
 517     // One of the contending threads will become the designated "Responsible" thread.
 518     // The Responsible thread uses a timed park instead of a normal indefinite park
 519     // operation -- it periodically wakes and checks for and recovers from potential
 520     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 521     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 522     // be responsible for a monitor.
 523     //
 524     // Currently, one of the contended threads takes on the added role of "Responsible".
 525     // A viable alternative would be to use a dedicated "stranding checker" thread
 526     // that periodically iterated over all the threads (or active monitors) and unparked
 527     // successors where there was risk of stranding.  This would help eliminate the
 528     // timer scalability issues we see on some platforms as we'd only have one thread
 529     // -- the checker -- parked on a timer.
 530 
 531     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
 532         // Try to assume the role of responsible thread for the monitor.
 533         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 534         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 535     }
 536 
 537     // The lock have been released while this thread was occupied queueing
 538     // itself onto _cxq.  To close the race and avoid "stranding" and
 539     // progress-liveness failure we must resample-retry _owner before parking.
 540     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 541     // In this case the ST-MEMBAR is accomplished with CAS().
 542     //
 543     // TODO: Defer all thread state transitions until park-time.
 544     // Since state transitions are heavy and inefficient we'd like
 545     // to defer the state transitions until absolutely necessary,
 546     // and in doing so avoid some transitions ...
 547 
 548     TEVENT (Inflated enter - Contention) ;
 549     int nWakeups = 0 ;
 550     int RecheckInterval = 1 ;
 551 
 552     for (;;) {
 553 
 554         if (TryLock (Self) > 0) break ;
 555         assert (_owner != Self, "invariant") ;
 556 
 557         if ((SyncFlags & 2) && _Responsible == NULL) {
 558            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 559         }
 560 
 561         // park self
 562         if (_Responsible == Self || (SyncFlags & 1)) {
 563             TEVENT (Inflated enter - park TIMED) ;
 564             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
 565             // Increase the RecheckInterval, but clamp the value.
 566             RecheckInterval *= 8 ;
 567             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
 568         } else {
 569             TEVENT (Inflated enter - park UNTIMED) ;
 570             Self->_ParkEvent->park() ;
 571         }
 572 
 573         if (TryLock(Self) > 0) break ;
 574 
 575         // The lock is still contested.
 576         // Keep a tally of the # of futile wakeups.
 577         // Note that the counter is not protected by a lock or updated by atomics.
 578         // That is by design - we trade "lossy" counters which are exposed to
 579         // races during updates for a lower probe effect.
 580         TEVENT (Inflated enter - Futile wakeup) ;
 581         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 582            ObjectMonitor::_sync_FutileWakeups->inc() ;
 583         }
 584         ++ nWakeups ;
 585 
 586         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 587         // We can defer clearing _succ until after the spin completes
 588         // TrySpin() must tolerate being called with _succ == Self.
 589         // Try yet another round of adaptive spinning.
 590         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
 591 
 592         // We can find that we were unpark()ed and redesignated _succ while
 593         // we were spinning.  That's harmless.  If we iterate and call park(),
 594         // park() will consume the event and return immediately and we'll
 595         // just spin again.  This pattern can repeat, leaving _succ to simply
 596         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 597         // Alternately, we can sample fired() here, and if set, forgo spinning
 598         // in the next iteration.
 599 
 600         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 601            Self->_ParkEvent->reset() ;
 602            OrderAccess::fence() ;
 603         }
 604         if (_succ == Self) _succ = NULL ;
 605 
 606         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 607         OrderAccess::fence() ;
 608     }
 609 
 610     // Egress :
 611     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 612     // Normally we'll find Self on the EntryList .
 613     // From the perspective of the lock owner (this thread), the
 614     // EntryList is stable and cxq is prepend-only.
 615     // The head of cxq is volatile but the interior is stable.
 616     // In addition, Self.TState is stable.
 617 
 618     assert (_owner == Self      , "invariant") ;
 619     assert (object() != NULL    , "invariant") ;
 620     // I'd like to write:
 621     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 622     // but as we're at a safepoint that's not safe.
 623 
 624     UnlinkAfterAcquire (Self, &node) ;
 625     if (_succ == Self) _succ = NULL ;
 626 
 627     assert (_succ != Self, "invariant") ;
 628     if (_Responsible == Self) {
 629         _Responsible = NULL ;
 630         // Dekker pivot-point.
 631         // Consider OrderAccess::storeload() here
 632 
 633         // We may leave threads on cxq|EntryList without a designated
 634         // "Responsible" thread.  This is benign.  When this thread subsequently
 635         // exits the monitor it can "see" such preexisting "old" threads --
 636         // threads that arrived on the cxq|EntryList before the fence, above --
 637         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 638         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 639         // non-null and elect a new "Responsible" timer thread.
 640         //
 641         // This thread executes:
 642         //    ST Responsible=null; MEMBAR    (in enter epilog - here)
 643         //    LD cxq|EntryList               (in subsequent exit)
 644         //
 645         // Entering threads in the slow/contended path execute:
 646         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 647         //    The (ST cxq; MEMBAR) is accomplished with CAS().
 648         //
 649         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 650         // exit operation from floating above the ST Responsible=null.
 651         //
 652         // In *practice* however, EnterI() is always followed by some atomic
 653         // operation such as the decrement of _count in ::enter().  Those atomics
 654         // obviate the need for the explicit MEMBAR, above.
 655     }
 656 
 657     // We've acquired ownership with CAS().
 658     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 659     // But since the CAS() this thread may have also stored into _succ,
 660     // EntryList, cxq or Responsible.  These meta-data updates must be
 661     // visible __before this thread subsequently drops the lock.
 662     // Consider what could occur if we didn't enforce this constraint --
 663     // STs to monitor meta-data and user-data could reorder with (become
 664     // visible after) the ST in exit that drops ownership of the lock.
 665     // Some other thread could then acquire the lock, but observe inconsistent
 666     // or old monitor meta-data and heap data.  That violates the JMM.
 667     // To that end, the 1-0 exit() operation must have at least STST|LDST
 668     // "release" barrier semantics.  Specifically, there must be at least a
 669     // STST|LDST barrier in exit() before the ST of null into _owner that drops
 670     // the lock.   The barrier ensures that changes to monitor meta-data and data
 671     // protected by the lock will be visible before we release the lock, and
 672     // therefore before some other thread (CPU) has a chance to acquire the lock.
 673     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 674     //
 675     // Critically, any prior STs to _succ or EntryList must be visible before
 676     // the ST of null into _owner in the *subsequent* (following) corresponding
 677     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 678     // execute a serializing instruction.
 679 
 680     if (SyncFlags & 8) {
 681        OrderAccess::fence() ;
 682     }
 683     return ;
 684 }
 685 
 686 // ReenterI() is a specialized inline form of the latter half of the
 687 // contended slow-path from EnterI().  We use ReenterI() only for
 688 // monitor reentry in wait().
 689 //
 690 // In the future we should reconcile EnterI() and ReenterI(), adding
 691 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 692 // loop accordingly.
 693 
 694 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
 695     assert (Self != NULL                , "invariant") ;
 696     assert (SelfNode != NULL            , "invariant") ;
 697     assert (SelfNode->_thread == Self   , "invariant") ;
 698     assert (_waiters > 0                , "invariant") ;
 699     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
 700     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
 701     JavaThread * jt = (JavaThread *) Self ;
 702 
 703     int nWakeups = 0 ;
 704     for (;;) {
 705         ObjectWaiter::TStates v = SelfNode->TState ;
 706         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
 707         assert    (_owner != Self, "invariant") ;
 708 
 709         if (TryLock (Self) > 0) break ;
 710         if (TrySpin (Self) > 0) break ;
 711 
 712         TEVENT (Wait Reentry - parking) ;
 713 
 714         // State transition wrappers around park() ...
 715         // ReenterI() wisely defers state transitions until
 716         // it's clear we must park the thread.
 717         {
 718            OSThreadContendState osts(Self->osthread());
 719            ThreadBlockInVM tbivm(jt);
 720 
 721            // cleared by handle_special_suspend_equivalent_condition()
 722            // or java_suspend_self()
 723            jt->set_suspend_equivalent();
 724            if (SyncFlags & 1) {
 725               Self->_ParkEvent->park ((jlong)1000) ;
 726            } else {
 727               Self->_ParkEvent->park () ;
 728            }
 729 
 730            // were we externally suspended while we were waiting?
 731            for (;;) {
 732               if (!ExitSuspendEquivalent (jt)) break ;
 733               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 734               jt->java_suspend_self();
 735               jt->set_suspend_equivalent();
 736            }
 737         }
 738 
 739         // Try again, but just so we distinguish between futile wakeups and
 740         // successful wakeups.  The following test isn't algorithmically
 741         // necessary, but it helps us maintain sensible statistics.
 742         if (TryLock(Self) > 0) break ;
 743 
 744         // The lock is still contested.
 745         // Keep a tally of the # of futile wakeups.
 746         // Note that the counter is not protected by a lock or updated by atomics.
 747         // That is by design - we trade "lossy" counters which are exposed to
 748         // races during updates for a lower probe effect.
 749         TEVENT (Wait Reentry - futile wakeup) ;
 750         ++ nWakeups ;
 751 
 752         // Assuming this is not a spurious wakeup we'll normally
 753         // find that _succ == Self.
 754         if (_succ == Self) _succ = NULL ;
 755 
 756         // Invariant: after clearing _succ a contending thread
 757         // *must* retry  _owner before parking.
 758         OrderAccess::fence() ;
 759 
 760         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 761           ObjectMonitor::_sync_FutileWakeups->inc() ;
 762         }
 763     }
 764 
 765     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 766     // Normally we'll find Self on the EntryList.
 767     // Unlinking from the EntryList is constant-time and atomic-free.
 768     // From the perspective of the lock owner (this thread), the
 769     // EntryList is stable and cxq is prepend-only.
 770     // The head of cxq is volatile but the interior is stable.
 771     // In addition, Self.TState is stable.
 772 
 773     assert (_owner == Self, "invariant") ;
 774     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 775     UnlinkAfterAcquire (Self, SelfNode) ;
 776     if (_succ == Self) _succ = NULL ;
 777     assert (_succ != Self, "invariant") ;
 778     SelfNode->TState = ObjectWaiter::TS_RUN ;
 779     OrderAccess::fence() ;      // see comments at the end of EnterI()
 780 }
 781 
 782 // after the thread acquires the lock in ::enter().  Equally, we could defer
 783 // unlinking the thread until ::exit()-time.
 784 
 785 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
 786 {
 787     assert (_owner == Self, "invariant") ;
 788     assert (SelfNode->_thread == Self, "invariant") ;
 789 
 790     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 791         // Normal case: remove Self from the DLL EntryList .
 792         // This is a constant-time operation.
 793         ObjectWaiter * nxt = SelfNode->_next ;
 794         ObjectWaiter * prv = SelfNode->_prev ;
 795         if (nxt != NULL) nxt->_prev = prv ;
 796         if (prv != NULL) prv->_next = nxt ;
 797         if (SelfNode == _EntryList ) _EntryList = nxt ;
 798         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 799         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 800         TEVENT (Unlink from EntryList) ;
 801     } else {
 802         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 803         // Inopportune interleaving -- Self is still on the cxq.
 804         // This usually means the enqueue of self raced an exiting thread.
 805         // Normally we'll find Self near the front of the cxq, so
 806         // dequeueing is typically fast.  If needbe we can accelerate
 807         // this with some MCS/CHL-like bidirectional list hints and advisory
 808         // back-links so dequeueing from the interior will normally operate
 809         // in constant-time.
 810         // Dequeue Self from either the head (with CAS) or from the interior
 811         // with a linear-time scan and normal non-atomic memory operations.
 812         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 813         // and then unlink Self from EntryList.  We have to drain eventually,
 814         // so it might as well be now.
 815 
 816         ObjectWaiter * v = _cxq ;
 817         assert (v != NULL, "invariant") ;
 818         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
 819             // The CAS above can fail from interference IFF a "RAT" arrived.
 820             // In that case Self must be in the interior and can no longer be
 821             // at the head of cxq.
 822             if (v == SelfNode) {
 823                 assert (_cxq != v, "invariant") ;
 824                 v = _cxq ;          // CAS above failed - start scan at head of list
 825             }
 826             ObjectWaiter * p ;
 827             ObjectWaiter * q = NULL ;
 828             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
 829                 q = p ;
 830                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 831             }
 832             assert (v != SelfNode,  "invariant") ;
 833             assert (p == SelfNode,  "Node not found on cxq") ;
 834             assert (p != _cxq,      "invariant") ;
 835             assert (q != NULL,      "invariant") ;
 836             assert (q->_next == p,  "invariant") ;
 837             q->_next = p->_next ;
 838         }
 839         TEVENT (Unlink from cxq) ;
 840     }
 841 
 842     // Diagnostic hygiene ...
 843     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
 844     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
 845     SelfNode->TState = ObjectWaiter::TS_RUN ;
 846 }
 847 
 848 // -----------------------------------------------------------------------------
 849 // Exit support
 850 //
 851 // exit()
 852 // ~~~~~~
 853 // Note that the collector can't reclaim the objectMonitor or deflate
 854 // the object out from underneath the thread calling ::exit() as the
 855 // thread calling ::exit() never transitions to a stable state.
 856 // This inhibits GC, which in turn inhibits asynchronous (and
 857 // inopportune) reclamation of "this".
 858 //
 859 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 860 // There's one exception to the claim above, however.  EnterI() can call
 861 // exit() to drop a lock if the acquirer has been externally suspended.
 862 // In that case exit() is called with _thread_state as _thread_blocked,
 863 // but the monitor's _count field is > 0, which inhibits reclamation.
 864 //
 865 // 1-0 exit
 866 // ~~~~~~~~
 867 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 868 // the fast-path operators have been optimized so the common ::exit()
 869 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
 870 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 871 // greatly improves latency -- MEMBAR and CAS having considerable local
 872 // latency on modern processors -- but at the cost of "stranding".  Absent the
 873 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 874 // ::enter() path, resulting in the entering thread being stranding
 875 // and a progress-liveness failure.   Stranding is extremely rare.
 876 // We use timers (timed park operations) & periodic polling to detect
 877 // and recover from stranding.  Potentially stranded threads periodically
 878 // wake up and poll the lock.  See the usage of the _Responsible variable.
 879 //
 880 // The CAS() in enter provides for safety and exclusion, while the CAS or
 881 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 882 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
 883 // We detect and recover from stranding with timers.
 884 //
 885 // If a thread transiently strands it'll park until (a) another
 886 // thread acquires the lock and then drops the lock, at which time the
 887 // exiting thread will notice and unpark the stranded thread, or, (b)
 888 // the timer expires.  If the lock is high traffic then the stranding latency
 889 // will be low due to (a).  If the lock is low traffic then the odds of
 890 // stranding are lower, although the worst-case stranding latency
 891 // is longer.  Critically, we don't want to put excessive load in the
 892 // platform's timer subsystem.  We want to minimize both the timer injection
 893 // rate (timers created/sec) as well as the number of timers active at
 894 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 895 // the integral of the # of active timers at any instant over time).
 896 // Both impinge on OS scalability.  Given that, at most one thread parked on
 897 // a monitor will use a timer.
 898 
 899 void ATTR ObjectMonitor::exit(TRAPS) {
 900    Thread * Self = THREAD ;
 901    if (THREAD != _owner) {
 902      if (THREAD->is_lock_owned((address) _owner)) {
 903        // Transmute _owner from a BasicLock pointer to a Thread address.
 904        // We don't need to hold _mutex for this transition.
 905        // Non-null to Non-null is safe as long as all readers can
 906        // tolerate either flavor.
 907        assert (_recursions == 0, "invariant") ;
 908        _owner = THREAD ;
 909        _recursions = 0 ;
 910        OwnerIsThread = 1 ;
 911      } else {
 912        // NOTE: we need to handle unbalanced monitor enter/exit
 913        // in native code by throwing an exception.
 914        // TODO: Throw an IllegalMonitorStateException ?
 915        TEVENT (Exit - Throw IMSX) ;
 916        assert(false, "Non-balanced monitor enter/exit!");
 917        if (false) {
 918           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 919        }
 920        return;
 921      }
 922    }
 923 
 924    if (_recursions != 0) {
 925      _recursions--;        // this is simple recursive enter
 926      TEVENT (Inflated exit - recursive) ;
 927      return ;
 928    }
 929 
 930    // Invariant: after setting Responsible=null an thread must execute
 931    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 932    if ((SyncFlags & 4) == 0) {
 933       _Responsible = NULL ;
 934    }
 935 
 936    for (;;) {
 937       assert (THREAD == _owner, "invariant") ;
 938 
 939 
 940       if (Knob_ExitPolicy == 0) {
 941          // release semantics: prior loads and stores from within the critical section
 942          // must not float (reorder) past the following store that drops the lock.
 943          // On SPARC that requires MEMBAR #loadstore|#storestore.
 944          // But of course in TSO #loadstore|#storestore is not required.
 945          // I'd like to write one of the following:
 946          // A.  OrderAccess::release() ; _owner = NULL
 947          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 948          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 949          // store into a _dummy variable.  That store is not needed, but can result
 950          // in massive wasteful coherency traffic on classic SMP systems.
 951          // Instead, I use release_store(), which is implemented as just a simple
 952          // ST on x64, x86 and SPARC.
 953          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
 954          OrderAccess::storeload() ;                         // See if we need to wake a successor
 955          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 956             TEVENT (Inflated exit - simple egress) ;
 957             return ;
 958          }
 959          TEVENT (Inflated exit - complex egress) ;
 960 
 961          // Normally the exiting thread is responsible for ensuring succession,
 962          // but if other successors are ready or other entering threads are spinning
 963          // then this thread can simply store NULL into _owner and exit without
 964          // waking a successor.  The existence of spinners or ready successors
 965          // guarantees proper succession (liveness).  Responsibility passes to the
 966          // ready or running successors.  The exiting thread delegates the duty.
 967          // More precisely, if a successor already exists this thread is absolved
 968          // of the responsibility of waking (unparking) one.
 969          //
 970          // The _succ variable is critical to reducing futile wakeup frequency.
 971          // _succ identifies the "heir presumptive" thread that has been made
 972          // ready (unparked) but that has not yet run.  We need only one such
 973          // successor thread to guarantee progress.
 974          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 975          // section 3.3 "Futile Wakeup Throttling" for details.
 976          //
 977          // Note that spinners in Enter() also set _succ non-null.
 978          // In the current implementation spinners opportunistically set
 979          // _succ so that exiting threads might avoid waking a successor.
 980          // Another less appealing alternative would be for the exiting thread
 981          // to drop the lock and then spin briefly to see if a spinner managed
 982          // to acquire the lock.  If so, the exiting thread could exit
 983          // immediately without waking a successor, otherwise the exiting
 984          // thread would need to dequeue and wake a successor.
 985          // (Note that we'd need to make the post-drop spin short, but no
 986          // shorter than the worst-case round-trip cache-line migration time.
 987          // The dropped lock needs to become visible to the spinner, and then
 988          // the acquisition of the lock by the spinner must become visible to
 989          // the exiting thread).
 990          //
 991 
 992          // It appears that an heir-presumptive (successor) must be made ready.
 993          // Only the current lock owner can manipulate the EntryList or
 994          // drain _cxq, so we need to reacquire the lock.  If we fail
 995          // to reacquire the lock the responsibility for ensuring succession
 996          // falls to the new owner.
 997          //
 998          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
 999             return ;
1000          }
1001          TEVENT (Exit - Reacquired) ;
1002       } else {
1003          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1004             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1005             OrderAccess::storeload() ;
1006             // Ratify the previously observed values.
1007             if (_cxq == NULL || _succ != NULL) {
1008                 TEVENT (Inflated exit - simple egress) ;
1009                 return ;
1010             }
1011 
1012             // inopportune interleaving -- the exiting thread (this thread)
1013             // in the fast-exit path raced an entering thread in the slow-enter
1014             // path.
1015             // We have two choices:
1016             // A.  Try to reacquire the lock.
1017             //     If the CAS() fails return immediately, otherwise
1018             //     we either restart/rerun the exit operation, or simply
1019             //     fall-through into the code below which wakes a successor.
1020             // B.  If the elements forming the EntryList|cxq are TSM
1021             //     we could simply unpark() the lead thread and return
1022             //     without having set _succ.
1023             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1024                TEVENT (Inflated exit - reacquired succeeded) ;
1025                return ;
1026             }
1027             TEVENT (Inflated exit - reacquired failed) ;
1028          } else {
1029             TEVENT (Inflated exit - complex egress) ;
1030          }
1031       }
1032 
1033       guarantee (_owner == THREAD, "invariant") ;
1034 
1035       ObjectWaiter * w = NULL ;
1036       int QMode = Knob_QMode ;
1037 
1038       if (QMode == 2 && _cxq != NULL) {
1039           // QMode == 2 : cxq has precedence over EntryList.
1040           // Try to directly wake a successor from the cxq.
1041           // If successful, the successor will need to unlink itself from cxq.
1042           w = _cxq ;
1043           assert (w != NULL, "invariant") ;
1044           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1045           ExitEpilog (Self, w) ;
1046           return ;
1047       }
1048 
1049       if (QMode == 3 && _cxq != NULL) {
1050           // Aggressively drain cxq into EntryList at the first opportunity.
1051           // This policy ensure that recently-run threads live at the head of EntryList.
1052           // Drain _cxq into EntryList - bulk transfer.
1053           // First, detach _cxq.
1054           // The following loop is tantamount to: w = swap (&cxq, NULL)
1055           w = _cxq ;
1056           for (;;) {
1057              assert (w != NULL, "Invariant") ;
1058              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1059              if (u == w) break ;
1060              w = u ;
1061           }
1062           assert (w != NULL              , "invariant") ;
1063 
1064           ObjectWaiter * q = NULL ;
1065           ObjectWaiter * p ;
1066           for (p = w ; p != NULL ; p = p->_next) {
1067               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1068               p->TState = ObjectWaiter::TS_ENTER ;
1069               p->_prev = q ;
1070               q = p ;
1071           }
1072 
1073           // Append the RATs to the EntryList
1074           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1075           ObjectWaiter * Tail ;
1076           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
1077           if (Tail == NULL) {
1078               _EntryList = w ;
1079           } else {
1080               Tail->_next = w ;
1081               w->_prev = Tail ;
1082           }
1083 
1084           // Fall thru into code that tries to wake a successor from EntryList
1085       }
1086 
1087       if (QMode == 4 && _cxq != NULL) {
1088           // Aggressively drain cxq into EntryList at the first opportunity.
1089           // This policy ensure that recently-run threads live at the head of EntryList.
1090 
1091           // Drain _cxq into EntryList - bulk transfer.
1092           // First, detach _cxq.
1093           // The following loop is tantamount to: w = swap (&cxq, NULL)
1094           w = _cxq ;
1095           for (;;) {
1096              assert (w != NULL, "Invariant") ;
1097              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1098              if (u == w) break ;
1099              w = u ;
1100           }
1101           assert (w != NULL              , "invariant") ;
1102 
1103           ObjectWaiter * q = NULL ;
1104           ObjectWaiter * p ;
1105           for (p = w ; p != NULL ; p = p->_next) {
1106               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1107               p->TState = ObjectWaiter::TS_ENTER ;
1108               p->_prev = q ;
1109               q = p ;
1110           }
1111 
1112           // Prepend the RATs to the EntryList
1113           if (_EntryList != NULL) {
1114               q->_next = _EntryList ;
1115               _EntryList->_prev = q ;
1116           }
1117           _EntryList = w ;
1118 
1119           // Fall thru into code that tries to wake a successor from EntryList
1120       }
1121 
1122       w = _EntryList  ;
1123       if (w != NULL) {
1124           // I'd like to write: guarantee (w->_thread != Self).
1125           // But in practice an exiting thread may find itself on the EntryList.
1126           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1127           // then calls exit().  Exit release the lock by setting O._owner to NULL.
1128           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1129           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1130           // release the lock "O".  T2 resumes immediately after the ST of null into
1131           // _owner, above.  T2 notices that the EntryList is populated, so it
1132           // reacquires the lock and then finds itself on the EntryList.
1133           // Given all that, we have to tolerate the circumstance where "w" is
1134           // associated with Self.
1135           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1136           ExitEpilog (Self, w) ;
1137           return ;
1138       }
1139 
1140       // If we find that both _cxq and EntryList are null then just
1141       // re-run the exit protocol from the top.
1142       w = _cxq ;
1143       if (w == NULL) continue ;
1144 
1145       // Drain _cxq into EntryList - bulk transfer.
1146       // First, detach _cxq.
1147       // The following loop is tantamount to: w = swap (&cxq, NULL)
1148       for (;;) {
1149           assert (w != NULL, "Invariant") ;
1150           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1151           if (u == w) break ;
1152           w = u ;
1153       }
1154       TEVENT (Inflated exit - drain cxq into EntryList) ;
1155 
1156       assert (w != NULL              , "invariant") ;
1157       assert (_EntryList  == NULL    , "invariant") ;
1158 
1159       // Convert the LIFO SLL anchored by _cxq into a DLL.
1160       // The list reorganization step operates in O(LENGTH(w)) time.
1161       // It's critical that this step operate quickly as
1162       // "Self" still holds the outer-lock, restricting parallelism
1163       // and effectively lengthening the critical section.
1164       // Invariant: s chases t chases u.
1165       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1166       // we have faster access to the tail.
1167 
1168       if (QMode == 1) {
1169          // QMode == 1 : drain cxq to EntryList, reversing order
1170          // We also reverse the order of the list.
1171          ObjectWaiter * s = NULL ;
1172          ObjectWaiter * t = w ;
1173          ObjectWaiter * u = NULL ;
1174          while (t != NULL) {
1175              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
1176              t->TState = ObjectWaiter::TS_ENTER ;
1177              u = t->_next ;
1178              t->_prev = u ;
1179              t->_next = s ;
1180              s = t;
1181              t = u ;
1182          }
1183          _EntryList  = s ;
1184          assert (s != NULL, "invariant") ;
1185       } else {
1186          // QMode == 0 or QMode == 2
1187          _EntryList = w ;
1188          ObjectWaiter * q = NULL ;
1189          ObjectWaiter * p ;
1190          for (p = w ; p != NULL ; p = p->_next) {
1191              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1192              p->TState = ObjectWaiter::TS_ENTER ;
1193              p->_prev = q ;
1194              q = p ;
1195          }
1196       }
1197 
1198       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1199       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1200 
1201       // See if we can abdicate to a spinner instead of waking a thread.
1202       // A primary goal of the implementation is to reduce the
1203       // context-switch rate.
1204       if (_succ != NULL) continue;
1205 
1206       w = _EntryList  ;
1207       if (w != NULL) {
1208           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1209           ExitEpilog (Self, w) ;
1210           return ;
1211       }
1212    }
1213 }
1214 
1215 // ExitSuspendEquivalent:
1216 // A faster alternate to handle_special_suspend_equivalent_condition()
1217 //
1218 // handle_special_suspend_equivalent_condition() unconditionally
1219 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1220 // operations have high latency.  Note that in ::enter() we call HSSEC
1221 // while holding the monitor, so we effectively lengthen the critical sections.
1222 //
1223 // There are a number of possible solutions:
1224 //
1225 // A.  To ameliorate the problem we might also defer state transitions
1226 //     to as late as possible -- just prior to parking.
1227 //     Given that, we'd call HSSEC after having returned from park(),
1228 //     but before attempting to acquire the monitor.  This is only a
1229 //     partial solution.  It avoids calling HSSEC while holding the
1230 //     monitor (good), but it still increases successor reacquisition latency --
1231 //     the interval between unparking a successor and the time the successor
1232 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1233 //     If we use this technique we can also avoid EnterI()-exit() loop
1234 //     in ::enter() where we iteratively drop the lock and then attempt
1235 //     to reacquire it after suspending.
1236 //
1237 // B.  In the future we might fold all the suspend bits into a
1238 //     composite per-thread suspend flag and then update it with CAS().
1239 //     Alternately, a Dekker-like mechanism with multiple variables
1240 //     would suffice:
1241 //       ST Self->_suspend_equivalent = false
1242 //       MEMBAR
1243 //       LD Self_>_suspend_flags
1244 //
1245 
1246 
1247 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1248    int Mode = Knob_FastHSSEC ;
1249    if (Mode && !jSelf->is_external_suspend()) {
1250       assert (jSelf->is_suspend_equivalent(), "invariant") ;
1251       jSelf->clear_suspend_equivalent() ;
1252       if (2 == Mode) OrderAccess::storeload() ;
1253       if (!jSelf->is_external_suspend()) return false ;
1254       // We raced a suspension -- fall thru into the slow path
1255       TEVENT (ExitSuspendEquivalent - raced) ;
1256       jSelf->set_suspend_equivalent() ;
1257    }
1258    return jSelf->handle_special_suspend_equivalent_condition() ;
1259 }
1260 
1261 
1262 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1263    assert (_owner == Self, "invariant") ;
1264 
1265    // Exit protocol:
1266    // 1. ST _succ = wakee
1267    // 2. membar #loadstore|#storestore;
1268    // 2. ST _owner = NULL
1269    // 3. unpark(wakee)
1270 
1271    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
1272    ParkEvent * Trigger = Wakee->_event ;
1273 
1274    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1275    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1276    // out-of-scope (non-extant).
1277    Wakee  = NULL ;
1278 
1279    // Drop the lock
1280    OrderAccess::release_store_ptr (&_owner, NULL) ;
1281    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
1282 
1283    if (SafepointSynchronize::do_call_back()) {
1284       TEVENT (unpark before SAFEPOINT) ;
1285    }
1286 
1287    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1288    Trigger->unpark() ;
1289 
1290    // Maintain stats and report events to JVMTI
1291    if (ObjectMonitor::_sync_Parks != NULL) {
1292       ObjectMonitor::_sync_Parks->inc() ;
1293    }
1294 }
1295 
1296 
1297 // -----------------------------------------------------------------------------
1298 // Class Loader deadlock handling.
1299 //
1300 // complete_exit exits a lock returning recursion count
1301 // complete_exit/reenter operate as a wait without waiting
1302 // complete_exit requires an inflated monitor
1303 // The _owner field is not always the Thread addr even with an
1304 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1305 // thread due to contention.
1306 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1307    Thread * const Self = THREAD;
1308    assert(Self->is_Java_thread(), "Must be Java thread!");
1309    JavaThread *jt = (JavaThread *)THREAD;
1310 
1311    DeferredInitialize();
1312 
1313    if (THREAD != _owner) {
1314     if (THREAD->is_lock_owned ((address)_owner)) {
1315        assert(_recursions == 0, "internal state error");
1316        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
1317        _recursions = 0 ;
1318        OwnerIsThread = 1 ;
1319     }
1320    }
1321 
1322    guarantee(Self == _owner, "complete_exit not owner");
1323    intptr_t save = _recursions; // record the old recursion count
1324    _recursions = 0;        // set the recursion level to be 0
1325    exit (Self) ;           // exit the monitor
1326    guarantee (_owner != Self, "invariant");
1327    return save;
1328 }
1329 
1330 // reenter() enters a lock and sets recursion count
1331 // complete_exit/reenter operate as a wait without waiting
1332 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1333    Thread * const Self = THREAD;
1334    assert(Self->is_Java_thread(), "Must be Java thread!");
1335    JavaThread *jt = (JavaThread *)THREAD;
1336 
1337    guarantee(_owner != Self, "reenter already owner");
1338    enter (THREAD);       // enter the monitor
1339    guarantee (_recursions == 0, "reenter recursion");
1340    _recursions = recursions;
1341    return;
1342 }
1343 
1344 
1345 // -----------------------------------------------------------------------------
1346 // A macro is used below because there may already be a pending
1347 // exception which should not abort the execution of the routines
1348 // which use this (which is why we don't put this into check_slow and
1349 // call it with a CHECK argument).
1350 
1351 #define CHECK_OWNER()                                                             \
1352   do {                                                                            \
1353     if (THREAD != _owner) {                                                       \
1354       if (THREAD->is_lock_owned((address) _owner)) {                              \
1355         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1356         _recursions = 0;                                                          \
1357         OwnerIsThread = 1 ;                                                       \
1358       } else {                                                                    \
1359         TEVENT (Throw IMSX) ;                                                     \
1360         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1361       }                                                                           \
1362     }                                                                             \
1363   } while (false)
1364 
1365 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1366 // TODO-FIXME: remove check_slow() -- it's likely dead.
1367 
1368 void ObjectMonitor::check_slow(TRAPS) {
1369   TEVENT (check_slow - throw IMSX) ;
1370   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1371   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1372 }
1373 
1374 static int Adjust (volatile int * adr, int dx) {
1375   int v ;
1376   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
1377   return v ;
1378 }
1379 // -----------------------------------------------------------------------------
1380 // Wait/Notify/NotifyAll
1381 //
1382 // Note: a subset of changes to ObjectMonitor::wait()
1383 // will need to be replicated in complete_exit above
1384 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1385    Thread * const Self = THREAD ;
1386    assert(Self->is_Java_thread(), "Must be Java thread!");
1387    JavaThread *jt = (JavaThread *)THREAD;
1388 
1389    DeferredInitialize () ;
1390 
1391    // Throw IMSX or IEX.
1392    CHECK_OWNER();
1393 
1394    // check for a pending interrupt
1395    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1396      // post monitor waited event.  Note that this is past-tense, we are done waiting.
1397      if (JvmtiExport::should_post_monitor_waited()) {
1398         // Note: 'false' parameter is passed here because the
1399         // wait was not timed out due to thread interrupt.
1400         JvmtiExport::post_monitor_waited(jt, this, false);
1401      }
1402      TEVENT (Wait - Throw IEX) ;
1403      THROW(vmSymbols::java_lang_InterruptedException());
1404      return ;
1405    }
1406    TEVENT (Wait) ;
1407 
1408    assert (Self->_Stalled == 0, "invariant") ;
1409    Self->_Stalled = intptr_t(this) ;
1410    jt->set_current_waiting_monitor(this);
1411 
1412    // create a node to be put into the queue
1413    // Critically, after we reset() the event but prior to park(), we must check
1414    // for a pending interrupt.
1415    ObjectWaiter node(Self);
1416    node.TState = ObjectWaiter::TS_WAIT ;
1417    Self->_ParkEvent->reset() ;
1418    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1419 
1420    // Enter the waiting queue, which is a circular doubly linked list in this case
1421    // but it could be a priority queue or any data structure.
1422    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1423    // by the the owner of the monitor *except* in the case where park()
1424    // returns because of a timeout of interrupt.  Contention is exceptionally rare
1425    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1426 
1427    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
1428    AddWaiter (&node) ;
1429    Thread::SpinRelease (&_WaitSetLock) ;
1430 
1431    if ((SyncFlags & 4) == 0) {
1432       _Responsible = NULL ;
1433    }
1434    intptr_t save = _recursions; // record the old recursion count
1435    _waiters++;                  // increment the number of waiters
1436    _recursions = 0;             // set the recursion level to be 1
1437    exit (Self) ;                    // exit the monitor
1438    guarantee (_owner != Self, "invariant") ;
1439 
1440    // As soon as the ObjectMonitor's ownership is dropped in the exit()
1441    // call above, another thread can enter() the ObjectMonitor, do the
1442    // notify(), and exit() the ObjectMonitor. If the other thread's
1443    // exit() call chooses this thread as the successor and the unpark()
1444    // call happens to occur while this thread is posting a
1445    // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
1446    // handler using RawMonitors and consuming the unpark().
1447    //
1448    // To avoid the problem, we re-post the event. This does no harm
1449    // even if the original unpark() was not consumed because we are the
1450    // chosen successor for this monitor.
1451    if (node._notified != 0 && _succ == Self) {
1452       node._event->unpark();
1453    }
1454 
1455    // The thread is on the WaitSet list - now park() it.
1456    // On MP systems it's conceivable that a brief spin before we park
1457    // could be profitable.
1458    //
1459    // TODO-FIXME: change the following logic to a loop of the form
1460    //   while (!timeout && !interrupted && _notified == 0) park()
1461 
1462    int ret = OS_OK ;
1463    int WasNotified = 0 ;
1464    { // State transition wrappers
1465      OSThread* osthread = Self->osthread();
1466      OSThreadWaitState osts(osthread, true);
1467      {
1468        ThreadBlockInVM tbivm(jt);
1469        // Thread is in thread_blocked state and oop access is unsafe.
1470        jt->set_suspend_equivalent();
1471 
1472        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1473            // Intentionally empty
1474        } else
1475        if (node._notified == 0) {
1476          if (millis <= 0) {
1477             Self->_ParkEvent->park () ;
1478          } else {
1479             ret = Self->_ParkEvent->park (millis) ;
1480          }
1481        }
1482 
1483        // were we externally suspended while we were waiting?
1484        if (ExitSuspendEquivalent (jt)) {
1485           // TODO-FIXME: add -- if succ == Self then succ = null.
1486           jt->java_suspend_self();
1487        }
1488 
1489      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1490 
1491 
1492      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1493      // from the WaitSet to the EntryList.
1494      // See if we need to remove Node from the WaitSet.
1495      // We use double-checked locking to avoid grabbing _WaitSetLock
1496      // if the thread is not on the wait queue.
1497      //
1498      // Note that we don't need a fence before the fetch of TState.
1499      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1500      // written by the is thread. (perhaps the fetch might even be satisfied
1501      // by a look-aside into the processor's own store buffer, although given
1502      // the length of the code path between the prior ST and this load that's
1503      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1504      // then we'll acquire the lock and then re-fetch a fresh TState value.
1505      // That is, we fail toward safety.
1506 
1507      if (node.TState == ObjectWaiter::TS_WAIT) {
1508          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1509          if (node.TState == ObjectWaiter::TS_WAIT) {
1510             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
1511             assert(node._notified == 0, "invariant");
1512             node.TState = ObjectWaiter::TS_RUN ;
1513          }
1514          Thread::SpinRelease (&_WaitSetLock) ;
1515      }
1516 
1517      // The thread is now either on off-list (TS_RUN),
1518      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1519      // The Node's TState variable is stable from the perspective of this thread.
1520      // No other threads will asynchronously modify TState.
1521      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
1522      OrderAccess::loadload() ;
1523      if (_succ == Self) _succ = NULL ;
1524      WasNotified = node._notified ;
1525 
1526      // Reentry phase -- reacquire the monitor.
1527      // re-enter contended monitor after object.wait().
1528      // retain OBJECT_WAIT state until re-enter successfully completes
1529      // Thread state is thread_in_vm and oop access is again safe,
1530      // although the raw address of the object may have changed.
1531      // (Don't cache naked oops over safepoints, of course).
1532 
1533      // post monitor waited event. Note that this is past-tense, we are done waiting.
1534      if (JvmtiExport::should_post_monitor_waited()) {
1535        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1536      }
1537      OrderAccess::fence() ;
1538 
1539      assert (Self->_Stalled != 0, "invariant") ;
1540      Self->_Stalled = 0 ;
1541 
1542      assert (_owner != Self, "invariant") ;
1543      ObjectWaiter::TStates v = node.TState ;
1544      if (v == ObjectWaiter::TS_RUN) {
1545          enter (Self) ;
1546      } else {
1547          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
1548          ReenterI (Self, &node) ;
1549          node.wait_reenter_end(this);
1550      }
1551 
1552      // Self has reacquired the lock.
1553      // Lifecycle - the node representing Self must not appear on any queues.
1554      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1555      // want residual elements associated with this thread left on any lists.
1556      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
1557      assert    (_owner == Self, "invariant") ;
1558      assert    (_succ != Self , "invariant") ;
1559    } // OSThreadWaitState()
1560 
1561    jt->set_current_waiting_monitor(NULL);
1562 
1563    guarantee (_recursions == 0, "invariant") ;
1564    _recursions = save;     // restore the old recursion count
1565    _waiters--;             // decrement the number of waiters
1566 
1567    // Verify a few postconditions
1568    assert (_owner == Self       , "invariant") ;
1569    assert (_succ  != Self       , "invariant") ;
1570    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
1571 
1572    if (SyncFlags & 32) {
1573       OrderAccess::fence() ;
1574    }
1575 
1576    // check if the notification happened
1577    if (!WasNotified) {
1578      // no, it could be timeout or Thread.interrupt() or both
1579      // check for interrupt event, otherwise it is timeout
1580      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1581        TEVENT (Wait - throw IEX from epilog) ;
1582        THROW(vmSymbols::java_lang_InterruptedException());
1583      }
1584    }
1585 
1586    // NOTE: Spurious wake up will be consider as timeout.
1587    // Monitor notify has precedence over thread interrupt.
1588 }
1589 
1590 
1591 // Consider:
1592 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1593 // then instead of transferring a thread from the WaitSet to the EntryList
1594 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1595 
1596 void ObjectMonitor::notify(TRAPS) {
1597   CHECK_OWNER();
1598   if (_WaitSet == NULL) {
1599      TEVENT (Empty-Notify) ;
1600      return ;
1601   }
1602   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1603 
1604   int Policy = Knob_MoveNotifyee ;
1605 
1606   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
1607   ObjectWaiter * iterator = DequeueWaiter() ;
1608   if (iterator != NULL) {
1609      TEVENT (Notify1 - Transfer) ;
1610      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1611      guarantee (iterator->_notified == 0, "invariant") ;
1612      if (Policy != 4) {
1613         iterator->TState = ObjectWaiter::TS_ENTER ;
1614      }
1615      iterator->_notified = 1 ;
1616 
1617      ObjectWaiter * List = _EntryList ;
1618      if (List != NULL) {
1619         assert (List->_prev == NULL, "invariant") ;
1620         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1621         assert (List != iterator, "invariant") ;
1622      }
1623 
1624      if (Policy == 0) {       // prepend to EntryList
1625          if (List == NULL) {
1626              iterator->_next = iterator->_prev = NULL ;
1627              _EntryList = iterator ;
1628          } else {
1629              List->_prev = iterator ;
1630              iterator->_next = List ;
1631              iterator->_prev = NULL ;
1632              _EntryList = iterator ;
1633         }
1634      } else
1635      if (Policy == 1) {      // append to EntryList
1636          if (List == NULL) {
1637              iterator->_next = iterator->_prev = NULL ;
1638              _EntryList = iterator ;
1639          } else {
1640             // CONSIDER:  finding the tail currently requires a linear-time walk of
1641             // the EntryList.  We can make tail access constant-time by converting to
1642             // a CDLL instead of using our current DLL.
1643             ObjectWaiter * Tail ;
1644             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1645             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1646             Tail->_next = iterator ;
1647             iterator->_prev = Tail ;
1648             iterator->_next = NULL ;
1649         }
1650      } else
1651      if (Policy == 2) {      // prepend to cxq
1652          // prepend to cxq
1653          if (List == NULL) {
1654              iterator->_next = iterator->_prev = NULL ;
1655              _EntryList = iterator ;
1656          } else {
1657             iterator->TState = ObjectWaiter::TS_CXQ ;
1658             for (;;) {
1659                 ObjectWaiter * Front = _cxq ;
1660                 iterator->_next = Front ;
1661                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1662                     break ;
1663                 }
1664             }
1665          }
1666      } else
1667      if (Policy == 3) {      // append to cxq
1668         iterator->TState = ObjectWaiter::TS_CXQ ;
1669         for (;;) {
1670             ObjectWaiter * Tail ;
1671             Tail = _cxq ;
1672             if (Tail == NULL) {
1673                 iterator->_next = NULL ;
1674                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1675                    break ;
1676                 }
1677             } else {
1678                 while (Tail->_next != NULL) Tail = Tail->_next ;
1679                 Tail->_next = iterator ;
1680                 iterator->_prev = Tail ;
1681                 iterator->_next = NULL ;
1682                 break ;
1683             }
1684         }
1685      } else {
1686         ParkEvent * ev = iterator->_event ;
1687         iterator->TState = ObjectWaiter::TS_RUN ;
1688         OrderAccess::fence() ;
1689         ev->unpark() ;
1690      }
1691 
1692      if (Policy < 4) {
1693        iterator->wait_reenter_begin(this);
1694      }
1695 
1696      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1697      // move the add-to-EntryList operation, above, outside the critical section
1698      // protected by _WaitSetLock.  In practice that's not useful.  With the
1699      // exception of  wait() timeouts and interrupts the monitor owner
1700      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1701      // on _WaitSetLock so it's not profitable to reduce the length of the
1702      // critical section.
1703   }
1704 
1705   Thread::SpinRelease (&_WaitSetLock) ;
1706 
1707   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1708      ObjectMonitor::_sync_Notifications->inc() ;
1709   }
1710 }
1711 
1712 
1713 void ObjectMonitor::notifyAll(TRAPS) {
1714   CHECK_OWNER();
1715   ObjectWaiter* iterator;
1716   if (_WaitSet == NULL) {
1717       TEVENT (Empty-NotifyAll) ;
1718       return ;
1719   }
1720   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1721 
1722   int Policy = Knob_MoveNotifyee ;
1723   int Tally = 0 ;
1724   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
1725 
1726   for (;;) {
1727      iterator = DequeueWaiter () ;
1728      if (iterator == NULL) break ;
1729      TEVENT (NotifyAll - Transfer1) ;
1730      ++Tally ;
1731 
1732      // Disposition - what might we do with iterator ?
1733      // a.  add it directly to the EntryList - either tail or head.
1734      // b.  push it onto the front of the _cxq.
1735      // For now we use (a).
1736 
1737      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1738      guarantee (iterator->_notified == 0, "invariant") ;
1739      iterator->_notified = 1 ;
1740      if (Policy != 4) {
1741         iterator->TState = ObjectWaiter::TS_ENTER ;
1742      }
1743 
1744      ObjectWaiter * List = _EntryList ;
1745      if (List != NULL) {
1746         assert (List->_prev == NULL, "invariant") ;
1747         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1748         assert (List != iterator, "invariant") ;
1749      }
1750 
1751      if (Policy == 0) {       // prepend to EntryList
1752          if (List == NULL) {
1753              iterator->_next = iterator->_prev = NULL ;
1754              _EntryList = iterator ;
1755          } else {
1756              List->_prev = iterator ;
1757              iterator->_next = List ;
1758              iterator->_prev = NULL ;
1759              _EntryList = iterator ;
1760         }
1761      } else
1762      if (Policy == 1) {      // append to EntryList
1763          if (List == NULL) {
1764              iterator->_next = iterator->_prev = NULL ;
1765              _EntryList = iterator ;
1766          } else {
1767             // CONSIDER:  finding the tail currently requires a linear-time walk of
1768             // the EntryList.  We can make tail access constant-time by converting to
1769             // a CDLL instead of using our current DLL.
1770             ObjectWaiter * Tail ;
1771             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1772             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1773             Tail->_next = iterator ;
1774             iterator->_prev = Tail ;
1775             iterator->_next = NULL ;
1776         }
1777      } else
1778      if (Policy == 2) {      // prepend to cxq
1779          // prepend to cxq
1780          iterator->TState = ObjectWaiter::TS_CXQ ;
1781          for (;;) {
1782              ObjectWaiter * Front = _cxq ;
1783              iterator->_next = Front ;
1784              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1785                  break ;
1786              }
1787          }
1788      } else
1789      if (Policy == 3) {      // append to cxq
1790         iterator->TState = ObjectWaiter::TS_CXQ ;
1791         for (;;) {
1792             ObjectWaiter * Tail ;
1793             Tail = _cxq ;
1794             if (Tail == NULL) {
1795                 iterator->_next = NULL ;
1796                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1797                    break ;
1798                 }
1799             } else {
1800                 while (Tail->_next != NULL) Tail = Tail->_next ;
1801                 Tail->_next = iterator ;
1802                 iterator->_prev = Tail ;
1803                 iterator->_next = NULL ;
1804                 break ;
1805             }
1806         }
1807      } else {
1808         ParkEvent * ev = iterator->_event ;
1809         iterator->TState = ObjectWaiter::TS_RUN ;
1810         OrderAccess::fence() ;
1811         ev->unpark() ;
1812      }
1813 
1814      if (Policy < 4) {
1815        iterator->wait_reenter_begin(this);
1816      }
1817 
1818      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1819      // move the add-to-EntryList operation, above, outside the critical section
1820      // protected by _WaitSetLock.  In practice that's not useful.  With the
1821      // exception of  wait() timeouts and interrupts the monitor owner
1822      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1823      // on _WaitSetLock so it's not profitable to reduce the length of the
1824      // critical section.
1825   }
1826 
1827   Thread::SpinRelease (&_WaitSetLock) ;
1828 
1829   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1830      ObjectMonitor::_sync_Notifications->inc(Tally) ;
1831   }
1832 }
1833 
1834 // -----------------------------------------------------------------------------
1835 // Adaptive Spinning Support
1836 //
1837 // Adaptive spin-then-block - rational spinning
1838 //
1839 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1840 // algorithm.  On high order SMP systems it would be better to start with
1841 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1842 // a contending thread could enqueue itself on the cxq and then spin locally
1843 // on a thread-specific variable such as its ParkEvent._Event flag.
1844 // That's left as an exercise for the reader.  Note that global spinning is
1845 // not problematic on Niagara, as the L2$ serves the interconnect and has both
1846 // low latency and massive bandwidth.
1847 //
1848 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1849 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1850 // (duration) or we can fix the count at approximately the duration of
1851 // a context switch and vary the frequency.   Of course we could also
1852 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1853 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
1854 //
1855 // This implementation varies the duration "D", where D varies with
1856 // the success rate of recent spin attempts. (D is capped at approximately
1857 // length of a round-trip context switch).  The success rate for recent
1858 // spin attempts is a good predictor of the success rate of future spin
1859 // attempts.  The mechanism adapts automatically to varying critical
1860 // section length (lock modality), system load and degree of parallelism.
1861 // D is maintained per-monitor in _SpinDuration and is initialized
1862 // optimistically.  Spin frequency is fixed at 100%.
1863 //
1864 // Note that _SpinDuration is volatile, but we update it without locks
1865 // or atomics.  The code is designed so that _SpinDuration stays within
1866 // a reasonable range even in the presence of races.  The arithmetic
1867 // operations on _SpinDuration are closed over the domain of legal values,
1868 // so at worst a race will install and older but still legal value.
1869 // At the very worst this introduces some apparent non-determinism.
1870 // We might spin when we shouldn't or vice-versa, but since the spin
1871 // count are relatively short, even in the worst case, the effect is harmless.
1872 //
1873 // Care must be taken that a low "D" value does not become an
1874 // an absorbing state.  Transient spinning failures -- when spinning
1875 // is overall profitable -- should not cause the system to converge
1876 // on low "D" values.  We want spinning to be stable and predictable
1877 // and fairly responsive to change and at the same time we don't want
1878 // it to oscillate, become metastable, be "too" non-deterministic,
1879 // or converge on or enter undesirable stable absorbing states.
1880 //
1881 // We implement a feedback-based control system -- using past behavior
1882 // to predict future behavior.  We face two issues: (a) if the
1883 // input signal is random then the spin predictor won't provide optimal
1884 // results, and (b) if the signal frequency is too high then the control
1885 // system, which has some natural response lag, will "chase" the signal.
1886 // (b) can arise from multimodal lock hold times.  Transient preemption
1887 // can also result in apparent bimodal lock hold times.
1888 // Although sub-optimal, neither condition is particularly harmful, as
1889 // in the worst-case we'll spin when we shouldn't or vice-versa.
1890 // The maximum spin duration is rather short so the failure modes aren't bad.
1891 // To be conservative, I've tuned the gain in system to bias toward
1892 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1893 // "rings" or oscillates between spinning and not spinning.  This happens
1894 // when spinning is just on the cusp of profitability, however, so the
1895 // situation is not dire.  The state is benign -- there's no need to add
1896 // hysteresis control to damp the transition rate between spinning and
1897 // not spinning.
1898 //
1899 
1900 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
1901 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
1902 
1903 // Spinning: Fixed frequency (100%), vary duration
1904 
1905 
1906 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
1907 
1908     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1909     int ctr = Knob_FixedSpin ;
1910     if (ctr != 0) {
1911         while (--ctr >= 0) {
1912             if (TryLock (Self) > 0) return 1 ;
1913             SpinPause () ;
1914         }
1915         return 0 ;
1916     }
1917 
1918     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
1919       if (TryLock(Self) > 0) {
1920         // Increase _SpinDuration ...
1921         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1922         // Raising _SpurDuration to the poverty line is key.
1923         int x = _SpinDuration ;
1924         if (x < Knob_SpinLimit) {
1925            if (x < Knob_Poverty) x = Knob_Poverty ;
1926            _SpinDuration = x + Knob_BonusB ;
1927         }
1928         return 1 ;
1929       }
1930       SpinPause () ;
1931     }
1932 
1933     // Admission control - verify preconditions for spinning
1934     //
1935     // We always spin a little bit, just to prevent _SpinDuration == 0 from
1936     // becoming an absorbing state.  Put another way, we spin briefly to
1937     // sample, just in case the system load, parallelism, contention, or lock
1938     // modality changed.
1939     //
1940     // Consider the following alternative:
1941     // Periodically set _SpinDuration = _SpinLimit and try a long/full
1942     // spin attempt.  "Periodically" might mean after a tally of
1943     // the # of failed spin attempts (or iterations) reaches some threshold.
1944     // This takes us into the realm of 1-out-of-N spinning, where we
1945     // hold the duration constant but vary the frequency.
1946 
1947     ctr = _SpinDuration  ;
1948     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
1949     if (ctr <= 0) return 0 ;
1950 
1951     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
1952     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1953        TEVENT (Spin abort - notrunnable [TOP]);
1954        return 0 ;
1955     }
1956 
1957     int MaxSpin = Knob_MaxSpinners ;
1958     if (MaxSpin >= 0) {
1959        if (_Spinner > MaxSpin) {
1960           TEVENT (Spin abort -- too many spinners) ;
1961           return 0 ;
1962        }
1963        // Slighty racy, but benign ...
1964        Adjust (&_Spinner, 1) ;
1965     }
1966 
1967     // We're good to spin ... spin ingress.
1968     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1969     // when preparing to LD...CAS _owner, etc and the CAS is likely
1970     // to succeed.
1971     int hits    = 0 ;
1972     int msk     = 0 ;
1973     int caspty  = Knob_CASPenalty ;
1974     int oxpty   = Knob_OXPenalty ;
1975     int sss     = Knob_SpinSetSucc ;
1976     if (sss && _succ == NULL ) _succ = Self ;
1977     Thread * prv = NULL ;
1978 
1979     // There are three ways to exit the following loop:
1980     // 1.  A successful spin where this thread has acquired the lock.
1981     // 2.  Spin failure with prejudice
1982     // 3.  Spin failure without prejudice
1983 
1984     while (--ctr >= 0) {
1985 
1986       // Periodic polling -- Check for pending GC
1987       // Threads may spin while they're unsafe.
1988       // We don't want spinning threads to delay the JVM from reaching
1989       // a stop-the-world safepoint or to steal cycles from GC.
1990       // If we detect a pending safepoint we abort in order that
1991       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1992       // this thread, if safe, doesn't steal cycles from GC.
1993       // This is in keeping with the "no loitering in runtime" rule.
1994       // We periodically check to see if there's a safepoint pending.
1995       if ((ctr & 0xFF) == 0) {
1996          if (SafepointSynchronize::do_call_back()) {
1997             TEVENT (Spin: safepoint) ;
1998             goto Abort ;           // abrupt spin egress
1999          }
2000          if (Knob_UsePause & 1) SpinPause () ;
2001 
2002          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
2003          if (hits > 50 && scb != NULL) {
2004             int abend = (*scb)(SpinCallbackArgument, 0) ;
2005          }
2006       }
2007 
2008       if (Knob_UsePause & 2) SpinPause() ;
2009 
2010       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
2011       // This is useful on classic SMP systems, but is of less utility on
2012       // N1-style CMT platforms.
2013       //
2014       // Trade-off: lock acquisition latency vs coherency bandwidth.
2015       // Lock hold times are typically short.  A histogram
2016       // of successful spin attempts shows that we usually acquire
2017       // the lock early in the spin.  That suggests we want to
2018       // sample _owner frequently in the early phase of the spin,
2019       // but then back-off and sample less frequently as the spin
2020       // progresses.  The back-off makes a good citizen on SMP big
2021       // SMP systems.  Oversampling _owner can consume excessive
2022       // coherency bandwidth.  Relatedly, if we _oversample _owner we
2023       // can inadvertently interfere with the the ST m->owner=null.
2024       // executed by the lock owner.
2025       if (ctr & msk) continue ;
2026       ++hits ;
2027       if ((hits & 0xF) == 0) {
2028         // The 0xF, above, corresponds to the exponent.
2029         // Consider: (msk+1)|msk
2030         msk = ((msk << 2)|3) & BackOffMask ;
2031       }
2032 
2033       // Probe _owner with TATAS
2034       // If this thread observes the monitor transition or flicker
2035       // from locked to unlocked to locked, then the odds that this
2036       // thread will acquire the lock in this spin attempt go down
2037       // considerably.  The same argument applies if the CAS fails
2038       // or if we observe _owner change from one non-null value to
2039       // another non-null value.   In such cases we might abort
2040       // the spin without prejudice or apply a "penalty" to the
2041       // spin count-down variable "ctr", reducing it by 100, say.
2042 
2043       Thread * ox = (Thread *) _owner ;
2044       if (ox == NULL) {
2045          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2046          if (ox == NULL) {
2047             // The CAS succeeded -- this thread acquired ownership
2048             // Take care of some bookkeeping to exit spin state.
2049             if (sss && _succ == Self) {
2050                _succ = NULL ;
2051             }
2052             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2053 
2054             // Increase _SpinDuration :
2055             // The spin was successful (profitable) so we tend toward
2056             // longer spin attempts in the future.
2057             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2058             // If we acquired the lock early in the spin cycle it
2059             // makes sense to increase _SpinDuration proportionally.
2060             // Note that we don't clamp SpinDuration precisely at SpinLimit.
2061             int x = _SpinDuration ;
2062             if (x < Knob_SpinLimit) {
2063                 if (x < Knob_Poverty) x = Knob_Poverty ;
2064                 _SpinDuration = x + Knob_Bonus ;
2065             }
2066             return 1 ;
2067          }
2068 
2069          // The CAS failed ... we can take any of the following actions:
2070          // * penalize: ctr -= Knob_CASPenalty
2071          // * exit spin with prejudice -- goto Abort;
2072          // * exit spin without prejudice.
2073          // * Since CAS is high-latency, retry again immediately.
2074          prv = ox ;
2075          TEVENT (Spin: cas failed) ;
2076          if (caspty == -2) break ;
2077          if (caspty == -1) goto Abort ;
2078          ctr -= caspty ;
2079          continue ;
2080       }
2081 
2082       // Did lock ownership change hands ?
2083       if (ox != prv && prv != NULL ) {
2084           TEVENT (spin: Owner changed)
2085           if (oxpty == -2) break ;
2086           if (oxpty == -1) goto Abort ;
2087           ctr -= oxpty ;
2088       }
2089       prv = ox ;
2090 
2091       // Abort the spin if the owner is not executing.
2092       // The owner must be executing in order to drop the lock.
2093       // Spinning while the owner is OFFPROC is idiocy.
2094       // Consider: ctr -= RunnablePenalty ;
2095       if (Knob_OState && NotRunnable (Self, ox)) {
2096          TEVENT (Spin abort - notrunnable);
2097          goto Abort ;
2098       }
2099       if (sss && _succ == NULL ) _succ = Self ;
2100    }
2101 
2102    // Spin failed with prejudice -- reduce _SpinDuration.
2103    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2104    // AIMD is globally stable.
2105    TEVENT (Spin failure) ;
2106    {
2107      int x = _SpinDuration ;
2108      if (x > 0) {
2109         // Consider an AIMD scheme like: x -= (x >> 3) + 100
2110         // This is globally sample and tends to damp the response.
2111         x -= Knob_Penalty ;
2112         if (x < 0) x = 0 ;
2113         _SpinDuration = x ;
2114      }
2115    }
2116 
2117  Abort:
2118    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2119    if (sss && _succ == Self) {
2120       _succ = NULL ;
2121       // Invariant: after setting succ=null a contending thread
2122       // must recheck-retry _owner before parking.  This usually happens
2123       // in the normal usage of TrySpin(), but it's safest
2124       // to make TrySpin() as foolproof as possible.
2125       OrderAccess::fence() ;
2126       if (TryLock(Self) > 0) return 1 ;
2127    }
2128    return 0 ;
2129 }
2130 
2131 // NotRunnable() -- informed spinning
2132 //
2133 // Don't bother spinning if the owner is not eligible to drop the lock.
2134 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2135 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2136 // The thread must be runnable in order to drop the lock in timely fashion.
2137 // If the _owner is not runnable then spinning will not likely be
2138 // successful (profitable).
2139 //
2140 // Beware -- the thread referenced by _owner could have died
2141 // so a simply fetch from _owner->_thread_state might trap.
2142 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2143 // Because of the lifecycle issues the schedctl and _thread_state values
2144 // observed by NotRunnable() might be garbage.  NotRunnable must
2145 // tolerate this and consider the observed _thread_state value
2146 // as advisory.
2147 //
2148 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2149 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
2150 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2151 // with the LSB of _owner.  Another option would be to probablistically probe
2152 // the putative _owner->TypeTag value.
2153 //
2154 // Checking _thread_state isn't perfect.  Even if the thread is
2155 // in_java it might be blocked on a page-fault or have been preempted
2156 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2157 // with schedctl.sc_state gives us a good picture of what the
2158 // thread is doing, however.
2159 //
2160 // TODO: check schedctl.sc_state.
2161 // We'll need to use SafeFetch32() to read from the schedctl block.
2162 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2163 //
2164 // The return value from NotRunnable() is *advisory* -- the
2165 // result is based on sampling and is not necessarily coherent.
2166 // The caller must tolerate false-negative and false-positive errors.
2167 // Spinning, in general, is probabilistic anyway.
2168 
2169 
2170 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2171     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2172     if (!OwnerIsThread) return 0 ;
2173 
2174     if (ox == NULL) return 0 ;
2175 
2176     // Avoid transitive spinning ...
2177     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2178     // Immediately after T1 acquires L it's possible that T2, also
2179     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2180     // This occurs transiently after T1 acquired L but before
2181     // T1 managed to clear T1.Stalled.  T2 does not need to abort
2182     // its spin in this circumstance.
2183     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2184 
2185     if (BlockedOn == 1) return 1 ;
2186     if (BlockedOn != 0) {
2187       return BlockedOn != intptr_t(this) && _owner == ox ;
2188     }
2189 
2190     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2191     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2192     // consider also: jst != _thread_in_Java -- but that's overspecific.
2193     return jst == _thread_blocked || jst == _thread_in_native ;
2194 }
2195 
2196 
2197 // -----------------------------------------------------------------------------
2198 // WaitSet management ...
2199 
2200 ObjectWaiter::ObjectWaiter(Thread* thread) {
2201   _next     = NULL;
2202   _prev     = NULL;
2203   _notified = 0;
2204   TState    = TS_RUN ;
2205   _thread   = thread;
2206   _event    = thread->_ParkEvent ;
2207   _active   = false;
2208   assert (_event != NULL, "invariant") ;
2209 }
2210 
2211 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2212   JavaThread *jt = (JavaThread *)this->_thread;
2213   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2214 }
2215 
2216 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2217   JavaThread *jt = (JavaThread *)this->_thread;
2218   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2219 }
2220 
2221 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2222   assert(node != NULL, "should not dequeue NULL node");
2223   assert(node->_prev == NULL, "node already in list");
2224   assert(node->_next == NULL, "node already in list");
2225   // put node at end of queue (circular doubly linked list)
2226   if (_WaitSet == NULL) {
2227     _WaitSet = node;
2228     node->_prev = node;
2229     node->_next = node;
2230   } else {
2231     ObjectWaiter* head = _WaitSet ;
2232     ObjectWaiter* tail = head->_prev;
2233     assert(tail->_next == head, "invariant check");
2234     tail->_next = node;
2235     head->_prev = node;
2236     node->_next = head;
2237     node->_prev = tail;
2238   }
2239 }
2240 
2241 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2242   // dequeue the very first waiter
2243   ObjectWaiter* waiter = _WaitSet;
2244   if (waiter) {
2245     DequeueSpecificWaiter(waiter);
2246   }
2247   return waiter;
2248 }
2249 
2250 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2251   assert(node != NULL, "should not dequeue NULL node");
2252   assert(node->_prev != NULL, "node already removed from list");
2253   assert(node->_next != NULL, "node already removed from list");
2254   // when the waiter has woken up because of interrupt,
2255   // timeout or other spurious wake-up, dequeue the
2256   // waiter from waiting list
2257   ObjectWaiter* next = node->_next;
2258   if (next == node) {
2259     assert(node->_prev == node, "invariant check");
2260     _WaitSet = NULL;
2261   } else {
2262     ObjectWaiter* prev = node->_prev;
2263     assert(prev->_next == node, "invariant check");
2264     assert(next->_prev == node, "invariant check");
2265     next->_prev = prev;
2266     prev->_next = next;
2267     if (_WaitSet == node) {
2268       _WaitSet = next;
2269     }
2270   }
2271   node->_next = NULL;
2272   node->_prev = NULL;
2273 }
2274 
2275 // -----------------------------------------------------------------------------
2276 // PerfData support
2277 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
2278 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
2279 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
2280 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
2281 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
2282 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
2283 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
2284 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
2285 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
2286 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
2287 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
2288 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
2289 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
2290 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
2291 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
2292 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
2293 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
2294 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
2295 
2296 // One-shot global initialization for the sync subsystem.
2297 // We could also defer initialization and initialize on-demand
2298 // the first time we call inflate().  Initialization would
2299 // be protected - like so many things - by the MonitorCache_lock.
2300 
2301 void ObjectMonitor::Initialize () {
2302   static int InitializationCompleted = 0 ;
2303   assert (InitializationCompleted == 0, "invariant") ;
2304   InitializationCompleted = 1 ;
2305   if (UsePerfData) {
2306       EXCEPTION_MARK ;
2307       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2308       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2309       NEWPERFCOUNTER(_sync_Inflations) ;
2310       NEWPERFCOUNTER(_sync_Deflations) ;
2311       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
2312       NEWPERFCOUNTER(_sync_FutileWakeups) ;
2313       NEWPERFCOUNTER(_sync_Parks) ;
2314       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
2315       NEWPERFCOUNTER(_sync_Notifications) ;
2316       NEWPERFCOUNTER(_sync_SlowEnter) ;
2317       NEWPERFCOUNTER(_sync_SlowExit) ;
2318       NEWPERFCOUNTER(_sync_SlowNotify) ;
2319       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
2320       NEWPERFCOUNTER(_sync_FailedSpins) ;
2321       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
2322       NEWPERFCOUNTER(_sync_PrivateA) ;
2323       NEWPERFCOUNTER(_sync_PrivateB) ;
2324       NEWPERFCOUNTER(_sync_MonInCirculation) ;
2325       NEWPERFCOUNTER(_sync_MonScavenged) ;
2326       NEWPERFVARIABLE(_sync_MonExtant) ;
2327       #undef NEWPERFCOUNTER
2328   }
2329 }
2330 
2331 
2332 // Compile-time asserts
2333 // When possible, it's better to catch errors deterministically at
2334 // compile-time than at runtime.  The down-side to using compile-time
2335 // asserts is that error message -- often something about negative array
2336 // indices -- is opaque.
2337 
2338 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2339 
2340 void ObjectMonitor::ctAsserts() {
2341   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2342 }
2343 
2344 
2345 static char * kvGet (char * kvList, const char * Key) {
2346     if (kvList == NULL) return NULL ;
2347     size_t n = strlen (Key) ;
2348     char * Search ;
2349     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2350         if (strncmp (Search, Key, n) == 0) {
2351             if (Search[n] == '=') return Search + n + 1 ;
2352             if (Search[n] == 0)   return (char *) "1" ;
2353         }
2354     }
2355     return NULL ;
2356 }
2357 
2358 static int kvGetInt (char * kvList, const char * Key, int Default) {
2359     char * v = kvGet (kvList, Key) ;
2360     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2361     if (Knob_ReportSettings && v != NULL) {
2362         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2363         ::fflush (stdout) ;
2364     }
2365     return rslt ;
2366 }
2367 
2368 void ObjectMonitor::DeferredInitialize () {
2369   if (InitDone > 0) return ;
2370   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2371       while (InitDone != 1) ;
2372       return ;
2373   }
2374 
2375   // One-shot global initialization ...
2376   // The initialization is idempotent, so we don't need locks.
2377   // In the future consider doing this via os::init_2().
2378   // SyncKnobs consist of <Key>=<Value> pairs in the style
2379   // of environment variables.  Start by converting ':' to NUL.
2380 
2381   if (SyncKnobs == NULL) SyncKnobs = "" ;
2382 
2383   size_t sz = strlen (SyncKnobs) ;
2384   char * knobs = (char *) malloc (sz + 2) ;
2385   if (knobs == NULL) {
2386      vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
2387      guarantee (0, "invariant") ;
2388   }
2389   strcpy (knobs, SyncKnobs) ;
2390   knobs[sz+1] = 0 ;
2391   for (char * p = knobs ; *p ; p++) {
2392      if (*p == ':') *p = 0 ;
2393   }
2394 
2395   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2396   SETKNOB(ReportSettings) ;
2397   SETKNOB(Verbose) ;
2398   SETKNOB(FixedSpin) ;
2399   SETKNOB(SpinLimit) ;
2400   SETKNOB(SpinBase) ;
2401   SETKNOB(SpinBackOff);
2402   SETKNOB(CASPenalty) ;
2403   SETKNOB(OXPenalty) ;
2404   SETKNOB(LogSpins) ;
2405   SETKNOB(SpinSetSucc) ;
2406   SETKNOB(SuccEnabled) ;
2407   SETKNOB(SuccRestrict) ;
2408   SETKNOB(Penalty) ;
2409   SETKNOB(Bonus) ;
2410   SETKNOB(BonusB) ;
2411   SETKNOB(Poverty) ;
2412   SETKNOB(SpinAfterFutile) ;
2413   SETKNOB(UsePause) ;
2414   SETKNOB(SpinEarly) ;
2415   SETKNOB(OState) ;
2416   SETKNOB(MaxSpinners) ;
2417   SETKNOB(PreSpin) ;
2418   SETKNOB(ExitPolicy) ;
2419   SETKNOB(QMode);
2420   SETKNOB(ResetEvent) ;
2421   SETKNOB(MoveNotifyee) ;
2422   SETKNOB(FastHSSEC) ;
2423   #undef SETKNOB
2424 
2425   if (os::is_MP()) {
2426      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2427      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2428      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2429   } else {
2430      Knob_SpinLimit = 0 ;
2431      Knob_SpinBase  = 0 ;
2432      Knob_PreSpin   = 0 ;
2433      Knob_FixedSpin = -1 ;
2434   }
2435 
2436   if (Knob_LogSpins == 0) {
2437      ObjectMonitor::_sync_FailedSpins = NULL ;
2438   }
2439 
2440   free (knobs) ;
2441   OrderAccess::fence() ;
2442   InitDone = 1 ;
2443 }
2444 
2445 #ifndef PRODUCT
2446 void ObjectMonitor::verify() {
2447 }
2448 
2449 void ObjectMonitor::print() {
2450 }
2451 #endif