1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/icBuffer.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "gc_interface/collectedHeap.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.inline.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/symbol.hpp"
  38 #include "runtime/compilationPolicy.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/interfaceSupport.hpp"
  42 #include "runtime/mutexLocker.hpp"
  43 #include "runtime/osThread.hpp"
  44 #include "runtime/safepoint.hpp"
  45 #include "runtime/signature.hpp"
  46 #include "runtime/stubCodeGenerator.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/sweeper.hpp"
  49 #include "runtime/synchronizer.hpp"
  50 #include "services/runtimeService.hpp"
  51 #include "utilities/events.hpp"
  52 #ifdef TARGET_ARCH_x86
  53 # include "nativeInst_x86.hpp"
  54 # include "vmreg_x86.inline.hpp"
  55 #endif
  56 #ifdef TARGET_ARCH_sparc
  57 # include "nativeInst_sparc.hpp"
  58 # include "vmreg_sparc.inline.hpp"
  59 #endif
  60 #ifdef TARGET_ARCH_zero
  61 # include "nativeInst_zero.hpp"
  62 # include "vmreg_zero.inline.hpp"
  63 #endif
  64 #ifdef TARGET_ARCH_arm
  65 # include "nativeInst_arm.hpp"
  66 # include "vmreg_arm.inline.hpp"
  67 #endif
  68 #ifdef TARGET_ARCH_ppc
  69 # include "nativeInst_ppc.hpp"
  70 # include "vmreg_ppc.inline.hpp"
  71 #endif
  72 #ifdef TARGET_OS_FAMILY_linux
  73 # include "thread_linux.inline.hpp"
  74 #endif
  75 #ifdef TARGET_OS_FAMILY_solaris
  76 # include "thread_solaris.inline.hpp"
  77 #endif
  78 #ifdef TARGET_OS_FAMILY_windows
  79 # include "thread_windows.inline.hpp"
  80 #endif
  81 #ifndef SERIALGC
  82 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  83 #include "gc_implementation/shared/concurrentGCThread.hpp"
  84 #endif
  85 #ifdef COMPILER1
  86 #include "c1/c1_globals.hpp"
  87 #endif
  88 
  89 // --------------------------------------------------------------------------------------------------
  90 // Implementation of Safepoint begin/end
  91 
  92 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  93 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  94 volatile int SafepointSynchronize::_safepoint_counter = 0;
  95 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  96 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  97 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  98 static bool timeout_error_printed = false;
  99 
 100 // Roll all threads forward to a safepoint and suspend them all
 101 void SafepointSynchronize::begin() {
 102 
 103   Thread* myThread = Thread::current();
 104   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
 105 
 106   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 107     _safepoint_begin_time = os::javaTimeNanos();
 108     _ts_of_current_safepoint = tty->time_stamp().seconds();
 109   }
 110 
 111 #ifndef SERIALGC
 112   if (UseConcMarkSweepGC) {
 113     // In the future we should investigate whether CMS can use the
 114     // more-general mechanism below.  DLD (01/05).
 115     ConcurrentMarkSweepThread::synchronize(false);
 116   } else if (UseG1GC) {
 117     ConcurrentGCThread::safepoint_synchronize();
 118   }
 119 #endif // SERIALGC
 120 
 121   // By getting the Threads_lock, we assure that no threads are about to start or
 122   // exit. It is released again in SafepointSynchronize::end().
 123   Threads_lock->lock();
 124 
 125   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 126 
 127   int nof_threads = Threads::number_of_threads();
 128 
 129   if (TraceSafepoint) {
 130     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
 131   }
 132 
 133   RuntimeService::record_safepoint_begin();
 134 
 135   {
 136   MutexLocker mu(Safepoint_lock);
 137 
 138   // Set number of threads to wait for, before we initiate the callbacks
 139   _waiting_to_block = nof_threads;
 140   TryingToBlock     = 0 ;
 141   int still_running = nof_threads;
 142 
 143   // Save the starting time, so that it can be compared to see if this has taken
 144   // too long to complete.
 145   jlong safepoint_limit_time;
 146   timeout_error_printed = false;
 147 
 148   // PrintSafepointStatisticsTimeout can be specified separately. When
 149   // specified, PrintSafepointStatistics will be set to true in
 150   // deferred_initialize_stat method. The initialization has to be done
 151   // early enough to avoid any races. See bug 6880029 for details.
 152   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 153     deferred_initialize_stat();
 154   }
 155 
 156   // Begin the process of bringing the system to a safepoint.
 157   // Java threads can be in several different states and are
 158   // stopped by different mechanisms:
 159   //
 160   //  1. Running interpreted
 161   //     The interpeter dispatch table is changed to force it to
 162   //     check for a safepoint condition between bytecodes.
 163   //  2. Running in native code
 164   //     When returning from the native code, a Java thread must check
 165   //     the safepoint _state to see if we must block.  If the
 166   //     VM thread sees a Java thread in native, it does
 167   //     not wait for this thread to block.  The order of the memory
 168   //     writes and reads of both the safepoint state and the Java
 169   //     threads state is critical.  In order to guarantee that the
 170   //     memory writes are serialized with respect to each other,
 171   //     the VM thread issues a memory barrier instruction
 172   //     (on MP systems).  In order to avoid the overhead of issuing
 173   //     a memory barrier for each Java thread making native calls, each Java
 174   //     thread performs a write to a single memory page after changing
 175   //     the thread state.  The VM thread performs a sequence of
 176   //     mprotect OS calls which forces all previous writes from all
 177   //     Java threads to be serialized.  This is done in the
 178   //     os::serialize_thread_states() call.  This has proven to be
 179   //     much more efficient than executing a membar instruction
 180   //     on every call to native code.
 181   //  3. Running compiled Code
 182   //     Compiled code reads a global (Safepoint Polling) page that
 183   //     is set to fault if we are trying to get to a safepoint.
 184   //  4. Blocked
 185   //     A thread which is blocked will not be allowed to return from the
 186   //     block condition until the safepoint operation is complete.
 187   //  5. In VM or Transitioning between states
 188   //     If a Java thread is currently running in the VM or transitioning
 189   //     between states, the safepointing code will wait for the thread to
 190   //     block itself when it attempts transitions to a new state.
 191   //
 192   _state            = _synchronizing;
 193   OrderAccess::fence();
 194 
 195   // Flush all thread states to memory
 196   if (!UseMembar) {
 197     os::serialize_thread_states();
 198   }
 199 
 200   // Make interpreter safepoint aware
 201   Interpreter::notice_safepoints();
 202 
 203   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
 204     // Make polling safepoint aware
 205     guarantee (PageArmed == 0, "invariant") ;
 206     PageArmed = 1 ;
 207     os::make_polling_page_unreadable();
 208   }
 209 
 210   // Consider using active_processor_count() ... but that call is expensive.
 211   int ncpus = os::processor_count() ;
 212 
 213 #ifdef ASSERT
 214   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 215     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 216   }
 217 #endif // ASSERT
 218 
 219   if (SafepointTimeout)
 220     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 221 
 222   // Iterate through all threads until it have been determined how to stop them all at a safepoint
 223   unsigned int iterations = 0;
 224   int steps = 0 ;
 225   while(still_running > 0) {
 226     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 227       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 228       ThreadSafepointState *cur_state = cur->safepoint_state();
 229       if (cur_state->is_running()) {
 230         cur_state->examine_state_of_thread();
 231         if (!cur_state->is_running()) {
 232            still_running--;
 233            // consider adjusting steps downward:
 234            //   steps = 0
 235            //   steps -= NNN
 236            //   steps >>= 1
 237            //   steps = MIN(steps, 2000-100)
 238            //   if (iterations != 0) steps -= NNN
 239         }
 240         if (TraceSafepoint && Verbose) cur_state->print();
 241       }
 242     }
 243 
 244     if (PrintSafepointStatistics && iterations == 0) {
 245       begin_statistics(nof_threads, still_running);
 246     }
 247 
 248     if (still_running > 0) {
 249       // Check for if it takes to long
 250       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 251         print_safepoint_timeout(_spinning_timeout);
 252       }
 253 
 254       // Spin to avoid context switching.
 255       // There's a tension between allowing the mutators to run (and rendezvous)
 256       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 257       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 258       // spinning by the VM thread on a saturated system can increase rendezvous latency.
 259       // Blocking or yielding incur their own penalties in the form of context switching
 260       // and the resultant loss of $ residency.
 261       //
 262       // Further complicating matters is that yield() does not work as naively expected
 263       // on many platforms -- yield() does not guarantee that any other ready threads
 264       // will run.   As such we revert yield_all() after some number of iterations.
 265       // Yield_all() is implemented as a short unconditional sleep on some platforms.
 266       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 267       // can actually increase the time it takes the VM thread to detect that a system-wide
 268       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 269       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 270       // In that case the mutators will be stalled waiting for the safepoint to complete and the
 271       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 272       // will eventually wake up and detect that all mutators are safe, at which point
 273       // we'll again make progress.
 274       //
 275       // Beware too that that the VMThread typically runs at elevated priority.
 276       // Its default priority is higher than the default mutator priority.
 277       // Obviously, this complicates spinning.
 278       //
 279       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 280       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 281       //
 282       // See the comments in synchronizer.cpp for additional remarks on spinning.
 283       //
 284       // In the future we might:
 285       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
 286       //    This is tricky as the path used by a thread exiting the JVM (say on
 287       //    on JNI call-out) simply stores into its state field.  The burden
 288       //    is placed on the VM thread, which must poll (spin).
 289       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 290       //    we might aggressively scan the stacks of threads that are already safe.
 291       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 292       //    If all the mutators are ONPROC there's no reason to sleep or yield.
 293       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 294       // 5. Check system saturation.  If the system is not fully saturated then
 295       //    simply spin and avoid sleep/yield.
 296       // 6. As still-running mutators rendezvous they could unpark the sleeping
 297       //    VMthread.  This works well for still-running mutators that become
 298       //    safe.  The VMthread must still poll for mutators that call-out.
 299       // 7. Drive the policy on time-since-begin instead of iterations.
 300       // 8. Consider making the spin duration a function of the # of CPUs:
 301       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 302       //    Alternately, instead of counting iterations of the outer loop
 303       //    we could count the # of threads visited in the inner loop, above.
 304       // 9. On windows consider using the return value from SwitchThreadTo()
 305       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 306 
 307       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
 308          guarantee (PageArmed == 0, "invariant") ;
 309          PageArmed = 1 ;
 310          os::make_polling_page_unreadable();
 311       }
 312 
 313       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 314       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 315       ++steps ;
 316       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 317         SpinPause() ;     // MP-Polite spin
 318       } else
 319       if (steps < DeferThrSuspendLoopCount) {
 320         os::NakedYield() ;
 321       } else {
 322         os::yield_all(steps) ;
 323         // Alternately, the VM thread could transiently depress its scheduling priority or
 324         // transiently increase the priority of the tardy mutator(s).
 325       }
 326 
 327       iterations ++ ;
 328     }
 329     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 330   }
 331   assert(still_running == 0, "sanity check");
 332 
 333   if (PrintSafepointStatistics) {
 334     update_statistics_on_spin_end();
 335   }
 336 
 337   // wait until all threads are stopped
 338   while (_waiting_to_block > 0) {
 339     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
 340     if (!SafepointTimeout || timeout_error_printed) {
 341       Safepoint_lock->wait(true);  // true, means with no safepoint checks
 342     } else {
 343       // Compute remaining time
 344       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 345 
 346       // If there is no remaining time, then there is an error
 347       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 348         print_safepoint_timeout(_blocking_timeout);
 349       }
 350     }
 351   }
 352   assert(_waiting_to_block == 0, "sanity check");
 353 
 354 #ifndef PRODUCT
 355   if (SafepointTimeout) {
 356     jlong current_time = os::javaTimeNanos();
 357     if (safepoint_limit_time < current_time) {
 358       tty->print_cr("# SafepointSynchronize: Finished after "
 359                     INT64_FORMAT_W(6) " ms",
 360                     ((current_time - safepoint_limit_time) / MICROUNITS +
 361                      SafepointTimeoutDelay));
 362     }
 363   }
 364 #endif
 365 
 366   assert((_safepoint_counter & 0x1) == 0, "must be even");
 367   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 368   _safepoint_counter ++;
 369 
 370   // Record state
 371   _state = _synchronized;
 372 
 373   OrderAccess::fence();
 374 
 375   if (TraceSafepoint) {
 376     VM_Operation *op = VMThread::vm_operation();
 377     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
 378   }
 379 
 380   RuntimeService::record_safepoint_synchronized();
 381   if (PrintSafepointStatistics) {
 382     update_statistics_on_sync_end(os::javaTimeNanos());
 383   }
 384 
 385   // Call stuff that needs to be run when a safepoint is just about to be completed
 386   do_cleanup_tasks();
 387 
 388   if (PrintSafepointStatistics) {
 389     // Record how much time spend on the above cleanup tasks
 390     update_statistics_on_cleanup_end(os::javaTimeNanos());
 391   }
 392   }
 393 }
 394 
 395 // Wake up all threads, so they are ready to resume execution after the safepoint
 396 // operation has been carried out
 397 void SafepointSynchronize::end() {
 398 
 399   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 400   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 401   _safepoint_counter ++;
 402   // memory fence isn't required here since an odd _safepoint_counter
 403   // value can do no harm and a fence is issued below anyway.
 404 
 405   DEBUG_ONLY(Thread* myThread = Thread::current();)
 406   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 407 
 408   if (PrintSafepointStatistics) {
 409     end_statistics(os::javaTimeNanos());
 410   }
 411 
 412 #ifdef ASSERT
 413   // A pending_exception cannot be installed during a safepoint.  The threads
 414   // may install an async exception after they come back from a safepoint into
 415   // pending_exception after they unblock.  But that should happen later.
 416   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 417     assert (!(cur->has_pending_exception() &&
 418               cur->safepoint_state()->is_at_poll_safepoint()),
 419             "safepoint installed a pending exception");
 420   }
 421 #endif // ASSERT
 422 
 423   if (PageArmed) {
 424     // Make polling safepoint aware
 425     os::make_polling_page_readable();
 426     PageArmed = 0 ;
 427   }
 428 
 429   // Remove safepoint check from interpreter
 430   Interpreter::ignore_safepoints();
 431 
 432   {
 433     MutexLocker mu(Safepoint_lock);
 434 
 435     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 436 
 437     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 438     // when they get restarted.
 439     _state = _not_synchronized;
 440     OrderAccess::fence();
 441 
 442     if (TraceSafepoint) {
 443        tty->print_cr("Leaving safepoint region");
 444     }
 445 
 446     // Start suspended threads
 447     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 448       // A problem occurring on Solaris is when attempting to restart threads
 449       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 450       // to the next one (since it has been running the longest).  We then have
 451       // to wait for a cpu to become available before we can continue restarting
 452       // threads.
 453       // FIXME: This causes the performance of the VM to degrade when active and with
 454       // large numbers of threads.  Apparently this is due to the synchronous nature
 455       // of suspending threads.
 456       //
 457       // TODO-FIXME: the comments above are vestigial and no longer apply.
 458       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 459       if (VMThreadHintNoPreempt) {
 460         os::hint_no_preempt();
 461       }
 462       ThreadSafepointState* cur_state = current->safepoint_state();
 463       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 464       cur_state->restart();
 465       assert(cur_state->is_running(), "safepoint state has not been reset");
 466     }
 467 
 468     RuntimeService::record_safepoint_end();
 469 
 470     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 471     // blocked in signal_thread_blocked
 472     Threads_lock->unlock();
 473 
 474   }
 475 #ifndef SERIALGC
 476   // If there are any concurrent GC threads resume them.
 477   if (UseConcMarkSweepGC) {
 478     ConcurrentMarkSweepThread::desynchronize(false);
 479   } else if (UseG1GC) {
 480     ConcurrentGCThread::safepoint_desynchronize();
 481   }
 482 #endif // SERIALGC
 483   // record this time so VMThread can keep track how much time has elasped
 484   // since last safepoint.
 485   _end_of_last_safepoint = os::javaTimeMillis();
 486 }
 487 
 488 bool SafepointSynchronize::is_cleanup_needed() {
 489   // Need a safepoint if some inline cache buffers is non-empty
 490   if (!InlineCacheBuffer::is_empty()) return true;
 491   return false;
 492 }
 493 
 494 
 495 
 496 // Various cleaning tasks that should be done periodically at safepoints
 497 void SafepointSynchronize::do_cleanup_tasks() {
 498   {
 499     TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
 500     ObjectSynchronizer::deflate_idle_monitors();
 501   }
 502 
 503   {
 504     TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
 505     InlineCacheBuffer::update_inline_caches();
 506   }
 507   {
 508     TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
 509     CompilationPolicy::policy()->do_safepoint_work();
 510   }
 511 
 512   TraceTime t4("sweeping nmethods", TraceSafepointCleanupTime);
 513   NMethodSweeper::scan_stacks();
 514 
 515   // rotate log files?
 516   if (UseGCLogFileRotation) {
 517     gclog_or_tty->rotate_log();
 518   }
 519 }
 520 
 521 
 522 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 523   switch(state) {
 524   case _thread_in_native:
 525     // native threads are safe if they have no java stack or have walkable stack
 526     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 527 
 528    // blocked threads should have already have walkable stack
 529   case _thread_blocked:
 530     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 531     return true;
 532 
 533   default:
 534     return false;
 535   }
 536 }
 537 
 538 
 539 // -------------------------------------------------------------------------------------------------------
 540 // Implementation of Safepoint callback point
 541 
 542 void SafepointSynchronize::block(JavaThread *thread) {
 543   assert(thread != NULL, "thread must be set");
 544   assert(thread->is_Java_thread(), "not a Java thread");
 545 
 546   // Threads shouldn't block if they are in the middle of printing, but...
 547   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 548 
 549   // Only bail from the block() call if the thread is gone from the
 550   // thread list; starting to exit should still block.
 551   if (thread->is_terminated()) {
 552      // block current thread if we come here from native code when VM is gone
 553      thread->block_if_vm_exited();
 554 
 555      // otherwise do nothing
 556      return;
 557   }
 558 
 559   JavaThreadState state = thread->thread_state();
 560   thread->frame_anchor()->make_walkable(thread);
 561 
 562   // Check that we have a valid thread_state at this point
 563   switch(state) {
 564     case _thread_in_vm_trans:
 565     case _thread_in_Java:        // From compiled code
 566 
 567       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 568       // we pretend we are still in the VM.
 569       thread->set_thread_state(_thread_in_vm);
 570 
 571       if (is_synchronizing()) {
 572          Atomic::inc (&TryingToBlock) ;
 573       }
 574 
 575       // We will always be holding the Safepoint_lock when we are examine the state
 576       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 577       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 578       Safepoint_lock->lock_without_safepoint_check();
 579       if (is_synchronizing()) {
 580         // Decrement the number of threads to wait for and signal vm thread
 581         assert(_waiting_to_block > 0, "sanity check");
 582         _waiting_to_block--;
 583         thread->safepoint_state()->set_has_called_back(true);
 584 
 585         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 586         if (_waiting_to_block == 0) {
 587           Safepoint_lock->notify_all();
 588         }
 589       }
 590 
 591       // We transition the thread to state _thread_blocked here, but
 592       // we can't do our usual check for external suspension and then
 593       // self-suspend after the lock_without_safepoint_check() call
 594       // below because we are often called during transitions while
 595       // we hold different locks. That would leave us suspended while
 596       // holding a resource which results in deadlocks.
 597       thread->set_thread_state(_thread_blocked);
 598       Safepoint_lock->unlock();
 599 
 600       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 601       // the entire safepoint, the threads will all line up here during the safepoint.
 602       Threads_lock->lock_without_safepoint_check();
 603       // restore original state. This is important if the thread comes from compiled code, so it
 604       // will continue to execute with the _thread_in_Java state.
 605       thread->set_thread_state(state);
 606       Threads_lock->unlock();
 607       break;
 608 
 609     case _thread_in_native_trans:
 610     case _thread_blocked_trans:
 611     case _thread_new_trans:
 612       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 613         thread->print_thread_state();
 614         fatal("Deadlock in safepoint code.  "
 615               "Should have called back to the VM before blocking.");
 616       }
 617 
 618       // We transition the thread to state _thread_blocked here, but
 619       // we can't do our usual check for external suspension and then
 620       // self-suspend after the lock_without_safepoint_check() call
 621       // below because we are often called during transitions while
 622       // we hold different locks. That would leave us suspended while
 623       // holding a resource which results in deadlocks.
 624       thread->set_thread_state(_thread_blocked);
 625 
 626       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 627       // the safepoint code might still be waiting for it to block. We need to change the state here,
 628       // so it can see that it is at a safepoint.
 629 
 630       // Block until the safepoint operation is completed.
 631       Threads_lock->lock_without_safepoint_check();
 632 
 633       // Restore state
 634       thread->set_thread_state(state);
 635 
 636       Threads_lock->unlock();
 637       break;
 638 
 639     default:
 640      fatal(err_msg("Illegal threadstate encountered: %d", state));
 641   }
 642 
 643   // Check for pending. async. exceptions or suspends - except if the
 644   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 645   // is called last since it grabs a lock and we only want to do that when
 646   // we must.
 647   //
 648   // Note: we never deliver an async exception at a polling point as the
 649   // compiler may not have an exception handler for it. The polling
 650   // code will notice the async and deoptimize and the exception will
 651   // be delivered. (Polling at a return point is ok though). Sure is
 652   // a lot of bother for a deprecated feature...
 653   //
 654   // We don't deliver an async exception if the thread state is
 655   // _thread_in_native_trans so JNI functions won't be called with
 656   // a surprising pending exception. If the thread state is going back to java,
 657   // async exception is checked in check_special_condition_for_native_trans().
 658 
 659   if (state != _thread_blocked_trans &&
 660       state != _thread_in_vm_trans &&
 661       thread->has_special_runtime_exit_condition()) {
 662     thread->handle_special_runtime_exit_condition(
 663       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 664   }
 665 }
 666 
 667 // ------------------------------------------------------------------------------------------------------
 668 // Exception handlers
 669 
 670 #ifndef PRODUCT
 671 #ifdef _LP64
 672 #define PTR_PAD ""
 673 #else
 674 #define PTR_PAD "        "
 675 #endif
 676 
 677 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
 678   bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
 679   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
 680                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
 681                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
 682 }
 683 
 684 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
 685   bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
 686   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
 687                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
 688                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
 689 }
 690 
 691 #ifdef SPARC
 692 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
 693 #ifdef _LP64
 694   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
 695   const int incr = 1;           // Increment to skip a long, in units of intptr_t
 696 #else
 697   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
 698   const int incr = 2;           // Increment to skip a long, in units of intptr_t
 699 #endif
 700   tty->print_cr("---SP---|");
 701   for( int i=0; i<16; i++ ) {
 702     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 703   tty->print_cr("--------|");
 704   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
 705     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 706   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
 707   tty->print_cr("--------|");
 708   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 709   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 710   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 711   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 712   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
 713   old_sp += incr; new_sp += incr; was_oops += incr;
 714   // Skip the floats
 715   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
 716   tty->print_cr("---FP---|");
 717   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
 718   for( int i2=0; i2<16; i2++ ) {
 719     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 720   tty->print_cr("");
 721 }
 722 #endif  // SPARC
 723 #endif  // PRODUCT
 724 
 725 
 726 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 727   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 728   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 729   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 730 
 731   // Uncomment this to get some serious before/after printing of the
 732   // Sparc safepoint-blob frame structure.
 733   /*
 734   intptr_t* sp = thread->last_Java_sp();
 735   intptr_t stack_copy[150];
 736   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
 737   bool was_oops[150];
 738   for( int i=0; i<150; i++ )
 739     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
 740   */
 741 
 742   if (ShowSafepointMsgs) {
 743     tty->print("handle_polling_page_exception: ");
 744   }
 745 
 746   if (PrintSafepointStatistics) {
 747     inc_page_trap_count();
 748   }
 749 
 750   ThreadSafepointState* state = thread->safepoint_state();
 751 
 752   state->handle_polling_page_exception();
 753   // print_me(sp,stack_copy,was_oops);
 754 }
 755 
 756 
 757 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 758   if (!timeout_error_printed) {
 759     timeout_error_printed = true;
 760     // Print out the thread infor which didn't reach the safepoint for debugging
 761     // purposes (useful when there are lots of threads in the debugger).
 762     tty->print_cr("");
 763     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 764     if (reason ==  _spinning_timeout) {
 765       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 766     } else if (reason == _blocking_timeout) {
 767       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 768     }
 769 
 770     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 771     ThreadSafepointState *cur_state;
 772     ResourceMark rm;
 773     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 774         cur_thread = cur_thread->next()) {
 775       cur_state = cur_thread->safepoint_state();
 776 
 777       if (cur_thread->thread_state() != _thread_blocked &&
 778           ((reason == _spinning_timeout && cur_state->is_running()) ||
 779            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 780         tty->print("# ");
 781         cur_thread->print();
 782         tty->print_cr("");
 783       }
 784     }
 785     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 786   }
 787 
 788   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 789   // ShowMessageBoxOnError.
 790   if (DieOnSafepointTimeout) {
 791     char msg[1024];
 792     VM_Operation *op = VMThread::vm_operation();
 793     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 794             SafepointTimeoutDelay,
 795             op != NULL ? op->name() : "no vm operation");
 796     fatal(msg);
 797   }
 798 }
 799 
 800 
 801 // -------------------------------------------------------------------------------------------------------
 802 // Implementation of ThreadSafepointState
 803 
 804 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 805   _thread = thread;
 806   _type   = _running;
 807   _has_called_back = false;
 808   _at_poll_safepoint = false;
 809 }
 810 
 811 void ThreadSafepointState::create(JavaThread *thread) {
 812   ThreadSafepointState *state = new ThreadSafepointState(thread);
 813   thread->set_safepoint_state(state);
 814 }
 815 
 816 void ThreadSafepointState::destroy(JavaThread *thread) {
 817   if (thread->safepoint_state()) {
 818     delete(thread->safepoint_state());
 819     thread->set_safepoint_state(NULL);
 820   }
 821 }
 822 
 823 void ThreadSafepointState::examine_state_of_thread() {
 824   assert(is_running(), "better be running or just have hit safepoint poll");
 825 
 826   JavaThreadState state = _thread->thread_state();
 827 
 828   // Save the state at the start of safepoint processing.
 829   _orig_thread_state = state;
 830 
 831   // Check for a thread that is suspended. Note that thread resume tries
 832   // to grab the Threads_lock which we own here, so a thread cannot be
 833   // resumed during safepoint synchronization.
 834 
 835   // We check to see if this thread is suspended without locking to
 836   // avoid deadlocking with a third thread that is waiting for this
 837   // thread to be suspended. The third thread can notice the safepoint
 838   // that we're trying to start at the beginning of its SR_lock->wait()
 839   // call. If that happens, then the third thread will block on the
 840   // safepoint while still holding the underlying SR_lock. We won't be
 841   // able to get the SR_lock and we'll deadlock.
 842   //
 843   // We don't need to grab the SR_lock here for two reasons:
 844   // 1) The suspend flags are both volatile and are set with an
 845   //    Atomic::cmpxchg() call so we should see the suspended
 846   //    state right away.
 847   // 2) We're being called from the safepoint polling loop; if
 848   //    we don't see the suspended state on this iteration, then
 849   //    we'll come around again.
 850   //
 851   bool is_suspended = _thread->is_ext_suspended();
 852   if (is_suspended) {
 853     roll_forward(_at_safepoint);
 854     return;
 855   }
 856 
 857   // Some JavaThread states have an initial safepoint state of
 858   // running, but are actually at a safepoint. We will happily
 859   // agree and update the safepoint state here.
 860   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
 861       roll_forward(_at_safepoint);
 862       return;
 863   }
 864 
 865   if (state == _thread_in_vm) {
 866     roll_forward(_call_back);
 867     return;
 868   }
 869 
 870   // All other thread states will continue to run until they
 871   // transition and self-block in state _blocked
 872   // Safepoint polling in compiled code causes the Java threads to do the same.
 873   // Note: new threads may require a malloc so they must be allowed to finish
 874 
 875   assert(is_running(), "examine_state_of_thread on non-running thread");
 876   return;
 877 }
 878 
 879 // Returns true is thread could not be rolled forward at present position.
 880 void ThreadSafepointState::roll_forward(suspend_type type) {
 881   _type = type;
 882 
 883   switch(_type) {
 884     case _at_safepoint:
 885       SafepointSynchronize::signal_thread_at_safepoint();
 886       break;
 887 
 888     case _call_back:
 889       set_has_called_back(false);
 890       break;
 891 
 892     case _running:
 893     default:
 894       ShouldNotReachHere();
 895   }
 896 }
 897 
 898 void ThreadSafepointState::restart() {
 899   switch(type()) {
 900     case _at_safepoint:
 901     case _call_back:
 902       break;
 903 
 904     case _running:
 905     default:
 906        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
 907                       _thread, _type);
 908        _thread->print();
 909       ShouldNotReachHere();
 910   }
 911   _type = _running;
 912   set_has_called_back(false);
 913 }
 914 
 915 
 916 void ThreadSafepointState::print_on(outputStream *st) const {
 917   const char *s;
 918 
 919   switch(_type) {
 920     case _running                : s = "_running";              break;
 921     case _at_safepoint           : s = "_at_safepoint";         break;
 922     case _call_back              : s = "_call_back";            break;
 923     default:
 924       ShouldNotReachHere();
 925   }
 926 
 927   st->print_cr("Thread: " INTPTR_FORMAT
 928               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
 929                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
 930                _at_poll_safepoint);
 931 
 932   _thread->print_thread_state_on(st);
 933 }
 934 
 935 
 936 // ---------------------------------------------------------------------------------------------------------------------
 937 
 938 // Block the thread at the safepoint poll or poll return.
 939 void ThreadSafepointState::handle_polling_page_exception() {
 940 
 941   // Check state.  block() will set thread state to thread_in_vm which will
 942   // cause the safepoint state _type to become _call_back.
 943   assert(type() == ThreadSafepointState::_running,
 944          "polling page exception on thread not running state");
 945 
 946   // Step 1: Find the nmethod from the return address
 947   if (ShowSafepointMsgs && Verbose) {
 948     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
 949   }
 950   address real_return_addr = thread()->saved_exception_pc();
 951 
 952   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
 953   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
 954   nmethod* nm = (nmethod*)cb;
 955 
 956   // Find frame of caller
 957   frame stub_fr = thread()->last_frame();
 958   CodeBlob* stub_cb = stub_fr.cb();
 959   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
 960   RegisterMap map(thread(), true);
 961   frame caller_fr = stub_fr.sender(&map);
 962 
 963   // Should only be poll_return or poll
 964   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
 965 
 966   // This is a poll immediately before a return. The exception handling code
 967   // has already had the effect of causing the return to occur, so the execution
 968   // will continue immediately after the call. In addition, the oopmap at the
 969   // return point does not mark the return value as an oop (if it is), so
 970   // it needs a handle here to be updated.
 971   if( nm->is_at_poll_return(real_return_addr) ) {
 972     // See if return type is an oop.
 973     bool return_oop = nm->method()->is_returning_oop();
 974     Handle return_value;
 975     if (return_oop) {
 976       // The oop result has been saved on the stack together with all
 977       // the other registers. In order to preserve it over GCs we need
 978       // to keep it in a handle.
 979       oop result = caller_fr.saved_oop_result(&map);
 980       assert(result == NULL || result->is_oop(), "must be oop");
 981       return_value = Handle(thread(), result);
 982       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 983     }
 984 
 985     // Block the thread
 986     SafepointSynchronize::block(thread());
 987 
 988     // restore oop result, if any
 989     if (return_oop) {
 990       caller_fr.set_saved_oop_result(&map, return_value());
 991     }
 992   }
 993 
 994   // This is a safepoint poll. Verify the return address and block.
 995   else {
 996     set_at_poll_safepoint(true);
 997 
 998     // verify the blob built the "return address" correctly
 999     assert(real_return_addr == caller_fr.pc(), "must match");
1000 
1001     // Block the thread
1002     SafepointSynchronize::block(thread());
1003     set_at_poll_safepoint(false);
1004 
1005     // If we have a pending async exception deoptimize the frame
1006     // as otherwise we may never deliver it.
1007     if (thread()->has_async_condition()) {
1008       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1009       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1010     }
1011 
1012     // If an exception has been installed we must check for a pending deoptimization
1013     // Deoptimize frame if exception has been thrown.
1014 
1015     if (thread()->has_pending_exception() ) {
1016       RegisterMap map(thread(), true);
1017       frame caller_fr = stub_fr.sender(&map);
1018       if (caller_fr.is_deoptimized_frame()) {
1019         // The exception patch will destroy registers that are still
1020         // live and will be needed during deoptimization. Defer the
1021         // Async exception should have defered the exception until the
1022         // next safepoint which will be detected when we get into
1023         // the interpreter so if we have an exception now things
1024         // are messed up.
1025 
1026         fatal("Exception installed and deoptimization is pending");
1027       }
1028     }
1029   }
1030 }
1031 
1032 
1033 //
1034 //                     Statistics & Instrumentations
1035 //
1036 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1037 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1038 int    SafepointSynchronize::_cur_stat_index = 0;
1039 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1040 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1041 jlong  SafepointSynchronize::_max_sync_time = 0;
1042 jlong  SafepointSynchronize::_max_vmop_time = 0;
1043 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1044 
1045 static jlong  cleanup_end_time = 0;
1046 static bool   need_to_track_page_armed_status = false;
1047 static bool   init_done = false;
1048 
1049 // Helper method to print the header.
1050 static void print_header() {
1051   tty->print("         vmop                    "
1052              "[threads: total initially_running wait_to_block]    ");
1053   tty->print("[time: spin block sync cleanup vmop] ");
1054 
1055   // no page armed status printed out if it is always armed.
1056   if (need_to_track_page_armed_status) {
1057     tty->print("page_armed ");
1058   }
1059 
1060   tty->print_cr("page_trap_count");
1061 }
1062 
1063 void SafepointSynchronize::deferred_initialize_stat() {
1064   if (init_done) return;
1065 
1066   if (PrintSafepointStatisticsCount <= 0) {
1067     fatal("Wrong PrintSafepointStatisticsCount");
1068   }
1069 
1070   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1071   // be printed right away, in which case, _safepoint_stats will regress to
1072   // a single element array. Otherwise, it is a circular ring buffer with default
1073   // size of PrintSafepointStatisticsCount.
1074   int stats_array_size;
1075   if (PrintSafepointStatisticsTimeout > 0) {
1076     stats_array_size = 1;
1077     PrintSafepointStatistics = true;
1078   } else {
1079     stats_array_size = PrintSafepointStatisticsCount;
1080   }
1081   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1082                                                  * sizeof(SafepointStats));
1083   guarantee(_safepoint_stats != NULL,
1084             "not enough memory for safepoint instrumentation data");
1085 
1086   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
1087     need_to_track_page_armed_status = true;
1088   }
1089   init_done = true;
1090 }
1091 
1092 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1093   assert(init_done, "safepoint statistics array hasn't been initialized");
1094   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1095 
1096   spstat->_time_stamp = _ts_of_current_safepoint;
1097 
1098   VM_Operation *op = VMThread::vm_operation();
1099   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1100   if (op != NULL) {
1101     _safepoint_reasons[spstat->_vmop_type]++;
1102   }
1103 
1104   spstat->_nof_total_threads = nof_threads;
1105   spstat->_nof_initial_running_threads = nof_running;
1106   spstat->_nof_threads_hit_page_trap = 0;
1107 
1108   // Records the start time of spinning. The real time spent on spinning
1109   // will be adjusted when spin is done. Same trick is applied for time
1110   // spent on waiting for threads to block.
1111   if (nof_running != 0) {
1112     spstat->_time_to_spin = os::javaTimeNanos();
1113   }  else {
1114     spstat->_time_to_spin = 0;
1115   }
1116 }
1117 
1118 void SafepointSynchronize::update_statistics_on_spin_end() {
1119   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1120 
1121   jlong cur_time = os::javaTimeNanos();
1122 
1123   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1124   if (spstat->_nof_initial_running_threads != 0) {
1125     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1126   }
1127 
1128   if (need_to_track_page_armed_status) {
1129     spstat->_page_armed = (PageArmed == 1);
1130   }
1131 
1132   // Records the start time of waiting for to block. Updated when block is done.
1133   if (_waiting_to_block != 0) {
1134     spstat->_time_to_wait_to_block = cur_time;
1135   } else {
1136     spstat->_time_to_wait_to_block = 0;
1137   }
1138 }
1139 
1140 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1141   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1142 
1143   if (spstat->_nof_threads_wait_to_block != 0) {
1144     spstat->_time_to_wait_to_block = end_time -
1145       spstat->_time_to_wait_to_block;
1146   }
1147 
1148   // Records the end time of sync which will be used to calculate the total
1149   // vm operation time. Again, the real time spending in syncing will be deducted
1150   // from the start of the sync time later when end_statistics is called.
1151   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1152   if (spstat->_time_to_sync > _max_sync_time) {
1153     _max_sync_time = spstat->_time_to_sync;
1154   }
1155 
1156   spstat->_time_to_do_cleanups = end_time;
1157 }
1158 
1159 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1160   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1161 
1162   // Record how long spent in cleanup tasks.
1163   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1164 
1165   cleanup_end_time = end_time;
1166 }
1167 
1168 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1169   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1170 
1171   // Update the vm operation time.
1172   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1173   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1174     _max_vmop_time = spstat->_time_to_exec_vmop;
1175   }
1176   // Only the sync time longer than the specified
1177   // PrintSafepointStatisticsTimeout will be printed out right away.
1178   // By default, it is -1 meaning all samples will be put into the list.
1179   if ( PrintSafepointStatisticsTimeout > 0) {
1180     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1181       print_statistics();
1182     }
1183   } else {
1184     // The safepoint statistics will be printed out when the _safepoin_stats
1185     // array fills up.
1186     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1187       print_statistics();
1188       _cur_stat_index = 0;
1189     } else {
1190       _cur_stat_index++;
1191     }
1192   }
1193 }
1194 
1195 void SafepointSynchronize::print_statistics() {
1196   SafepointStats* sstats = _safepoint_stats;
1197 
1198   for (int index = 0; index <= _cur_stat_index; index++) {
1199     if (index % 30 == 0) {
1200       print_header();
1201     }
1202     sstats = &_safepoint_stats[index];
1203     tty->print("%.3f: ", sstats->_time_stamp);
1204     tty->print("%-26s       ["
1205                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
1206                "    ]    ",
1207                sstats->_vmop_type == -1 ? "no vm operation" :
1208                VM_Operation::name(sstats->_vmop_type),
1209                sstats->_nof_total_threads,
1210                sstats->_nof_initial_running_threads,
1211                sstats->_nof_threads_wait_to_block);
1212     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1213     tty->print("  ["
1214                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1215                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1216                INT64_FORMAT_W(6)"    ]  ",
1217                sstats->_time_to_spin / MICROUNITS,
1218                sstats->_time_to_wait_to_block / MICROUNITS,
1219                sstats->_time_to_sync / MICROUNITS,
1220                sstats->_time_to_do_cleanups / MICROUNITS,
1221                sstats->_time_to_exec_vmop / MICROUNITS);
1222 
1223     if (need_to_track_page_armed_status) {
1224       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
1225     }
1226     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
1227   }
1228 }
1229 
1230 // This method will be called when VM exits. It will first call
1231 // print_statistics to print out the rest of the sampling.  Then
1232 // it tries to summarize the sampling.
1233 void SafepointSynchronize::print_stat_on_exit() {
1234   if (_safepoint_stats == NULL) return;
1235 
1236   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1237 
1238   // During VM exit, end_statistics may not get called and in that
1239   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1240   // don't print it out.
1241   // Approximate the vm op time.
1242   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1243     os::javaTimeNanos() - cleanup_end_time;
1244 
1245   if ( PrintSafepointStatisticsTimeout < 0 ||
1246        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1247     print_statistics();
1248   }
1249   tty->print_cr("");
1250 
1251   // Print out polling page sampling status.
1252   if (!need_to_track_page_armed_status) {
1253     if (UseCompilerSafepoints) {
1254       tty->print_cr("Polling page always armed");
1255     }
1256   } else {
1257     tty->print_cr("Defer polling page loop count = %d\n",
1258                  DeferPollingPageLoopCount);
1259   }
1260 
1261   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1262     if (_safepoint_reasons[index] != 0) {
1263       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
1264                     _safepoint_reasons[index]);
1265     }
1266   }
1267 
1268   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
1269                 _coalesced_vmop_count);
1270   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
1271                 _max_sync_time / MICROUNITS);
1272   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1273                 INT64_FORMAT_W(5)" ms",
1274                 _max_vmop_time / MICROUNITS);
1275 }
1276 
1277 // ------------------------------------------------------------------------------------------------
1278 // Non-product code
1279 
1280 #ifndef PRODUCT
1281 
1282 void SafepointSynchronize::print_state() {
1283   if (_state == _not_synchronized) {
1284     tty->print_cr("not synchronized");
1285   } else if (_state == _synchronizing || _state == _synchronized) {
1286     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1287                   "synchronized");
1288 
1289     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1290        cur->safepoint_state()->print();
1291     }
1292   }
1293 }
1294 
1295 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1296   if (ShowSafepointMsgs) {
1297     va_list ap;
1298     va_start(ap, format);
1299     tty->vprint_cr(format, ap);
1300     va_end(ap);
1301   }
1302 }
1303 
1304 #endif // !PRODUCT