1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #define __STDC_FORMAT_MACROS
  29 
  30 #ifdef TARGET_COMPILER_gcc
  31 # include "utilities/globalDefinitions_gcc.hpp"
  32 #endif
  33 #ifdef TARGET_COMPILER_visCPP
  34 # include "utilities/globalDefinitions_visCPP.hpp"
  35 #endif
  36 #ifdef TARGET_COMPILER_sparcWorks
  37 # include "utilities/globalDefinitions_sparcWorks.hpp"
  38 #endif
  39 
  40 #include "utilities/macros.hpp"
  41 
  42 // This file holds all globally used constants & types, class (forward)
  43 // declarations and a few frequently used utility functions.
  44 
  45 //----------------------------------------------------------------------------------------------------
  46 // Constants
  47 
  48 const int LogBytesPerShort   = 1;
  49 const int LogBytesPerInt     = 2;
  50 #ifdef _LP64
  51 const int LogBytesPerWord    = 3;
  52 #else
  53 const int LogBytesPerWord    = 2;
  54 #endif
  55 const int LogBytesPerLong    = 3;
  56 
  57 const int BytesPerShort      = 1 << LogBytesPerShort;
  58 const int BytesPerInt        = 1 << LogBytesPerInt;
  59 const int BytesPerWord       = 1 << LogBytesPerWord;
  60 const int BytesPerLong       = 1 << LogBytesPerLong;
  61 
  62 const int LogBitsPerByte     = 3;
  63 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
  64 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
  65 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
  66 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
  67 
  68 const int BitsPerByte        = 1 << LogBitsPerByte;
  69 const int BitsPerShort       = 1 << LogBitsPerShort;
  70 const int BitsPerInt         = 1 << LogBitsPerInt;
  71 const int BitsPerWord        = 1 << LogBitsPerWord;
  72 const int BitsPerLong        = 1 << LogBitsPerLong;
  73 
  74 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
  75 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
  76 
  77 const int WordsPerLong       = 2;       // Number of stack entries for longs
  78 
  79 const int oopSize            = sizeof(char*); // Full-width oop
  80 extern int heapOopSize;                       // Oop within a java object
  81 const int wordSize           = sizeof(char*);
  82 const int longSize           = sizeof(jlong);
  83 const int jintSize           = sizeof(jint);
  84 const int size_tSize         = sizeof(size_t);
  85 
  86 const int BytesPerOop        = BytesPerWord;  // Full-width oop
  87 
  88 extern int LogBytesPerHeapOop;                // Oop within a java object
  89 extern int LogBitsPerHeapOop;
  90 extern int BytesPerHeapOop;
  91 extern int BitsPerHeapOop;
  92 
  93 // Oop encoding heap max
  94 extern uint64_t OopEncodingHeapMax;
  95 
  96 const int BitsPerJavaInteger = 32;
  97 const int BitsPerJavaLong    = 64;
  98 const int BitsPerSize_t      = size_tSize * BitsPerByte;
  99 
 100 // Size of a char[] needed to represent a jint as a string in decimal.
 101 const int jintAsStringSize = 12;
 102 
 103 // In fact this should be
 104 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 105 // see os::set_memory_serialize_page()
 106 #ifdef _LP64
 107 const int SerializePageShiftCount = 4;
 108 #else
 109 const int SerializePageShiftCount = 3;
 110 #endif
 111 
 112 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 113 // pointer into the heap.  We require that object sizes be measured in
 114 // units of heap words, so that that
 115 //   HeapWord* hw;
 116 //   hw += oop(hw)->foo();
 117 // works, where foo is a method (like size or scavenge) that returns the
 118 // object size.
 119 class HeapWord {
 120   friend class VMStructs;
 121  private:
 122   char* i;
 123 #ifndef PRODUCT
 124  public:
 125   char* value() { return i; }
 126 #endif
 127 };
 128 
 129 // HeapWordSize must be 2^LogHeapWordSize.
 130 const int HeapWordSize        = sizeof(HeapWord);
 131 #ifdef _LP64
 132 const int LogHeapWordSize     = 3;
 133 #else
 134 const int LogHeapWordSize     = 2;
 135 #endif
 136 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 137 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 138 
 139 // The larger HeapWordSize for 64bit requires larger heaps
 140 // for the same application running in 64bit.  See bug 4967770.
 141 // The minimum alignment to a heap word size is done.  Other
 142 // parts of the memory system may required additional alignment
 143 // and are responsible for those alignments.
 144 #ifdef _LP64
 145 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 146 #else
 147 #define ScaleForWordSize(x) (x)
 148 #endif
 149 
 150 // The minimum number of native machine words necessary to contain "byte_size"
 151 // bytes.
 152 inline size_t heap_word_size(size_t byte_size) {
 153   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 154 }
 155 
 156 
 157 const size_t K                  = 1024;
 158 const size_t M                  = K*K;
 159 const size_t G                  = M*K;
 160 const size_t HWperKB            = K / sizeof(HeapWord);
 161 
 162 const size_t LOG_K              = 10;
 163 const size_t LOG_M              = 2 * LOG_K;
 164 const size_t LOG_G              = 2 * LOG_M;
 165 
 166 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 167 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 168 
 169 // Constants for converting from a base unit to milli-base units.  For
 170 // example from seconds to milliseconds and microseconds
 171 
 172 const int MILLIUNITS    = 1000;         // milli units per base unit
 173 const int MICROUNITS    = 1000000;      // micro units per base unit
 174 const int NANOUNITS     = 1000000000;   // nano units per base unit
 175 
 176 inline const char* proper_unit_for_byte_size(size_t s) {
 177   if (s >= 10*M) {
 178     return "M";
 179   } else if (s >= 10*K) {
 180     return "K";
 181   } else {
 182     return "B";
 183   }
 184 }
 185 
 186 inline size_t byte_size_in_proper_unit(size_t s) {
 187   if (s >= 10*M) {
 188     return s/M;
 189   } else if (s >= 10*K) {
 190     return s/K;
 191   } else {
 192     return s;
 193   }
 194 }
 195 
 196 
 197 //----------------------------------------------------------------------------------------------------
 198 // VM type definitions
 199 
 200 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 201 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 202 
 203 typedef intptr_t  intx;
 204 typedef uintptr_t uintx;
 205 
 206 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 207 const intx  max_intx  = (uintx)min_intx - 1;
 208 const uintx max_uintx = (uintx)-1;
 209 
 210 // Table of values:
 211 //      sizeof intx         4               8
 212 // min_intx             0x80000000      0x8000000000000000
 213 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 214 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 215 
 216 typedef unsigned int uint;   NEEDS_CLEANUP
 217 
 218 
 219 //----------------------------------------------------------------------------------------------------
 220 // Java type definitions
 221 
 222 // All kinds of 'plain' byte addresses
 223 typedef   signed char s_char;
 224 typedef unsigned char u_char;
 225 typedef u_char*       address;
 226 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 227                                     // except for some implementations of a C++
 228                                     // linkage pointer to function. Should never
 229                                     // need one of those to be placed in this
 230                                     // type anyway.
 231 
 232 //  Utility functions to "portably" (?) bit twiddle pointers
 233 //  Where portable means keep ANSI C++ compilers quiet
 234 
 235 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 236 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 237 
 238 //  Utility functions to "portably" make cast to/from function pointers.
 239 
 240 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 241 inline address_word  castable_address(address x)              { return address_word(x) ; }
 242 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 243 
 244 // Pointer subtraction.
 245 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 246 // the range we might need to find differences from one end of the heap
 247 // to the other.
 248 // A typical use might be:
 249 //     if (pointer_delta(end(), top()) >= size) {
 250 //       // enough room for an object of size
 251 //       ...
 252 // and then additions like
 253 //       ... top() + size ...
 254 // are safe because we know that top() is at least size below end().
 255 inline size_t pointer_delta(const void* left,
 256                             const void* right,
 257                             size_t element_size) {
 258   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 259 }
 260 // A version specialized for HeapWord*'s.
 261 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 262   return pointer_delta(left, right, sizeof(HeapWord));
 263 }
 264 
 265 //
 266 // ANSI C++ does not allow casting from one pointer type to a function pointer
 267 // directly without at best a warning. This macro accomplishes it silently
 268 // In every case that is present at this point the value be cast is a pointer
 269 // to a C linkage function. In somecase the type used for the cast reflects
 270 // that linkage and a picky compiler would not complain. In other cases because
 271 // there is no convenient place to place a typedef with extern C linkage (i.e
 272 // a platform dependent header file) it doesn't. At this point no compiler seems
 273 // picky enough to catch these instances (which are few). It is possible that
 274 // using templates could fix these for all cases. This use of templates is likely
 275 // so far from the middle of the road that it is likely to be problematic in
 276 // many C++ compilers.
 277 //
 278 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
 279 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 280 
 281 // Unsigned byte types for os and stream.hpp
 282 
 283 // Unsigned one, two, four and eigth byte quantities used for describing
 284 // the .class file format. See JVM book chapter 4.
 285 
 286 typedef jubyte  u1;
 287 typedef jushort u2;
 288 typedef juint   u4;
 289 typedef julong  u8;
 290 
 291 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 292 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 293 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 294 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 295 
 296 //----------------------------------------------------------------------------------------------------
 297 // JVM spec restrictions
 298 
 299 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 300 
 301 
 302 //----------------------------------------------------------------------------------------------------
 303 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 304 //
 305 // Determines whether on-the-fly class replacement and frame popping are enabled.
 306 
 307 #define HOTSWAP
 308 
 309 //----------------------------------------------------------------------------------------------------
 310 // Object alignment, in units of HeapWords.
 311 //
 312 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 313 // reference fields can be naturally aligned.
 314 
 315 extern int MinObjAlignment;
 316 extern int MinObjAlignmentInBytes;
 317 extern int MinObjAlignmentInBytesMask;
 318 
 319 extern int LogMinObjAlignment;
 320 extern int LogMinObjAlignmentInBytes;
 321 
 322 // Machine dependent stuff
 323 
 324 #ifdef TARGET_ARCH_x86
 325 # include "globalDefinitions_x86.hpp"
 326 #endif
 327 #ifdef TARGET_ARCH_sparc
 328 # include "globalDefinitions_sparc.hpp"
 329 #endif
 330 #ifdef TARGET_ARCH_zero
 331 # include "globalDefinitions_zero.hpp"
 332 #endif
 333 #ifdef TARGET_ARCH_arm
 334 # include "globalDefinitions_arm.hpp"
 335 #endif
 336 #ifdef TARGET_ARCH_ppc
 337 # include "globalDefinitions_ppc.hpp"
 338 #endif
 339 
 340 
 341 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 342 // Note: this value must be a power of 2
 343 
 344 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 345 
 346 // Signed variants of alignment helpers.  There are two versions of each, a macro
 347 // for use in places like enum definitions that require compile-time constant
 348 // expressions and a function for all other places so as to get type checking.
 349 
 350 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 351 
 352 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 353   return align_size_up_(size, alignment);
 354 }
 355 
 356 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 357 
 358 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 359   return align_size_down_(size, alignment);
 360 }
 361 
 362 // Align objects by rounding up their size, in HeapWord units.
 363 
 364 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 365 
 366 inline intptr_t align_object_size(intptr_t size) {
 367   return align_size_up(size, MinObjAlignment);
 368 }
 369 
 370 inline bool is_object_aligned(intptr_t addr) {
 371   return addr == align_object_size(addr);
 372 }
 373 
 374 // Pad out certain offsets to jlong alignment, in HeapWord units.
 375 
 376 inline intptr_t align_object_offset(intptr_t offset) {
 377   return align_size_up(offset, HeapWordsPerLong);
 378 }
 379 
 380 // The expected size in bytes of a cache line, used to pad data structures.
 381 #define DEFAULT_CACHE_LINE_SIZE 64
 382 
 383 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
 384 // expected cache line size (a power of two).  The first addend avoids sharing
 385 // when the start address is not a multiple of alignment; the second maintains
 386 // alignment of starting addresses that happen to be a multiple.
 387 #define PADDING_SIZE(type, alignment)                           \
 388   ((alignment) + align_size_up_(sizeof(type), alignment))
 389 
 390 // Templates to create a subclass padded to avoid cache line sharing.  These are
 391 // effective only when applied to derived-most (leaf) classes.
 392 
 393 // When no args are passed to the base ctor.
 394 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
 395 class Padded: public T {
 396 private:
 397   char _pad_buf_[PADDING_SIZE(T, alignment)];
 398 };
 399 
 400 // When either 0 or 1 args may be passed to the base ctor.
 401 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
 402 class Padded01: public T {
 403 public:
 404   Padded01(): T() { }
 405   Padded01(Arg1T arg1): T(arg1) { }
 406 private:
 407   char _pad_buf_[PADDING_SIZE(T, alignment)];
 408 };
 409 
 410 //----------------------------------------------------------------------------------------------------
 411 // Utility macros for compilers
 412 // used to silence compiler warnings
 413 
 414 #define Unused_Variable(var) var
 415 
 416 
 417 //----------------------------------------------------------------------------------------------------
 418 // Miscellaneous
 419 
 420 // 6302670 Eliminate Hotspot __fabsf dependency
 421 // All fabs() callers should call this function instead, which will implicitly
 422 // convert the operand to double, avoiding a dependency on __fabsf which
 423 // doesn't exist in early versions of Solaris 8.
 424 inline double fabsd(double value) {
 425   return fabs(value);
 426 }
 427 
 428 inline jint low (jlong value)                    { return jint(value); }
 429 inline jint high(jlong value)                    { return jint(value >> 32); }
 430 
 431 // the fancy casts are a hopefully portable way
 432 // to do unsigned 32 to 64 bit type conversion
 433 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 434                                                    *value |= (jlong)(julong)(juint)low; }
 435 
 436 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 437                                                    *value |= (jlong)high       << 32; }
 438 
 439 inline jlong jlong_from(jint h, jint l) {
 440   jlong result = 0; // initialization to avoid warning
 441   set_high(&result, h);
 442   set_low(&result,  l);
 443   return result;
 444 }
 445 
 446 union jlong_accessor {
 447   jint  words[2];
 448   jlong long_value;
 449 };
 450 
 451 void basic_types_init(); // cannot define here; uses assert
 452 
 453 
 454 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 455 enum BasicType {
 456   T_BOOLEAN  =  4,
 457   T_CHAR     =  5,
 458   T_FLOAT    =  6,
 459   T_DOUBLE   =  7,
 460   T_BYTE     =  8,
 461   T_SHORT    =  9,
 462   T_INT      = 10,
 463   T_LONG     = 11,
 464   T_OBJECT   = 12,
 465   T_ARRAY    = 13,
 466   T_VOID     = 14,
 467   T_ADDRESS  = 15,
 468   T_NARROWOOP= 16,
 469   T_CONFLICT = 17, // for stack value type with conflicting contents
 470   T_ILLEGAL  = 99
 471 };
 472 
 473 inline bool is_java_primitive(BasicType t) {
 474   return T_BOOLEAN <= t && t <= T_LONG;
 475 }
 476 
 477 inline bool is_subword_type(BasicType t) {
 478   // these guys are processed exactly like T_INT in calling sequences:
 479   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 480 }
 481 
 482 inline bool is_signed_subword_type(BasicType t) {
 483   return (t == T_BYTE || t == T_SHORT);
 484 }
 485 
 486 // Convert a char from a classfile signature to a BasicType
 487 inline BasicType char2type(char c) {
 488   switch( c ) {
 489   case 'B': return T_BYTE;
 490   case 'C': return T_CHAR;
 491   case 'D': return T_DOUBLE;
 492   case 'F': return T_FLOAT;
 493   case 'I': return T_INT;
 494   case 'J': return T_LONG;
 495   case 'S': return T_SHORT;
 496   case 'Z': return T_BOOLEAN;
 497   case 'V': return T_VOID;
 498   case 'L': return T_OBJECT;
 499   case '[': return T_ARRAY;
 500   }
 501   return T_ILLEGAL;
 502 }
 503 
 504 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 505 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 506 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 507 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 508 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 509 extern BasicType name2type(const char* name);
 510 
 511 // Auxilary math routines
 512 // least common multiple
 513 extern size_t lcm(size_t a, size_t b);
 514 
 515 
 516 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 517 enum BasicTypeSize {
 518   T_BOOLEAN_size = 1,
 519   T_CHAR_size    = 1,
 520   T_FLOAT_size   = 1,
 521   T_DOUBLE_size  = 2,
 522   T_BYTE_size    = 1,
 523   T_SHORT_size   = 1,
 524   T_INT_size     = 1,
 525   T_LONG_size    = 2,
 526   T_OBJECT_size  = 1,
 527   T_ARRAY_size   = 1,
 528   T_NARROWOOP_size = 1,
 529   T_VOID_size    = 0
 530 };
 531 
 532 
 533 // maps a BasicType to its instance field storage type:
 534 // all sub-word integral types are widened to T_INT
 535 extern BasicType type2field[T_CONFLICT+1];
 536 extern BasicType type2wfield[T_CONFLICT+1];
 537 
 538 
 539 // size in bytes
 540 enum ArrayElementSize {
 541   T_BOOLEAN_aelem_bytes = 1,
 542   T_CHAR_aelem_bytes    = 2,
 543   T_FLOAT_aelem_bytes   = 4,
 544   T_DOUBLE_aelem_bytes  = 8,
 545   T_BYTE_aelem_bytes    = 1,
 546   T_SHORT_aelem_bytes   = 2,
 547   T_INT_aelem_bytes     = 4,
 548   T_LONG_aelem_bytes    = 8,
 549 #ifdef _LP64
 550   T_OBJECT_aelem_bytes  = 8,
 551   T_ARRAY_aelem_bytes   = 8,
 552 #else
 553   T_OBJECT_aelem_bytes  = 4,
 554   T_ARRAY_aelem_bytes   = 4,
 555 #endif
 556   T_NARROWOOP_aelem_bytes = 4,
 557   T_VOID_aelem_bytes    = 0
 558 };
 559 
 560 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 561 #ifdef ASSERT
 562 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 563 #else
 564 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 565 #endif
 566 
 567 
 568 // JavaValue serves as a container for arbitrary Java values.
 569 
 570 class JavaValue {
 571 
 572  public:
 573   typedef union JavaCallValue {
 574     jfloat   f;
 575     jdouble  d;
 576     jint     i;
 577     jlong    l;
 578     jobject  h;
 579   } JavaCallValue;
 580 
 581  private:
 582   BasicType _type;
 583   JavaCallValue _value;
 584 
 585  public:
 586   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 587 
 588   JavaValue(jfloat value) {
 589     _type    = T_FLOAT;
 590     _value.f = value;
 591   }
 592 
 593   JavaValue(jdouble value) {
 594     _type    = T_DOUBLE;
 595     _value.d = value;
 596   }
 597 
 598  jfloat get_jfloat() const { return _value.f; }
 599  jdouble get_jdouble() const { return _value.d; }
 600  jint get_jint() const { return _value.i; }
 601  jlong get_jlong() const { return _value.l; }
 602  jobject get_jobject() const { return _value.h; }
 603  JavaCallValue* get_value_addr() { return &_value; }
 604  BasicType get_type() const { return _type; }
 605 
 606  void set_jfloat(jfloat f) { _value.f = f;}
 607  void set_jdouble(jdouble d) { _value.d = d;}
 608  void set_jint(jint i) { _value.i = i;}
 609  void set_jlong(jlong l) { _value.l = l;}
 610  void set_jobject(jobject h) { _value.h = h;}
 611  void set_type(BasicType t) { _type = t; }
 612 
 613  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 614  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 615  jchar get_jchar() const { return (jchar) (_value.i);}
 616  jshort get_jshort() const { return (jshort) (_value.i);}
 617 
 618 };
 619 
 620 
 621 #define STACK_BIAS      0
 622 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 623 // in order to extend the reach of the stack pointer.
 624 #if defined(SPARC) && defined(_LP64)
 625 #undef STACK_BIAS
 626 #define STACK_BIAS      0x7ff
 627 #endif
 628 
 629 
 630 // TosState describes the top-of-stack state before and after the execution of
 631 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 632 // registers. The TosState corresponds to the 'machine represention' of this cached
 633 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 634 // as well as a 5th state in case the top-of-stack value is actually on the top
 635 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 636 // state when it comes to machine representation but is used separately for (oop)
 637 // type specific operations (e.g. verification code).
 638 
 639 enum TosState {         // describes the tos cache contents
 640   btos = 0,             // byte, bool tos cached
 641   ctos = 1,             // char tos cached
 642   stos = 2,             // short tos cached
 643   itos = 3,             // int tos cached
 644   ltos = 4,             // long tos cached
 645   ftos = 5,             // float tos cached
 646   dtos = 6,             // double tos cached
 647   atos = 7,             // object cached
 648   vtos = 8,             // tos not cached
 649   number_of_states,
 650   ilgl                  // illegal state: should not occur
 651 };
 652 
 653 
 654 inline TosState as_TosState(BasicType type) {
 655   switch (type) {
 656     case T_BYTE   : return btos;
 657     case T_BOOLEAN: return btos; // FIXME: Add ztos
 658     case T_CHAR   : return ctos;
 659     case T_SHORT  : return stos;
 660     case T_INT    : return itos;
 661     case T_LONG   : return ltos;
 662     case T_FLOAT  : return ftos;
 663     case T_DOUBLE : return dtos;
 664     case T_VOID   : return vtos;
 665     case T_ARRAY  : // fall through
 666     case T_OBJECT : return atos;
 667   }
 668   return ilgl;
 669 }
 670 
 671 inline BasicType as_BasicType(TosState state) {
 672   switch (state) {
 673     //case ztos: return T_BOOLEAN;//FIXME
 674     case btos : return T_BYTE;
 675     case ctos : return T_CHAR;
 676     case stos : return T_SHORT;
 677     case itos : return T_INT;
 678     case ltos : return T_LONG;
 679     case ftos : return T_FLOAT;
 680     case dtos : return T_DOUBLE;
 681     case atos : return T_OBJECT;
 682     case vtos : return T_VOID;
 683   }
 684   return T_ILLEGAL;
 685 }
 686 
 687 
 688 // Helper function to convert BasicType info into TosState
 689 // Note: Cannot define here as it uses global constant at the time being.
 690 TosState as_TosState(BasicType type);
 691 
 692 
 693 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
 694 
 695 enum ReferenceType {
 696  REF_NONE,      // Regular class
 697  REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
 698  REF_SOFT,      // Subclass of java/lang/ref/SoftReference
 699  REF_WEAK,      // Subclass of java/lang/ref/WeakReference
 700  REF_FINAL,     // Subclass of java/lang/ref/FinalReference
 701  REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
 702 };
 703 
 704 
 705 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 706 // information is needed by the safepoint code.
 707 //
 708 // There are 4 essential states:
 709 //
 710 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 711 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 712 //  _thread_in_vm       : Executing in the vm
 713 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 714 //
 715 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 716 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 717 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 718 //
 719 // Given a state, the xxx_trans state can always be found by adding 1.
 720 //
 721 enum JavaThreadState {
 722   _thread_uninitialized     =  0, // should never happen (missing initialization)
 723   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 724   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 725   _thread_in_native         =  4, // running in native code
 726   _thread_in_native_trans   =  5, // corresponding transition state
 727   _thread_in_vm             =  6, // running in VM
 728   _thread_in_vm_trans       =  7, // corresponding transition state
 729   _thread_in_Java           =  8, // running in Java or in stub code
 730   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 731   _thread_blocked           = 10, // blocked in vm
 732   _thread_blocked_trans     = 11, // corresponding transition state
 733   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 734 };
 735 
 736 
 737 // Handy constants for deciding which compiler mode to use.
 738 enum MethodCompilation {
 739   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
 740   InvalidOSREntryBci = -2
 741 };
 742 
 743 // Enumeration to distinguish tiers of compilation
 744 enum CompLevel {
 745   CompLevel_any               = -1,
 746   CompLevel_all               = -1,
 747   CompLevel_none              = 0,         // Interpreter
 748   CompLevel_simple            = 1,         // C1
 749   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 750   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 751   CompLevel_full_optimization = 4,         // C2 or Shark
 752 
 753 #if defined(COMPILER2) || defined(SHARK)
 754   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 755 #elif defined(COMPILER1)
 756   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 757 #else
 758   CompLevel_highest_tier      = CompLevel_none,
 759 #endif
 760 
 761 #if defined(TIERED)
 762   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 763 #elif defined(COMPILER1)
 764   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 765 #elif defined(COMPILER2) || defined(SHARK)
 766   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 767 #else
 768   CompLevel_initial_compile   = CompLevel_none
 769 #endif
 770 };
 771 
 772 inline bool is_c1_compile(int comp_level) {
 773   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 774 }
 775 
 776 inline bool is_c2_compile(int comp_level) {
 777   return comp_level == CompLevel_full_optimization;
 778 }
 779 
 780 inline bool is_highest_tier_compile(int comp_level) {
 781   return comp_level == CompLevel_highest_tier;
 782 }
 783 
 784 //----------------------------------------------------------------------------------------------------
 785 // 'Forward' declarations of frequently used classes
 786 // (in order to reduce interface dependencies & reduce
 787 // number of unnecessary compilations after changes)
 788 
 789 class symbolTable;
 790 class ClassFileStream;
 791 
 792 class Event;
 793 
 794 class Thread;
 795 class  VMThread;
 796 class  JavaThread;
 797 class Threads;
 798 
 799 class VM_Operation;
 800 class VMOperationQueue;
 801 
 802 class CodeBlob;
 803 class  nmethod;
 804 class  OSRAdapter;
 805 class  I2CAdapter;
 806 class  C2IAdapter;
 807 class CompiledIC;
 808 class relocInfo;
 809 class ScopeDesc;
 810 class PcDesc;
 811 
 812 class Recompiler;
 813 class Recompilee;
 814 class RecompilationPolicy;
 815 class RFrame;
 816 class  CompiledRFrame;
 817 class  InterpretedRFrame;
 818 
 819 class frame;
 820 
 821 class vframe;
 822 class   javaVFrame;
 823 class     interpretedVFrame;
 824 class     compiledVFrame;
 825 class     deoptimizedVFrame;
 826 class   externalVFrame;
 827 class     entryVFrame;
 828 
 829 class RegisterMap;
 830 
 831 class Mutex;
 832 class Monitor;
 833 class BasicLock;
 834 class BasicObjectLock;
 835 
 836 class PeriodicTask;
 837 
 838 class JavaCallWrapper;
 839 
 840 class   oopDesc;
 841 
 842 class NativeCall;
 843 
 844 class zone;
 845 
 846 class StubQueue;
 847 
 848 class outputStream;
 849 
 850 class ResourceArea;
 851 
 852 class DebugInformationRecorder;
 853 class ScopeValue;
 854 class CompressedStream;
 855 class   DebugInfoReadStream;
 856 class   DebugInfoWriteStream;
 857 class LocationValue;
 858 class ConstantValue;
 859 class IllegalValue;
 860 
 861 class PrivilegedElement;
 862 class MonitorArray;
 863 
 864 class MonitorInfo;
 865 
 866 class OffsetClosure;
 867 class OopMapCache;
 868 class InterpreterOopMap;
 869 class OopMapCacheEntry;
 870 class OSThread;
 871 
 872 typedef int (*OSThreadStartFunc)(void*);
 873 
 874 class Space;
 875 
 876 class JavaValue;
 877 class methodHandle;
 878 class JavaCallArguments;
 879 
 880 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
 881 
 882 extern void basic_fatal(const char* msg);
 883 
 884 
 885 //----------------------------------------------------------------------------------------------------
 886 // Special constants for debugging
 887 
 888 const jint     badInt           = -3;                       // generic "bad int" value
 889 const long     badAddressVal    = -2;                       // generic "bad address" value
 890 const long     badOopVal        = -1;                       // generic "bad oop" value
 891 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 892 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 893 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 894 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 895 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 896 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
 897 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 898 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 899 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 900 
 901 
 902 // (These must be implemented as #defines because C++ compilers are
 903 // not obligated to inline non-integral constants!)
 904 #define       badAddress        ((address)::badAddressVal)
 905 #define       badOop            ((oop)::badOopVal)
 906 #define       badHeapWord       (::badHeapWordVal)
 907 #define       badJNIHandle      ((oop)::badJNIHandleVal)
 908 
 909 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 910 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 911 
 912 //----------------------------------------------------------------------------------------------------
 913 // Utility functions for bitfield manipulations
 914 
 915 const intptr_t AllBits    = ~0; // all bits set in a word
 916 const intptr_t NoBits     =  0; // no bits set in a word
 917 const jlong    NoLongBits =  0; // no bits set in a long
 918 const intptr_t OneBit     =  1; // only right_most bit set in a word
 919 
 920 // get a word with the n.th or the right-most or left-most n bits set
 921 // (note: #define used only so that they can be used in enum constant definitions)
 922 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
 923 #define right_n_bits(n)   (nth_bit(n) - 1)
 924 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
 925 
 926 // bit-operations using a mask m
 927 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 928 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 929 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 930 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 931 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 932 
 933 // bit-operations using the n.th bit
 934 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
 935 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
 936 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
 937 
 938 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
 939 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
 940   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
 941 }
 942 
 943 
 944 //----------------------------------------------------------------------------------------------------
 945 // Utility functions for integers
 946 
 947 // Avoid use of global min/max macros which may cause unwanted double
 948 // evaluation of arguments.
 949 #ifdef max
 950 #undef max
 951 #endif
 952 
 953 #ifdef min
 954 #undef min
 955 #endif
 956 
 957 #define max(a,b) Do_not_use_max_use_MAX2_instead
 958 #define min(a,b) Do_not_use_min_use_MIN2_instead
 959 
 960 // It is necessary to use templates here. Having normal overloaded
 961 // functions does not work because it is necessary to provide both 32-
 962 // and 64-bit overloaded functions, which does not work, and having
 963 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
 964 // will be even more error-prone than macros.
 965 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
 966 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
 967 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
 968 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
 969 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
 970 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
 971 
 972 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
 973 
 974 // true if x is a power of 2, false otherwise
 975 inline bool is_power_of_2(intptr_t x) {
 976   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
 977 }
 978 
 979 // long version of is_power_of_2
 980 inline bool is_power_of_2_long(jlong x) {
 981   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
 982 }
 983 
 984 //* largest i such that 2^i <= x
 985 //  A negative value of 'x' will return '31'
 986 inline int log2_intptr(intptr_t x) {
 987   int i = -1;
 988   uintptr_t p =  1;
 989   while (p != 0 && p <= (uintptr_t)x) {
 990     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 991     i++; p *= 2;
 992   }
 993   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
 994   // (if p = 0 then overflow occurred and i = 31)
 995   return i;
 996 }
 997 
 998 //* largest i such that 2^i <= x
 999 //  A negative value of 'x' will return '63'
1000 inline int log2_long(jlong x) {
1001   int i = -1;
1002   julong p =  1;
1003   while (p != 0 && p <= (julong)x) {
1004     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1005     i++; p *= 2;
1006   }
1007   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1008   // (if p = 0 then overflow occurred and i = 63)
1009   return i;
1010 }
1011 
1012 //* the argument must be exactly a power of 2
1013 inline int exact_log2(intptr_t x) {
1014   #ifdef ASSERT
1015     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1016   #endif
1017   return log2_intptr(x);
1018 }
1019 
1020 //* the argument must be exactly a power of 2
1021 inline int exact_log2_long(jlong x) {
1022   #ifdef ASSERT
1023     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1024   #endif
1025   return log2_long(x);
1026 }
1027 
1028 
1029 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1030 inline intptr_t round_to(intptr_t x, uintx s) {
1031   #ifdef ASSERT
1032     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1033   #endif
1034   const uintx m = s - 1;
1035   return mask_bits(x + m, ~m);
1036 }
1037 
1038 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1039 inline intptr_t round_down(intptr_t x, uintx s) {
1040   #ifdef ASSERT
1041     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1042   #endif
1043   const uintx m = s - 1;
1044   return mask_bits(x, ~m);
1045 }
1046 
1047 
1048 inline bool is_odd (intx x) { return x & 1;      }
1049 inline bool is_even(intx x) { return !is_odd(x); }
1050 
1051 // "to" should be greater than "from."
1052 inline intx byte_size(void* from, void* to) {
1053   return (address)to - (address)from;
1054 }
1055 
1056 //----------------------------------------------------------------------------------------------------
1057 // Avoid non-portable casts with these routines (DEPRECATED)
1058 
1059 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1060 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1061 
1062 // Given sequence of four bytes, build into a 32-bit word
1063 // following the conventions used in class files.
1064 // On the 386, this could be realized with a simple address cast.
1065 //
1066 
1067 // This routine takes eight bytes:
1068 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1069   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1070        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1071        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1072        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1073        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1074        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1075        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1076        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1077 }
1078 
1079 // This routine takes four bytes:
1080 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1081   return  (( u4(c1) << 24 )  &  0xff000000)
1082        |  (( u4(c2) << 16 )  &  0x00ff0000)
1083        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1084        |  (( u4(c4) <<  0 )  &  0x000000ff);
1085 }
1086 
1087 // And this one works if the four bytes are contiguous in memory:
1088 inline u4 build_u4_from( u1* p ) {
1089   return  build_u4_from( p[0], p[1], p[2], p[3] );
1090 }
1091 
1092 // Ditto for two-byte ints:
1093 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1094   return  u2((( u2(c1) <<  8 )  &  0xff00)
1095           |  (( u2(c2) <<  0 )  &  0x00ff));
1096 }
1097 
1098 // And this one works if the two bytes are contiguous in memory:
1099 inline u2 build_u2_from( u1* p ) {
1100   return  build_u2_from( p[0], p[1] );
1101 }
1102 
1103 // Ditto for floats:
1104 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1105   u4 u = build_u4_from( c1, c2, c3, c4 );
1106   return  *(jfloat*)&u;
1107 }
1108 
1109 inline jfloat build_float_from( u1* p ) {
1110   u4 u = build_u4_from( p );
1111   return  *(jfloat*)&u;
1112 }
1113 
1114 
1115 // now (64-bit) longs
1116 
1117 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1118   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1119        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1120        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1121        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1122        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1123        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1124        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1125        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1126 }
1127 
1128 inline jlong build_long_from( u1* p ) {
1129   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1130 }
1131 
1132 
1133 // Doubles, too!
1134 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1135   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1136   return  *(jdouble*)&u;
1137 }
1138 
1139 inline jdouble build_double_from( u1* p ) {
1140   jlong u = build_long_from( p );
1141   return  *(jdouble*)&u;
1142 }
1143 
1144 
1145 // Portable routines to go the other way:
1146 
1147 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1148   c1 = u1(x >> 8);
1149   c2 = u1(x);
1150 }
1151 
1152 inline void explode_short_to( u2 x, u1* p ) {
1153   explode_short_to( x, p[0], p[1]);
1154 }
1155 
1156 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1157   c1 = u1(x >> 24);
1158   c2 = u1(x >> 16);
1159   c3 = u1(x >>  8);
1160   c4 = u1(x);
1161 }
1162 
1163 inline void explode_int_to( u4 x, u1* p ) {
1164   explode_int_to( x, p[0], p[1], p[2], p[3]);
1165 }
1166 
1167 
1168 // Pack and extract shorts to/from ints:
1169 
1170 inline int extract_low_short_from_int(jint x) {
1171   return x & 0xffff;
1172 }
1173 
1174 inline int extract_high_short_from_int(jint x) {
1175   return (x >> 16) & 0xffff;
1176 }
1177 
1178 inline int build_int_from_shorts( jushort low, jushort high ) {
1179   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1180 }
1181 
1182 // Printf-style formatters for fixed- and variable-width types as pointers and
1183 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1184 // doesn't provide appropriate definitions, they should be provided in
1185 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1186 
1187 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1188 
1189 // Format 32-bit quantities.
1190 #define INT32_FORMAT           "%" PRId32
1191 #define UINT32_FORMAT          "%" PRIu32
1192 #define INT32_FORMAT_W(width)  "%" #width PRId32
1193 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1194 
1195 #define PTR32_FORMAT           "0x%08" PRIx32
1196 
1197 // Format 64-bit quantities.
1198 #define INT64_FORMAT           "%" PRId64
1199 #define UINT64_FORMAT          "%" PRIu64
1200 #define INT64_FORMAT_W(width)  "%" #width PRId64
1201 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1202 
1203 #define PTR64_FORMAT           "0x%016" PRIx64
1204 
1205 // Format pointers which change size between 32- and 64-bit.
1206 #ifdef  _LP64
1207 #define INTPTR_FORMAT "0x%016" PRIxPTR
1208 #define PTR_FORMAT    "0x%016" PRIxPTR
1209 #else   // !_LP64
1210 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1211 #define PTR_FORMAT    "0x%08"  PRIxPTR
1212 #endif  // _LP64
1213 
1214 #define SSIZE_FORMAT          "%" PRIdPTR
1215 #define SIZE_FORMAT           "%" PRIuPTR
1216 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
1217 #define SIZE_FORMAT_W(width)  "%" #width PRIuPTR
1218 
1219 #define INTX_FORMAT           "%" PRIdPTR
1220 #define UINTX_FORMAT          "%" PRIuPTR
1221 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1222 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1223 
1224 
1225 // Enable zap-a-lot if in debug version.
1226 
1227 # ifdef ASSERT
1228 # ifdef COMPILER2
1229 #   define ENABLE_ZAP_DEAD_LOCALS
1230 #endif /* COMPILER2 */
1231 # endif /* ASSERT */
1232 
1233 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1234 
1235 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP