/* * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp" #include "gc_implementation/shared/gcStats.hpp" #include "memory/defNewGeneration.hpp" #include "memory/genCollectedHeap.hpp" #include "runtime/thread.hpp" #ifdef TARGET_OS_FAMILY_linux # include "os_linux.inline.hpp" #endif #ifdef TARGET_OS_FAMILY_solaris # include "os_solaris.inline.hpp" #endif #ifdef TARGET_OS_FAMILY_windows # include "os_windows.inline.hpp" #endif #ifdef TARGET_OS_FAMILY_bsd # include "os_bsd.inline.hpp" #endif elapsedTimer CMSAdaptiveSizePolicy::_concurrent_timer; elapsedTimer CMSAdaptiveSizePolicy::_STW_timer; // Defined if the granularity of the time measurements is potentially too large. #define CLOCK_GRANULARITY_TOO_LARGE CMSAdaptiveSizePolicy::CMSAdaptiveSizePolicy(size_t init_eden_size, size_t init_promo_size, size_t init_survivor_size, double max_gc_minor_pause_sec, double max_gc_pause_sec, uint gc_cost_ratio) : AdaptiveSizePolicy(init_eden_size, init_promo_size, init_survivor_size, max_gc_pause_sec, gc_cost_ratio) { clear_internal_time_intervals(); _processor_count = os::active_processor_count(); if (CMSConcurrentMTEnabled && (ConcGCThreads > 1)) { assert(_processor_count > 0, "Processor count is suspect"); _concurrent_processor_count = MIN2((uint) ConcGCThreads, (uint) _processor_count); } else { _concurrent_processor_count = 1; } _avg_concurrent_time = new AdaptiveWeightedAverage(AdaptiveTimeWeight); _avg_concurrent_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight); _avg_concurrent_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight); _avg_initial_pause = new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding); _avg_remark_pause = new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding); _avg_cms_STW_time = new AdaptiveWeightedAverage(AdaptiveTimeWeight); _avg_cms_STW_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight); _avg_cms_free = new AdaptiveWeightedAverage(AdaptiveTimeWeight); _avg_cms_free_at_sweep = new AdaptiveWeightedAverage(AdaptiveTimeWeight); _avg_cms_promo = new AdaptiveWeightedAverage(AdaptiveTimeWeight); // Mark-sweep-compact _avg_msc_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight); _avg_msc_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight); _avg_msc_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight); // Mark-sweep _avg_ms_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight); _avg_ms_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight); _avg_ms_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight); // Variables that estimate pause times as a function of generation // size. _remark_pause_old_estimator = new LinearLeastSquareFit(AdaptiveSizePolicyWeight); _initial_pause_old_estimator = new LinearLeastSquareFit(AdaptiveSizePolicyWeight); _remark_pause_young_estimator = new LinearLeastSquareFit(AdaptiveSizePolicyWeight); _initial_pause_young_estimator = new LinearLeastSquareFit(AdaptiveSizePolicyWeight); // Alignment comes from that used in ReservedSpace. _generation_alignment = os::vm_allocation_granularity(); // Start the concurrent timer here so that the first // concurrent_phases_begin() measures a finite mutator // time. A finite mutator time is used to determine // if a concurrent collection has been started. If this // proves to be a problem, use some explicit flag to // signal that a concurrent collection has been started. _concurrent_timer.start(); _STW_timer.start(); } double CMSAdaptiveSizePolicy::concurrent_processor_fraction() { // For now assume no other daemon threads are taking alway // cpu's from the application. return ((double) _concurrent_processor_count / (double) _processor_count); } double CMSAdaptiveSizePolicy::concurrent_collection_cost( double interval_in_seconds) { // When the precleaning and sweeping phases use multiple // threads, change one_processor_fraction to // concurrent_processor_fraction(). double one_processor_fraction = 1.0 / ((double) processor_count()); double concurrent_cost = collection_cost(_latest_cms_concurrent_marking_time_secs, interval_in_seconds) * concurrent_processor_fraction() + collection_cost(_latest_cms_concurrent_precleaning_time_secs, interval_in_seconds) * one_processor_fraction + collection_cost(_latest_cms_concurrent_sweeping_time_secs, interval_in_seconds) * one_processor_fraction; if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr( "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_cost(%f) " "_latest_cms_concurrent_marking_cost %f " "_latest_cms_concurrent_precleaning_cost %f " "_latest_cms_concurrent_sweeping_cost %f " "concurrent_processor_fraction %f " "concurrent_cost %f ", interval_in_seconds, collection_cost(_latest_cms_concurrent_marking_time_secs, interval_in_seconds), collection_cost(_latest_cms_concurrent_precleaning_time_secs, interval_in_seconds), collection_cost(_latest_cms_concurrent_sweeping_time_secs, interval_in_seconds), concurrent_processor_fraction(), concurrent_cost); } return concurrent_cost; } double CMSAdaptiveSizePolicy::concurrent_collection_time() { double latest_cms_sum_concurrent_phases_time_secs = _latest_cms_concurrent_marking_time_secs + _latest_cms_concurrent_precleaning_time_secs + _latest_cms_concurrent_sweeping_time_secs; return latest_cms_sum_concurrent_phases_time_secs; } double CMSAdaptiveSizePolicy::scaled_concurrent_collection_time() { // When the precleaning and sweeping phases use multiple // threads, change one_processor_fraction to // concurrent_processor_fraction(). double one_processor_fraction = 1.0 / ((double) processor_count()); double latest_cms_sum_concurrent_phases_time_secs = _latest_cms_concurrent_marking_time_secs * concurrent_processor_fraction() + _latest_cms_concurrent_precleaning_time_secs * one_processor_fraction + _latest_cms_concurrent_sweeping_time_secs * one_processor_fraction ; if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr( "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_time " "_latest_cms_concurrent_marking_time_secs %f " "_latest_cms_concurrent_precleaning_time_secs %f " "_latest_cms_concurrent_sweeping_time_secs %f " "concurrent_processor_fraction %f " "latest_cms_sum_concurrent_phases_time_secs %f ", _latest_cms_concurrent_marking_time_secs, _latest_cms_concurrent_precleaning_time_secs, _latest_cms_concurrent_sweeping_time_secs, concurrent_processor_fraction(), latest_cms_sum_concurrent_phases_time_secs); } return latest_cms_sum_concurrent_phases_time_secs; } void CMSAdaptiveSizePolicy::update_minor_pause_old_estimator( double minor_pause_in_ms) { // Get the equivalent of the free space // that is available for promotions in the CMS generation // and use that to update _minor_pause_old_estimator // Don't implement this until it is needed. A warning is // printed if _minor_pause_old_estimator is used. } void CMSAdaptiveSizePolicy::concurrent_marking_begin() { if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print(" "); gclog_or_tty->stamp(); gclog_or_tty->print(": concurrent_marking_begin "); } // Update the interval time _concurrent_timer.stop(); _latest_cms_collection_end_to_collection_start_secs = _concurrent_timer.seconds(); if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_begin: " "mutator time %f", _latest_cms_collection_end_to_collection_start_secs); } _concurrent_timer.reset(); _concurrent_timer.start(); } void CMSAdaptiveSizePolicy::concurrent_marking_end() { if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->stamp(); gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_end()"); } _concurrent_timer.stop(); _latest_cms_concurrent_marking_time_secs = _concurrent_timer.seconds(); if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_marking_end" ":concurrent marking time (s) %f", _latest_cms_concurrent_marking_time_secs); } } void CMSAdaptiveSizePolicy::concurrent_precleaning_begin() { if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->stamp(); gclog_or_tty->print_cr( "CMSAdaptiveSizePolicy::concurrent_precleaning_begin()"); } _concurrent_timer.reset(); _concurrent_timer.start(); } void CMSAdaptiveSizePolicy::concurrent_precleaning_end() { if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->stamp(); gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_precleaning_end()"); } _concurrent_timer.stop(); // May be set again by a second call during the same collection. _latest_cms_concurrent_precleaning_time_secs = _concurrent_timer.seconds(); if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_precleaning_end" ":concurrent precleaning time (s) %f", _latest_cms_concurrent_precleaning_time_secs); } } void CMSAdaptiveSizePolicy::concurrent_sweeping_begin() { if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->stamp(); gclog_or_tty->print_cr( "CMSAdaptiveSizePolicy::concurrent_sweeping_begin()"); } _concurrent_timer.reset(); _concurrent_timer.start(); } void CMSAdaptiveSizePolicy::concurrent_sweeping_end() { if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->stamp(); gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_sweeping_end()"); } _concurrent_timer.stop(); _latest_cms_concurrent_sweeping_time_secs = _concurrent_timer.seconds(); if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_sweeping_end" ":concurrent sweeping time (s) %f", _latest_cms_concurrent_sweeping_time_secs); } } void CMSAdaptiveSizePolicy::concurrent_phases_end(GCCause::Cause gc_cause, size_t cur_eden, size_t cur_promo) { if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print(" "); gclog_or_tty->stamp(); gclog_or_tty->print(": concurrent_phases_end "); } // Update the concurrent timer _concurrent_timer.stop(); if (gc_cause != GCCause::_java_lang_system_gc || UseAdaptiveSizePolicyWithSystemGC) { avg_cms_free()->sample(cur_promo); double latest_cms_sum_concurrent_phases_time_secs = concurrent_collection_time(); _avg_concurrent_time->sample(latest_cms_sum_concurrent_phases_time_secs); // Cost of collection (unit-less) // Total interval for collection. May not be valid. Tests // below determine whether to use this. // if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::concurrent_phases_end \n" "_latest_cms_reset_end_to_initial_mark_start_secs %f \n" "_latest_cms_initial_mark_start_to_end_time_secs %f \n" "_latest_cms_remark_start_to_end_time_secs %f \n" "_latest_cms_concurrent_marking_time_secs %f \n" "_latest_cms_concurrent_precleaning_time_secs %f \n" "_latest_cms_concurrent_sweeping_time_secs %f \n" "latest_cms_sum_concurrent_phases_time_secs %f \n" "_latest_cms_collection_end_to_collection_start_secs %f \n" "concurrent_processor_fraction %f", _latest_cms_reset_end_to_initial_mark_start_secs, _latest_cms_initial_mark_start_to_end_time_secs, _latest_cms_remark_start_to_end_time_secs, _latest_cms_concurrent_marking_time_secs, _latest_cms_concurrent_precleaning_time_secs, _latest_cms_concurrent_sweeping_time_secs, latest_cms_sum_concurrent_phases_time_secs, _latest_cms_collection_end_to_collection_start_secs, concurrent_processor_fraction()); } double interval_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs + _latest_cms_remark_start_to_end_time_secs + latest_cms_sum_concurrent_phases_time_secs + _latest_cms_collection_end_to_collection_start_secs; assert(interval_in_seconds >= 0.0, "Bad interval between cms collections"); // Sample for performance counter avg_concurrent_interval()->sample(interval_in_seconds); // STW costs (initial and remark pauses) // Cost of collection (unit-less) assert(_latest_cms_initial_mark_start_to_end_time_secs >= 0.0, "Bad initial mark pause"); assert(_latest_cms_remark_start_to_end_time_secs >= 0.0, "Bad remark pause"); double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs + _latest_cms_remark_start_to_end_time_secs; double STW_collection_cost = 0.0; if (interval_in_seconds > 0.0) { // cost for the STW phases of the concurrent collection. STW_collection_cost = STW_time_in_seconds / interval_in_seconds; avg_cms_STW_gc_cost()->sample(STW_collection_cost); } if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print("cmsAdaptiveSizePolicy::STW_collection_end: " "STW gc cost: %f average: %f", STW_collection_cost, avg_cms_STW_gc_cost()->average()); gclog_or_tty->print_cr(" STW pause: %f (ms) STW period %f (ms)", (double) STW_time_in_seconds * MILLIUNITS, (double) interval_in_seconds * MILLIUNITS); } double concurrent_cost = 0.0; if (latest_cms_sum_concurrent_phases_time_secs > 0.0) { concurrent_cost = concurrent_collection_cost(interval_in_seconds); avg_concurrent_gc_cost()->sample(concurrent_cost); // Average this ms cost into all the other types gc costs if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print("cmsAdaptiveSizePolicy::concurrent_phases_end: " "concurrent gc cost: %f average: %f", concurrent_cost, _avg_concurrent_gc_cost->average()); gclog_or_tty->print_cr(" concurrent time: %f (ms) cms period %f (ms)" " processor fraction: %f", latest_cms_sum_concurrent_phases_time_secs * MILLIUNITS, interval_in_seconds * MILLIUNITS, concurrent_processor_fraction()); } } double total_collection_cost = STW_collection_cost + concurrent_cost; avg_major_gc_cost()->sample(total_collection_cost); // Gather information for estimating future behavior double initial_pause_in_ms = _latest_cms_initial_mark_start_to_end_time_secs * MILLIUNITS; double remark_pause_in_ms = _latest_cms_remark_start_to_end_time_secs * MILLIUNITS; double cur_promo_size_in_mbytes = ((double)cur_promo)/((double)M); initial_pause_old_estimator()->update(cur_promo_size_in_mbytes, initial_pause_in_ms); remark_pause_old_estimator()->update(cur_promo_size_in_mbytes, remark_pause_in_ms); major_collection_estimator()->update(cur_promo_size_in_mbytes, total_collection_cost); // This estimate uses the average eden size. It could also // have used the latest eden size. Which is better? double cur_eden_size_in_mbytes = ((double)cur_eden)/((double) M); initial_pause_young_estimator()->update(cur_eden_size_in_mbytes, initial_pause_in_ms); remark_pause_young_estimator()->update(cur_eden_size_in_mbytes, remark_pause_in_ms); } clear_internal_time_intervals(); set_first_after_collection(); // The concurrent phases keeps track of it's own mutator interval // with this timer. This allows the stop-the-world phase to // be included in the mutator time so that the stop-the-world time // is not double counted. Reset and start it. _concurrent_timer.reset(); _concurrent_timer.start(); // The mutator time between STW phases does not include the // concurrent collection time. _STW_timer.reset(); _STW_timer.start(); } void CMSAdaptiveSizePolicy::checkpoint_roots_initial_begin() { // Update the interval time _STW_timer.stop(); _latest_cms_reset_end_to_initial_mark_start_secs = _STW_timer.seconds(); // Reset for the initial mark _STW_timer.reset(); _STW_timer.start(); } void CMSAdaptiveSizePolicy::checkpoint_roots_initial_end( GCCause::Cause gc_cause) { _STW_timer.stop(); if (gc_cause != GCCause::_java_lang_system_gc || UseAdaptiveSizePolicyWithSystemGC) { _latest_cms_initial_mark_start_to_end_time_secs = _STW_timer.seconds(); avg_initial_pause()->sample(_latest_cms_initial_mark_start_to_end_time_secs); if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print( "cmsAdaptiveSizePolicy::checkpoint_roots_initial_end: " "initial pause: %f ", _latest_cms_initial_mark_start_to_end_time_secs); } } _STW_timer.reset(); _STW_timer.start(); } void CMSAdaptiveSizePolicy::checkpoint_roots_final_begin() { _STW_timer.stop(); _latest_cms_initial_mark_end_to_remark_start_secs = _STW_timer.seconds(); // Start accumumlating time for the remark in the STW timer. _STW_timer.reset(); _STW_timer.start(); } void CMSAdaptiveSizePolicy::checkpoint_roots_final_end( GCCause::Cause gc_cause) { _STW_timer.stop(); if (gc_cause != GCCause::_java_lang_system_gc || UseAdaptiveSizePolicyWithSystemGC) { // Total initial mark pause + remark pause. _latest_cms_remark_start_to_end_time_secs = _STW_timer.seconds(); double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs + _latest_cms_remark_start_to_end_time_secs; double STW_time_in_ms = STW_time_in_seconds * MILLIUNITS; avg_remark_pause()->sample(_latest_cms_remark_start_to_end_time_secs); // Sample total for initial mark + remark avg_cms_STW_time()->sample(STW_time_in_seconds); if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print("cmsAdaptiveSizePolicy::checkpoint_roots_final_end: " "remark pause: %f", _latest_cms_remark_start_to_end_time_secs); } } // Don't start the STW times here because the concurrent // sweep and reset has not happened. // Keep the old comment above in case I don't understand // what is going on but now // Start the STW timer because it is used by ms_collection_begin() // and ms_collection_end() to get the sweep time if a MS is being // done in the foreground. _STW_timer.reset(); _STW_timer.start(); } void CMSAdaptiveSizePolicy::msc_collection_begin() { if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print(" "); gclog_or_tty->stamp(); gclog_or_tty->print(": msc_collection_begin "); } _STW_timer.stop(); _latest_cms_msc_end_to_msc_start_time_secs = _STW_timer.seconds(); if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::msc_collection_begin: " "mutator time %f", _latest_cms_msc_end_to_msc_start_time_secs); } avg_msc_interval()->sample(_latest_cms_msc_end_to_msc_start_time_secs); _STW_timer.reset(); _STW_timer.start(); } void CMSAdaptiveSizePolicy::msc_collection_end(GCCause::Cause gc_cause) { if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print(" "); gclog_or_tty->stamp(); gclog_or_tty->print(": msc_collection_end "); } _STW_timer.stop(); if (gc_cause != GCCause::_java_lang_system_gc || UseAdaptiveSizePolicyWithSystemGC) { double msc_pause_in_seconds = _STW_timer.seconds(); if ((_latest_cms_msc_end_to_msc_start_time_secs > 0.0) && (msc_pause_in_seconds > 0.0)) { avg_msc_pause()->sample(msc_pause_in_seconds); double mutator_time_in_seconds = 0.0; if (_latest_cms_collection_end_to_collection_start_secs == 0.0) { // This assertion may fail because of time stamp gradularity. // Comment it out and investiage it at a later time. The large // time stamp granularity occurs on some older linux systems. #ifndef CLOCK_GRANULARITY_TOO_LARGE assert((_latest_cms_concurrent_marking_time_secs == 0.0) && (_latest_cms_concurrent_precleaning_time_secs == 0.0) && (_latest_cms_concurrent_sweeping_time_secs == 0.0), "There should not be any concurrent time"); #endif // A concurrent collection did not start. Mutator time // between collections comes from the STW MSC timer. mutator_time_in_seconds = _latest_cms_msc_end_to_msc_start_time_secs; } else { // The concurrent collection did start so count the mutator // time to the start of the concurrent collection. In this // case the _latest_cms_msc_end_to_msc_start_time_secs measures // the time between the initial mark or remark and the // start of the MSC. That has no real meaning. mutator_time_in_seconds = _latest_cms_collection_end_to_collection_start_secs; } double latest_cms_sum_concurrent_phases_time_secs = concurrent_collection_time(); double interval_in_seconds = mutator_time_in_seconds + _latest_cms_initial_mark_start_to_end_time_secs + _latest_cms_remark_start_to_end_time_secs + latest_cms_sum_concurrent_phases_time_secs + msc_pause_in_seconds; if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr(" interval_in_seconds %f \n" " mutator_time_in_seconds %f \n" " _latest_cms_initial_mark_start_to_end_time_secs %f\n" " _latest_cms_remark_start_to_end_time_secs %f\n" " latest_cms_sum_concurrent_phases_time_secs %f\n" " msc_pause_in_seconds %f\n", interval_in_seconds, mutator_time_in_seconds, _latest_cms_initial_mark_start_to_end_time_secs, _latest_cms_remark_start_to_end_time_secs, latest_cms_sum_concurrent_phases_time_secs, msc_pause_in_seconds); } // The concurrent cost is wasted cost but it should be // included. double concurrent_cost = concurrent_collection_cost(interval_in_seconds); // Initial mark and remark, also wasted. double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs + _latest_cms_remark_start_to_end_time_secs; double STW_collection_cost = collection_cost(STW_time_in_seconds, interval_in_seconds) + concurrent_cost; if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr(" msc_collection_end:\n" "_latest_cms_collection_end_to_collection_start_secs %f\n" "_latest_cms_msc_end_to_msc_start_time_secs %f\n" "_latest_cms_initial_mark_start_to_end_time_secs %f\n" "_latest_cms_remark_start_to_end_time_secs %f\n" "latest_cms_sum_concurrent_phases_time_secs %f\n", _latest_cms_collection_end_to_collection_start_secs, _latest_cms_msc_end_to_msc_start_time_secs, _latest_cms_initial_mark_start_to_end_time_secs, _latest_cms_remark_start_to_end_time_secs, latest_cms_sum_concurrent_phases_time_secs); gclog_or_tty->print_cr(" msc_collection_end: \n" "latest_cms_sum_concurrent_phases_time_secs %f\n" "STW_time_in_seconds %f\n" "msc_pause_in_seconds %f\n", latest_cms_sum_concurrent_phases_time_secs, STW_time_in_seconds, msc_pause_in_seconds); } double cost = concurrent_cost + STW_collection_cost + collection_cost(msc_pause_in_seconds, interval_in_seconds); _avg_msc_gc_cost->sample(cost); // Average this ms cost into all the other types gc costs avg_major_gc_cost()->sample(cost); // Sample for performance counter _avg_msc_interval->sample(interval_in_seconds); if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print("cmsAdaptiveSizePolicy::msc_collection_end: " "MSC gc cost: %f average: %f", cost, _avg_msc_gc_cost->average()); double msc_pause_in_ms = msc_pause_in_seconds * MILLIUNITS; gclog_or_tty->print_cr(" MSC pause: %f (ms) MSC period %f (ms)", msc_pause_in_ms, (double) interval_in_seconds * MILLIUNITS); } } } clear_internal_time_intervals(); // Can this call be put into the epilogue? set_first_after_collection(); // The concurrent phases keeps track of it's own mutator interval // with this timer. This allows the stop-the-world phase to // be included in the mutator time so that the stop-the-world time // is not double counted. Reset and start it. _concurrent_timer.stop(); _concurrent_timer.reset(); _concurrent_timer.start(); _STW_timer.reset(); _STW_timer.start(); } void CMSAdaptiveSizePolicy::ms_collection_begin() { if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print(" "); gclog_or_tty->stamp(); gclog_or_tty->print(": ms_collection_begin "); } _STW_timer.stop(); _latest_cms_ms_end_to_ms_start = _STW_timer.seconds(); if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::ms_collection_begin: " "mutator time %f", _latest_cms_ms_end_to_ms_start); } avg_ms_interval()->sample(_STW_timer.seconds()); _STW_timer.reset(); _STW_timer.start(); } void CMSAdaptiveSizePolicy::ms_collection_end(GCCause::Cause gc_cause) { if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print(" "); gclog_or_tty->stamp(); gclog_or_tty->print(": ms_collection_end "); } _STW_timer.stop(); if (gc_cause != GCCause::_java_lang_system_gc || UseAdaptiveSizePolicyWithSystemGC) { // The MS collection is a foreground collection that does all // the parts of a mostly concurrent collection. // // For this collection include the cost of the // initial mark // remark // all concurrent time (scaled down by the // concurrent_processor_fraction). Some // may be zero if the baton was passed before // it was reached. // concurrent marking // sweeping // resetting // STW after baton was passed (STW_in_foreground_in_seconds) double STW_in_foreground_in_seconds = _STW_timer.seconds(); double latest_cms_sum_concurrent_phases_time_secs = concurrent_collection_time(); if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::ms_collecton_end " "STW_in_foreground_in_seconds %f " "_latest_cms_initial_mark_start_to_end_time_secs %f " "_latest_cms_remark_start_to_end_time_secs %f " "latest_cms_sum_concurrent_phases_time_secs %f " "_latest_cms_ms_marking_start_to_end_time_secs %f " "_latest_cms_ms_end_to_ms_start %f", STW_in_foreground_in_seconds, _latest_cms_initial_mark_start_to_end_time_secs, _latest_cms_remark_start_to_end_time_secs, latest_cms_sum_concurrent_phases_time_secs, _latest_cms_ms_marking_start_to_end_time_secs, _latest_cms_ms_end_to_ms_start); } double STW_marking_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs + _latest_cms_remark_start_to_end_time_secs; #ifndef CLOCK_GRANULARITY_TOO_LARGE assert(_latest_cms_ms_marking_start_to_end_time_secs == 0.0 || latest_cms_sum_concurrent_phases_time_secs == 0.0, "marking done twice?"); #endif double ms_time_in_seconds = STW_marking_in_seconds + STW_in_foreground_in_seconds + _latest_cms_ms_marking_start_to_end_time_secs + scaled_concurrent_collection_time(); avg_ms_pause()->sample(ms_time_in_seconds); // Use the STW costs from the initial mark and remark plus // the cost of the concurrent phase to calculate a // collection cost. double cost = 0.0; if ((_latest_cms_ms_end_to_ms_start > 0.0) && (ms_time_in_seconds > 0.0)) { double interval_in_seconds = _latest_cms_ms_end_to_ms_start + ms_time_in_seconds; if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr("\n ms_time_in_seconds %f " "latest_cms_sum_concurrent_phases_time_secs %f " "interval_in_seconds %f", ms_time_in_seconds, latest_cms_sum_concurrent_phases_time_secs, interval_in_seconds); } cost = collection_cost(ms_time_in_seconds, interval_in_seconds); _avg_ms_gc_cost->sample(cost); // Average this ms cost into all the other types gc costs avg_major_gc_cost()->sample(cost); // Sample for performance counter _avg_ms_interval->sample(interval_in_seconds); } if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print("cmsAdaptiveSizePolicy::ms_collection_end: " "MS gc cost: %f average: %f", cost, _avg_ms_gc_cost->average()); double ms_time_in_ms = ms_time_in_seconds * MILLIUNITS; gclog_or_tty->print_cr(" MS pause: %f (ms) MS period %f (ms)", ms_time_in_ms, _latest_cms_ms_end_to_ms_start * MILLIUNITS); } } // Consider putting this code (here to end) into a // method for convenience. clear_internal_time_intervals(); set_first_after_collection(); // The concurrent phases keeps track of it's own mutator interval // with this timer. This allows the stop-the-world phase to // be included in the mutator time so that the stop-the-world time // is not double counted. Reset and start it. _concurrent_timer.stop(); _concurrent_timer.reset(); _concurrent_timer.start(); _STW_timer.reset(); _STW_timer.start(); } void CMSAdaptiveSizePolicy::clear_internal_time_intervals() { _latest_cms_reset_end_to_initial_mark_start_secs = 0.0; _latest_cms_initial_mark_end_to_remark_start_secs = 0.0; _latest_cms_collection_end_to_collection_start_secs = 0.0; _latest_cms_concurrent_marking_time_secs = 0.0; _latest_cms_concurrent_precleaning_time_secs = 0.0; _latest_cms_concurrent_sweeping_time_secs = 0.0; _latest_cms_msc_end_to_msc_start_time_secs = 0.0; _latest_cms_ms_end_to_ms_start = 0.0; _latest_cms_remark_start_to_end_time_secs = 0.0; _latest_cms_initial_mark_start_to_end_time_secs = 0.0; _latest_cms_ms_marking_start_to_end_time_secs = 0.0; } void CMSAdaptiveSizePolicy::clear_generation_free_space_flags() { AdaptiveSizePolicy::clear_generation_free_space_flags(); set_change_young_gen_for_maj_pauses(0); } void CMSAdaptiveSizePolicy::concurrent_phases_resume() { if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->stamp(); gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_phases_resume()"); } _concurrent_timer.start(); } double CMSAdaptiveSizePolicy::time_since_major_gc() const { _concurrent_timer.stop(); double time_since_cms_gc = _concurrent_timer.seconds(); _concurrent_timer.start(); _STW_timer.stop(); double time_since_STW_gc = _STW_timer.seconds(); _STW_timer.start(); return MIN2(time_since_cms_gc, time_since_STW_gc); } double CMSAdaptiveSizePolicy::major_gc_interval_average_for_decay() const { double cms_interval = _avg_concurrent_interval->average(); double msc_interval = _avg_msc_interval->average(); double ms_interval = _avg_ms_interval->average(); return MAX3(cms_interval, msc_interval, ms_interval); } double CMSAdaptiveSizePolicy::cms_gc_cost() const { return avg_major_gc_cost()->average(); } void CMSAdaptiveSizePolicy::ms_collection_marking_begin() { _STW_timer.stop(); // Start accumumlating time for the marking in the STW timer. _STW_timer.reset(); _STW_timer.start(); } void CMSAdaptiveSizePolicy::ms_collection_marking_end( GCCause::Cause gc_cause) { _STW_timer.stop(); if (gc_cause != GCCause::_java_lang_system_gc || UseAdaptiveSizePolicyWithSystemGC) { _latest_cms_ms_marking_start_to_end_time_secs = _STW_timer.seconds(); if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::" "msc_collection_marking_end: mutator time %f", _latest_cms_ms_marking_start_to_end_time_secs); } } _STW_timer.reset(); _STW_timer.start(); } double CMSAdaptiveSizePolicy::gc_cost() const { double cms_gen_cost = cms_gc_cost(); double result = MIN2(1.0, minor_gc_cost() + cms_gen_cost); assert(result >= 0.0, "Both minor and major costs are non-negative"); return result; } // Cost of collection (unit-less) double CMSAdaptiveSizePolicy::collection_cost(double pause_in_seconds, double interval_in_seconds) { // Cost of collection (unit-less) double cost = 0.0; if ((interval_in_seconds > 0.0) && (pause_in_seconds > 0.0)) { cost = pause_in_seconds / interval_in_seconds; } return cost; } size_t CMSAdaptiveSizePolicy::adjust_eden_for_pause_time(size_t cur_eden) { size_t change = 0; size_t desired_eden = cur_eden; // reduce eden size change = eden_decrement_aligned_down(cur_eden); desired_eden = cur_eden - change; if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr( "CMSAdaptiveSizePolicy::adjust_eden_for_pause_time " "adjusting eden for pause time. " " starting eden size " SIZE_FORMAT " reduced eden size " SIZE_FORMAT " eden delta " SIZE_FORMAT, cur_eden, desired_eden, change); } return desired_eden; } size_t CMSAdaptiveSizePolicy::adjust_eden_for_throughput(size_t cur_eden) { size_t desired_eden = cur_eden; set_change_young_gen_for_throughput(increase_young_gen_for_througput_true); size_t change = eden_increment_aligned_up(cur_eden); size_t scaled_change = scale_by_gen_gc_cost(change, minor_gc_cost()); if (cur_eden + scaled_change > cur_eden) { desired_eden = cur_eden + scaled_change; } _young_gen_change_for_minor_throughput++; if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr( "CMSAdaptiveSizePolicy::adjust_eden_for_throughput " "adjusting eden for throughput. " " starting eden size " SIZE_FORMAT " increased eden size " SIZE_FORMAT " eden delta " SIZE_FORMAT, cur_eden, desired_eden, scaled_change); } return desired_eden; } size_t CMSAdaptiveSizePolicy::adjust_eden_for_footprint(size_t cur_eden) { set_decrease_for_footprint(decrease_young_gen_for_footprint_true); size_t change = eden_decrement(cur_eden); size_t desired_eden_size = cur_eden - change; if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr( "CMSAdaptiveSizePolicy::adjust_eden_for_footprint " "adjusting eden for footprint. " " starting eden size " SIZE_FORMAT " reduced eden size " SIZE_FORMAT " eden delta " SIZE_FORMAT, cur_eden, desired_eden_size, change); } return desired_eden_size; } // The eden and promo versions should be combined if possible. // They are the same except that the sizes of the decrement // and increment are different for eden and promo. size_t CMSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) { size_t delta = eden_decrement(cur_eden); return align_size_down(delta, generation_alignment()); } size_t CMSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) { size_t delta = eden_increment(cur_eden); return align_size_up(delta, generation_alignment()); } size_t CMSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) { size_t delta = promo_decrement(cur_promo); return align_size_down(delta, generation_alignment()); } size_t CMSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) { size_t delta = promo_increment(cur_promo); return align_size_up(delta, generation_alignment()); } void CMSAdaptiveSizePolicy::compute_young_generation_free_space(size_t cur_eden, size_t max_eden_size) { size_t desired_eden_size = cur_eden; size_t eden_limit = max_eden_size; // Printout input if (PrintGC && PrintAdaptiveSizePolicy) { gclog_or_tty->print_cr( "CMSAdaptiveSizePolicy::compute_young_generation_free_space: " "cur_eden " SIZE_FORMAT, cur_eden); } // Used for diagnostics clear_generation_free_space_flags(); if (_avg_minor_pause->padded_average() > gc_pause_goal_sec()) { if (minor_pause_young_estimator()->decrement_will_decrease()) { // If the minor pause is too long, shrink the young gen. set_change_young_gen_for_min_pauses( decrease_young_gen_for_min_pauses_true); desired_eden_size = adjust_eden_for_pause_time(desired_eden_size); } } else if ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) || (avg_initial_pause()->padded_average() > gc_pause_goal_sec())) { // The remark or initial pauses are not meeting the goal. Should // the generation be shrunk? if (get_and_clear_first_after_collection() && ((avg_remark_pause()->padded_average() > gc_pause_goal_sec() && remark_pause_young_estimator()->decrement_will_decrease()) || (avg_initial_pause()->padded_average() > gc_pause_goal_sec() && initial_pause_young_estimator()->decrement_will_decrease()))) { set_change_young_gen_for_maj_pauses( decrease_young_gen_for_maj_pauses_true); // If the remark or initial pause is too long and this is the // first young gen collection after a cms collection, shrink // the young gen. desired_eden_size = adjust_eden_for_pause_time(desired_eden_size); } // If not the first young gen collection after a cms collection, // don't do anything. In this case an adjustment has already // been made and the results of the adjustment has not yet been // measured. } else if ((minor_gc_cost() >= 0.0) && (adjusted_mutator_cost() < _throughput_goal)) { desired_eden_size = adjust_eden_for_throughput(desired_eden_size); } else { desired_eden_size = adjust_eden_for_footprint(desired_eden_size); } if (PrintGC && PrintAdaptiveSizePolicy) { gclog_or_tty->print_cr( "CMSAdaptiveSizePolicy::compute_young_generation_free_space limits:" " desired_eden_size: " SIZE_FORMAT " old_eden_size: " SIZE_FORMAT, desired_eden_size, cur_eden); } set_eden_size(desired_eden_size); } size_t CMSAdaptiveSizePolicy::adjust_promo_for_pause_time(size_t cur_promo) { size_t change = 0; size_t desired_promo = cur_promo; // Move this test up to caller like the adjust_eden_for_pause_time() // call. if ((AdaptiveSizePausePolicy == 0) && ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) || (avg_initial_pause()->padded_average() > gc_pause_goal_sec()))) { set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true); change = promo_decrement_aligned_down(cur_promo); desired_promo = cur_promo - change; } else if ((AdaptiveSizePausePolicy > 0) && (((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) && remark_pause_old_estimator()->decrement_will_decrease()) || ((avg_initial_pause()->padded_average() > gc_pause_goal_sec()) && initial_pause_old_estimator()->decrement_will_decrease()))) { set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true); change = promo_decrement_aligned_down(cur_promo); desired_promo = cur_promo - change; } if ((change != 0) &&PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr( "CMSAdaptiveSizePolicy::adjust_promo_for_pause_time " "adjusting promo for pause time. " " starting promo size " SIZE_FORMAT " reduced promo size " SIZE_FORMAT " promo delta " SIZE_FORMAT, cur_promo, desired_promo, change); } return desired_promo; } // Try to share this with PS. size_t CMSAdaptiveSizePolicy::scale_by_gen_gc_cost(size_t base_change, double gen_gc_cost) { // Calculate the change to use for the tenured gen. size_t scaled_change = 0; // Can the increment to the generation be scaled? if (gc_cost() >= 0.0 && gen_gc_cost >= 0.0) { double scale_by_ratio = gen_gc_cost / gc_cost(); scaled_change = (size_t) (scale_by_ratio * (double) base_change); if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr( "Scaled tenured increment: " SIZE_FORMAT " by %f down to " SIZE_FORMAT, base_change, scale_by_ratio, scaled_change); } } else if (gen_gc_cost >= 0.0) { // Scaling is not going to work. If the major gc time is the // larger than the other GC costs, give it a full increment. if (gen_gc_cost >= (gc_cost() - gen_gc_cost)) { scaled_change = base_change; } } else { // Don't expect to get here but it's ok if it does // in the product build since the delta will be 0 // and nothing will change. assert(false, "Unexpected value for gc costs"); } return scaled_change; } size_t CMSAdaptiveSizePolicy::adjust_promo_for_throughput(size_t cur_promo) { size_t desired_promo = cur_promo; set_change_old_gen_for_throughput(increase_old_gen_for_throughput_true); size_t change = promo_increment_aligned_up(cur_promo); size_t scaled_change = scale_by_gen_gc_cost(change, major_gc_cost()); if (cur_promo + scaled_change > cur_promo) { desired_promo = cur_promo + scaled_change; } _old_gen_change_for_major_throughput++; if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr( "CMSAdaptiveSizePolicy::adjust_promo_for_throughput " "adjusting promo for throughput. " " starting promo size " SIZE_FORMAT " increased promo size " SIZE_FORMAT " promo delta " SIZE_FORMAT, cur_promo, desired_promo, scaled_change); } return desired_promo; } size_t CMSAdaptiveSizePolicy::adjust_promo_for_footprint(size_t cur_promo, size_t cur_eden) { set_decrease_for_footprint(decrease_young_gen_for_footprint_true); size_t change = promo_decrement(cur_promo); size_t desired_promo_size = cur_promo - change; if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr( "CMSAdaptiveSizePolicy::adjust_promo_for_footprint " "adjusting promo for footprint. " " starting promo size " SIZE_FORMAT " reduced promo size " SIZE_FORMAT " promo delta " SIZE_FORMAT, cur_promo, desired_promo_size, change); } return desired_promo_size; } void CMSAdaptiveSizePolicy::compute_tenured_generation_free_space( size_t cur_tenured_free, size_t max_tenured_available, size_t cur_eden) { // This can be bad if the desired value grows/shrinks without // any connection to the read free space size_t desired_promo_size = promo_size(); size_t tenured_limit = max_tenured_available; // Printout input if (PrintGC && PrintAdaptiveSizePolicy) { gclog_or_tty->print_cr( "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space: " "cur_tenured_free " SIZE_FORMAT " max_tenured_available " SIZE_FORMAT, cur_tenured_free, max_tenured_available); } // Used for diagnostics clear_generation_free_space_flags(); set_decide_at_full_gc(decide_at_full_gc_true); if (avg_remark_pause()->padded_average() > gc_pause_goal_sec() || avg_initial_pause()->padded_average() > gc_pause_goal_sec()) { desired_promo_size = adjust_promo_for_pause_time(cur_tenured_free); } else if (avg_minor_pause()->padded_average() > gc_pause_goal_sec()) { // Nothing to do since the minor collections are too large and // this method only deals with the cms generation. } else if ((cms_gc_cost() >= 0.0) && (adjusted_mutator_cost() < _throughput_goal)) { desired_promo_size = adjust_promo_for_throughput(cur_tenured_free); } else { desired_promo_size = adjust_promo_for_footprint(cur_tenured_free, cur_eden); } if (PrintGC && PrintAdaptiveSizePolicy) { gclog_or_tty->print_cr( "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space limits:" " desired_promo_size: " SIZE_FORMAT " old_promo_size: " SIZE_FORMAT, desired_promo_size, cur_tenured_free); } set_promo_size(desired_promo_size); } int CMSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold( bool is_survivor_overflow, int tenuring_threshold, size_t survivor_limit) { assert(survivor_limit >= generation_alignment(), "survivor_limit too small"); assert((size_t)align_size_down(survivor_limit, generation_alignment()) == survivor_limit, "survivor_limit not aligned"); // Change UsePSAdaptiveSurvivorSizePolicy -> UseAdaptiveSurvivorSizePolicy? if (!UsePSAdaptiveSurvivorSizePolicy || !young_gen_policy_is_ready()) { return tenuring_threshold; } // We'll decide whether to increase or decrease the tenuring // threshold based partly on the newly computed survivor size // (if we hit the maximum limit allowed, we'll always choose to // decrement the threshold). bool incr_tenuring_threshold = false; bool decr_tenuring_threshold = false; set_decrement_tenuring_threshold_for_gc_cost(false); set_increment_tenuring_threshold_for_gc_cost(false); set_decrement_tenuring_threshold_for_survivor_limit(false); if (!is_survivor_overflow) { // Keep running averages on how much survived // We use the tenuring threshold to equalize the cost of major // and minor collections. // ThresholdTolerance is used to indicate how sensitive the // tenuring threshold is to differences in cost betweent the // collection types. // Get the times of interest. This involves a little work, so // we cache the values here. const double major_cost = major_gc_cost(); const double minor_cost = minor_gc_cost(); if (minor_cost > major_cost * _threshold_tolerance_percent) { // Minor times are getting too long; lower the threshold so // less survives and more is promoted. decr_tenuring_threshold = true; set_decrement_tenuring_threshold_for_gc_cost(true); } else if (major_cost > minor_cost * _threshold_tolerance_percent) { // Major times are too long, so we want less promotion. incr_tenuring_threshold = true; set_increment_tenuring_threshold_for_gc_cost(true); } } else { // Survivor space overflow occurred, so promoted and survived are // not accurate. We'll make our best guess by combining survived // and promoted and count them as survivors. // // We'll lower the tenuring threshold to see if we can correct // things. Also, set the survivor size conservatively. We're // trying to avoid many overflows from occurring if defnew size // is just too small. decr_tenuring_threshold = true; } // The padded average also maintains a deviation from the average; // we use this to see how good of an estimate we have of what survived. // We're trying to pad the survivor size as little as possible without // overflowing the survivor spaces. size_t target_size = align_size_up((size_t)_avg_survived->padded_average(), generation_alignment()); target_size = MAX2(target_size, generation_alignment()); if (target_size > survivor_limit) { // Target size is bigger than we can handle. Let's also reduce // the tenuring threshold. target_size = survivor_limit; decr_tenuring_threshold = true; set_decrement_tenuring_threshold_for_survivor_limit(true); } // Finally, increment or decrement the tenuring threshold, as decided above. // We test for decrementing first, as we might have hit the target size // limit. if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) { if (tenuring_threshold > 1) { tenuring_threshold--; } } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) { if (tenuring_threshold < MaxTenuringThreshold) { tenuring_threshold++; } } // We keep a running average of the amount promoted which is used // to decide when we should collect the old generation (when // the amount of old gen free space is less than what we expect to // promote). if (PrintAdaptiveSizePolicy) { // A little more detail if Verbose is on GenCollectedHeap* gch = GenCollectedHeap::heap(); if (Verbose) { gclog_or_tty->print( " avg_survived: %f" " avg_deviation: %f", _avg_survived->average(), _avg_survived->deviation()); } gclog_or_tty->print( " avg_survived_padded_avg: %f", _avg_survived->padded_average()); if (Verbose) { gclog_or_tty->print( " avg_promoted_avg: %f" " avg_promoted_dev: %f", gch->gc_stats(1)->avg_promoted()->average(), gch->gc_stats(1)->avg_promoted()->deviation()); } gclog_or_tty->print( " avg_promoted_padded_avg: %f" " avg_pretenured_padded_avg: %f" " tenuring_thresh: %d" " target_size: " SIZE_FORMAT " survivor_limit: " SIZE_FORMAT, gch->gc_stats(1)->avg_promoted()->padded_average(), _avg_pretenured->padded_average(), tenuring_threshold, target_size, survivor_limit); gclog_or_tty->cr(); } set_survivor_size(target_size); return tenuring_threshold; } bool CMSAdaptiveSizePolicy::get_and_clear_first_after_collection() { bool result = _first_after_collection; _first_after_collection = false; return result; } bool CMSAdaptiveSizePolicy::print_adaptive_size_policy_on( outputStream* st) const { if (!UseAdaptiveSizePolicy) return false; GenCollectedHeap* gch = GenCollectedHeap::heap(); Generation* gen0 = gch->get_gen(0); DefNewGeneration* def_new = gen0->as_DefNewGeneration(); return AdaptiveSizePolicy::print_adaptive_size_policy_on( st, def_new->tenuring_threshold()); }