1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_x86_32.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "oops/arrayOop.hpp"
  30 #include "oops/markOop.hpp"
  31 #include "oops/methodDataOop.hpp"
  32 #include "oops/methodOop.hpp"
  33 #include "prims/jvmtiExport.hpp"
  34 #include "prims/jvmtiRedefineClassesTrace.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/basicLock.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #ifdef TARGET_OS_FAMILY_linux
  40 # include "thread_linux.inline.hpp"
  41 #endif
  42 #ifdef TARGET_OS_FAMILY_solaris
  43 # include "thread_solaris.inline.hpp"
  44 #endif
  45 #ifdef TARGET_OS_FAMILY_windows
  46 # include "thread_windows.inline.hpp"
  47 #endif
  48 
  49 
  50 // Implementation of InterpreterMacroAssembler
  51 #ifdef CC_INTERP
  52 void InterpreterMacroAssembler::get_method(Register reg) {
  53   movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
  54   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
  55 }
  56 #endif // CC_INTERP
  57 
  58 
  59 #ifndef CC_INTERP
  60 void InterpreterMacroAssembler::call_VM_leaf_base(
  61   address entry_point,
  62   int     number_of_arguments
  63 ) {
  64   // interpreter specific
  65   //
  66   // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
  67   //       since these are callee saved registers and no blocking/
  68   //       GC can happen in leaf calls.
  69   // Further Note: DO NOT save/restore bcp/locals. If a caller has
  70   // already saved them so that it can use rsi/rdi as temporaries
  71   // then a save/restore here will DESTROY the copy the caller
  72   // saved! There used to be a save_bcp() that only happened in
  73   // the ASSERT path (no restore_bcp). Which caused bizarre failures
  74   // when jvm built with ASSERTs.
  75 #ifdef ASSERT
  76   { Label L;
  77     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  78     jcc(Assembler::equal, L);
  79     stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
  80     bind(L);
  81   }
  82 #endif
  83   // super call
  84   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  85   // interpreter specific
  86 
  87   // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
  88   // but since they may not have been saved (and we don't want to
  89   // save them here (see note above) the assert is invalid.
  90 }
  91 
  92 
  93 void InterpreterMacroAssembler::call_VM_base(
  94   Register oop_result,
  95   Register java_thread,
  96   Register last_java_sp,
  97   address  entry_point,
  98   int      number_of_arguments,
  99   bool     check_exceptions
 100 ) {
 101 #ifdef ASSERT
 102   { Label L;
 103     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 104     jcc(Assembler::equal, L);
 105     stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
 106     bind(L);
 107   }
 108 #endif /* ASSERT */
 109   // interpreter specific
 110   //
 111   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
 112   //       really make a difference for these runtime calls, since they are
 113   //       slow anyway. Btw., bcp must be saved/restored since it may change
 114   //       due to GC.
 115   assert(java_thread == noreg , "not expecting a precomputed java thread");
 116   save_bcp();
 117   // super call
 118   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 119   // interpreter specific
 120   restore_bcp();
 121   restore_locals();
 122 }
 123 
 124 
 125 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 126   if (JvmtiExport::can_pop_frame()) {
 127     Label L;
 128     // Initiate popframe handling only if it is not already being processed.  If the flag
 129     // has the popframe_processing bit set, it means that this code is called *during* popframe
 130     // handling - we don't want to reenter.
 131     Register pop_cond = java_thread;  // Not clear if any other register is available...
 132     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
 133     testl(pop_cond, JavaThread::popframe_pending_bit);
 134     jcc(Assembler::zero, L);
 135     testl(pop_cond, JavaThread::popframe_processing_bit);
 136     jcc(Assembler::notZero, L);
 137     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 138     // address of the same-named entrypoint in the generated interpreter code.
 139     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 140     jmp(rax);
 141     bind(L);
 142     get_thread(java_thread);
 143   }
 144 }
 145 
 146 
 147 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 148   get_thread(rcx);
 149   movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
 150   const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
 151   const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
 152   const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
 153   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
 154                              + in_ByteSize(wordSize));
 155   switch (state) {
 156     case atos: movptr(rax, oop_addr);
 157                movptr(oop_addr, NULL_WORD);
 158                verify_oop(rax, state);                break;
 159     case ltos:
 160                movl(rdx, val_addr1);               // fall through
 161     case btos:                                     // fall through
 162     case ctos:                                     // fall through
 163     case stos:                                     // fall through
 164     case itos: movl(rax, val_addr);                   break;
 165     case ftos: fld_s(val_addr);                       break;
 166     case dtos: fld_d(val_addr);                       break;
 167     case vtos: /* nothing to do */                    break;
 168     default  : ShouldNotReachHere();
 169   }
 170   // Clean up tos value in the thread object
 171   movl(tos_addr,  (int32_t) ilgl);
 172   movptr(val_addr,  NULL_WORD);
 173   NOT_LP64(movptr(val_addr1, NULL_WORD));
 174 }
 175 
 176 
 177 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 178   if (JvmtiExport::can_force_early_return()) {
 179     Label L;
 180     Register tmp = java_thread;
 181     movptr(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
 182     testptr(tmp, tmp);
 183     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
 184 
 185     // Initiate earlyret handling only if it is not already being processed.
 186     // If the flag has the earlyret_processing bit set, it means that this code
 187     // is called *during* earlyret handling - we don't want to reenter.
 188     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
 189     cmpl(tmp, JvmtiThreadState::earlyret_pending);
 190     jcc(Assembler::notEqual, L);
 191 
 192     // Call Interpreter::remove_activation_early_entry() to get the address of the
 193     // same-named entrypoint in the generated interpreter code.
 194     get_thread(java_thread);
 195     movptr(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
 196     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 197     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
 198     jmp(rax);
 199     bind(L);
 200     get_thread(java_thread);
 201   }
 202 }
 203 
 204 
 205 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
 206   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 207   movl(reg, Address(rsi, bcp_offset));
 208   bswapl(reg);
 209   shrl(reg, 16);
 210 }
 211 
 212 
 213 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register reg, int bcp_offset, size_t index_size) {
 214   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 215   if (index_size == sizeof(u2)) {
 216     load_unsigned_short(reg, Address(rsi, bcp_offset));
 217   } else if (index_size == sizeof(u4)) {
 218     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 219     movl(reg, Address(rsi, bcp_offset));
 220     // Check if the secondary index definition is still ~x, otherwise
 221     // we have to change the following assembler code to calculate the
 222     // plain index.
 223     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
 224     notl(reg);  // convert to plain index
 225   } else if (index_size == sizeof(u1)) {
 226     assert(EnableInvokeDynamic, "tiny index used only for JSR 292");
 227     load_unsigned_byte(reg, Address(rsi, bcp_offset));
 228   } else {
 229     ShouldNotReachHere();
 230   }
 231 }
 232 
 233 
 234 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index,
 235                                                            int bcp_offset, size_t index_size) {
 236   assert_different_registers(cache, index);
 237   get_cache_index_at_bcp(index, bcp_offset, index_size);
 238   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 239   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
 240   shlptr(index, 2); // convert from field index to ConstantPoolCacheEntry index
 241 }
 242 
 243 
 244 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 245                                                                         Register index,
 246                                                                         Register bytecode,
 247                                                                         int byte_no,
 248                                                                         int bcp_offset,
 249                                                                         size_t index_size) {
 250   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 251   movptr(bytecode, Address(cache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 252   const int shift_count = (1 + byte_no) * BitsPerByte;
 253   shrptr(bytecode, shift_count);
 254   andptr(bytecode, 0xFF);
 255 }
 256 
 257 
 258 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
 259                                                                int bcp_offset, size_t index_size) {
 260   assert(cache != tmp, "must use different register");
 261   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 262   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
 263                                // convert from field index to ConstantPoolCacheEntry index
 264                                // and from word offset to byte offset
 265   shll(tmp, 2 + LogBytesPerWord);
 266   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 267                                // skip past the header
 268   addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
 269   addptr(cache, tmp);            // construct pointer to cache entry
 270 }
 271 
 272 
 273   // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 274   // a subtype of super_klass.  EAX holds the super_klass.  Blows ECX.
 275   // Resets EDI to locals.  Register sub_klass cannot be any of the above.
 276 void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
 277   assert( Rsub_klass != rax, "rax, holds superklass" );
 278   assert( Rsub_klass != rcx, "used as a temp" );
 279   assert( Rsub_klass != rdi, "used as a temp, restored from locals" );
 280 
 281   // Profile the not-null value's klass.
 282   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 283 
 284   // Do the check.
 285   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 286 
 287   // Profile the failure of the check.
 288   profile_typecheck_failed(rcx); // blows rcx
 289 }
 290 
 291 void InterpreterMacroAssembler::f2ieee() {
 292   if (IEEEPrecision) {
 293     fstp_s(Address(rsp, 0));
 294     fld_s(Address(rsp, 0));
 295   }
 296 }
 297 
 298 
 299 void InterpreterMacroAssembler::d2ieee() {
 300   if (IEEEPrecision) {
 301     fstp_d(Address(rsp, 0));
 302     fld_d(Address(rsp, 0));
 303   }
 304 }
 305 
 306 // Java Expression Stack
 307 
 308 void InterpreterMacroAssembler::pop_ptr(Register r) {
 309   pop(r);
 310 }
 311 
 312 void InterpreterMacroAssembler::pop_i(Register r) {
 313   pop(r);
 314 }
 315 
 316 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
 317   pop(lo);
 318   pop(hi);
 319 }
 320 
 321 void InterpreterMacroAssembler::pop_f() {
 322   fld_s(Address(rsp, 0));
 323   addptr(rsp, 1 * wordSize);
 324 }
 325 
 326 void InterpreterMacroAssembler::pop_d() {
 327   fld_d(Address(rsp, 0));
 328   addptr(rsp, 2 * wordSize);
 329 }
 330 
 331 
 332 void InterpreterMacroAssembler::pop(TosState state) {
 333   switch (state) {
 334     case atos: pop_ptr(rax);                                 break;
 335     case btos:                                               // fall through
 336     case ctos:                                               // fall through
 337     case stos:                                               // fall through
 338     case itos: pop_i(rax);                                   break;
 339     case ltos: pop_l(rax, rdx);                              break;
 340     case ftos: pop_f();                                      break;
 341     case dtos: pop_d();                                      break;
 342     case vtos: /* nothing to do */                           break;
 343     default  : ShouldNotReachHere();
 344   }
 345   verify_oop(rax, state);
 346 }
 347 
 348 void InterpreterMacroAssembler::push_ptr(Register r) {
 349   push(r);
 350 }
 351 
 352 void InterpreterMacroAssembler::push_i(Register r) {
 353   push(r);
 354 }
 355 
 356 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
 357   push(hi);
 358   push(lo);
 359 }
 360 
 361 void InterpreterMacroAssembler::push_f() {
 362   // Do not schedule for no AGI! Never write beyond rsp!
 363   subptr(rsp, 1 * wordSize);
 364   fstp_s(Address(rsp, 0));
 365 }
 366 
 367 void InterpreterMacroAssembler::push_d(Register r) {
 368   // Do not schedule for no AGI! Never write beyond rsp!
 369   subptr(rsp, 2 * wordSize);
 370   fstp_d(Address(rsp, 0));
 371 }
 372 
 373 
 374 void InterpreterMacroAssembler::push(TosState state) {
 375   verify_oop(rax, state);
 376   switch (state) {
 377     case atos: push_ptr(rax); break;
 378     case btos:                                               // fall through
 379     case ctos:                                               // fall through
 380     case stos:                                               // fall through
 381     case itos: push_i(rax);                                    break;
 382     case ltos: push_l(rax, rdx);                               break;
 383     case ftos: push_f();                                       break;
 384     case dtos: push_d(rax);                                    break;
 385     case vtos: /* nothing to do */                             break;
 386     default  : ShouldNotReachHere();
 387   }
 388 }
 389 
 390 
 391 // Helpers for swap and dup
 392 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 393   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 394 }
 395 
 396 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 397   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 398 }
 399 
 400 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 401   // set sender sp
 402   lea(rsi, Address(rsp, wordSize));
 403   // record last_sp
 404   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
 405 }
 406 
 407 
 408 // Jump to from_interpreted entry of a call unless single stepping is possible
 409 // in this thread in which case we must call the i2i entry
 410 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 411   prepare_to_jump_from_interpreted();
 412 
 413   if (JvmtiExport::can_post_interpreter_events()) {
 414     Label run_compiled_code;
 415     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 416     // compiled code in threads for which the event is enabled.  Check here for
 417     // interp_only_mode if these events CAN be enabled.
 418     get_thread(temp);
 419     // interp_only is an int, on little endian it is sufficient to test the byte only
 420     // Is a cmpl faster?
 421     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
 422     jccb(Assembler::zero, run_compiled_code);
 423     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
 424     bind(run_compiled_code);
 425   }
 426 
 427   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
 428 
 429 }
 430 
 431 
 432 // The following two routines provide a hook so that an implementation
 433 // can schedule the dispatch in two parts.  Intel does not do this.
 434 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 435   // Nothing Intel-specific to be done here.
 436 }
 437 
 438 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 439   dispatch_next(state, step);
 440 }
 441 
 442 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
 443                                               bool verifyoop) {
 444   verify_FPU(1, state);
 445   if (VerifyActivationFrameSize) {
 446     Label L;
 447     mov(rcx, rbp);
 448     subptr(rcx, rsp);
 449     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
 450     cmpptr(rcx, min_frame_size);
 451     jcc(Assembler::greaterEqual, L);
 452     stop("broken stack frame");
 453     bind(L);
 454   }
 455   if (verifyoop) verify_oop(rax, state);
 456   Address index(noreg, rbx, Address::times_ptr);
 457   ExternalAddress tbl((address)table);
 458   ArrayAddress dispatch(tbl, index);
 459   jump(dispatch);
 460 }
 461 
 462 
 463 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 464   dispatch_base(state, Interpreter::dispatch_table(state));
 465 }
 466 
 467 
 468 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 469   dispatch_base(state, Interpreter::normal_table(state));
 470 }
 471 
 472 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 473   dispatch_base(state, Interpreter::normal_table(state), false);
 474 }
 475 
 476 
 477 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 478   // load next bytecode (load before advancing rsi to prevent AGI)
 479   load_unsigned_byte(rbx, Address(rsi, step));
 480   // advance rsi
 481   increment(rsi, step);
 482   dispatch_base(state, Interpreter::dispatch_table(state));
 483 }
 484 
 485 
 486 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 487   // load current bytecode
 488   load_unsigned_byte(rbx, Address(rsi, 0));
 489   dispatch_base(state, table);
 490 }
 491 
 492 // remove activation
 493 //
 494 // Unlock the receiver if this is a synchronized method.
 495 // Unlock any Java monitors from syncronized blocks.
 496 // Remove the activation from the stack.
 497 //
 498 // If there are locked Java monitors
 499 //    If throw_monitor_exception
 500 //       throws IllegalMonitorStateException
 501 //    Else if install_monitor_exception
 502 //       installs IllegalMonitorStateException
 503 //    Else
 504 //       no error processing
 505 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
 506                                                   bool throw_monitor_exception,
 507                                                   bool install_monitor_exception,
 508                                                   bool notify_jvmdi) {
 509   // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
 510   // check if synchronized method
 511   Label unlocked, unlock, no_unlock;
 512 
 513   get_thread(rcx);
 514   const Address do_not_unlock_if_synchronized(rcx,
 515     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 516 
 517   movbool(rbx, do_not_unlock_if_synchronized);
 518   mov(rdi,rbx);
 519   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 520 
 521   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
 522   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
 523 
 524   testl(rcx, JVM_ACC_SYNCHRONIZED);
 525   jcc(Assembler::zero, unlocked);
 526 
 527   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 528   // is set.
 529   mov(rcx,rdi);
 530   testbool(rcx);
 531   jcc(Assembler::notZero, no_unlock);
 532 
 533   // unlock monitor
 534   push(state);                                   // save result
 535 
 536   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
 537   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
 538   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
 539   lea   (rdx, monitor);                          // address of first monitor
 540 
 541   movptr (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
 542   testptr(rax, rax);
 543   jcc    (Assembler::notZero, unlock);
 544 
 545   pop(state);
 546   if (throw_monitor_exception) {
 547     empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
 548 
 549     // Entry already unlocked, need to throw exception
 550     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 551     should_not_reach_here();
 552   } else {
 553     // Monitor already unlocked during a stack unroll.
 554     // If requested, install an illegal_monitor_state_exception.
 555     // Continue with stack unrolling.
 556     if (install_monitor_exception) {
 557       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
 558       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 559     }
 560     jmp(unlocked);
 561   }
 562 
 563   bind(unlock);
 564   unlock_object(rdx);
 565   pop(state);
 566 
 567   // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
 568   bind(unlocked);
 569 
 570   // rax, rdx: Might contain return value
 571 
 572   // Check that all monitors are unlocked
 573   {
 574     Label loop, exception, entry, restart;
 575     const int entry_size               = frame::interpreter_frame_monitor_size()           * wordSize;
 576     const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 577     const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
 578 
 579     bind(restart);
 580     movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
 581     lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
 582     jmp(entry);
 583 
 584     // Entry already locked, need to throw exception
 585     bind(exception);
 586 
 587     if (throw_monitor_exception) {
 588       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
 589 
 590       // Throw exception
 591       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 592       should_not_reach_here();
 593     } else {
 594       // Stack unrolling. Unlock object and install illegal_monitor_exception
 595       // Unlock does not block, so don't have to worry about the frame
 596 
 597       push(state);
 598       mov(rdx, rcx);
 599       unlock_object(rdx);
 600       pop(state);
 601 
 602       if (install_monitor_exception) {
 603         empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
 604         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 605       }
 606 
 607       jmp(restart);
 608     }
 609 
 610     bind(loop);
 611     cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
 612     jcc(Assembler::notEqual, exception);
 613 
 614     addptr(rcx, entry_size);                     // otherwise advance to next entry
 615     bind(entry);
 616     cmpptr(rcx, rbx);                            // check if bottom reached
 617     jcc(Assembler::notEqual, loop);              // if not at bottom then check this entry
 618   }
 619 
 620   bind(no_unlock);
 621 
 622   // jvmti support
 623   if (notify_jvmdi) {
 624     notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
 625   } else {
 626     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 627   }
 628 
 629   // remove activation
 630   movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
 631   leave();                                     // remove frame anchor
 632   pop(ret_addr);                               // get return address
 633   mov(rsp, rbx);                               // set sp to sender sp
 634   if (UseSSE) {
 635     // float and double are returned in xmm register in SSE-mode
 636     if (state == ftos && UseSSE >= 1) {
 637       subptr(rsp, wordSize);
 638       fstp_s(Address(rsp, 0));
 639       movflt(xmm0, Address(rsp, 0));
 640       addptr(rsp, wordSize);
 641     } else if (state == dtos && UseSSE >= 2) {
 642       subptr(rsp, 2*wordSize);
 643       fstp_d(Address(rsp, 0));
 644       movdbl(xmm0, Address(rsp, 0));
 645       addptr(rsp, 2*wordSize);
 646     }
 647   }
 648 }
 649 
 650 #endif /* !CC_INTERP */
 651 
 652 
 653 // Lock object
 654 //
 655 // Argument: rdx : Points to BasicObjectLock to be used for locking. Must
 656 // be initialized with object to lock
 657 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
 658   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
 659 
 660   if (UseHeavyMonitors) {
 661     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
 662   } else {
 663 
 664     Label done;
 665 
 666     const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
 667     const Register obj_reg  = rcx;  // Will contain the oop
 668 
 669     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 670     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 671     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
 672 
 673     Label slow_case;
 674 
 675     // Load object pointer into obj_reg %rcx
 676     movptr(obj_reg, Address(lock_reg, obj_offset));
 677 
 678     if (UseBiasedLocking) {
 679       // Note: we use noreg for the temporary register since it's hard
 680       // to come up with a free register on all incoming code paths
 681       biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
 682     }
 683 
 684     // Load immediate 1 into swap_reg %rax,
 685     movptr(swap_reg, (int32_t)1);
 686 
 687     // Load (object->mark() | 1) into swap_reg %rax,
 688     orptr(swap_reg, Address(obj_reg, 0));
 689 
 690     // Save (object->mark() | 1) into BasicLock's displaced header
 691     movptr(Address(lock_reg, mark_offset), swap_reg);
 692 
 693     assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
 694     if (os::is_MP()) {
 695       lock();
 696     }
 697     cmpxchgptr(lock_reg, Address(obj_reg, 0));
 698     if (PrintBiasedLockingStatistics) {
 699       cond_inc32(Assembler::zero,
 700                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
 701     }
 702     jcc(Assembler::zero, done);
 703 
 704     // Test if the oopMark is an obvious stack pointer, i.e.,
 705     //  1) (mark & 3) == 0, and
 706     //  2) rsp <= mark < mark + os::pagesize()
 707     //
 708     // These 3 tests can be done by evaluating the following
 709     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
 710     // assuming both stack pointer and pagesize have their
 711     // least significant 2 bits clear.
 712     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
 713     subptr(swap_reg, rsp);
 714     andptr(swap_reg, 3 - os::vm_page_size());
 715 
 716     // Save the test result, for recursive case, the result is zero
 717     movptr(Address(lock_reg, mark_offset), swap_reg);
 718 
 719     if (PrintBiasedLockingStatistics) {
 720       cond_inc32(Assembler::zero,
 721                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
 722     }
 723     jcc(Assembler::zero, done);
 724 
 725     bind(slow_case);
 726 
 727     // Call the runtime routine for slow case
 728     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
 729 
 730     bind(done);
 731   }
 732 }
 733 
 734 
 735 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
 736 //
 737 // Argument: rdx : Points to BasicObjectLock structure for lock
 738 // Throw an IllegalMonitorException if object is not locked by current thread
 739 //
 740 // Uses: rax, rbx, rcx, rdx
 741 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
 742   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
 743 
 744   if (UseHeavyMonitors) {
 745     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 746   } else {
 747     Label done;
 748 
 749     const Register swap_reg   = rax;  // Must use rax, for cmpxchg instruction
 750     const Register header_reg = rbx;  // Will contain the old oopMark
 751     const Register obj_reg    = rcx;  // Will contain the oop
 752 
 753     save_bcp(); // Save in case of exception
 754 
 755     // Convert from BasicObjectLock structure to object and BasicLock structure
 756     // Store the BasicLock address into %rax,
 757     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 758 
 759     // Load oop into obj_reg(%rcx)
 760     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
 761 
 762     // Free entry
 763     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
 764 
 765     if (UseBiasedLocking) {
 766       biased_locking_exit(obj_reg, header_reg, done);
 767     }
 768 
 769     // Load the old header from BasicLock structure
 770     movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
 771 
 772     // Test for recursion
 773     testptr(header_reg, header_reg);
 774 
 775     // zero for recursive case
 776     jcc(Assembler::zero, done);
 777 
 778     // Atomic swap back the old header
 779     if (os::is_MP()) lock();
 780     cmpxchgptr(header_reg, Address(obj_reg, 0));
 781 
 782     // zero for recursive case
 783     jcc(Assembler::zero, done);
 784 
 785     // Call the runtime routine for slow case.
 786     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
 787     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 788 
 789     bind(done);
 790 
 791     restore_bcp();
 792   }
 793 }
 794 
 795 
 796 #ifndef CC_INTERP
 797 
 798 // Test ImethodDataPtr.  If it is null, continue at the specified label
 799 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
 800   assert(ProfileInterpreter, "must be profiling interpreter");
 801   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
 802   testptr(mdp, mdp);
 803   jcc(Assembler::zero, zero_continue);
 804 }
 805 
 806 
 807 // Set the method data pointer for the current bcp.
 808 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 809   assert(ProfileInterpreter, "must be profiling interpreter");
 810   Label set_mdp;
 811   push(rax);
 812   push(rbx);
 813 
 814   get_method(rbx);
 815   // Test MDO to avoid the call if it is NULL.
 816   movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
 817   testptr(rax, rax);
 818   jcc(Assembler::zero, set_mdp);
 819   // rbx,: method
 820   // rsi: bcp
 821   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
 822   // rax,: mdi
 823   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 824   movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
 825   addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
 826   addptr(rax, rbx);
 827   bind(set_mdp);
 828   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
 829   pop(rbx);
 830   pop(rax);
 831 }
 832 
 833 void InterpreterMacroAssembler::verify_method_data_pointer() {
 834   assert(ProfileInterpreter, "must be profiling interpreter");
 835 #ifdef ASSERT
 836   Label verify_continue;
 837   push(rax);
 838   push(rbx);
 839   push(rcx);
 840   push(rdx);
 841   test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
 842   get_method(rbx);
 843 
 844   // If the mdp is valid, it will point to a DataLayout header which is
 845   // consistent with the bcp.  The converse is highly probable also.
 846   load_unsigned_short(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
 847   addptr(rdx, Address(rbx, methodOopDesc::const_offset()));
 848   lea(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
 849   cmpptr(rdx, rsi);
 850   jcc(Assembler::equal, verify_continue);
 851   // rbx,: method
 852   // rsi: bcp
 853   // rcx: mdp
 854   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
 855   bind(verify_continue);
 856   pop(rdx);
 857   pop(rcx);
 858   pop(rbx);
 859   pop(rax);
 860 #endif // ASSERT
 861 }
 862 
 863 
 864 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
 865   // %%% this seems to be used to store counter data which is surely 32bits
 866   // however 64bit side stores 64 bits which seems wrong
 867   assert(ProfileInterpreter, "must be profiling interpreter");
 868   Address data(mdp_in, constant);
 869   movptr(data, value);
 870 }
 871 
 872 
 873 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 874                                                       int constant,
 875                                                       bool decrement) {
 876   // Counter address
 877   Address data(mdp_in, constant);
 878 
 879   increment_mdp_data_at(data, decrement);
 880 }
 881 
 882 
 883 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
 884                                                       bool decrement) {
 885 
 886   assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
 887   assert(ProfileInterpreter, "must be profiling interpreter");
 888 
 889   // %%% 64bit treats this as 64 bit which seems unlikely
 890   if (decrement) {
 891     // Decrement the register.  Set condition codes.
 892     addl(data, -DataLayout::counter_increment);
 893     // If the decrement causes the counter to overflow, stay negative
 894     Label L;
 895     jcc(Assembler::negative, L);
 896     addl(data, DataLayout::counter_increment);
 897     bind(L);
 898   } else {
 899     assert(DataLayout::counter_increment == 1,
 900            "flow-free idiom only works with 1");
 901     // Increment the register.  Set carry flag.
 902     addl(data, DataLayout::counter_increment);
 903     // If the increment causes the counter to overflow, pull back by 1.
 904     sbbl(data, 0);
 905   }
 906 }
 907 
 908 
 909 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 910                                                       Register reg,
 911                                                       int constant,
 912                                                       bool decrement) {
 913   Address data(mdp_in, reg, Address::times_1, constant);
 914 
 915   increment_mdp_data_at(data, decrement);
 916 }
 917 
 918 
 919 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
 920   assert(ProfileInterpreter, "must be profiling interpreter");
 921   int header_offset = in_bytes(DataLayout::header_offset());
 922   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
 923   // Set the flag
 924   orl(Address(mdp_in, header_offset), header_bits);
 925 }
 926 
 927 
 928 
 929 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 930                                                  int offset,
 931                                                  Register value,
 932                                                  Register test_value_out,
 933                                                  Label& not_equal_continue) {
 934   assert(ProfileInterpreter, "must be profiling interpreter");
 935   if (test_value_out == noreg) {
 936     cmpptr(value, Address(mdp_in, offset));
 937   } else {
 938     // Put the test value into a register, so caller can use it:
 939     movptr(test_value_out, Address(mdp_in, offset));
 940     cmpptr(test_value_out, value);
 941   }
 942   jcc(Assembler::notEqual, not_equal_continue);
 943 }
 944 
 945 
 946 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
 947   assert(ProfileInterpreter, "must be profiling interpreter");
 948   Address disp_address(mdp_in, offset_of_disp);
 949   addptr(mdp_in,disp_address);
 950   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
 951 }
 952 
 953 
 954 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
 955   assert(ProfileInterpreter, "must be profiling interpreter");
 956   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
 957   addptr(mdp_in, disp_address);
 958   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
 959 }
 960 
 961 
 962 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
 963   assert(ProfileInterpreter, "must be profiling interpreter");
 964   addptr(mdp_in, constant);
 965   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
 966 }
 967 
 968 
 969 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
 970   assert(ProfileInterpreter, "must be profiling interpreter");
 971   push(return_bci);             // save/restore across call_VM
 972   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
 973   pop(return_bci);
 974 }
 975 
 976 
 977 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
 978   if (ProfileInterpreter) {
 979     Label profile_continue;
 980 
 981     // If no method data exists, go to profile_continue.
 982     // Otherwise, assign to mdp
 983     test_method_data_pointer(mdp, profile_continue);
 984 
 985     // We are taking a branch.  Increment the taken count.
 986     // We inline increment_mdp_data_at to return bumped_count in a register
 987     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
 988     Address data(mdp, in_bytes(JumpData::taken_offset()));
 989 
 990     // %%% 64bit treats these cells as 64 bit but they seem to be 32 bit
 991     movl(bumped_count,data);
 992     assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
 993     addl(bumped_count, DataLayout::counter_increment);
 994     sbbl(bumped_count, 0);
 995     movl(data,bumped_count);    // Store back out
 996 
 997     // The method data pointer needs to be updated to reflect the new target.
 998     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
 999     bind (profile_continue);
1000   }
1001 }
1002 
1003 
1004 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1005   if (ProfileInterpreter) {
1006     Label profile_continue;
1007 
1008     // If no method data exists, go to profile_continue.
1009     test_method_data_pointer(mdp, profile_continue);
1010 
1011     // We are taking a branch.  Increment the not taken count.
1012     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1013 
1014     // The method data pointer needs to be updated to correspond to the next bytecode
1015     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1016     bind (profile_continue);
1017   }
1018 }
1019 
1020 
1021 void InterpreterMacroAssembler::profile_call(Register mdp) {
1022   if (ProfileInterpreter) {
1023     Label profile_continue;
1024 
1025     // If no method data exists, go to profile_continue.
1026     test_method_data_pointer(mdp, profile_continue);
1027 
1028     // We are making a call.  Increment the count.
1029     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1030 
1031     // The method data pointer needs to be updated to reflect the new target.
1032     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1033     bind (profile_continue);
1034   }
1035 }
1036 
1037 
1038 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1039   if (ProfileInterpreter) {
1040     Label profile_continue;
1041 
1042     // If no method data exists, go to profile_continue.
1043     test_method_data_pointer(mdp, profile_continue);
1044 
1045     // We are making a call.  Increment the count.
1046     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1047 
1048     // The method data pointer needs to be updated to reflect the new target.
1049     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1050     bind (profile_continue);
1051   }
1052 }
1053 
1054 
1055 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp,
1056                                                      Register reg2,
1057                                                      bool receiver_can_be_null) {
1058   if (ProfileInterpreter) {
1059     Label profile_continue;
1060 
1061     // If no method data exists, go to profile_continue.
1062     test_method_data_pointer(mdp, profile_continue);
1063 
1064     Label skip_receiver_profile;
1065     if (receiver_can_be_null) {
1066       Label not_null;
1067       testptr(receiver, receiver);
1068       jccb(Assembler::notZero, not_null);
1069       // We are making a call.  Increment the count for null receiver.
1070       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1071       jmp(skip_receiver_profile);
1072       bind(not_null);
1073     }
1074 
1075     // Record the receiver type.
1076     record_klass_in_profile(receiver, mdp, reg2, true);
1077     bind(skip_receiver_profile);
1078 
1079     // The method data pointer needs to be updated to reflect the new target.
1080     update_mdp_by_constant(mdp,
1081                            in_bytes(VirtualCallData::
1082                                     virtual_call_data_size()));
1083     bind(profile_continue);
1084   }
1085 }
1086 
1087 
1088 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1089                                         Register receiver, Register mdp,
1090                                         Register reg2, int start_row,
1091                                         Label& done, bool is_virtual_call) {
1092   if (TypeProfileWidth == 0) {
1093     if (is_virtual_call) {
1094       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1095     }
1096     return;
1097   }
1098 
1099   int last_row = VirtualCallData::row_limit() - 1;
1100   assert(start_row <= last_row, "must be work left to do");
1101   // Test this row for both the receiver and for null.
1102   // Take any of three different outcomes:
1103   //   1. found receiver => increment count and goto done
1104   //   2. found null => keep looking for case 1, maybe allocate this cell
1105   //   3. found something else => keep looking for cases 1 and 2
1106   // Case 3 is handled by a recursive call.
1107   for (int row = start_row; row <= last_row; row++) {
1108     Label next_test;
1109     bool test_for_null_also = (row == start_row);
1110 
1111     // See if the receiver is receiver[n].
1112     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1113     test_mdp_data_at(mdp, recvr_offset, receiver,
1114                      (test_for_null_also ? reg2 : noreg),
1115                      next_test);
1116     // (Reg2 now contains the receiver from the CallData.)
1117 
1118     // The receiver is receiver[n].  Increment count[n].
1119     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1120     increment_mdp_data_at(mdp, count_offset);
1121     jmp(done);
1122     bind(next_test);
1123 
1124     if (row == start_row) {
1125       Label found_null;
1126       // Failed the equality check on receiver[n]...  Test for null.
1127       testptr(reg2, reg2);
1128       if (start_row == last_row) {
1129         // The only thing left to do is handle the null case.
1130         if (is_virtual_call) {
1131           jccb(Assembler::zero, found_null);
1132           // Receiver did not match any saved receiver and there is no empty row for it.
1133           // Increment total counter to indicate polymorphic case.
1134           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1135           jmp(done);
1136           bind(found_null);
1137         } else {
1138           jcc(Assembler::notZero, done);
1139         }
1140         break;
1141       }
1142       // Since null is rare, make it be the branch-taken case.
1143       jcc(Assembler::zero, found_null);
1144 
1145       // Put all the "Case 3" tests here.
1146       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
1147 
1148       // Found a null.  Keep searching for a matching receiver,
1149       // but remember that this is an empty (unused) slot.
1150       bind(found_null);
1151     }
1152   }
1153 
1154   // In the fall-through case, we found no matching receiver, but we
1155   // observed the receiver[start_row] is NULL.
1156 
1157   // Fill in the receiver field and increment the count.
1158   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1159   set_mdp_data_at(mdp, recvr_offset, receiver);
1160   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1161   movptr(reg2, (int32_t)DataLayout::counter_increment);
1162   set_mdp_data_at(mdp, count_offset, reg2);
1163   if (start_row > 0) {
1164     jmp(done);
1165   }
1166 }
1167 
1168 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1169                                                         Register mdp, Register reg2,
1170                                                         bool is_virtual_call) {
1171   assert(ProfileInterpreter, "must be profiling");
1172   Label done;
1173 
1174   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1175 
1176   bind (done);
1177 }
1178 
1179 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
1180   if (ProfileInterpreter) {
1181     Label profile_continue;
1182     uint row;
1183 
1184     // If no method data exists, go to profile_continue.
1185     test_method_data_pointer(mdp, profile_continue);
1186 
1187     // Update the total ret count.
1188     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1189 
1190     for (row = 0; row < RetData::row_limit(); row++) {
1191       Label next_test;
1192 
1193       // See if return_bci is equal to bci[n]:
1194       test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
1195                        noreg, next_test);
1196 
1197       // return_bci is equal to bci[n].  Increment the count.
1198       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1199 
1200       // The method data pointer needs to be updated to reflect the new target.
1201       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
1202       jmp(profile_continue);
1203       bind(next_test);
1204     }
1205 
1206     update_mdp_for_ret(return_bci);
1207 
1208     bind (profile_continue);
1209   }
1210 }
1211 
1212 
1213 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1214   if (ProfileInterpreter) {
1215     Label profile_continue;
1216 
1217     // If no method data exists, go to profile_continue.
1218     test_method_data_pointer(mdp, profile_continue);
1219 
1220     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1221 
1222     // The method data pointer needs to be updated.
1223     int mdp_delta = in_bytes(BitData::bit_data_size());
1224     if (TypeProfileCasts) {
1225       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1226     }
1227     update_mdp_by_constant(mdp, mdp_delta);
1228 
1229     bind (profile_continue);
1230   }
1231 }
1232 
1233 
1234 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1235   if (ProfileInterpreter && TypeProfileCasts) {
1236     Label profile_continue;
1237 
1238     // If no method data exists, go to profile_continue.
1239     test_method_data_pointer(mdp, profile_continue);
1240 
1241     int count_offset = in_bytes(CounterData::count_offset());
1242     // Back up the address, since we have already bumped the mdp.
1243     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1244 
1245     // *Decrement* the counter.  We expect to see zero or small negatives.
1246     increment_mdp_data_at(mdp, count_offset, true);
1247 
1248     bind (profile_continue);
1249   }
1250 }
1251 
1252 
1253 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
1254 {
1255   if (ProfileInterpreter) {
1256     Label profile_continue;
1257 
1258     // If no method data exists, go to profile_continue.
1259     test_method_data_pointer(mdp, profile_continue);
1260 
1261     // The method data pointer needs to be updated.
1262     int mdp_delta = in_bytes(BitData::bit_data_size());
1263     if (TypeProfileCasts) {
1264       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1265 
1266       // Record the object type.
1267       record_klass_in_profile(klass, mdp, reg2, false);
1268       assert(reg2 == rdi, "we know how to fix this blown reg");
1269       restore_locals();         // Restore EDI
1270     }
1271     update_mdp_by_constant(mdp, mdp_delta);
1272 
1273     bind(profile_continue);
1274   }
1275 }
1276 
1277 
1278 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1279   if (ProfileInterpreter) {
1280     Label profile_continue;
1281 
1282     // If no method data exists, go to profile_continue.
1283     test_method_data_pointer(mdp, profile_continue);
1284 
1285     // Update the default case count
1286     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
1287 
1288     // The method data pointer needs to be updated.
1289     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
1290 
1291     bind (profile_continue);
1292   }
1293 }
1294 
1295 
1296 void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
1297   if (ProfileInterpreter) {
1298     Label profile_continue;
1299 
1300     // If no method data exists, go to profile_continue.
1301     test_method_data_pointer(mdp, profile_continue);
1302 
1303     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1304     movptr(reg2, (int32_t)in_bytes(MultiBranchData::per_case_size()));
1305     // index is positive and so should have correct value if this code were
1306     // used on 64bits
1307     imulptr(index, reg2);
1308     addptr(index, in_bytes(MultiBranchData::case_array_offset()));
1309 
1310     // Update the case count
1311     increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
1312 
1313     // The method data pointer needs to be updated.
1314     update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
1315 
1316     bind (profile_continue);
1317   }
1318 }
1319 
1320 #endif // !CC_INTERP
1321 
1322 
1323 
1324 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1325   if (state == atos) MacroAssembler::verify_oop(reg);
1326 }
1327 
1328 
1329 #ifndef CC_INTERP
1330 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1331   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
1332 }
1333 
1334 #endif /* CC_INTERP */
1335 
1336 
1337 void InterpreterMacroAssembler::notify_method_entry() {
1338   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1339   // track stack depth.  If it is possible to enter interp_only_mode we add
1340   // the code to check if the event should be sent.
1341   if (JvmtiExport::can_post_interpreter_events()) {
1342     Label L;
1343     get_thread(rcx);
1344     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
1345     testl(rcx,rcx);
1346     jcc(Assembler::zero, L);
1347     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
1348     bind(L);
1349   }
1350 
1351   {
1352     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
1353     get_thread(rcx);
1354     get_method(rbx);
1355     call_VM_leaf(
1356       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
1357   }
1358 
1359   // RedefineClasses() tracing support for obsolete method entry
1360   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1361     get_thread(rcx);
1362     get_method(rbx);
1363     call_VM_leaf(
1364       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1365       rcx, rbx);
1366   }
1367 }
1368 
1369 
1370 void InterpreterMacroAssembler::notify_method_exit(
1371     TosState state, NotifyMethodExitMode mode) {
1372   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1373   // track stack depth.  If it is possible to enter interp_only_mode we add
1374   // the code to check if the event should be sent.
1375   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1376     Label L;
1377     // Note: frame::interpreter_frame_result has a dependency on how the
1378     // method result is saved across the call to post_method_exit. If this
1379     // is changed then the interpreter_frame_result implementation will
1380     // need to be updated too.
1381 
1382     // For c++ interpreter the result is always stored at a known location in the frame
1383     // template interpreter will leave it on the top of the stack.
1384     NOT_CC_INTERP(push(state);)
1385     get_thread(rcx);
1386     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
1387     testl(rcx,rcx);
1388     jcc(Assembler::zero, L);
1389     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1390     bind(L);
1391     NOT_CC_INTERP(pop(state);)
1392   }
1393 
1394   {
1395     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
1396     NOT_CC_INTERP(push(state));
1397     get_thread(rbx);
1398     get_method(rcx);
1399     call_VM_leaf(
1400       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1401       rbx, rcx);
1402     NOT_CC_INTERP(pop(state));
1403   }
1404 }
1405 
1406 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1407 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1408                                                         int increment, int mask,
1409                                                         Register scratch, bool preloaded,
1410                                                         Condition cond, Label* where) {
1411   if (!preloaded) {
1412     movl(scratch, counter_addr);
1413   }
1414   incrementl(scratch, increment);
1415   movl(counter_addr, scratch);
1416   andl(scratch, mask);
1417   jcc(cond, *where);
1418 }