1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "gc_implementation/shared/vmGCOperations.hpp"
  28 #include "gc_interface/collectedHeap.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "runtime/init.hpp"
  32 #include "services/heapDumper.hpp"
  33 #ifdef TARGET_OS_FAMILY_linux
  34 # include "thread_linux.inline.hpp"
  35 #endif
  36 #ifdef TARGET_OS_FAMILY_solaris
  37 # include "thread_solaris.inline.hpp"
  38 #endif
  39 #ifdef TARGET_OS_FAMILY_windows
  40 # include "thread_windows.inline.hpp"
  41 #endif
  42 #ifdef TARGET_OS_FAMILY_bsd
  43 # include "thread_bsd.inline.hpp"
  44 #endif
  45 
  46 
  47 #ifdef ASSERT
  48 int CollectedHeap::_fire_out_of_memory_count = 0;
  49 #endif
  50 
  51 size_t CollectedHeap::_filler_array_max_size = 0;
  52 
  53 // Memory state functions.
  54 
  55 
  56 CollectedHeap::CollectedHeap() : _n_par_threads(0)
  57 
  58 {
  59   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
  60   const size_t elements_per_word = HeapWordSize / sizeof(jint);
  61   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
  62                                              max_len * elements_per_word);
  63 
  64   _barrier_set = NULL;
  65   _is_gc_active = false;
  66   _total_collections = _total_full_collections = 0;
  67   _gc_cause = _gc_lastcause = GCCause::_no_gc;
  68   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
  69   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
  70 
  71   if (UsePerfData) {
  72     EXCEPTION_MARK;
  73 
  74     // create the gc cause jvmstat counters
  75     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
  76                              80, GCCause::to_string(_gc_cause), CHECK);
  77 
  78     _perf_gc_lastcause =
  79                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
  80                              80, GCCause::to_string(_gc_lastcause), CHECK);
  81   }
  82   _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
  83 }
  84 
  85 void CollectedHeap::pre_initialize() {
  86   // Used for ReduceInitialCardMarks (when COMPILER2 is used);
  87   // otherwise remains unused.
  88 #ifdef COMPILER2
  89   _defer_initial_card_mark =    ReduceInitialCardMarks && can_elide_tlab_store_barriers()
  90                              && (DeferInitialCardMark || card_mark_must_follow_store());
  91 #else
  92   assert(_defer_initial_card_mark == false, "Who would set it?");
  93 #endif
  94 }
  95 
  96 #ifndef PRODUCT
  97 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
  98   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
  99     for (size_t slot = 0; slot < size; slot += 1) {
 100       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
 101              "Found badHeapWordValue in post-allocation check");
 102     }
 103   }
 104 }
 105 
 106 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
 107   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 108     for (size_t slot = 0; slot < size; slot += 1) {
 109       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
 110              "Found non badHeapWordValue in pre-allocation check");
 111     }
 112   }
 113 }
 114 #endif // PRODUCT
 115 
 116 #ifdef ASSERT
 117 void CollectedHeap::check_for_valid_allocation_state() {
 118   Thread *thread = Thread::current();
 119   // How to choose between a pending exception and a potential
 120   // OutOfMemoryError?  Don't allow pending exceptions.
 121   // This is a VM policy failure, so how do we exhaustively test it?
 122   assert(!thread->has_pending_exception(),
 123          "shouldn't be allocating with pending exception");
 124   if (StrictSafepointChecks) {
 125     assert(thread->allow_allocation(),
 126            "Allocation done by thread for which allocation is blocked "
 127            "by No_Allocation_Verifier!");
 128     // Allocation of an oop can always invoke a safepoint,
 129     // hence, the true argument
 130     thread->check_for_valid_safepoint_state(true);
 131   }
 132 }
 133 #endif
 134 
 135 HeapWord* CollectedHeap::allocate_from_tlab_slow(Thread* thread, size_t size) {
 136 
 137   // Retain tlab and allocate object in shared space if
 138   // the amount free in the tlab is too large to discard.
 139   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
 140     thread->tlab().record_slow_allocation(size);
 141     return NULL;
 142   }
 143 
 144   // Discard tlab and allocate a new one.
 145   // To minimize fragmentation, the last TLAB may be smaller than the rest.
 146   size_t new_tlab_size = thread->tlab().compute_size(size);
 147 
 148   thread->tlab().clear_before_allocation();
 149 
 150   if (new_tlab_size == 0) {
 151     return NULL;
 152   }
 153 
 154   // Allocate a new TLAB...
 155   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
 156   if (obj == NULL) {
 157     return NULL;
 158   }
 159   if (ZeroTLAB) {
 160     // ..and clear it.
 161     Copy::zero_to_words(obj, new_tlab_size);
 162   } else {
 163     // ...and zap just allocated object.
 164 #ifdef ASSERT
 165     // Skip mangling the space corresponding to the object header to
 166     // ensure that the returned space is not considered parsable by
 167     // any concurrent GC thread.
 168     size_t hdr_size = oopDesc::header_size();
 169     Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
 170 #endif // ASSERT
 171   }
 172   thread->tlab().fill(obj, obj + size, new_tlab_size);
 173   return obj;
 174 }
 175 
 176 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
 177   MemRegion deferred = thread->deferred_card_mark();
 178   if (!deferred.is_empty()) {
 179     assert(_defer_initial_card_mark, "Otherwise should be empty");
 180     {
 181       // Verify that the storage points to a parsable object in heap
 182       DEBUG_ONLY(oop old_obj = oop(deferred.start());)
 183       assert(is_in(old_obj), "Not in allocated heap");
 184       assert(!can_elide_initializing_store_barrier(old_obj),
 185              "Else should have been filtered in new_store_pre_barrier()");
 186       assert(!is_in_permanent(old_obj), "Sanity: not expected");
 187       assert(old_obj->is_oop(true), "Not an oop");
 188       assert(old_obj->is_parsable(), "Will not be concurrently parsable");
 189       assert(deferred.word_size() == (size_t)(old_obj->size()),
 190              "Mismatch: multiple objects?");
 191     }
 192     BarrierSet* bs = barrier_set();
 193     assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
 194     bs->write_region(deferred);
 195     // "Clear" the deferred_card_mark field
 196     thread->set_deferred_card_mark(MemRegion());
 197   }
 198   assert(thread->deferred_card_mark().is_empty(), "invariant");
 199 }
 200 
 201 // Helper for ReduceInitialCardMarks. For performance,
 202 // compiled code may elide card-marks for initializing stores
 203 // to a newly allocated object along the fast-path. We
 204 // compensate for such elided card-marks as follows:
 205 // (a) Generational, non-concurrent collectors, such as
 206 //     GenCollectedHeap(ParNew,DefNew,Tenured) and
 207 //     ParallelScavengeHeap(ParallelGC, ParallelOldGC)
 208 //     need the card-mark if and only if the region is
 209 //     in the old gen, and do not care if the card-mark
 210 //     succeeds or precedes the initializing stores themselves,
 211 //     so long as the card-mark is completed before the next
 212 //     scavenge. For all these cases, we can do a card mark
 213 //     at the point at which we do a slow path allocation
 214 //     in the old gen, i.e. in this call.
 215 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
 216 //     in addition that the card-mark for an old gen allocated
 217 //     object strictly follow any associated initializing stores.
 218 //     In these cases, the memRegion remembered below is
 219 //     used to card-mark the entire region either just before the next
 220 //     slow-path allocation by this thread or just before the next scavenge or
 221 //     CMS-associated safepoint, whichever of these events happens first.
 222 //     (The implicit assumption is that the object has been fully
 223 //     initialized by this point, a fact that we assert when doing the
 224 //     card-mark.)
 225 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
 226 //     G1 concurrent marking is in progress an SATB (pre-write-)barrier is
 227 //     is used to remember the pre-value of any store. Initializing
 228 //     stores will not need this barrier, so we need not worry about
 229 //     compensating for the missing pre-barrier here. Turning now
 230 //     to the post-barrier, we note that G1 needs a RS update barrier
 231 //     which simply enqueues a (sequence of) dirty cards which may
 232 //     optionally be refined by the concurrent update threads. Note
 233 //     that this barrier need only be applied to a non-young write,
 234 //     but, like in CMS, because of the presence of concurrent refinement
 235 //     (much like CMS' precleaning), must strictly follow the oop-store.
 236 //     Thus, using the same protocol for maintaining the intended
 237 //     invariants turns out, serendepitously, to be the same for both
 238 //     G1 and CMS.
 239 //
 240 // For any future collector, this code should be reexamined with
 241 // that specific collector in mind, and the documentation above suitably
 242 // extended and updated.
 243 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
 244   // If a previous card-mark was deferred, flush it now.
 245   flush_deferred_store_barrier(thread);
 246   if (can_elide_initializing_store_barrier(new_obj)) {
 247     // The deferred_card_mark region should be empty
 248     // following the flush above.
 249     assert(thread->deferred_card_mark().is_empty(), "Error");
 250   } else {
 251     MemRegion mr((HeapWord*)new_obj, new_obj->size());
 252     assert(!mr.is_empty(), "Error");
 253     if (_defer_initial_card_mark) {
 254       // Defer the card mark
 255       thread->set_deferred_card_mark(mr);
 256     } else {
 257       // Do the card mark
 258       BarrierSet* bs = barrier_set();
 259       assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
 260       bs->write_region(mr);
 261     }
 262   }
 263   return new_obj;
 264 }
 265 
 266 size_t CollectedHeap::filler_array_hdr_size() {
 267   return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
 268 }
 269 
 270 size_t CollectedHeap::filler_array_min_size() {
 271   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
 272 }
 273 
 274 size_t CollectedHeap::filler_array_max_size() {
 275   return _filler_array_max_size;
 276 }
 277 
 278 #ifdef ASSERT
 279 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
 280 {
 281   assert(words >= min_fill_size(), "too small to fill");
 282   assert(words % MinObjAlignment == 0, "unaligned size");
 283   assert(Universe::heap()->is_in_reserved(start), "not in heap");
 284   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
 285 }
 286 
 287 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
 288 {
 289   if (ZapFillerObjects && zap) {
 290     Copy::fill_to_words(start + filler_array_hdr_size(),
 291                         words - filler_array_hdr_size(), 0XDEAFBABE);
 292   }
 293 }
 294 #endif // ASSERT
 295 
 296 void
 297 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
 298 {
 299   assert(words >= filler_array_min_size(), "too small for an array");
 300   assert(words <= filler_array_max_size(), "too big for a single object");
 301 
 302   const size_t payload_size = words - filler_array_hdr_size();
 303   const size_t len = payload_size * HeapWordSize / sizeof(jint);
 304 
 305   // Set the length first for concurrent GC.
 306   ((arrayOop)start)->set_length((int)len);
 307   post_allocation_setup_common(Universe::intArrayKlassObj(), start, words);
 308   DEBUG_ONLY(zap_filler_array(start, words, zap);)
 309 }
 310 
 311 void
 312 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
 313 {
 314   assert(words <= filler_array_max_size(), "too big for a single object");
 315 
 316   if (words >= filler_array_min_size()) {
 317     fill_with_array(start, words, zap);
 318   } else if (words > 0) {
 319     assert(words == min_fill_size(), "unaligned size");
 320     post_allocation_setup_common(SystemDictionary::Object_klass(), start,
 321                                  words);
 322   }
 323 }
 324 
 325 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
 326 {
 327   DEBUG_ONLY(fill_args_check(start, words);)
 328   HandleMark hm;  // Free handles before leaving.
 329   fill_with_object_impl(start, words, zap);
 330 }
 331 
 332 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
 333 {
 334   DEBUG_ONLY(fill_args_check(start, words);)
 335   HandleMark hm;  // Free handles before leaving.
 336 
 337 #ifdef _LP64
 338   // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
 339   // First fill with arrays, ensuring that any remaining space is big enough to
 340   // fill.  The remainder is filled with a single object.
 341   const size_t min = min_fill_size();
 342   const size_t max = filler_array_max_size();
 343   while (words > max) {
 344     const size_t cur = words - max >= min ? max : max - min;
 345     fill_with_array(start, cur, zap);
 346     start += cur;
 347     words -= cur;
 348   }
 349 #endif
 350 
 351   fill_with_object_impl(start, words, zap);
 352 }
 353 
 354 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
 355   guarantee(false, "thread-local allocation buffers not supported");
 356   return NULL;
 357 }
 358 
 359 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
 360   // The second disjunct in the assertion below makes a concession
 361   // for the start-up verification done while the VM is being
 362   // created. Callers be careful that you know that mutators
 363   // aren't going to interfere -- for instance, this is permissible
 364   // if we are still single-threaded and have either not yet
 365   // started allocating (nothing much to verify) or we have
 366   // started allocating but are now a full-fledged JavaThread
 367   // (and have thus made our TLAB's) available for filling.
 368   assert(SafepointSynchronize::is_at_safepoint() ||
 369          !is_init_completed(),
 370          "Should only be called at a safepoint or at start-up"
 371          " otherwise concurrent mutator activity may make heap "
 372          " unparsable again");
 373   const bool use_tlab = UseTLAB;
 374   const bool deferred = _defer_initial_card_mark;
 375   // The main thread starts allocating via a TLAB even before it
 376   // has added itself to the threads list at vm boot-up.
 377   assert(!use_tlab || Threads::first() != NULL,
 378          "Attempt to fill tlabs before main thread has been added"
 379          " to threads list is doomed to failure!");
 380   for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
 381      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
 382 #ifdef COMPILER2
 383      // The deferred store barriers must all have been flushed to the
 384      // card-table (or other remembered set structure) before GC starts
 385      // processing the card-table (or other remembered set).
 386      if (deferred) flush_deferred_store_barrier(thread);
 387 #else
 388      assert(!deferred, "Should be false");
 389      assert(thread->deferred_card_mark().is_empty(), "Should be empty");
 390 #endif
 391   }
 392 }
 393 
 394 void CollectedHeap::accumulate_statistics_all_tlabs() {
 395   if (UseTLAB) {
 396     assert(SafepointSynchronize::is_at_safepoint() ||
 397          !is_init_completed(),
 398          "should only accumulate statistics on tlabs at safepoint");
 399 
 400     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
 401   }
 402 }
 403 
 404 void CollectedHeap::resize_all_tlabs() {
 405   if (UseTLAB) {
 406     assert(SafepointSynchronize::is_at_safepoint() ||
 407          !is_init_completed(),
 408          "should only resize tlabs at safepoint");
 409 
 410     ThreadLocalAllocBuffer::resize_all_tlabs();
 411   }
 412 }
 413 
 414 void CollectedHeap::pre_full_gc_dump() {
 415   if (HeapDumpBeforeFullGC) {
 416     TraceTime tt("Heap Dump (before full gc): ", PrintGCDetails, false, gclog_or_tty);
 417     // We are doing a "major" collection and a heap dump before
 418     // major collection has been requested.
 419     HeapDumper::dump_heap();
 420   }
 421   if (PrintClassHistogramBeforeFullGC) {
 422     TraceTime tt("Class Histogram (before full gc): ", PrintGCDetails, true, gclog_or_tty);
 423     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
 424     inspector.doit();
 425   }
 426 }
 427 
 428 void CollectedHeap::post_full_gc_dump() {
 429   if (HeapDumpAfterFullGC) {
 430     TraceTime tt("Heap Dump (after full gc): ", PrintGCDetails, false, gclog_or_tty);
 431     HeapDumper::dump_heap();
 432   }
 433   if (PrintClassHistogramAfterFullGC) {
 434     TraceTime tt("Class Histogram (after full gc): ", PrintGCDetails, true, gclog_or_tty);
 435     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
 436     inspector.doit();
 437   }
 438 }