1 /*
   2  * Copyright (c) 2002, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc_interface/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "memory/cardTableModRefBS.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "runtime/frame.inline.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/interfaceSupport.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/threadCritical.hpp"
  43 #include "utilities/exceptions.hpp"
  44 #ifdef TARGET_OS_ARCH_linux_x86
  45 # include "orderAccess_linux_x86.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_ARCH_linux_sparc
  48 # include "orderAccess_linux_sparc.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_ARCH_linux_zero
  51 # include "orderAccess_linux_zero.inline.hpp"
  52 #endif
  53 #ifdef TARGET_OS_ARCH_solaris_x86
  54 # include "orderAccess_solaris_x86.inline.hpp"
  55 #endif
  56 #ifdef TARGET_OS_ARCH_solaris_sparc
  57 # include "orderAccess_solaris_sparc.inline.hpp"
  58 #endif
  59 #ifdef TARGET_OS_ARCH_windows_x86
  60 # include "orderAccess_windows_x86.inline.hpp"
  61 #endif
  62 #ifdef TARGET_OS_ARCH_linux_arm
  63 # include "orderAccess_linux_arm.inline.hpp"
  64 #endif
  65 #ifdef TARGET_OS_ARCH_linux_ppc
  66 # include "orderAccess_linux_ppc.inline.hpp"
  67 #endif
  68 #ifdef TARGET_OS_ARCH_bsd_x86
  69 # include "orderAccess_bsd_x86.inline.hpp"
  70 #endif
  71 #ifdef TARGET_OS_ARCH_bsd_zero
  72 # include "orderAccess_bsd_zero.inline.hpp"
  73 #endif
  74 
  75 
  76 // no precompiled headers
  77 #ifdef CC_INTERP
  78 
  79 /*
  80  * USELABELS - If using GCC, then use labels for the opcode dispatching
  81  * rather -then a switch statement. This improves performance because it
  82  * gives us the oportunity to have the instructions that calculate the
  83  * next opcode to jump to be intermixed with the rest of the instructions
  84  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  85  */
  86 #undef USELABELS
  87 #ifdef __GNUC__
  88 /*
  89    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  90    don't use the computed goto approach.
  91 */
  92 #ifndef ASSERT
  93 #define USELABELS
  94 #endif
  95 #endif
  96 
  97 #undef CASE
  98 #ifdef USELABELS
  99 #define CASE(opcode) opc ## opcode
 100 #define DEFAULT opc_default
 101 #else
 102 #define CASE(opcode) case Bytecodes:: opcode
 103 #define DEFAULT default
 104 #endif
 105 
 106 /*
 107  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
 108  * opcode before going back to the top of the while loop, rather then having
 109  * the top of the while loop handle it. This provides a better opportunity
 110  * for instruction scheduling. Some compilers just do this prefetch
 111  * automatically. Some actually end up with worse performance if you
 112  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
 113  */
 114 #undef PREFETCH_OPCCODE
 115 #define PREFETCH_OPCCODE
 116 
 117 /*
 118   Interpreter safepoint: it is expected that the interpreter will have no live
 119   handles of its own creation live at an interpreter safepoint. Therefore we
 120   run a HandleMarkCleaner and trash all handles allocated in the call chain
 121   since the JavaCalls::call_helper invocation that initiated the chain.
 122   There really shouldn't be any handles remaining to trash but this is cheap
 123   in relation to a safepoint.
 124 */
 125 #define SAFEPOINT                                                                 \
 126     if ( SafepointSynchronize::is_synchronizing()) {                              \
 127         {                                                                         \
 128           /* zap freed handles rather than GC'ing them */                         \
 129           HandleMarkCleaner __hmc(THREAD);                                        \
 130         }                                                                         \
 131         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
 132     }
 133 
 134 /*
 135  * VM_JAVA_ERROR - Macro for throwing a java exception from
 136  * the interpreter loop. Should really be a CALL_VM but there
 137  * is no entry point to do the transition to vm so we just
 138  * do it by hand here.
 139  */
 140 #define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
 141     DECACHE_STATE();                                                              \
 142     SET_LAST_JAVA_FRAME();                                                        \
 143     {                                                                             \
 144        ThreadInVMfromJava trans(THREAD);                                          \
 145        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 146     }                                                                             \
 147     RESET_LAST_JAVA_FRAME();                                                      \
 148     CACHE_STATE();
 149 
 150 // Normal throw of a java error
 151 #define VM_JAVA_ERROR(name, msg)                                                  \
 152     VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
 153     goto handle_exception;
 154 
 155 #ifdef PRODUCT
 156 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 157 #else
 158 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 159 {                                                                                                    \
 160     BytecodeCounter::_counter_value++;                                                               \
 161     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 162     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 163     if (TraceBytecodes) {                                                                            \
 164       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
 165                                    topOfStack[Interpreter::expr_index_at(1)],   \
 166                                    topOfStack[Interpreter::expr_index_at(2)]),  \
 167                                    handle_exception);                      \
 168     }                                                                      \
 169 }
 170 #endif
 171 
 172 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 173 #ifdef VM_JVMTI
 174 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 175    incremented. JvmtiExport::at_single_stepping_point() may cause a
 176    breakpoint opcode to get inserted at the current PC to allow the
 177    debugger to coalesce single-step events.
 178 
 179    As a result if we call at_single_stepping_point() we refetch opcode
 180    to get the current opcode. This will override any other prefetching
 181    that might have occurred.
 182 */
 183 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 184 {                                                                                \
 185       if (_jvmti_interp_events) {                                                \
 186         if (JvmtiExport::should_post_single_step()) {                            \
 187           DECACHE_STATE();                                                       \
 188           SET_LAST_JAVA_FRAME();                                                 \
 189           ThreadInVMfromJava trans(THREAD);                                      \
 190           JvmtiExport::at_single_stepping_point(THREAD,                          \
 191                                           istate->method(),                      \
 192                                           pc);                                   \
 193           RESET_LAST_JAVA_FRAME();                                               \
 194           CACHE_STATE();                                                         \
 195           if (THREAD->pop_frame_pending() &&                                     \
 196               !THREAD->pop_frame_in_process()) {                                 \
 197             goto handle_Pop_Frame;                                               \
 198           }                                                                      \
 199           opcode = *pc;                                                          \
 200         }                                                                        \
 201       }                                                                          \
 202 }
 203 #else
 204 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 205 #endif
 206 
 207 /*
 208  * CONTINUE - Macro for executing the next opcode.
 209  */
 210 #undef CONTINUE
 211 #ifdef USELABELS
 212 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 213 // initialization (which is is the initialization of the table pointer...)
 214 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 215 #define CONTINUE {                              \
 216         opcode = *pc;                           \
 217         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 218         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 219         DISPATCH(opcode);                       \
 220     }
 221 #else
 222 #ifdef PREFETCH_OPCCODE
 223 #define CONTINUE {                              \
 224         opcode = *pc;                           \
 225         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 226         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 227         continue;                               \
 228     }
 229 #else
 230 #define CONTINUE {                              \
 231         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 232         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 233         continue;                               \
 234     }
 235 #endif
 236 #endif
 237 
 238 // JavaStack Implementation
 239 #define MORE_STACK(count)  \
 240     (topOfStack -= ((count) * Interpreter::stackElementWords))
 241 
 242 
 243 #define UPDATE_PC(opsize) {pc += opsize; }
 244 /*
 245  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 246  */
 247 #undef UPDATE_PC_AND_TOS
 248 #define UPDATE_PC_AND_TOS(opsize, stack) \
 249     {pc += opsize; MORE_STACK(stack); }
 250 
 251 /*
 252  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 253  * and executing the next opcode. It's somewhat similar to the combination
 254  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 255  */
 256 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 257 #ifdef USELABELS
 258 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 259         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 260         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 261         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 262         DISPATCH(opcode);                                       \
 263     }
 264 
 265 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 266         pc += opsize; opcode = *pc;                             \
 267         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 268         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 269         DISPATCH(opcode);                                       \
 270     }
 271 #else
 272 #ifdef PREFETCH_OPCCODE
 273 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 274         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 275         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 276         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 277         goto do_continue;                                       \
 278     }
 279 
 280 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 281         pc += opsize; opcode = *pc;                             \
 282         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 283         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 284         goto do_continue;                                       \
 285     }
 286 #else
 287 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 288         pc += opsize; MORE_STACK(stack);                \
 289         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 290         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 291         goto do_continue;                               \
 292     }
 293 
 294 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 295         pc += opsize;                                   \
 296         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 297         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 298         goto do_continue;                               \
 299     }
 300 #endif /* PREFETCH_OPCCODE */
 301 #endif /* USELABELS */
 302 
 303 // About to call a new method, update the save the adjusted pc and return to frame manager
 304 #define UPDATE_PC_AND_RETURN(opsize)  \
 305    DECACHE_TOS();                     \
 306    istate->set_bcp(pc+opsize);        \
 307    return;
 308 
 309 
 310 #define METHOD istate->method()
 311 #define INVOCATION_COUNT METHOD->invocation_counter()
 312 #define BACKEDGE_COUNT METHOD->backedge_counter()
 313 
 314 
 315 #define INCR_INVOCATION_COUNT INVOCATION_COUNT->increment()
 316 #define OSR_REQUEST(res, branch_pc) \
 317             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 318 /*
 319  * For those opcodes that need to have a GC point on a backwards branch
 320  */
 321 
 322 // Backedge counting is kind of strange. The asm interpreter will increment
 323 // the backedge counter as a separate counter but it does it's comparisons
 324 // to the sum (scaled) of invocation counter and backedge count to make
 325 // a decision. Seems kind of odd to sum them together like that
 326 
 327 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 328 
 329 
 330 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 331     if ((skip) <= 0) {                                                                              \
 332       if (UseLoopCounter) {                                                                         \
 333         bool do_OSR = UseOnStackReplacement;                                                        \
 334         BACKEDGE_COUNT->increment();                                                                \
 335         if (do_OSR) do_OSR = BACKEDGE_COUNT->reached_InvocationLimit();                             \
 336         if (do_OSR) {                                                                               \
 337           nmethod*  osr_nmethod;                                                                    \
 338           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 339           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
 340             intptr_t* buf = SharedRuntime::OSR_migration_begin(THREAD);                             \
 341             istate->set_msg(do_osr);                                                                \
 342             istate->set_osr_buf((address)buf);                                                      \
 343             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 344             return;                                                                                 \
 345           }                                                                                         \
 346         }                                                                                           \
 347       }  /* UseCompiler ... */                                                                      \
 348       INCR_INVOCATION_COUNT;                                                                        \
 349       SAFEPOINT;                                                                                    \
 350     }
 351 
 352 /*
 353  * For those opcodes that need to have a GC point on a backwards branch
 354  */
 355 
 356 /*
 357  * Macros for caching and flushing the interpreter state. Some local
 358  * variables need to be flushed out to the frame before we do certain
 359  * things (like pushing frames or becomming gc safe) and some need to
 360  * be recached later (like after popping a frame). We could use one
 361  * macro to cache or decache everything, but this would be less then
 362  * optimal because we don't always need to cache or decache everything
 363  * because some things we know are already cached or decached.
 364  */
 365 #undef DECACHE_TOS
 366 #undef CACHE_TOS
 367 #undef CACHE_PREV_TOS
 368 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 369 
 370 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 371 
 372 #undef DECACHE_PC
 373 #undef CACHE_PC
 374 #define DECACHE_PC()    istate->set_bcp(pc);
 375 #define CACHE_PC()      pc = istate->bcp();
 376 #define CACHE_CP()      cp = istate->constants();
 377 #define CACHE_LOCALS()  locals = istate->locals();
 378 #undef CACHE_FRAME
 379 #define CACHE_FRAME()
 380 
 381 /*
 382  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 383  * passed is a null ref.
 384  * On some architectures/platforms it should be possible to do this implicitly
 385  */
 386 #undef CHECK_NULL
 387 #define CHECK_NULL(obj_)                                                 \
 388     if ((obj_) == NULL) {                                                \
 389         VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
 390     }                                                                    \
 391     VERIFY_OOP(obj_)
 392 
 393 #define VMdoubleConstZero() 0.0
 394 #define VMdoubleConstOne() 1.0
 395 #define VMlongConstZero() (max_jlong-max_jlong)
 396 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 397 
 398 /*
 399  * Alignment
 400  */
 401 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 402 
 403 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 404 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 405 
 406 // Reload interpreter state after calling the VM or a possible GC
 407 #define CACHE_STATE()   \
 408         CACHE_TOS();    \
 409         CACHE_PC();     \
 410         CACHE_CP();     \
 411         CACHE_LOCALS();
 412 
 413 // Call the VM don't check for pending exceptions
 414 #define CALL_VM_NOCHECK(func)                                     \
 415           DECACHE_STATE();                                        \
 416           SET_LAST_JAVA_FRAME();                                  \
 417           func;                                                   \
 418           RESET_LAST_JAVA_FRAME();                                \
 419           CACHE_STATE();                                          \
 420           if (THREAD->pop_frame_pending() &&                      \
 421               !THREAD->pop_frame_in_process()) {                  \
 422             goto handle_Pop_Frame;                                \
 423           }
 424 
 425 // Call the VM and check for pending exceptions
 426 #define CALL_VM(func, label) {                                    \
 427           CALL_VM_NOCHECK(func);                                  \
 428           if (THREAD->has_pending_exception()) goto label;        \
 429         }
 430 
 431 /*
 432  * BytecodeInterpreter::run(interpreterState istate)
 433  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 434  *
 435  * The real deal. This is where byte codes actually get interpreted.
 436  * Basically it's a big while loop that iterates until we return from
 437  * the method passed in.
 438  *
 439  * The runWithChecks is used if JVMTI is enabled.
 440  *
 441  */
 442 #if defined(VM_JVMTI)
 443 void
 444 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 445 #else
 446 void
 447 BytecodeInterpreter::run(interpreterState istate) {
 448 #endif
 449 
 450   // In order to simplify some tests based on switches set at runtime
 451   // we invoke the interpreter a single time after switches are enabled
 452   // and set simpler to to test variables rather than method calls or complex
 453   // boolean expressions.
 454 
 455   static int initialized = 0;
 456   static int checkit = 0;
 457   static intptr_t* c_addr = NULL;
 458   static intptr_t  c_value;
 459 
 460   if (checkit && *c_addr != c_value) {
 461     os::breakpoint();
 462   }
 463 #ifdef VM_JVMTI
 464   static bool _jvmti_interp_events = 0;
 465 #endif
 466 
 467   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 468 
 469 #ifdef ASSERT
 470   if (istate->_msg != initialize) {
 471     assert(abs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 472 #ifndef SHARK
 473     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 474 #endif // !SHARK
 475   }
 476   // Verify linkages.
 477   interpreterState l = istate;
 478   do {
 479     assert(l == l->_self_link, "bad link");
 480     l = l->_prev_link;
 481   } while (l != NULL);
 482   // Screwups with stack management usually cause us to overwrite istate
 483   // save a copy so we can verify it.
 484   interpreterState orig = istate;
 485 #endif
 486 
 487   static volatile jbyte* _byte_map_base; // adjusted card table base for oop store barrier
 488 
 489   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 490   register address          pc = istate->bcp();
 491   register jubyte opcode;
 492   register intptr_t*        locals = istate->locals();
 493   register constantPoolCacheOop  cp = istate->constants(); // method()->constants()->cache()
 494 #ifdef LOTS_OF_REGS
 495   register JavaThread*      THREAD = istate->thread();
 496   register volatile jbyte*  BYTE_MAP_BASE = _byte_map_base;
 497 #else
 498 #undef THREAD
 499 #define THREAD istate->thread()
 500 #undef BYTE_MAP_BASE
 501 #define BYTE_MAP_BASE _byte_map_base
 502 #endif
 503 
 504 #ifdef USELABELS
 505   const static void* const opclabels_data[256] = {
 506 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 507 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 508 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 509 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 510 
 511 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 512 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 513 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 514 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 515 
 516 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 517 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 518 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 519 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 520 
 521 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 522 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 523 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 524 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 525 
 526 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 527 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 528 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 529 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 530 
 531 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 532 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 533 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 534 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 535 
 536 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 537 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 538 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 539 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 540 
 541 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 542 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 543 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 544 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 545 
 546 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 547 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 548 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 549 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 550 
 551 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 552 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 553 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 554 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 555 
 556 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 557 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 558 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 559 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 560 
 561 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 562 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 563 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
 564 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 565 
 566 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 567 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 568 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 569 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 570 
 571 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 572 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 573 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 574 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 575 
 576 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 577 /* 0xE4 */ &&opc_default,     &&opc_fast_aldc,      &&opc_fast_aldc_w,  &&opc_return_register_finalizer,
 578 /* 0xE8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 579 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 580 
 581 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 582 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 583 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 584 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 585   };
 586   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 587 #endif /* USELABELS */
 588 
 589 #ifdef ASSERT
 590   // this will trigger a VERIFY_OOP on entry
 591   if (istate->msg() != initialize && ! METHOD->is_static()) {
 592     oop rcvr = LOCALS_OBJECT(0);
 593     VERIFY_OOP(rcvr);
 594   }
 595 #endif
 596 // #define HACK
 597 #ifdef HACK
 598   bool interesting = false;
 599 #endif // HACK
 600 
 601   /* QQQ this should be a stack method so we don't know actual direction */
 602   guarantee(istate->msg() == initialize ||
 603          topOfStack >= istate->stack_limit() &&
 604          topOfStack < istate->stack_base(),
 605          "Stack top out of range");
 606 
 607   switch (istate->msg()) {
 608     case initialize: {
 609       if (initialized++) ShouldNotReachHere(); // Only one initialize call
 610       _compiling = (UseCompiler || CountCompiledCalls);
 611 #ifdef VM_JVMTI
 612       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 613 #endif
 614       BarrierSet* bs = Universe::heap()->barrier_set();
 615       assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
 616       _byte_map_base = (volatile jbyte*)(((CardTableModRefBS*)bs)->byte_map_base);
 617       return;
 618     }
 619     break;
 620     case method_entry: {
 621       THREAD->set_do_not_unlock();
 622       // count invocations
 623       assert(initialized, "Interpreter not initialized");
 624       if (_compiling) {
 625         if (ProfileInterpreter) {
 626           METHOD->increment_interpreter_invocation_count();
 627         }
 628         INCR_INVOCATION_COUNT;
 629         if (INVOCATION_COUNT->reached_InvocationLimit()) {
 630             CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 631 
 632             // We no longer retry on a counter overflow
 633 
 634             // istate->set_msg(retry_method);
 635             // THREAD->clr_do_not_unlock();
 636             // return;
 637         }
 638         SAFEPOINT;
 639       }
 640 
 641       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 642         // initialize
 643         os::breakpoint();
 644       }
 645 
 646 #ifdef HACK
 647       {
 648         ResourceMark rm;
 649         char *method_name = istate->method()->name_and_sig_as_C_string();
 650         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 651           tty->print_cr("entering: depth %d bci: %d",
 652                          (istate->_stack_base - istate->_stack),
 653                          istate->_bcp - istate->_method->code_base());
 654           interesting = true;
 655         }
 656       }
 657 #endif // HACK
 658 
 659 
 660       // lock method if synchronized
 661       if (METHOD->is_synchronized()) {
 662           // oop rcvr = locals[0].j.r;
 663           oop rcvr;
 664           if (METHOD->is_static()) {
 665             rcvr = METHOD->constants()->pool_holder()->java_mirror();
 666           } else {
 667             rcvr = LOCALS_OBJECT(0);
 668             VERIFY_OOP(rcvr);
 669           }
 670           // The initial monitor is ours for the taking
 671           BasicObjectLock* mon = &istate->monitor_base()[-1];
 672           oop monobj = mon->obj();
 673           assert(mon->obj() == rcvr, "method monitor mis-initialized");
 674 
 675           bool success = UseBiasedLocking;
 676           if (UseBiasedLocking) {
 677             markOop mark = rcvr->mark();
 678             if (mark->has_bias_pattern()) {
 679               // The bias pattern is present in the object's header. Need to check
 680               // whether the bias owner and the epoch are both still current.
 681               intptr_t xx = ((intptr_t) THREAD) ^ (intptr_t) mark;
 682               xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() ^ xx;
 683               intptr_t yy = (xx & ~((int) markOopDesc::age_mask_in_place));
 684               if (yy != 0 ) {
 685                 // At this point we know that the header has the bias pattern and
 686                 // that we are not the bias owner in the current epoch. We need to
 687                 // figure out more details about the state of the header in order to
 688                 // know what operations can be legally performed on the object's
 689                 // header.
 690 
 691                 // If the low three bits in the xor result aren't clear, that means
 692                 // the prototype header is no longer biased and we have to revoke
 693                 // the bias on this object.
 694 
 695                 if (yy & markOopDesc::biased_lock_mask_in_place == 0 ) {
 696                   // Biasing is still enabled for this data type. See whether the
 697                   // epoch of the current bias is still valid, meaning that the epoch
 698                   // bits of the mark word are equal to the epoch bits of the
 699                   // prototype header. (Note that the prototype header's epoch bits
 700                   // only change at a safepoint.) If not, attempt to rebias the object
 701                   // toward the current thread. Note that we must be absolutely sure
 702                   // that the current epoch is invalid in order to do this because
 703                   // otherwise the manipulations it performs on the mark word are
 704                   // illegal.
 705                   if (yy & markOopDesc::epoch_mask_in_place == 0) {
 706                     // The epoch of the current bias is still valid but we know nothing
 707                     // about the owner; it might be set or it might be clear. Try to
 708                     // acquire the bias of the object using an atomic operation. If this
 709                     // fails we will go in to the runtime to revoke the object's bias.
 710                     // Note that we first construct the presumed unbiased header so we
 711                     // don't accidentally blow away another thread's valid bias.
 712                     intptr_t unbiased = (intptr_t) mark & (markOopDesc::biased_lock_mask_in_place |
 713                                                            markOopDesc::age_mask_in_place |
 714                                                            markOopDesc::epoch_mask_in_place);
 715                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | unbiased, (intptr_t*) rcvr->mark_addr(), unbiased) != unbiased) {
 716                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 717                     }
 718                   } else {
 719                     try_rebias:
 720                     // At this point we know the epoch has expired, meaning that the
 721                     // current "bias owner", if any, is actually invalid. Under these
 722                     // circumstances _only_, we are allowed to use the current header's
 723                     // value as the comparison value when doing the cas to acquire the
 724                     // bias in the current epoch. In other words, we allow transfer of
 725                     // the bias from one thread to another directly in this situation.
 726                     xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
 727                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | (intptr_t) rcvr->klass()->klass_part()->prototype_header(),
 728                                             (intptr_t*) rcvr->mark_addr(),
 729                                             (intptr_t) mark) != (intptr_t) mark) {
 730                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 731                     }
 732                   }
 733                 } else {
 734                   try_revoke_bias:
 735                   // The prototype mark in the klass doesn't have the bias bit set any
 736                   // more, indicating that objects of this data type are not supposed
 737                   // to be biased any more. We are going to try to reset the mark of
 738                   // this object to the prototype value and fall through to the
 739                   // CAS-based locking scheme. Note that if our CAS fails, it means
 740                   // that another thread raced us for the privilege of revoking the
 741                   // bias of this particular object, so it's okay to continue in the
 742                   // normal locking code.
 743                   //
 744                   xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
 745                   if (Atomic::cmpxchg_ptr(rcvr->klass()->klass_part()->prototype_header(),
 746                                           (intptr_t*) rcvr->mark_addr(),
 747                                           mark) == mark) {
 748                     // (*counters->revoked_lock_entry_count_addr())++;
 749                   success = false;
 750                   }
 751                 }
 752               }
 753             } else {
 754               cas_label:
 755               success = false;
 756             }
 757           }
 758           if (!success) {
 759             markOop displaced = rcvr->mark()->set_unlocked();
 760             mon->lock()->set_displaced_header(displaced);
 761             if (Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 762               // Is it simple recursive case?
 763               if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 764                 mon->lock()->set_displaced_header(NULL);
 765               } else {
 766                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 767               }
 768             }
 769           }
 770       }
 771       THREAD->clr_do_not_unlock();
 772 
 773       // Notify jvmti
 774 #ifdef VM_JVMTI
 775       if (_jvmti_interp_events) {
 776         // Whenever JVMTI puts a thread in interp_only_mode, method
 777         // entry/exit events are sent for that thread to track stack depth.
 778         if (THREAD->is_interp_only_mode()) {
 779           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 780                   handle_exception);
 781         }
 782       }
 783 #endif /* VM_JVMTI */
 784 
 785       goto run;
 786     }
 787 
 788     case popping_frame: {
 789       // returned from a java call to pop the frame, restart the call
 790       // clear the message so we don't confuse ourselves later
 791       ShouldNotReachHere();  // we don't return this.
 792       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 793       istate->set_msg(no_request);
 794       THREAD->clr_pop_frame_in_process();
 795       goto run;
 796     }
 797 
 798     case method_resume: {
 799       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 800         // resume
 801         os::breakpoint();
 802       }
 803 #ifdef HACK
 804       {
 805         ResourceMark rm;
 806         char *method_name = istate->method()->name_and_sig_as_C_string();
 807         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 808           tty->print_cr("resume: depth %d bci: %d",
 809                          (istate->_stack_base - istate->_stack) ,
 810                          istate->_bcp - istate->_method->code_base());
 811           interesting = true;
 812         }
 813       }
 814 #endif // HACK
 815       // returned from a java call, continue executing.
 816       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 817         goto handle_Pop_Frame;
 818       }
 819 
 820       if (THREAD->has_pending_exception()) goto handle_exception;
 821       // Update the pc by the saved amount of the invoke bytecode size
 822       UPDATE_PC(istate->bcp_advance());
 823       goto run;
 824     }
 825 
 826     case deopt_resume2: {
 827       // Returned from an opcode that will reexecute. Deopt was
 828       // a result of a PopFrame request.
 829       //
 830       goto run;
 831     }
 832 
 833     case deopt_resume: {
 834       // Returned from an opcode that has completed. The stack has
 835       // the result all we need to do is skip across the bytecode
 836       // and continue (assuming there is no exception pending)
 837       //
 838       // compute continuation length
 839       //
 840       // Note: it is possible to deopt at a return_register_finalizer opcode
 841       // because this requires entering the vm to do the registering. While the
 842       // opcode is complete we can't advance because there are no more opcodes
 843       // much like trying to deopt at a poll return. In that has we simply
 844       // get out of here
 845       //
 846       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 847         // this will do the right thing even if an exception is pending.
 848         goto handle_return;
 849       }
 850       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 851       if (THREAD->has_pending_exception()) goto handle_exception;
 852       goto run;
 853     }
 854     case got_monitors: {
 855       // continue locking now that we have a monitor to use
 856       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 857       oop lockee = STACK_OBJECT(-1);
 858       VERIFY_OOP(lockee);
 859       // derefing's lockee ought to provoke implicit null check
 860       // find a free monitor
 861       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 862       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 863       entry->set_obj(lockee);
 864 
 865       markOop displaced = lockee->mark()->set_unlocked();
 866       entry->lock()->set_displaced_header(displaced);
 867       if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 868         // Is it simple recursive case?
 869         if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 870           entry->lock()->set_displaced_header(NULL);
 871         } else {
 872           CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 873         }
 874       }
 875       UPDATE_PC_AND_TOS(1, -1);
 876       goto run;
 877     }
 878     default: {
 879       fatal("Unexpected message from frame manager");
 880     }
 881   }
 882 
 883 run:
 884 
 885   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 886   DEBUGGER_SINGLE_STEP_NOTIFY();
 887 #ifdef PREFETCH_OPCCODE
 888   opcode = *pc;  /* prefetch first opcode */
 889 #endif
 890 
 891 #ifndef USELABELS
 892   while (1)
 893 #endif
 894   {
 895 #ifndef PREFETCH_OPCCODE
 896       opcode = *pc;
 897 #endif
 898       // Seems like this happens twice per opcode. At worst this is only
 899       // need at entry to the loop.
 900       // DEBUGGER_SINGLE_STEP_NOTIFY();
 901       /* Using this labels avoids double breakpoints when quickening and
 902        * when returing from transition frames.
 903        */
 904   opcode_switch:
 905       assert(istate == orig, "Corrupted istate");
 906       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 907       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 908       assert(topOfStack < istate->stack_base(), "Stack underrun");
 909 
 910 #ifdef USELABELS
 911       DISPATCH(opcode);
 912 #else
 913       switch (opcode)
 914 #endif
 915       {
 916       CASE(_nop):
 917           UPDATE_PC_AND_CONTINUE(1);
 918 
 919           /* Push miscellaneous constants onto the stack. */
 920 
 921       CASE(_aconst_null):
 922           SET_STACK_OBJECT(NULL, 0);
 923           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 924 
 925 #undef  OPC_CONST_n
 926 #define OPC_CONST_n(opcode, const_type, value)                          \
 927       CASE(opcode):                                                     \
 928           SET_STACK_ ## const_type(value, 0);                           \
 929           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 930 
 931           OPC_CONST_n(_iconst_m1,   INT,       -1);
 932           OPC_CONST_n(_iconst_0,    INT,        0);
 933           OPC_CONST_n(_iconst_1,    INT,        1);
 934           OPC_CONST_n(_iconst_2,    INT,        2);
 935           OPC_CONST_n(_iconst_3,    INT,        3);
 936           OPC_CONST_n(_iconst_4,    INT,        4);
 937           OPC_CONST_n(_iconst_5,    INT,        5);
 938           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
 939           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
 940           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
 941 
 942 #undef  OPC_CONST2_n
 943 #define OPC_CONST2_n(opcname, value, key, kind)                         \
 944       CASE(_##opcname):                                                 \
 945       {                                                                 \
 946           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
 947           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
 948       }
 949          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
 950          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
 951          OPC_CONST2_n(lconst_0, Zero, long, LONG);
 952          OPC_CONST2_n(lconst_1, One,  long, LONG);
 953 
 954          /* Load constant from constant pool: */
 955 
 956           /* Push a 1-byte signed integer value onto the stack. */
 957       CASE(_bipush):
 958           SET_STACK_INT((jbyte)(pc[1]), 0);
 959           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 960 
 961           /* Push a 2-byte signed integer constant onto the stack. */
 962       CASE(_sipush):
 963           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
 964           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
 965 
 966           /* load from local variable */
 967 
 968       CASE(_aload):
 969           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
 970           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
 971           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 972 
 973       CASE(_iload):
 974       CASE(_fload):
 975           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
 976           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 977 
 978       CASE(_lload):
 979           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
 980           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
 981 
 982       CASE(_dload):
 983           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
 984           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
 985 
 986 #undef  OPC_LOAD_n
 987 #define OPC_LOAD_n(num)                                                 \
 988       CASE(_aload_##num):                                               \
 989           VERIFY_OOP(LOCALS_OBJECT(num));                               \
 990           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
 991           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
 992                                                                         \
 993       CASE(_iload_##num):                                               \
 994       CASE(_fload_##num):                                               \
 995           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
 996           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
 997                                                                         \
 998       CASE(_lload_##num):                                               \
 999           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1000           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1001       CASE(_dload_##num):                                               \
1002           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1003           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1004 
1005           OPC_LOAD_n(0);
1006           OPC_LOAD_n(1);
1007           OPC_LOAD_n(2);
1008           OPC_LOAD_n(3);
1009 
1010           /* store to a local variable */
1011 
1012       CASE(_astore):
1013           astore(topOfStack, -1, locals, pc[1]);
1014           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1015 
1016       CASE(_istore):
1017       CASE(_fstore):
1018           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1019           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1020 
1021       CASE(_lstore):
1022           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1023           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1024 
1025       CASE(_dstore):
1026           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1027           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1028 
1029       CASE(_wide): {
1030           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1031 
1032           opcode = pc[1];
1033           switch(opcode) {
1034               case Bytecodes::_aload:
1035                   VERIFY_OOP(LOCALS_OBJECT(reg));
1036                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1037                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1038 
1039               case Bytecodes::_iload:
1040               case Bytecodes::_fload:
1041                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1042                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1043 
1044               case Bytecodes::_lload:
1045                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1046                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1047 
1048               case Bytecodes::_dload:
1049                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1050                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1051 
1052               case Bytecodes::_astore:
1053                   astore(topOfStack, -1, locals, reg);
1054                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1055 
1056               case Bytecodes::_istore:
1057               case Bytecodes::_fstore:
1058                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1059                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1060 
1061               case Bytecodes::_lstore:
1062                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1063                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1064 
1065               case Bytecodes::_dstore:
1066                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1067                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1068 
1069               case Bytecodes::_iinc: {
1070                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1071                   // Be nice to see what this generates.... QQQ
1072                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1073                   UPDATE_PC_AND_CONTINUE(6);
1074               }
1075               case Bytecodes::_ret:
1076                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1077                   UPDATE_PC_AND_CONTINUE(0);
1078               default:
1079                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
1080           }
1081       }
1082 
1083 
1084 #undef  OPC_STORE_n
1085 #define OPC_STORE_n(num)                                                \
1086       CASE(_astore_##num):                                              \
1087           astore(topOfStack, -1, locals, num);                          \
1088           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1089       CASE(_istore_##num):                                              \
1090       CASE(_fstore_##num):                                              \
1091           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1092           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1093 
1094           OPC_STORE_n(0);
1095           OPC_STORE_n(1);
1096           OPC_STORE_n(2);
1097           OPC_STORE_n(3);
1098 
1099 #undef  OPC_DSTORE_n
1100 #define OPC_DSTORE_n(num)                                               \
1101       CASE(_dstore_##num):                                              \
1102           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1103           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1104       CASE(_lstore_##num):                                              \
1105           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1106           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1107 
1108           OPC_DSTORE_n(0);
1109           OPC_DSTORE_n(1);
1110           OPC_DSTORE_n(2);
1111           OPC_DSTORE_n(3);
1112 
1113           /* stack pop, dup, and insert opcodes */
1114 
1115 
1116       CASE(_pop):                /* Discard the top item on the stack */
1117           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1118 
1119 
1120       CASE(_pop2):               /* Discard the top 2 items on the stack */
1121           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1122 
1123 
1124       CASE(_dup):               /* Duplicate the top item on the stack */
1125           dup(topOfStack);
1126           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1127 
1128       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1129           dup2(topOfStack);
1130           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1131 
1132       CASE(_dup_x1):    /* insert top word two down */
1133           dup_x1(topOfStack);
1134           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1135 
1136       CASE(_dup_x2):    /* insert top word three down  */
1137           dup_x2(topOfStack);
1138           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1139 
1140       CASE(_dup2_x1):   /* insert top 2 slots three down */
1141           dup2_x1(topOfStack);
1142           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1143 
1144       CASE(_dup2_x2):   /* insert top 2 slots four down */
1145           dup2_x2(topOfStack);
1146           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1147 
1148       CASE(_swap): {        /* swap top two elements on the stack */
1149           swap(topOfStack);
1150           UPDATE_PC_AND_CONTINUE(1);
1151       }
1152 
1153           /* Perform various binary integer operations */
1154 
1155 #undef  OPC_INT_BINARY
1156 #define OPC_INT_BINARY(opcname, opname, test)                           \
1157       CASE(_i##opcname):                                                \
1158           if (test && (STACK_INT(-1) == 0)) {                           \
1159               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1160                             "/ by zero");                               \
1161           }                                                             \
1162           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1163                                       STACK_INT(-1)),                   \
1164                                       -2);                              \
1165           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1166       CASE(_l##opcname):                                                \
1167       {                                                                 \
1168           if (test) {                                                   \
1169             jlong l1 = STACK_LONG(-1);                                  \
1170             if (VMlongEqz(l1)) {                                        \
1171               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1172                             "/ by long zero");                          \
1173             }                                                           \
1174           }                                                             \
1175           /* First long at (-1,-2) next long at (-3,-4) */              \
1176           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1177                                         STACK_LONG(-1)),                \
1178                                         -3);                            \
1179           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1180       }
1181 
1182       OPC_INT_BINARY(add, Add, 0);
1183       OPC_INT_BINARY(sub, Sub, 0);
1184       OPC_INT_BINARY(mul, Mul, 0);
1185       OPC_INT_BINARY(and, And, 0);
1186       OPC_INT_BINARY(or,  Or,  0);
1187       OPC_INT_BINARY(xor, Xor, 0);
1188       OPC_INT_BINARY(div, Div, 1);
1189       OPC_INT_BINARY(rem, Rem, 1);
1190 
1191 
1192       /* Perform various binary floating number operations */
1193       /* On some machine/platforms/compilers div zero check can be implicit */
1194 
1195 #undef  OPC_FLOAT_BINARY
1196 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1197       CASE(_d##opcname): {                                                 \
1198           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1199                                             STACK_DOUBLE(-1)),             \
1200                                             -3);                           \
1201           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1202       }                                                                    \
1203       CASE(_f##opcname):                                                   \
1204           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1205                                           STACK_FLOAT(-1)),                \
1206                                           -2);                             \
1207           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1208 
1209 
1210      OPC_FLOAT_BINARY(add, Add);
1211      OPC_FLOAT_BINARY(sub, Sub);
1212      OPC_FLOAT_BINARY(mul, Mul);
1213      OPC_FLOAT_BINARY(div, Div);
1214      OPC_FLOAT_BINARY(rem, Rem);
1215 
1216       /* Shift operations
1217        * Shift left int and long: ishl, lshl
1218        * Logical shift right int and long w/zero extension: iushr, lushr
1219        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1220        */
1221 
1222 #undef  OPC_SHIFT_BINARY
1223 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1224       CASE(_i##opcname):                                                \
1225          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1226                                      STACK_INT(-1)),                    \
1227                                      -2);                               \
1228          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1229       CASE(_l##opcname):                                                \
1230       {                                                                 \
1231          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1232                                        STACK_INT(-1)),                  \
1233                                        -2);                             \
1234          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1235       }
1236 
1237       OPC_SHIFT_BINARY(shl, Shl);
1238       OPC_SHIFT_BINARY(shr, Shr);
1239       OPC_SHIFT_BINARY(ushr, Ushr);
1240 
1241      /* Increment local variable by constant */
1242       CASE(_iinc):
1243       {
1244           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1245           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1246           UPDATE_PC_AND_CONTINUE(3);
1247       }
1248 
1249      /* negate the value on the top of the stack */
1250 
1251       CASE(_ineg):
1252          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1253          UPDATE_PC_AND_CONTINUE(1);
1254 
1255       CASE(_fneg):
1256          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1257          UPDATE_PC_AND_CONTINUE(1);
1258 
1259       CASE(_lneg):
1260       {
1261          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1262          UPDATE_PC_AND_CONTINUE(1);
1263       }
1264 
1265       CASE(_dneg):
1266       {
1267          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1268          UPDATE_PC_AND_CONTINUE(1);
1269       }
1270 
1271       /* Conversion operations */
1272 
1273       CASE(_i2f):       /* convert top of stack int to float */
1274          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1275          UPDATE_PC_AND_CONTINUE(1);
1276 
1277       CASE(_i2l):       /* convert top of stack int to long */
1278       {
1279           // this is ugly QQQ
1280           jlong r = VMint2Long(STACK_INT(-1));
1281           MORE_STACK(-1); // Pop
1282           SET_STACK_LONG(r, 1);
1283 
1284           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1285       }
1286 
1287       CASE(_i2d):       /* convert top of stack int to double */
1288       {
1289           // this is ugly QQQ (why cast to jlong?? )
1290           jdouble r = (jlong)STACK_INT(-1);
1291           MORE_STACK(-1); // Pop
1292           SET_STACK_DOUBLE(r, 1);
1293 
1294           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1295       }
1296 
1297       CASE(_l2i):       /* convert top of stack long to int */
1298       {
1299           jint r = VMlong2Int(STACK_LONG(-1));
1300           MORE_STACK(-2); // Pop
1301           SET_STACK_INT(r, 0);
1302           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1303       }
1304 
1305       CASE(_l2f):   /* convert top of stack long to float */
1306       {
1307           jlong r = STACK_LONG(-1);
1308           MORE_STACK(-2); // Pop
1309           SET_STACK_FLOAT(VMlong2Float(r), 0);
1310           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1311       }
1312 
1313       CASE(_l2d):       /* convert top of stack long to double */
1314       {
1315           jlong r = STACK_LONG(-1);
1316           MORE_STACK(-2); // Pop
1317           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1318           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1319       }
1320 
1321       CASE(_f2i):  /* Convert top of stack float to int */
1322           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1323           UPDATE_PC_AND_CONTINUE(1);
1324 
1325       CASE(_f2l):  /* convert top of stack float to long */
1326       {
1327           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1328           MORE_STACK(-1); // POP
1329           SET_STACK_LONG(r, 1);
1330           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1331       }
1332 
1333       CASE(_f2d):  /* convert top of stack float to double */
1334       {
1335           jfloat f;
1336           jdouble r;
1337           f = STACK_FLOAT(-1);
1338           r = (jdouble) f;
1339           MORE_STACK(-1); // POP
1340           SET_STACK_DOUBLE(r, 1);
1341           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1342       }
1343 
1344       CASE(_d2i): /* convert top of stack double to int */
1345       {
1346           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1347           MORE_STACK(-2);
1348           SET_STACK_INT(r1, 0);
1349           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1350       }
1351 
1352       CASE(_d2f): /* convert top of stack double to float */
1353       {
1354           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1355           MORE_STACK(-2);
1356           SET_STACK_FLOAT(r1, 0);
1357           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1358       }
1359 
1360       CASE(_d2l): /* convert top of stack double to long */
1361       {
1362           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1363           MORE_STACK(-2);
1364           SET_STACK_LONG(r1, 1);
1365           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1366       }
1367 
1368       CASE(_i2b):
1369           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1370           UPDATE_PC_AND_CONTINUE(1);
1371 
1372       CASE(_i2c):
1373           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1374           UPDATE_PC_AND_CONTINUE(1);
1375 
1376       CASE(_i2s):
1377           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1378           UPDATE_PC_AND_CONTINUE(1);
1379 
1380       /* comparison operators */
1381 
1382 
1383 #define COMPARISON_OP(name, comparison)                                      \
1384       CASE(_if_icmp##name): {                                                \
1385           int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
1386                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1387           address branch_pc = pc;                                            \
1388           UPDATE_PC_AND_TOS(skip, -2);                                       \
1389           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1390           CONTINUE;                                                          \
1391       }                                                                      \
1392       CASE(_if##name): {                                                     \
1393           int skip = (STACK_INT(-1) comparison 0)                            \
1394                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1395           address branch_pc = pc;                                            \
1396           UPDATE_PC_AND_TOS(skip, -1);                                       \
1397           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1398           CONTINUE;                                                          \
1399       }
1400 
1401 #define COMPARISON_OP2(name, comparison)                                     \
1402       COMPARISON_OP(name, comparison)                                        \
1403       CASE(_if_acmp##name): {                                                \
1404           int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
1405                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1406           address branch_pc = pc;                                            \
1407           UPDATE_PC_AND_TOS(skip, -2);                                       \
1408           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1409           CONTINUE;                                                          \
1410       }
1411 
1412 #define NULL_COMPARISON_NOT_OP(name)                                         \
1413       CASE(_if##name): {                                                     \
1414           int skip = (!(STACK_OBJECT(-1) == NULL))                           \
1415                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1416           address branch_pc = pc;                                            \
1417           UPDATE_PC_AND_TOS(skip, -1);                                       \
1418           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1419           CONTINUE;                                                          \
1420       }
1421 
1422 #define NULL_COMPARISON_OP(name)                                             \
1423       CASE(_if##name): {                                                     \
1424           int skip = ((STACK_OBJECT(-1) == NULL))                            \
1425                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1426           address branch_pc = pc;                                            \
1427           UPDATE_PC_AND_TOS(skip, -1);                                       \
1428           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1429           CONTINUE;                                                          \
1430       }
1431       COMPARISON_OP(lt, <);
1432       COMPARISON_OP(gt, >);
1433       COMPARISON_OP(le, <=);
1434       COMPARISON_OP(ge, >=);
1435       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1436       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1437       NULL_COMPARISON_OP(null);
1438       NULL_COMPARISON_NOT_OP(nonnull);
1439 
1440       /* Goto pc at specified offset in switch table. */
1441 
1442       CASE(_tableswitch): {
1443           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1444           int32_t  key  = STACK_INT(-1);
1445           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1446           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1447           int32_t  skip;
1448           key -= low;
1449           skip = ((uint32_t) key > (uint32_t)(high - low))
1450                       ? Bytes::get_Java_u4((address)&lpc[0])
1451                       : Bytes::get_Java_u4((address)&lpc[key + 3]);
1452           // Does this really need a full backedge check (osr?)
1453           address branch_pc = pc;
1454           UPDATE_PC_AND_TOS(skip, -1);
1455           DO_BACKEDGE_CHECKS(skip, branch_pc);
1456           CONTINUE;
1457       }
1458 
1459       /* Goto pc whose table entry matches specified key */
1460 
1461       CASE(_lookupswitch): {
1462           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1463           int32_t  key  = STACK_INT(-1);
1464           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1465           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1466           while (--npairs >= 0) {
1467               lpc += 2;
1468               if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1469                   skip = Bytes::get_Java_u4((address)&lpc[1]);
1470                   break;
1471               }
1472           }
1473           address branch_pc = pc;
1474           UPDATE_PC_AND_TOS(skip, -1);
1475           DO_BACKEDGE_CHECKS(skip, branch_pc);
1476           CONTINUE;
1477       }
1478 
1479       CASE(_fcmpl):
1480       CASE(_fcmpg):
1481       {
1482           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1483                                         STACK_FLOAT(-1),
1484                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1485                         -2);
1486           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1487       }
1488 
1489       CASE(_dcmpl):
1490       CASE(_dcmpg):
1491       {
1492           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1493                                   STACK_DOUBLE(-1),
1494                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1495           MORE_STACK(-4); // Pop
1496           SET_STACK_INT(r, 0);
1497           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1498       }
1499 
1500       CASE(_lcmp):
1501       {
1502           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1503           MORE_STACK(-4);
1504           SET_STACK_INT(r, 0);
1505           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1506       }
1507 
1508 
1509       /* Return from a method */
1510 
1511       CASE(_areturn):
1512       CASE(_ireturn):
1513       CASE(_freturn):
1514       {
1515           // Allow a safepoint before returning to frame manager.
1516           SAFEPOINT;
1517 
1518           goto handle_return;
1519       }
1520 
1521       CASE(_lreturn):
1522       CASE(_dreturn):
1523       {
1524           // Allow a safepoint before returning to frame manager.
1525           SAFEPOINT;
1526           goto handle_return;
1527       }
1528 
1529       CASE(_return_register_finalizer): {
1530 
1531           oop rcvr = LOCALS_OBJECT(0);
1532           VERIFY_OOP(rcvr);
1533           if (rcvr->klass()->klass_part()->has_finalizer()) {
1534             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1535           }
1536           goto handle_return;
1537       }
1538       CASE(_return): {
1539 
1540           // Allow a safepoint before returning to frame manager.
1541           SAFEPOINT;
1542           goto handle_return;
1543       }
1544 
1545       /* Array access byte-codes */
1546 
1547       /* Every array access byte-code starts out like this */
1548 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1549 #define ARRAY_INTRO(arrayOff)                                                  \
1550       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1551       jint     index  = STACK_INT(arrayOff + 1);                               \
1552       char message[jintAsStringSize];                                          \
1553       CHECK_NULL(arrObj);                                                      \
1554       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1555           sprintf(message, "%d", index);                                       \
1556           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1557                         message);                                              \
1558       }
1559 
1560       /* 32-bit loads. These handle conversion from < 32-bit types */
1561 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1562       {                                                                               \
1563           ARRAY_INTRO(-2);                                                            \
1564           extra;                                                                      \
1565           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1566                            -2);                                                       \
1567           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1568       }
1569 
1570       /* 64-bit loads */
1571 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1572       {                                                                                    \
1573           ARRAY_INTRO(-2);                                                                 \
1574           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1575           extra;                                                                           \
1576           UPDATE_PC_AND_CONTINUE(1);                                            \
1577       }
1578 
1579       CASE(_iaload):
1580           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1581       CASE(_faload):
1582           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1583       CASE(_aaload):
1584           ARRAY_LOADTO32(T_OBJECT, oop,   INTPTR_FORMAT, STACK_OBJECT, 0);
1585       CASE(_baload):
1586           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1587       CASE(_caload):
1588           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1589       CASE(_saload):
1590           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1591       CASE(_laload):
1592           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1593       CASE(_daload):
1594           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1595 
1596       /* 32-bit stores. These handle conversion to < 32-bit types */
1597 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1598       {                                                                              \
1599           ARRAY_INTRO(-3);                                                           \
1600           extra;                                                                     \
1601           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1602           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1603       }
1604 
1605       /* 64-bit stores */
1606 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1607       {                                                                              \
1608           ARRAY_INTRO(-4);                                                           \
1609           extra;                                                                     \
1610           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1611           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1612       }
1613 
1614       CASE(_iastore):
1615           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1616       CASE(_fastore):
1617           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1618       /*
1619        * This one looks different because of the assignability check
1620        */
1621       CASE(_aastore): {
1622           oop rhsObject = STACK_OBJECT(-1);
1623           VERIFY_OOP(rhsObject);
1624           ARRAY_INTRO( -3);
1625           // arrObj, index are set
1626           if (rhsObject != NULL) {
1627             /* Check assignability of rhsObject into arrObj */
1628             klassOop rhsKlassOop = rhsObject->klass(); // EBX (subclass)
1629             assert(arrObj->klass()->klass()->klass_part()->oop_is_objArrayKlass(), "Ack not an objArrayKlass");
1630             klassOop elemKlassOop = ((objArrayKlass*) arrObj->klass()->klass_part())->element_klass(); // superklass EAX
1631             //
1632             // Check for compatibilty. This check must not GC!!
1633             // Seems way more expensive now that we must dispatch
1634             //
1635             if (rhsKlassOop != elemKlassOop && !rhsKlassOop->klass_part()->is_subtype_of(elemKlassOop)) { // ebx->is...
1636               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
1637             }
1638           }
1639           oop* elem_loc = (oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop));
1640           // *(oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop)) = rhsObject;
1641           *elem_loc = rhsObject;
1642           // Mark the card
1643           OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)elem_loc >> CardTableModRefBS::card_shift], 0);
1644           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1645       }
1646       CASE(_bastore):
1647           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1648       CASE(_castore):
1649           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1650       CASE(_sastore):
1651           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1652       CASE(_lastore):
1653           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1654       CASE(_dastore):
1655           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1656 
1657       CASE(_arraylength):
1658       {
1659           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1660           CHECK_NULL(ary);
1661           SET_STACK_INT(ary->length(), -1);
1662           UPDATE_PC_AND_CONTINUE(1);
1663       }
1664 
1665       /* monitorenter and monitorexit for locking/unlocking an object */
1666 
1667       CASE(_monitorenter): {
1668         oop lockee = STACK_OBJECT(-1);
1669         // derefing's lockee ought to provoke implicit null check
1670         CHECK_NULL(lockee);
1671         // find a free monitor or one already allocated for this object
1672         // if we find a matching object then we need a new monitor
1673         // since this is recursive enter
1674         BasicObjectLock* limit = istate->monitor_base();
1675         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1676         BasicObjectLock* entry = NULL;
1677         while (most_recent != limit ) {
1678           if (most_recent->obj() == NULL) entry = most_recent;
1679           else if (most_recent->obj() == lockee) break;
1680           most_recent++;
1681         }
1682         if (entry != NULL) {
1683           entry->set_obj(lockee);
1684           markOop displaced = lockee->mark()->set_unlocked();
1685           entry->lock()->set_displaced_header(displaced);
1686           if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1687             // Is it simple recursive case?
1688             if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1689               entry->lock()->set_displaced_header(NULL);
1690             } else {
1691               CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1692             }
1693           }
1694           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1695         } else {
1696           istate->set_msg(more_monitors);
1697           UPDATE_PC_AND_RETURN(0); // Re-execute
1698         }
1699       }
1700 
1701       CASE(_monitorexit): {
1702         oop lockee = STACK_OBJECT(-1);
1703         CHECK_NULL(lockee);
1704         // derefing's lockee ought to provoke implicit null check
1705         // find our monitor slot
1706         BasicObjectLock* limit = istate->monitor_base();
1707         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1708         while (most_recent != limit ) {
1709           if ((most_recent)->obj() == lockee) {
1710             BasicLock* lock = most_recent->lock();
1711             markOop header = lock->displaced_header();
1712             most_recent->set_obj(NULL);
1713             // If it isn't recursive we either must swap old header or call the runtime
1714             if (header != NULL) {
1715               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1716                 // restore object for the slow case
1717                 most_recent->set_obj(lockee);
1718                 CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1719               }
1720             }
1721             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1722           }
1723           most_recent++;
1724         }
1725         // Need to throw illegal monitor state exception
1726         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1727         ShouldNotReachHere();
1728       }
1729 
1730       /* All of the non-quick opcodes. */
1731 
1732       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1733        *  constant pool index in the instruction.
1734        */
1735       CASE(_getfield):
1736       CASE(_getstatic):
1737         {
1738           u2 index;
1739           ConstantPoolCacheEntry* cache;
1740           index = Bytes::get_native_u2(pc+1);
1741 
1742           // QQQ Need to make this as inlined as possible. Probably need to
1743           // split all the bytecode cases out so c++ compiler has a chance
1744           // for constant prop to fold everything possible away.
1745 
1746           cache = cp->entry_at(index);
1747           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1748             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1749                     handle_exception);
1750             cache = cp->entry_at(index);
1751           }
1752 
1753 #ifdef VM_JVMTI
1754           if (_jvmti_interp_events) {
1755             int *count_addr;
1756             oop obj;
1757             // Check to see if a field modification watch has been set
1758             // before we take the time to call into the VM.
1759             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1760             if ( *count_addr > 0 ) {
1761               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1762                 obj = (oop)NULL;
1763               } else {
1764                 obj = (oop) STACK_OBJECT(-1);
1765                 VERIFY_OOP(obj);
1766               }
1767               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1768                                           obj,
1769                                           cache),
1770                                           handle_exception);
1771             }
1772           }
1773 #endif /* VM_JVMTI */
1774 
1775           oop obj;
1776           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1777             obj = (oop) cache->f1();
1778             MORE_STACK(1);  // Assume single slot push
1779           } else {
1780             obj = (oop) STACK_OBJECT(-1);
1781             CHECK_NULL(obj);
1782           }
1783 
1784           //
1785           // Now store the result on the stack
1786           //
1787           TosState tos_type = cache->flag_state();
1788           int field_offset = cache->f2();
1789           if (cache->is_volatile()) {
1790             if (tos_type == atos) {
1791               VERIFY_OOP(obj->obj_field_acquire(field_offset));
1792               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1793             } else if (tos_type == itos) {
1794               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1795             } else if (tos_type == ltos) {
1796               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1797               MORE_STACK(1);
1798             } else if (tos_type == btos) {
1799               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1800             } else if (tos_type == ctos) {
1801               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
1802             } else if (tos_type == stos) {
1803               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
1804             } else if (tos_type == ftos) {
1805               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
1806             } else {
1807               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
1808               MORE_STACK(1);
1809             }
1810           } else {
1811             if (tos_type == atos) {
1812               VERIFY_OOP(obj->obj_field(field_offset));
1813               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
1814             } else if (tos_type == itos) {
1815               SET_STACK_INT(obj->int_field(field_offset), -1);
1816             } else if (tos_type == ltos) {
1817               SET_STACK_LONG(obj->long_field(field_offset), 0);
1818               MORE_STACK(1);
1819             } else if (tos_type == btos) {
1820               SET_STACK_INT(obj->byte_field(field_offset), -1);
1821             } else if (tos_type == ctos) {
1822               SET_STACK_INT(obj->char_field(field_offset), -1);
1823             } else if (tos_type == stos) {
1824               SET_STACK_INT(obj->short_field(field_offset), -1);
1825             } else if (tos_type == ftos) {
1826               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
1827             } else {
1828               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
1829               MORE_STACK(1);
1830             }
1831           }
1832 
1833           UPDATE_PC_AND_CONTINUE(3);
1834          }
1835 
1836       CASE(_putfield):
1837       CASE(_putstatic):
1838         {
1839           u2 index = Bytes::get_native_u2(pc+1);
1840           ConstantPoolCacheEntry* cache = cp->entry_at(index);
1841           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1842             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1843                     handle_exception);
1844             cache = cp->entry_at(index);
1845           }
1846 
1847 #ifdef VM_JVMTI
1848           if (_jvmti_interp_events) {
1849             int *count_addr;
1850             oop obj;
1851             // Check to see if a field modification watch has been set
1852             // before we take the time to call into the VM.
1853             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
1854             if ( *count_addr > 0 ) {
1855               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1856                 obj = (oop)NULL;
1857               }
1858               else {
1859                 if (cache->is_long() || cache->is_double()) {
1860                   obj = (oop) STACK_OBJECT(-3);
1861                 } else {
1862                   obj = (oop) STACK_OBJECT(-2);
1863                 }
1864                 VERIFY_OOP(obj);
1865               }
1866 
1867               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
1868                                           obj,
1869                                           cache,
1870                                           (jvalue *)STACK_SLOT(-1)),
1871                                           handle_exception);
1872             }
1873           }
1874 #endif /* VM_JVMTI */
1875 
1876           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
1877           // out so c++ compiler has a chance for constant prop to fold everything possible away.
1878 
1879           oop obj;
1880           int count;
1881           TosState tos_type = cache->flag_state();
1882 
1883           count = -1;
1884           if (tos_type == ltos || tos_type == dtos) {
1885             --count;
1886           }
1887           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1888             obj = (oop) cache->f1();
1889           } else {
1890             --count;
1891             obj = (oop) STACK_OBJECT(count);
1892             CHECK_NULL(obj);
1893           }
1894 
1895           //
1896           // Now store the result
1897           //
1898           int field_offset = cache->f2();
1899           if (cache->is_volatile()) {
1900             if (tos_type == itos) {
1901               obj->release_int_field_put(field_offset, STACK_INT(-1));
1902             } else if (tos_type == atos) {
1903               VERIFY_OOP(STACK_OBJECT(-1));
1904               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
1905               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
1906             } else if (tos_type == btos) {
1907               obj->release_byte_field_put(field_offset, STACK_INT(-1));
1908             } else if (tos_type == ltos) {
1909               obj->release_long_field_put(field_offset, STACK_LONG(-1));
1910             } else if (tos_type == ctos) {
1911               obj->release_char_field_put(field_offset, STACK_INT(-1));
1912             } else if (tos_type == stos) {
1913               obj->release_short_field_put(field_offset, STACK_INT(-1));
1914             } else if (tos_type == ftos) {
1915               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
1916             } else {
1917               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
1918             }
1919             OrderAccess::storeload();
1920           } else {
1921             if (tos_type == itos) {
1922               obj->int_field_put(field_offset, STACK_INT(-1));
1923             } else if (tos_type == atos) {
1924               VERIFY_OOP(STACK_OBJECT(-1));
1925               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
1926               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
1927             } else if (tos_type == btos) {
1928               obj->byte_field_put(field_offset, STACK_INT(-1));
1929             } else if (tos_type == ltos) {
1930               obj->long_field_put(field_offset, STACK_LONG(-1));
1931             } else if (tos_type == ctos) {
1932               obj->char_field_put(field_offset, STACK_INT(-1));
1933             } else if (tos_type == stos) {
1934               obj->short_field_put(field_offset, STACK_INT(-1));
1935             } else if (tos_type == ftos) {
1936               obj->float_field_put(field_offset, STACK_FLOAT(-1));
1937             } else {
1938               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
1939             }
1940           }
1941 
1942           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
1943         }
1944 
1945       CASE(_new): {
1946         u2 index = Bytes::get_Java_u2(pc+1);
1947         constantPoolOop constants = istate->method()->constants();
1948         if (!constants->tag_at(index).is_unresolved_klass()) {
1949           // Make sure klass is initialized and doesn't have a finalizer
1950           oop entry = constants->slot_at(index).get_oop();
1951           assert(entry->is_klass(), "Should be resolved klass");
1952           klassOop k_entry = (klassOop) entry;
1953           assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass");
1954           instanceKlass* ik = (instanceKlass*) k_entry->klass_part();
1955           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
1956             size_t obj_size = ik->size_helper();
1957             oop result = NULL;
1958             // If the TLAB isn't pre-zeroed then we'll have to do it
1959             bool need_zero = !ZeroTLAB;
1960             if (UseTLAB) {
1961               result = (oop) THREAD->tlab().allocate(obj_size);
1962             }
1963             if (result == NULL) {
1964               need_zero = true;
1965               // Try allocate in shared eden
1966         retry:
1967               HeapWord* compare_to = *Universe::heap()->top_addr();
1968               HeapWord* new_top = compare_to + obj_size;
1969               if (new_top <= *Universe::heap()->end_addr()) {
1970                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
1971                   goto retry;
1972                 }
1973                 result = (oop) compare_to;
1974               }
1975             }
1976             if (result != NULL) {
1977               // Initialize object (if nonzero size and need) and then the header
1978               if (need_zero ) {
1979                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
1980                 obj_size -= sizeof(oopDesc) / oopSize;
1981                 if (obj_size > 0 ) {
1982                   memset(to_zero, 0, obj_size * HeapWordSize);
1983                 }
1984               }
1985               if (UseBiasedLocking) {
1986                 result->set_mark(ik->prototype_header());
1987               } else {
1988                 result->set_mark(markOopDesc::prototype());
1989               }
1990               result->set_klass_gap(0);
1991               result->set_klass(k_entry);
1992               SET_STACK_OBJECT(result, 0);
1993               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1994             }
1995           }
1996         }
1997         // Slow case allocation
1998         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
1999                 handle_exception);
2000         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2001         THREAD->set_vm_result(NULL);
2002         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2003       }
2004       CASE(_anewarray): {
2005         u2 index = Bytes::get_Java_u2(pc+1);
2006         jint size = STACK_INT(-1);
2007         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2008                 handle_exception);
2009         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2010         THREAD->set_vm_result(NULL);
2011         UPDATE_PC_AND_CONTINUE(3);
2012       }
2013       CASE(_multianewarray): {
2014         jint dims = *(pc+3);
2015         jint size = STACK_INT(-1);
2016         // stack grows down, dimensions are up!
2017         jint *dimarray =
2018                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2019                                       Interpreter::stackElementWords-1];
2020         //adjust pointer to start of stack element
2021         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2022                 handle_exception);
2023         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2024         THREAD->set_vm_result(NULL);
2025         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2026       }
2027       CASE(_checkcast):
2028           if (STACK_OBJECT(-1) != NULL) {
2029             VERIFY_OOP(STACK_OBJECT(-1));
2030             u2 index = Bytes::get_Java_u2(pc+1);
2031             if (ProfileInterpreter) {
2032               // needs Profile_checkcast QQQ
2033               ShouldNotReachHere();
2034             }
2035             // Constant pool may have actual klass or unresolved klass. If it is
2036             // unresolved we must resolve it
2037             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2038               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2039             }
2040             klassOop klassOf = (klassOop) METHOD->constants()->slot_at(index).get_oop();
2041             klassOop objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
2042             //
2043             // Check for compatibilty. This check must not GC!!
2044             // Seems way more expensive now that we must dispatch
2045             //
2046             if (objKlassOop != klassOf &&
2047                 !objKlassOop->klass_part()->is_subtype_of(klassOf)) {
2048               ResourceMark rm(THREAD);
2049               const char* objName = Klass::cast(objKlassOop)->external_name();
2050               const char* klassName = Klass::cast(klassOf)->external_name();
2051               char* message = SharedRuntime::generate_class_cast_message(
2052                 objName, klassName);
2053               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
2054             }
2055           } else {
2056             if (UncommonNullCast) {
2057 //              istate->method()->set_null_cast_seen();
2058 // [RGV] Not sure what to do here!
2059 
2060             }
2061           }
2062           UPDATE_PC_AND_CONTINUE(3);
2063 
2064       CASE(_instanceof):
2065           if (STACK_OBJECT(-1) == NULL) {
2066             SET_STACK_INT(0, -1);
2067           } else {
2068             VERIFY_OOP(STACK_OBJECT(-1));
2069             u2 index = Bytes::get_Java_u2(pc+1);
2070             // Constant pool may have actual klass or unresolved klass. If it is
2071             // unresolved we must resolve it
2072             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2073               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2074             }
2075             klassOop klassOf = (klassOop) METHOD->constants()->slot_at(index).get_oop();
2076             klassOop objKlassOop = STACK_OBJECT(-1)->klass();
2077             //
2078             // Check for compatibilty. This check must not GC!!
2079             // Seems way more expensive now that we must dispatch
2080             //
2081             if ( objKlassOop == klassOf || objKlassOop->klass_part()->is_subtype_of(klassOf)) {
2082               SET_STACK_INT(1, -1);
2083             } else {
2084               SET_STACK_INT(0, -1);
2085             }
2086           }
2087           UPDATE_PC_AND_CONTINUE(3);
2088 
2089       CASE(_ldc_w):
2090       CASE(_ldc):
2091         {
2092           u2 index;
2093           bool wide = false;
2094           int incr = 2; // frequent case
2095           if (opcode == Bytecodes::_ldc) {
2096             index = pc[1];
2097           } else {
2098             index = Bytes::get_Java_u2(pc+1);
2099             incr = 3;
2100             wide = true;
2101           }
2102 
2103           constantPoolOop constants = METHOD->constants();
2104           switch (constants->tag_at(index).value()) {
2105           case JVM_CONSTANT_Integer:
2106             SET_STACK_INT(constants->int_at(index), 0);
2107             break;
2108 
2109           case JVM_CONSTANT_Float:
2110             SET_STACK_FLOAT(constants->float_at(index), 0);
2111             break;
2112 
2113           case JVM_CONSTANT_String:
2114             VERIFY_OOP(constants->resolved_string_at(index));
2115             SET_STACK_OBJECT(constants->resolved_string_at(index), 0);
2116             break;
2117 
2118           case JVM_CONSTANT_Class:
2119             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2120             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2121             break;
2122 
2123           case JVM_CONSTANT_UnresolvedString:
2124           case JVM_CONSTANT_UnresolvedClass:
2125           case JVM_CONSTANT_UnresolvedClassInError:
2126             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2127             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2128             THREAD->set_vm_result(NULL);
2129             break;
2130 
2131           default:  ShouldNotReachHere();
2132           }
2133           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2134         }
2135 
2136       CASE(_ldc2_w):
2137         {
2138           u2 index = Bytes::get_Java_u2(pc+1);
2139 
2140           constantPoolOop constants = METHOD->constants();
2141           switch (constants->tag_at(index).value()) {
2142 
2143           case JVM_CONSTANT_Long:
2144              SET_STACK_LONG(constants->long_at(index), 1);
2145             break;
2146 
2147           case JVM_CONSTANT_Double:
2148              SET_STACK_DOUBLE(constants->double_at(index), 1);
2149             break;
2150           default:  ShouldNotReachHere();
2151           }
2152           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2153         }
2154 
2155       CASE(_fast_aldc_w):
2156       CASE(_fast_aldc): {
2157         if (!EnableInvokeDynamic) {
2158           // We should not encounter this bytecode if !EnableInvokeDynamic.
2159           // The verifier will stop it.  However, if we get past the verifier,
2160           // this will stop the thread in a reasonable way, without crashing the JVM.
2161           CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeError(THREAD),
2162                   handle_exception);
2163           ShouldNotReachHere();
2164         }
2165 
2166         u2 index;
2167         int incr;
2168         if (opcode == Bytecodes::_fast_aldc) {
2169           index = pc[1];
2170           incr = 2;
2171         } else {
2172           index = Bytes::get_native_u2(pc+1);
2173           incr = 3;
2174         }
2175 
2176         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2177         // This kind of CP cache entry does not need to match the flags byte, because
2178         // there is a 1-1 relation between bytecode type and CP entry type.
2179         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2180         if (cache->is_f1_null()) {
2181           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2182                   handle_exception);
2183         }
2184 
2185         VERIFY_OOP(cache->f1());
2186         SET_STACK_OBJECT(cache->f1(), 0);
2187         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2188       }
2189 
2190       CASE(_invokedynamic): {
2191         if (!EnableInvokeDynamic) {
2192           // We should not encounter this bytecode if !EnableInvokeDynamic.
2193           // The verifier will stop it.  However, if we get past the verifier,
2194           // this will stop the thread in a reasonable way, without crashing the JVM.
2195           CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeError(THREAD),
2196                   handle_exception);
2197           ShouldNotReachHere();
2198         }
2199 
2200         int index = Bytes::get_native_u4(pc+1);
2201 
2202         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2203         // This kind of CP cache entry does not need to match the flags byte, because
2204         // there is a 1-1 relation between bytecode type and CP entry type.
2205         assert(constantPoolCacheOopDesc::is_secondary_index(index), "incorrect format");
2206         ConstantPoolCacheEntry* cache = cp->secondary_entry_at(index);
2207         if (cache->is_f1_null()) {
2208           CALL_VM(InterpreterRuntime::resolve_invokedynamic(THREAD),
2209                   handle_exception);
2210         }
2211 
2212         VERIFY_OOP(cache->f1());
2213         oop method_handle = java_lang_invoke_CallSite::target(cache->f1());
2214         CHECK_NULL(method_handle);
2215 
2216         istate->set_msg(call_method_handle);
2217         istate->set_callee((methodOop) method_handle);
2218         istate->set_bcp_advance(5);
2219 
2220         UPDATE_PC_AND_RETURN(0); // I'll be back...
2221       }
2222 
2223       CASE(_invokeinterface): {
2224         u2 index = Bytes::get_native_u2(pc+1);
2225 
2226         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2227         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2228 
2229         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2230         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2231           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2232                   handle_exception);
2233           cache = cp->entry_at(index);
2234         }
2235 
2236         istate->set_msg(call_method);
2237 
2238         // Special case of invokeinterface called for virtual method of
2239         // java.lang.Object.  See cpCacheOop.cpp for details.
2240         // This code isn't produced by javac, but could be produced by
2241         // another compliant java compiler.
2242         if (cache->is_methodInterface()) {
2243           methodOop callee;
2244           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2245           if (cache->is_vfinal()) {
2246             callee = (methodOop) cache->f2();
2247           } else {
2248             // get receiver
2249             int parms = cache->parameter_size();
2250             // Same comments as invokevirtual apply here
2251             VERIFY_OOP(STACK_OBJECT(-parms));
2252             instanceKlass* rcvrKlass = (instanceKlass*)
2253                                  STACK_OBJECT(-parms)->klass()->klass_part();
2254             callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
2255           }
2256           istate->set_callee(callee);
2257           istate->set_callee_entry_point(callee->from_interpreted_entry());
2258 #ifdef VM_JVMTI
2259           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2260             istate->set_callee_entry_point(callee->interpreter_entry());
2261           }
2262 #endif /* VM_JVMTI */
2263           istate->set_bcp_advance(5);
2264           UPDATE_PC_AND_RETURN(0); // I'll be back...
2265         }
2266 
2267         // this could definitely be cleaned up QQQ
2268         methodOop callee;
2269         klassOop iclass = (klassOop)cache->f1();
2270         // instanceKlass* interface = (instanceKlass*) iclass->klass_part();
2271         // get receiver
2272         int parms = cache->parameter_size();
2273         oop rcvr = STACK_OBJECT(-parms);
2274         CHECK_NULL(rcvr);
2275         instanceKlass* int2 = (instanceKlass*) rcvr->klass()->klass_part();
2276         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2277         int i;
2278         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2279           if (ki->interface_klass() == iclass) break;
2280         }
2281         // If the interface isn't found, this class doesn't implement this
2282         // interface.  The link resolver checks this but only for the first
2283         // time this interface is called.
2284         if (i == int2->itable_length()) {
2285           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
2286         }
2287         int mindex = cache->f2();
2288         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2289         callee = im[mindex].method();
2290         if (callee == NULL) {
2291           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
2292         }
2293 
2294         istate->set_callee(callee);
2295         istate->set_callee_entry_point(callee->from_interpreted_entry());
2296 #ifdef VM_JVMTI
2297         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2298           istate->set_callee_entry_point(callee->interpreter_entry());
2299         }
2300 #endif /* VM_JVMTI */
2301         istate->set_bcp_advance(5);
2302         UPDATE_PC_AND_RETURN(0); // I'll be back...
2303       }
2304 
2305       CASE(_invokevirtual):
2306       CASE(_invokespecial):
2307       CASE(_invokestatic): {
2308         u2 index = Bytes::get_native_u2(pc+1);
2309 
2310         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2311         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2312         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2313 
2314         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2315           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2316                   handle_exception);
2317           cache = cp->entry_at(index);
2318         }
2319 
2320         istate->set_msg(call_method);
2321         {
2322           methodOop callee;
2323           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2324             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2325             if (cache->is_vfinal()) callee = (methodOop) cache->f2();
2326             else {
2327               // get receiver
2328               int parms = cache->parameter_size();
2329               // this works but needs a resourcemark and seems to create a vtable on every call:
2330               // methodOop callee = rcvr->klass()->klass_part()->vtable()->method_at(cache->f2());
2331               //
2332               // this fails with an assert
2333               // instanceKlass* rcvrKlass = instanceKlass::cast(STACK_OBJECT(-parms)->klass());
2334               // but this works
2335               VERIFY_OOP(STACK_OBJECT(-parms));
2336               instanceKlass* rcvrKlass = (instanceKlass*) STACK_OBJECT(-parms)->klass()->klass_part();
2337               /*
2338                 Executing this code in java.lang.String:
2339                     public String(char value[]) {
2340                           this.count = value.length;
2341                           this.value = (char[])value.clone();
2342                      }
2343 
2344                  a find on rcvr->klass()->klass_part() reports:
2345                  {type array char}{type array class}
2346                   - klass: {other class}
2347 
2348                   but using instanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2349                   because rcvr->klass()->klass_part()->oop_is_instance() == 0
2350                   However it seems to have a vtable in the right location. Huh?
2351 
2352               */
2353               callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
2354             }
2355           } else {
2356             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2357               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2358             }
2359             callee = (methodOop) cache->f1();
2360           }
2361 
2362           istate->set_callee(callee);
2363           istate->set_callee_entry_point(callee->from_interpreted_entry());
2364 #ifdef VM_JVMTI
2365           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2366             istate->set_callee_entry_point(callee->interpreter_entry());
2367           }
2368 #endif /* VM_JVMTI */
2369           istate->set_bcp_advance(3);
2370           UPDATE_PC_AND_RETURN(0); // I'll be back...
2371         }
2372       }
2373 
2374       /* Allocate memory for a new java object. */
2375 
2376       CASE(_newarray): {
2377         BasicType atype = (BasicType) *(pc+1);
2378         jint size = STACK_INT(-1);
2379         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2380                 handle_exception);
2381         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2382         THREAD->set_vm_result(NULL);
2383 
2384         UPDATE_PC_AND_CONTINUE(2);
2385       }
2386 
2387       /* Throw an exception. */
2388 
2389       CASE(_athrow): {
2390           oop except_oop = STACK_OBJECT(-1);
2391           CHECK_NULL(except_oop);
2392           // set pending_exception so we use common code
2393           THREAD->set_pending_exception(except_oop, NULL, 0);
2394           goto handle_exception;
2395       }
2396 
2397       /* goto and jsr. They are exactly the same except jsr pushes
2398        * the address of the next instruction first.
2399        */
2400 
2401       CASE(_jsr): {
2402           /* push bytecode index on stack */
2403           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2404           MORE_STACK(1);
2405           /* FALL THROUGH */
2406       }
2407 
2408       CASE(_goto):
2409       {
2410           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2411           address branch_pc = pc;
2412           UPDATE_PC(offset);
2413           DO_BACKEDGE_CHECKS(offset, branch_pc);
2414           CONTINUE;
2415       }
2416 
2417       CASE(_jsr_w): {
2418           /* push return address on the stack */
2419           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2420           MORE_STACK(1);
2421           /* FALL THROUGH */
2422       }
2423 
2424       CASE(_goto_w):
2425       {
2426           int32_t offset = Bytes::get_Java_u4(pc + 1);
2427           address branch_pc = pc;
2428           UPDATE_PC(offset);
2429           DO_BACKEDGE_CHECKS(offset, branch_pc);
2430           CONTINUE;
2431       }
2432 
2433       /* return from a jsr or jsr_w */
2434 
2435       CASE(_ret): {
2436           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2437           UPDATE_PC_AND_CONTINUE(0);
2438       }
2439 
2440       /* debugger breakpoint */
2441 
2442       CASE(_breakpoint): {
2443           Bytecodes::Code original_bytecode;
2444           DECACHE_STATE();
2445           SET_LAST_JAVA_FRAME();
2446           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2447                               METHOD, pc);
2448           RESET_LAST_JAVA_FRAME();
2449           CACHE_STATE();
2450           if (THREAD->has_pending_exception()) goto handle_exception;
2451             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2452                                                     handle_exception);
2453 
2454           opcode = (jubyte)original_bytecode;
2455           goto opcode_switch;
2456       }
2457 
2458       DEFAULT:
2459           fatal(err_msg("Unimplemented opcode %d = %s", opcode,
2460                         Bytecodes::name((Bytecodes::Code)opcode)));
2461           goto finish;
2462 
2463       } /* switch(opc) */
2464 
2465 
2466 #ifdef USELABELS
2467     check_for_exception:
2468 #endif
2469     {
2470       if (!THREAD->has_pending_exception()) {
2471         CONTINUE;
2472       }
2473       /* We will be gcsafe soon, so flush our state. */
2474       DECACHE_PC();
2475       goto handle_exception;
2476     }
2477   do_continue: ;
2478 
2479   } /* while (1) interpreter loop */
2480 
2481 
2482   // An exception exists in the thread state see whether this activation can handle it
2483   handle_exception: {
2484 
2485     HandleMarkCleaner __hmc(THREAD);
2486     Handle except_oop(THREAD, THREAD->pending_exception());
2487     // Prevent any subsequent HandleMarkCleaner in the VM
2488     // from freeing the except_oop handle.
2489     HandleMark __hm(THREAD);
2490 
2491     THREAD->clear_pending_exception();
2492     assert(except_oop(), "No exception to process");
2493     intptr_t continuation_bci;
2494     // expression stack is emptied
2495     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2496     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2497             handle_exception);
2498 
2499     except_oop = (oop) THREAD->vm_result();
2500     THREAD->set_vm_result(NULL);
2501     if (continuation_bci >= 0) {
2502       // Place exception on top of stack
2503       SET_STACK_OBJECT(except_oop(), 0);
2504       MORE_STACK(1);
2505       pc = METHOD->code_base() + continuation_bci;
2506       if (TraceExceptions) {
2507         ttyLocker ttyl;
2508         ResourceMark rm;
2509         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2510         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2511         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2512                       pc - (intptr_t)METHOD->code_base(),
2513                       continuation_bci, THREAD);
2514       }
2515       // for AbortVMOnException flag
2516       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2517       goto run;
2518     }
2519     if (TraceExceptions) {
2520       ttyLocker ttyl;
2521       ResourceMark rm;
2522       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2523       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2524       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
2525                     pc  - (intptr_t) METHOD->code_base(),
2526                     THREAD);
2527     }
2528     // for AbortVMOnException flag
2529     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2530     // No handler in this activation, unwind and try again
2531     THREAD->set_pending_exception(except_oop(), NULL, 0);
2532     goto handle_return;
2533   }  /* handle_exception: */
2534 
2535 
2536 
2537   // Return from an interpreter invocation with the result of the interpretation
2538   // on the top of the Java Stack (or a pending exception)
2539 
2540 handle_Pop_Frame:
2541 
2542   // We don't really do anything special here except we must be aware
2543   // that we can get here without ever locking the method (if sync).
2544   // Also we skip the notification of the exit.
2545 
2546   istate->set_msg(popping_frame);
2547   // Clear pending so while the pop is in process
2548   // we don't start another one if a call_vm is done.
2549   THREAD->clr_pop_frame_pending();
2550   // Let interpreter (only) see the we're in the process of popping a frame
2551   THREAD->set_pop_frame_in_process();
2552 
2553 handle_return:
2554   {
2555     DECACHE_STATE();
2556 
2557     bool suppress_error = istate->msg() == popping_frame;
2558     bool suppress_exit_event = THREAD->has_pending_exception() || suppress_error;
2559     Handle original_exception(THREAD, THREAD->pending_exception());
2560     Handle illegal_state_oop(THREAD, NULL);
2561 
2562     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2563     // in any following VM entries from freeing our live handles, but illegal_state_oop
2564     // isn't really allocated yet and so doesn't become live until later and
2565     // in unpredicatable places. Instead we must protect the places where we enter the
2566     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2567     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2568     // unfortunately isn't possible.
2569 
2570     THREAD->clear_pending_exception();
2571 
2572     //
2573     // As far as we are concerned we have returned. If we have a pending exception
2574     // that will be returned as this invocation's result. However if we get any
2575     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2576     // will be our final result (i.e. monitor exception trumps a pending exception).
2577     //
2578 
2579     // If we never locked the method (or really passed the point where we would have),
2580     // there is no need to unlock it (or look for other monitors), since that
2581     // could not have happened.
2582 
2583     if (THREAD->do_not_unlock()) {
2584 
2585       // Never locked, reset the flag now because obviously any caller must
2586       // have passed their point of locking for us to have gotten here.
2587 
2588       THREAD->clr_do_not_unlock();
2589     } else {
2590       // At this point we consider that we have returned. We now check that the
2591       // locks were properly block structured. If we find that they were not
2592       // used properly we will return with an illegal monitor exception.
2593       // The exception is checked by the caller not the callee since this
2594       // checking is considered to be part of the invocation and therefore
2595       // in the callers scope (JVM spec 8.13).
2596       //
2597       // Another weird thing to watch for is if the method was locked
2598       // recursively and then not exited properly. This means we must
2599       // examine all the entries in reverse time(and stack) order and
2600       // unlock as we find them. If we find the method monitor before
2601       // we are at the initial entry then we should throw an exception.
2602       // It is not clear the template based interpreter does this
2603       // correctly
2604 
2605       BasicObjectLock* base = istate->monitor_base();
2606       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2607       bool method_unlock_needed = METHOD->is_synchronized();
2608       // We know the initial monitor was used for the method don't check that
2609       // slot in the loop
2610       if (method_unlock_needed) base--;
2611 
2612       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2613       while (end < base) {
2614         oop lockee = end->obj();
2615         if (lockee != NULL) {
2616           BasicLock* lock = end->lock();
2617           markOop header = lock->displaced_header();
2618           end->set_obj(NULL);
2619           // If it isn't recursive we either must swap old header or call the runtime
2620           if (header != NULL) {
2621             if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2622               // restore object for the slow case
2623               end->set_obj(lockee);
2624               {
2625                 // Prevent any HandleMarkCleaner from freeing our live handles
2626                 HandleMark __hm(THREAD);
2627                 CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2628               }
2629             }
2630           }
2631           // One error is plenty
2632           if (illegal_state_oop() == NULL && !suppress_error) {
2633             {
2634               // Prevent any HandleMarkCleaner from freeing our live handles
2635               HandleMark __hm(THREAD);
2636               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2637             }
2638             assert(THREAD->has_pending_exception(), "Lost our exception!");
2639             illegal_state_oop = THREAD->pending_exception();
2640             THREAD->clear_pending_exception();
2641           }
2642         }
2643         end++;
2644       }
2645       // Unlock the method if needed
2646       if (method_unlock_needed) {
2647         if (base->obj() == NULL) {
2648           // The method is already unlocked this is not good.
2649           if (illegal_state_oop() == NULL && !suppress_error) {
2650             {
2651               // Prevent any HandleMarkCleaner from freeing our live handles
2652               HandleMark __hm(THREAD);
2653               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2654             }
2655             assert(THREAD->has_pending_exception(), "Lost our exception!");
2656             illegal_state_oop = THREAD->pending_exception();
2657             THREAD->clear_pending_exception();
2658           }
2659         } else {
2660           //
2661           // The initial monitor is always used for the method
2662           // However if that slot is no longer the oop for the method it was unlocked
2663           // and reused by something that wasn't unlocked!
2664           //
2665           // deopt can come in with rcvr dead because c2 knows
2666           // its value is preserved in the monitor. So we can't use locals[0] at all
2667           // and must use first monitor slot.
2668           //
2669           oop rcvr = base->obj();
2670           if (rcvr == NULL) {
2671             if (!suppress_error) {
2672               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
2673               illegal_state_oop = THREAD->pending_exception();
2674               THREAD->clear_pending_exception();
2675             }
2676           } else {
2677             BasicLock* lock = base->lock();
2678             markOop header = lock->displaced_header();
2679             base->set_obj(NULL);
2680             // If it isn't recursive we either must swap old header or call the runtime
2681             if (header != NULL) {
2682               if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
2683                 // restore object for the slow case
2684                 base->set_obj(rcvr);
2685                 {
2686                   // Prevent any HandleMarkCleaner from freeing our live handles
2687                   HandleMark __hm(THREAD);
2688                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
2689                 }
2690                 if (THREAD->has_pending_exception()) {
2691                   if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
2692                   THREAD->clear_pending_exception();
2693                 }
2694               }
2695             }
2696           }
2697         }
2698       }
2699     }
2700 
2701     //
2702     // Notify jvmti/jvmdi
2703     //
2704     // NOTE: we do not notify a method_exit if we have a pending exception,
2705     // including an exception we generate for unlocking checks.  In the former
2706     // case, JVMDI has already been notified by our call for the exception handler
2707     // and in both cases as far as JVMDI is concerned we have already returned.
2708     // If we notify it again JVMDI will be all confused about how many frames
2709     // are still on the stack (4340444).
2710     //
2711     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
2712     // method_exit events whenever we leave an activation unless it was done
2713     // for popframe. This is nothing like jvmdi. However we are passing the
2714     // tests at the moment (apparently because they are jvmdi based) so rather
2715     // than change this code and possibly fail tests we will leave it alone
2716     // (with this note) in anticipation of changing the vm and the tests
2717     // simultaneously.
2718 
2719 
2720     //
2721     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
2722 
2723 
2724 
2725 #ifdef VM_JVMTI
2726       if (_jvmti_interp_events) {
2727         // Whenever JVMTI puts a thread in interp_only_mode, method
2728         // entry/exit events are sent for that thread to track stack depth.
2729         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
2730           {
2731             // Prevent any HandleMarkCleaner from freeing our live handles
2732             HandleMark __hm(THREAD);
2733             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
2734           }
2735         }
2736       }
2737 #endif /* VM_JVMTI */
2738 
2739     //
2740     // See if we are returning any exception
2741     // A pending exception that was pending prior to a possible popping frame
2742     // overrides the popping frame.
2743     //
2744     assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
2745     if (illegal_state_oop() != NULL || original_exception() != NULL) {
2746       // inform the frame manager we have no result
2747       istate->set_msg(throwing_exception);
2748       if (illegal_state_oop() != NULL)
2749         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
2750       else
2751         THREAD->set_pending_exception(original_exception(), NULL, 0);
2752       istate->set_return_kind((Bytecodes::Code)opcode);
2753       UPDATE_PC_AND_RETURN(0);
2754     }
2755 
2756     if (istate->msg() == popping_frame) {
2757       // Make it simpler on the assembly code and set the message for the frame pop.
2758       // returns
2759       if (istate->prev() == NULL) {
2760         // We must be returning to a deoptimized frame (because popframe only happens between
2761         // two interpreted frames). We need to save the current arguments in C heap so that
2762         // the deoptimized frame when it restarts can copy the arguments to its expression
2763         // stack and re-execute the call. We also have to notify deoptimization that this
2764         // has occurred and to pick the preserved args copy them to the deoptimized frame's
2765         // java expression stack. Yuck.
2766         //
2767         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
2768                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
2769         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
2770       }
2771       THREAD->clr_pop_frame_in_process();
2772     }
2773 
2774     // Normal return
2775     // Advance the pc and return to frame manager
2776     istate->set_msg(return_from_method);
2777     istate->set_return_kind((Bytecodes::Code)opcode);
2778     UPDATE_PC_AND_RETURN(1);
2779   } /* handle_return: */
2780 
2781 // This is really a fatal error return
2782 
2783 finish:
2784   DECACHE_TOS();
2785   DECACHE_PC();
2786 
2787   return;
2788 }
2789 
2790 /*
2791  * All the code following this point is only produced once and is not present
2792  * in the JVMTI version of the interpreter
2793 */
2794 
2795 #ifndef VM_JVMTI
2796 
2797 // This constructor should only be used to contruct the object to signal
2798 // interpreter initialization. All other instances should be created by
2799 // the frame manager.
2800 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
2801   if (msg != initialize) ShouldNotReachHere();
2802   _msg = msg;
2803   _self_link = this;
2804   _prev_link = NULL;
2805 }
2806 
2807 // Inline static functions for Java Stack and Local manipulation
2808 
2809 // The implementations are platform dependent. We have to worry about alignment
2810 // issues on some machines which can change on the same platform depending on
2811 // whether it is an LP64 machine also.
2812 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
2813   return (address) tos[Interpreter::expr_index_at(-offset)];
2814 }
2815 
2816 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
2817   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
2818 }
2819 
2820 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
2821   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
2822 }
2823 
2824 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
2825   return (oop)tos [Interpreter::expr_index_at(-offset)];
2826 }
2827 
2828 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
2829   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
2830 }
2831 
2832 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
2833   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
2834 }
2835 
2836 // only used for value types
2837 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
2838                                                         int offset) {
2839   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2840 }
2841 
2842 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
2843                                                        int offset) {
2844   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2845 }
2846 
2847 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
2848                                                          int offset) {
2849   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2850 }
2851 
2852 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
2853                                                           int offset) {
2854   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2855 }
2856 
2857 // needs to be platform dep for the 32 bit platforms.
2858 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
2859                                                           int offset) {
2860   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
2861 }
2862 
2863 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
2864                                               address addr, int offset) {
2865   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
2866                         ((VMJavaVal64*)addr)->d);
2867 }
2868 
2869 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
2870                                                         int offset) {
2871   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
2872   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
2873 }
2874 
2875 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
2876                                             address addr, int offset) {
2877   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
2878   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
2879                         ((VMJavaVal64*)addr)->l;
2880 }
2881 
2882 // Locals
2883 
2884 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
2885   return (address)locals[Interpreter::local_index_at(-offset)];
2886 }
2887 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
2888   return (jint)locals[Interpreter::local_index_at(-offset)];
2889 }
2890 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
2891   return (jfloat)locals[Interpreter::local_index_at(-offset)];
2892 }
2893 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
2894   return (oop)locals[Interpreter::local_index_at(-offset)];
2895 }
2896 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
2897   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
2898 }
2899 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
2900   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
2901 }
2902 
2903 // Returns the address of locals value.
2904 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
2905   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
2906 }
2907 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
2908   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
2909 }
2910 
2911 // Used for local value or returnAddress
2912 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
2913                                    address value, int offset) {
2914   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
2915 }
2916 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
2917                                    jint value, int offset) {
2918   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
2919 }
2920 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
2921                                    jfloat value, int offset) {
2922   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
2923 }
2924 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
2925                                    oop value, int offset) {
2926   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
2927 }
2928 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
2929                                    jdouble value, int offset) {
2930   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
2931 }
2932 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
2933                                    jlong value, int offset) {
2934   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
2935 }
2936 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
2937                                    address addr, int offset) {
2938   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
2939 }
2940 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
2941                                    address addr, int offset) {
2942   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
2943 }
2944 
2945 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
2946                           intptr_t* locals, int locals_offset) {
2947   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
2948   locals[Interpreter::local_index_at(-locals_offset)] = value;
2949 }
2950 
2951 
2952 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
2953                                    int to_offset) {
2954   tos[Interpreter::expr_index_at(-to_offset)] =
2955                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
2956 }
2957 
2958 void BytecodeInterpreter::dup(intptr_t *tos) {
2959   copy_stack_slot(tos, -1, 0);
2960 }
2961 void BytecodeInterpreter::dup2(intptr_t *tos) {
2962   copy_stack_slot(tos, -2, 0);
2963   copy_stack_slot(tos, -1, 1);
2964 }
2965 
2966 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
2967   /* insert top word two down */
2968   copy_stack_slot(tos, -1, 0);
2969   copy_stack_slot(tos, -2, -1);
2970   copy_stack_slot(tos, 0, -2);
2971 }
2972 
2973 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
2974   /* insert top word three down  */
2975   copy_stack_slot(tos, -1, 0);
2976   copy_stack_slot(tos, -2, -1);
2977   copy_stack_slot(tos, -3, -2);
2978   copy_stack_slot(tos, 0, -3);
2979 }
2980 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
2981   /* insert top 2 slots three down */
2982   copy_stack_slot(tos, -1, 1);
2983   copy_stack_slot(tos, -2, 0);
2984   copy_stack_slot(tos, -3, -1);
2985   copy_stack_slot(tos, 1, -2);
2986   copy_stack_slot(tos, 0, -3);
2987 }
2988 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
2989   /* insert top 2 slots four down */
2990   copy_stack_slot(tos, -1, 1);
2991   copy_stack_slot(tos, -2, 0);
2992   copy_stack_slot(tos, -3, -1);
2993   copy_stack_slot(tos, -4, -2);
2994   copy_stack_slot(tos, 1, -3);
2995   copy_stack_slot(tos, 0, -4);
2996 }
2997 
2998 
2999 void BytecodeInterpreter::swap(intptr_t *tos) {
3000   // swap top two elements
3001   intptr_t val = tos[Interpreter::expr_index_at(1)];
3002   // Copy -2 entry to -1
3003   copy_stack_slot(tos, -2, -1);
3004   // Store saved -1 entry into -2
3005   tos[Interpreter::expr_index_at(2)] = val;
3006 }
3007 // --------------------------------------------------------------------------------
3008 // Non-product code
3009 #ifndef PRODUCT
3010 
3011 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3012   switch (msg) {
3013      case BytecodeInterpreter::no_request:  return("no_request");
3014      case BytecodeInterpreter::initialize:  return("initialize");
3015      // status message to C++ interpreter
3016      case BytecodeInterpreter::method_entry:  return("method_entry");
3017      case BytecodeInterpreter::method_resume:  return("method_resume");
3018      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3019      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3020      // requests to frame manager from C++ interpreter
3021      case BytecodeInterpreter::call_method:  return("call_method");
3022      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3023      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3024      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3025      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3026      case BytecodeInterpreter::do_osr:  return("do_osr");
3027      // deopt
3028      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3029      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3030      default: return("BAD MSG");
3031   }
3032 }
3033 void
3034 BytecodeInterpreter::print() {
3035   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3036   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3037   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3038   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3039   {
3040     ResourceMark rm;
3041     char *method_name = _method->name_and_sig_as_C_string();
3042     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3043   }
3044   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3045   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3046   tty->print_cr("msg: %s", C_msg(this->_msg));
3047   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3048   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3049   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3050   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3051   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3052   tty->print_cr("result_return_kind 0x%x ", (int) this->_result._return_kind);
3053   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3054   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
3055   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3056   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3057   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3058 #ifdef SPARC
3059   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3060   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3061   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3062   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3063 #endif
3064 #if defined(IA64) && !defined(ZERO)
3065   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3066 #endif // IA64 && !ZERO
3067   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3068 }
3069 
3070 extern "C" {
3071     void PI(uintptr_t arg) {
3072         ((BytecodeInterpreter*)arg)->print();
3073     }
3074 }
3075 #endif // PRODUCT
3076 
3077 #endif // JVMTI
3078 #endif // CC_INTERP