1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/vmThread.hpp"
  41 #ifdef TARGET_OS_FAMILY_linux
  42 # include "thread_linux.inline.hpp"
  43 #endif
  44 #ifdef TARGET_OS_FAMILY_solaris
  45 # include "thread_solaris.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_FAMILY_windows
  48 # include "thread_windows.inline.hpp"
  49 #endif
  50 #ifndef SERIALGC
  51 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  52 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  53 #endif
  54 
  55 // CollectorPolicy methods.
  56 
  57 void CollectorPolicy::initialize_flags() {
  58   if (PermSize > MaxPermSize) {
  59     MaxPermSize = PermSize;
  60   }
  61   PermSize = MAX2(min_alignment(), align_size_down_(PermSize, min_alignment()));
  62   // Don't increase Perm size limit above specified.
  63   MaxPermSize = align_size_down(MaxPermSize, max_alignment());
  64   if (PermSize > MaxPermSize) {
  65     PermSize = MaxPermSize;
  66   }
  67 
  68   MinPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MinPermHeapExpansion, min_alignment()));
  69   MaxPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MaxPermHeapExpansion, min_alignment()));
  70 
  71   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
  72 
  73   SharedReadOnlySize = align_size_up(SharedReadOnlySize, max_alignment());
  74   SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment());
  75   SharedMiscDataSize = align_size_up(SharedMiscDataSize, max_alignment());
  76 
  77   assert(PermSize    % min_alignment() == 0, "permanent space alignment");
  78   assert(MaxPermSize % max_alignment() == 0, "maximum permanent space alignment");
  79   assert(SharedReadOnlySize % max_alignment() == 0, "read-only space alignment");
  80   assert(SharedReadWriteSize % max_alignment() == 0, "read-write space alignment");
  81   assert(SharedMiscDataSize % max_alignment() == 0, "misc-data space alignment");
  82   if (PermSize < M) {
  83     vm_exit_during_initialization("Too small initial permanent heap");
  84   }
  85 }
  86 
  87 void CollectorPolicy::initialize_size_info() {
  88   // User inputs from -mx and ms are aligned
  89   set_initial_heap_byte_size(InitialHeapSize);
  90   if (initial_heap_byte_size() == 0) {
  91     set_initial_heap_byte_size(NewSize + OldSize);
  92   }
  93   set_initial_heap_byte_size(align_size_up(_initial_heap_byte_size,
  94                                            min_alignment()));
  95 
  96   set_min_heap_byte_size(Arguments::min_heap_size());
  97   if (min_heap_byte_size() == 0) {
  98     set_min_heap_byte_size(NewSize + OldSize);
  99   }
 100   set_min_heap_byte_size(align_size_up(_min_heap_byte_size,
 101                                        min_alignment()));
 102 
 103   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
 104 
 105   // Check heap parameter properties
 106   if (initial_heap_byte_size() < M) {
 107     vm_exit_during_initialization("Too small initial heap");
 108   }
 109   // Check heap parameter properties
 110   if (min_heap_byte_size() < M) {
 111     vm_exit_during_initialization("Too small minimum heap");
 112   }
 113   if (initial_heap_byte_size() <= NewSize) {
 114      // make sure there is at least some room in old space
 115     vm_exit_during_initialization("Too small initial heap for new size specified");
 116   }
 117   if (max_heap_byte_size() < min_heap_byte_size()) {
 118     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 119   }
 120   if (initial_heap_byte_size() < min_heap_byte_size()) {
 121     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 122   }
 123   if (max_heap_byte_size() < initial_heap_byte_size()) {
 124     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
 125   }
 126 
 127   if (PrintGCDetails && Verbose) {
 128     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 129       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 130       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
 131   }
 132 }
 133 
 134 void CollectorPolicy::initialize_perm_generation(PermGen::Name pgnm) {
 135   _permanent_generation =
 136     new PermanentGenerationSpec(pgnm, PermSize, MaxPermSize,
 137                                 SharedReadOnlySize,
 138                                 SharedReadWriteSize,
 139                                 SharedMiscDataSize,
 140                                 SharedMiscCodeSize);
 141   if (_permanent_generation == NULL) {
 142     vm_exit_during_initialization("Unable to allocate gen spec");
 143   }
 144 }
 145 
 146 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 147   bool result = _should_clear_all_soft_refs;
 148   set_should_clear_all_soft_refs(false);
 149   return result;
 150 }
 151 
 152 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 153                                            int max_covered_regions) {
 154   switch (rem_set_name()) {
 155   case GenRemSet::CardTable: {
 156     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
 157     return res;
 158   }
 159   default:
 160     guarantee(false, "unrecognized GenRemSet::Name");
 161     return NULL;
 162   }
 163 }
 164 
 165 void CollectorPolicy::cleared_all_soft_refs() {
 166   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 167   // have been cleared in the last collection but if the gc overhear
 168   // limit continues to be near, SoftRefs should still be cleared.
 169   if (size_policy() != NULL) {
 170     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 171   }
 172   _all_soft_refs_clear = true;
 173 }
 174 
 175 
 176 // GenCollectorPolicy methods.
 177 
 178 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 179   size_t x = base_size / (NewRatio+1);
 180   size_t new_gen_size = x > min_alignment() ?
 181                      align_size_down(x, min_alignment()) :
 182                      min_alignment();
 183   return new_gen_size;
 184 }
 185 
 186 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 187                                                  size_t maximum_size) {
 188   size_t alignment = min_alignment();
 189   size_t max_minus = maximum_size - alignment;
 190   return desired_size < max_minus ? desired_size : max_minus;
 191 }
 192 
 193 
 194 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 195                                                 size_t init_promo_size,
 196                                                 size_t init_survivor_size) {
 197   const double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
 198   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 199                                         init_promo_size,
 200                                         init_survivor_size,
 201                                         max_gc_minor_pause_sec,
 202                                         GCTimeRatio);
 203 }
 204 
 205 size_t GenCollectorPolicy::compute_max_alignment() {
 206   // The card marking array and the offset arrays for old generations are
 207   // committed in os pages as well. Make sure they are entirely full (to
 208   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 209   // byte entry and the os page size is 4096, the maximum heap size should
 210   // be 512*4096 = 2MB aligned.
 211   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
 212 
 213   // Parallel GC does its own alignment of the generations to avoid requiring a
 214   // large page (256M on some platforms) for the permanent generation.  The
 215   // other collectors should also be updated to do their own alignment and then
 216   // this use of lcm() should be removed.
 217   if (UseLargePages && !UseParallelGC) {
 218       // in presence of large pages we have to make sure that our
 219       // alignment is large page aware
 220       alignment = lcm(os::large_page_size(), alignment);
 221   }
 222 
 223   return alignment;
 224 }
 225 
 226 void GenCollectorPolicy::initialize_flags() {
 227   // All sizes must be multiples of the generation granularity.
 228   set_min_alignment((uintx) Generation::GenGrain);
 229   set_max_alignment(compute_max_alignment());
 230   assert(max_alignment() >= min_alignment() &&
 231          max_alignment() % min_alignment() == 0,
 232          "invalid alignment constraints");
 233 
 234   CollectorPolicy::initialize_flags();
 235 
 236   // All generational heaps have a youngest gen; handle those flags here.
 237 
 238   // Adjust max size parameters
 239   if (NewSize > MaxNewSize) {
 240     MaxNewSize = NewSize;
 241   }
 242   NewSize = align_size_down(NewSize, min_alignment());
 243   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
 244 
 245   // Check validity of heap flags
 246   assert(NewSize     % min_alignment() == 0, "eden space alignment");
 247   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
 248 
 249   if (NewSize < 3*min_alignment()) {
 250      // make sure there room for eden and two survivor spaces
 251     vm_exit_during_initialization("Too small new size specified");
 252   }
 253   if (SurvivorRatio < 1 || NewRatio < 1) {
 254     vm_exit_during_initialization("Invalid heap ratio specified");
 255   }
 256 }
 257 
 258 void TwoGenerationCollectorPolicy::initialize_flags() {
 259   GenCollectorPolicy::initialize_flags();
 260 
 261   OldSize = align_size_down(OldSize, min_alignment());
 262   if (NewSize + OldSize > MaxHeapSize) {
 263     MaxHeapSize = NewSize + OldSize;
 264   }
 265   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 266 
 267   always_do_update_barrier = UseConcMarkSweepGC;
 268 
 269   // Check validity of heap flags
 270   assert(OldSize     % min_alignment() == 0, "old space alignment");
 271   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
 272 }
 273 
 274 // Values set on the command line win over any ergonomically
 275 // set command line parameters.
 276 // Ergonomic choice of parameters are done before this
 277 // method is called.  Values for command line parameters such as NewSize
 278 // and MaxNewSize feed those ergonomic choices into this method.
 279 // This method makes the final generation sizings consistent with
 280 // themselves and with overall heap sizings.
 281 // In the absence of explicitly set command line flags, policies
 282 // such as the use of NewRatio are used to size the generation.
 283 void GenCollectorPolicy::initialize_size_info() {
 284   CollectorPolicy::initialize_size_info();
 285 
 286   // min_alignment() is used for alignment within a generation.
 287   // There is additional alignment done down stream for some
 288   // collectors that sometimes causes unwanted rounding up of
 289   // generations sizes.
 290 
 291   // Determine maximum size of gen0
 292 
 293   size_t max_new_size = 0;
 294   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 295     if (MaxNewSize < min_alignment()) {
 296       max_new_size = min_alignment();
 297     }
 298     if (MaxNewSize >= max_heap_byte_size()) {
 299       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
 300                                      min_alignment());
 301       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 302         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 303         "new generation size of " SIZE_FORMAT "k will be used.",
 304         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
 305     } else {
 306       max_new_size = align_size_down(MaxNewSize, min_alignment());
 307     }
 308 
 309   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 310   // specially at this point to just use an ergonomically set
 311   // MaxNewSize to set max_new_size.  For cases with small
 312   // heaps such a policy often did not work because the MaxNewSize
 313   // was larger than the entire heap.  The interpretation given
 314   // to ergonomically set flags is that the flags are set
 315   // by different collectors for their own special needs but
 316   // are not allowed to badly shape the heap.  This allows the
 317   // different collectors to decide what's best for themselves
 318   // without having to factor in the overall heap shape.  It
 319   // can be the case in the future that the collectors would
 320   // only make "wise" ergonomics choices and this policy could
 321   // just accept those choices.  The choices currently made are
 322   // not always "wise".
 323   } else {
 324     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
 325     // Bound the maximum size by NewSize below (since it historically
 326     // would have been NewSize and because the NewRatio calculation could
 327     // yield a size that is too small) and bound it by MaxNewSize above.
 328     // Ergonomics plays here by previously calculating the desired
 329     // NewSize and MaxNewSize.
 330     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 331   }
 332   assert(max_new_size > 0, "All paths should set max_new_size");
 333 
 334   // Given the maximum gen0 size, determine the initial and
 335   // minimum gen0 sizes.
 336 
 337   if (max_heap_byte_size() == min_heap_byte_size()) {
 338     // The maximum and minimum heap sizes are the same so
 339     // the generations minimum and initial must be the
 340     // same as its maximum.
 341     set_min_gen0_size(max_new_size);
 342     set_initial_gen0_size(max_new_size);
 343     set_max_gen0_size(max_new_size);
 344   } else {
 345     size_t desired_new_size = 0;
 346     if (!FLAG_IS_DEFAULT(NewSize)) {
 347       // If NewSize is set ergonomically (for example by cms), it
 348       // would make sense to use it.  If it is used, also use it
 349       // to set the initial size.  Although there is no reason
 350       // the minimum size and the initial size have to be the same,
 351       // the current implementation gets into trouble during the calculation
 352       // of the tenured generation sizes if they are different.
 353       // Note that this makes the initial size and the minimum size
 354       // generally small compared to the NewRatio calculation.
 355       _min_gen0_size = NewSize;
 356       desired_new_size = NewSize;
 357       max_new_size = MAX2(max_new_size, NewSize);
 358     } else {
 359       // For the case where NewSize is the default, use NewRatio
 360       // to size the minimum and initial generation sizes.
 361       // Use the default NewSize as the floor for these values.  If
 362       // NewRatio is overly large, the resulting sizes can be too
 363       // small.
 364       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
 365                           NewSize);
 366       desired_new_size =
 367         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
 368              NewSize);
 369     }
 370 
 371     assert(_min_gen0_size > 0, "Sanity check");
 372     set_initial_gen0_size(desired_new_size);
 373     set_max_gen0_size(max_new_size);
 374 
 375     // At this point the desirable initial and minimum sizes have been
 376     // determined without regard to the maximum sizes.
 377 
 378     // Bound the sizes by the corresponding overall heap sizes.
 379     set_min_gen0_size(
 380       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
 381     set_initial_gen0_size(
 382       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
 383     set_max_gen0_size(
 384       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
 385 
 386     // At this point all three sizes have been checked against the
 387     // maximum sizes but have not been checked for consistency
 388     // among the three.
 389 
 390     // Final check min <= initial <= max
 391     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
 392     set_initial_gen0_size(
 393       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
 394     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
 395   }
 396 
 397   if (PrintGCDetails && Verbose) {
 398     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 399       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 400       min_gen0_size(), initial_gen0_size(), max_gen0_size());
 401   }
 402 }
 403 
 404 // Call this method during the sizing of the gen1 to make
 405 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 406 // the most freedom in sizing because it is done before the
 407 // policy for gen1 is applied.  Once gen1 policies have been applied,
 408 // there may be conflicts in the shape of the heap and this method
 409 // is used to make the needed adjustments.  The application of the
 410 // policies could be more sophisticated (iterative for example) but
 411 // keeping it simple also seems a worthwhile goal.
 412 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 413                                                      size_t* gen1_size_ptr,
 414                                                      size_t heap_size,
 415                                                      size_t min_gen0_size) {
 416   bool result = false;
 417   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 418     if (((*gen0_size_ptr + OldSize) > heap_size) &&
 419        (heap_size - min_gen0_size) >= min_alignment()) {
 420       // Adjust gen0 down to accomodate OldSize
 421       *gen0_size_ptr = heap_size - min_gen0_size;
 422       *gen0_size_ptr =
 423         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
 424              min_alignment());
 425       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 426       result = true;
 427     } else {
 428       *gen1_size_ptr = heap_size - *gen0_size_ptr;
 429       *gen1_size_ptr =
 430         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
 431                        min_alignment());
 432     }
 433   }
 434   return result;
 435 }
 436 
 437 // Minimum sizes of the generations may be different than
 438 // the initial sizes.  An inconsistently is permitted here
 439 // in the total size that can be specified explicitly by
 440 // command line specification of OldSize and NewSize and
 441 // also a command line specification of -Xms.  Issue a warning
 442 // but allow the values to pass.
 443 
 444 void TwoGenerationCollectorPolicy::initialize_size_info() {
 445   GenCollectorPolicy::initialize_size_info();
 446 
 447   // At this point the minimum, initial and maximum sizes
 448   // of the overall heap and of gen0 have been determined.
 449   // The maximum gen1 size can be determined from the maximum gen0
 450   // and maximum heap size since no explicit flags exits
 451   // for setting the gen1 maximum.
 452   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
 453   _max_gen1_size =
 454     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
 455          min_alignment());
 456   // If no explicit command line flag has been set for the
 457   // gen1 size, use what is left for gen1.
 458   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 459     // The user has not specified any value or ergonomics
 460     // has chosen a value (which may or may not be consistent
 461     // with the overall heap size).  In either case make
 462     // the minimum, maximum and initial sizes consistent
 463     // with the gen0 sizes and the overall heap sizes.
 464     assert(min_heap_byte_size() > _min_gen0_size,
 465       "gen0 has an unexpected minimum size");
 466     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
 467     set_min_gen1_size(
 468       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
 469            min_alignment()));
 470     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
 471     set_initial_gen1_size(
 472       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
 473            min_alignment()));
 474 
 475   } else {
 476     // It's been explicitly set on the command line.  Use the
 477     // OldSize and then determine the consequences.
 478     set_min_gen1_size(OldSize);
 479     set_initial_gen1_size(OldSize);
 480 
 481     // If the user has explicitly set an OldSize that is inconsistent
 482     // with other command line flags, issue a warning.
 483     // The generation minimums and the overall heap mimimum should
 484     // be within one heap alignment.
 485     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
 486            min_heap_byte_size()) {
 487       warning("Inconsistency between minimum heap size and minimum "
 488           "generation sizes: using minimum heap = " SIZE_FORMAT,
 489           min_heap_byte_size());
 490     }
 491     if ((OldSize > _max_gen1_size)) {
 492       warning("Inconsistency between maximum heap size and maximum "
 493           "generation sizes: using maximum heap = " SIZE_FORMAT
 494           " -XX:OldSize flag is being ignored",
 495           max_heap_byte_size());
 496     }
 497     // If there is an inconsistency between the OldSize and the minimum and/or
 498     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 499     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 500                           min_heap_byte_size(), OldSize)) {
 501       if (PrintGCDetails && Verbose) {
 502         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 503               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 504               min_gen0_size(), initial_gen0_size(), max_gen0_size());
 505       }
 506     }
 507     // Initial size
 508     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 509                          initial_heap_byte_size(), OldSize)) {
 510       if (PrintGCDetails && Verbose) {
 511         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 512           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 513           min_gen0_size(), initial_gen0_size(), max_gen0_size());
 514       }
 515     }
 516   }
 517   // Enforce the maximum gen1 size.
 518   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
 519 
 520   // Check that min gen1 <= initial gen1 <= max gen1
 521   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
 522   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
 523 
 524   if (PrintGCDetails && Verbose) {
 525     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 526       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 527       min_gen1_size(), initial_gen1_size(), max_gen1_size());
 528   }
 529 }
 530 
 531 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 532                                         bool is_tlab,
 533                                         bool* gc_overhead_limit_was_exceeded) {
 534   GenCollectedHeap *gch = GenCollectedHeap::heap();
 535 
 536   debug_only(gch->check_for_valid_allocation_state());
 537   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 538 
 539   // In general gc_overhead_limit_was_exceeded should be false so
 540   // set it so here and reset it to true only if the gc time
 541   // limit is being exceeded as checked below.
 542   *gc_overhead_limit_was_exceeded = false;
 543 
 544   HeapWord* result = NULL;
 545 
 546   // Loop until the allocation is satisified,
 547   // or unsatisfied after GC.
 548   for (int try_count = 1; /* return or throw */; try_count += 1) {
 549     HandleMark hm; // discard any handles allocated in each iteration
 550 
 551     // First allocation attempt is lock-free.
 552     Generation *gen0 = gch->get_gen(0);
 553     assert(gen0->supports_inline_contig_alloc(),
 554       "Otherwise, must do alloc within heap lock");
 555     if (gen0->should_allocate(size, is_tlab)) {
 556       result = gen0->par_allocate(size, is_tlab);
 557       if (result != NULL) {
 558         assert(gch->is_in_reserved(result), "result not in heap");
 559         return result;
 560       }
 561     }
 562     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 563     {
 564       MutexLocker ml(Heap_lock);
 565       if (PrintGC && Verbose) {
 566         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 567                       " attempting locked slow path allocation");
 568       }
 569       // Note that only large objects get a shot at being
 570       // allocated in later generations.
 571       bool first_only = ! should_try_older_generation_allocation(size);
 572 
 573       result = gch->attempt_allocation(size, is_tlab, first_only);
 574       if (result != NULL) {
 575         assert(gch->is_in_reserved(result), "result not in heap");
 576         return result;
 577       }
 578 
 579       if (GC_locker::is_active_and_needs_gc()) {
 580         if (is_tlab) {
 581           return NULL;  // Caller will retry allocating individual object
 582         }
 583         if (!gch->is_maximal_no_gc()) {
 584           // Try and expand heap to satisfy request
 585           result = expand_heap_and_allocate(size, is_tlab);
 586           // result could be null if we are out of space
 587           if (result != NULL) {
 588             return result;
 589           }
 590         }
 591 
 592         // If this thread is not in a jni critical section, we stall
 593         // the requestor until the critical section has cleared and
 594         // GC allowed. When the critical section clears, a GC is
 595         // initiated by the last thread exiting the critical section; so
 596         // we retry the allocation sequence from the beginning of the loop,
 597         // rather than causing more, now probably unnecessary, GC attempts.
 598         JavaThread* jthr = JavaThread::current();
 599         if (!jthr->in_critical()) {
 600           MutexUnlocker mul(Heap_lock);
 601           // Wait for JNI critical section to be exited
 602           GC_locker::stall_until_clear();
 603           continue;
 604         } else {
 605           if (CheckJNICalls) {
 606             fatal("Possible deadlock due to allocating while"
 607                   " in jni critical section");
 608           }
 609           return NULL;
 610         }
 611       }
 612 
 613       // Read the gc count while the heap lock is held.
 614       gc_count_before = Universe::heap()->total_collections();
 615     }
 616 
 617     VM_GenCollectForAllocation op(size,
 618                                   is_tlab,
 619                                   gc_count_before);
 620     VMThread::execute(&op);
 621     if (op.prologue_succeeded()) {
 622       result = op.result();
 623       if (op.gc_locked()) {
 624          assert(result == NULL, "must be NULL if gc_locked() is true");
 625          continue;  // retry and/or stall as necessary
 626       }
 627 
 628       // Allocation has failed and a collection
 629       // has been done.  If the gc time limit was exceeded the
 630       // this time, return NULL so that an out-of-memory
 631       // will be thrown.  Clear gc_overhead_limit_exceeded
 632       // so that the overhead exceeded does not persist.
 633 
 634       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 635       const bool softrefs_clear = all_soft_refs_clear();
 636       assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
 637       if (limit_exceeded && softrefs_clear) {
 638         *gc_overhead_limit_was_exceeded = true;
 639         size_policy()->set_gc_overhead_limit_exceeded(false);
 640         if (op.result() != NULL) {
 641           CollectedHeap::fill_with_object(op.result(), size);
 642         }
 643         return NULL;
 644       }
 645       assert(result == NULL || gch->is_in_reserved(result),
 646              "result not in heap");
 647       return result;
 648     }
 649 
 650     // Give a warning if we seem to be looping forever.
 651     if ((QueuedAllocationWarningCount > 0) &&
 652         (try_count % QueuedAllocationWarningCount == 0)) {
 653           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 654                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 655     }
 656   }
 657 }
 658 
 659 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 660                                                        bool   is_tlab) {
 661   GenCollectedHeap *gch = GenCollectedHeap::heap();
 662   HeapWord* result = NULL;
 663   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 664     Generation *gen = gch->get_gen(i);
 665     if (gen->should_allocate(size, is_tlab)) {
 666       result = gen->expand_and_allocate(size, is_tlab);
 667     }
 668   }
 669   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 670   return result;
 671 }
 672 
 673 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 674                                                         bool   is_tlab) {
 675   GenCollectedHeap *gch = GenCollectedHeap::heap();
 676   GCCauseSetter x(gch, GCCause::_allocation_failure);
 677   HeapWord* result = NULL;
 678 
 679   assert(size != 0, "Precondition violated");
 680   if (GC_locker::is_active_and_needs_gc()) {
 681     // GC locker is active; instead of a collection we will attempt
 682     // to expand the heap, if there's room for expansion.
 683     if (!gch->is_maximal_no_gc()) {
 684       result = expand_heap_and_allocate(size, is_tlab);
 685     }
 686     return result;   // could be null if we are out of space
 687   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 688     // Do an incremental collection.
 689     gch->do_collection(false            /* full */,
 690                        false            /* clear_all_soft_refs */,
 691                        size             /* size */,
 692                        is_tlab          /* is_tlab */,
 693                        number_of_generations() - 1 /* max_level */);
 694   } else {
 695     if (Verbose && PrintGCDetails) {
 696       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 697     }
 698     // Try a full collection; see delta for bug id 6266275
 699     // for the original code and why this has been simplified
 700     // with from-space allocation criteria modified and
 701     // such allocation moved out of the safepoint path.
 702     gch->do_collection(true             /* full */,
 703                        false            /* clear_all_soft_refs */,
 704                        size             /* size */,
 705                        is_tlab          /* is_tlab */,
 706                        number_of_generations() - 1 /* max_level */);
 707   }
 708 
 709   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 710 
 711   if (result != NULL) {
 712     assert(gch->is_in_reserved(result), "result not in heap");
 713     return result;
 714   }
 715 
 716   // OK, collection failed, try expansion.
 717   result = expand_heap_and_allocate(size, is_tlab);
 718   if (result != NULL) {
 719     return result;
 720   }
 721 
 722   // If we reach this point, we're really out of memory. Try every trick
 723   // we can to reclaim memory. Force collection of soft references. Force
 724   // a complete compaction of the heap. Any additional methods for finding
 725   // free memory should be here, especially if they are expensive. If this
 726   // attempt fails, an OOM exception will be thrown.
 727   {
 728     IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 729 
 730     gch->do_collection(true             /* full */,
 731                        true             /* clear_all_soft_refs */,
 732                        size             /* size */,
 733                        is_tlab          /* is_tlab */,
 734                        number_of_generations() - 1 /* max_level */);
 735   }
 736 
 737   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 738   if (result != NULL) {
 739     assert(gch->is_in_reserved(result), "result not in heap");
 740     return result;
 741   }
 742 
 743   assert(!should_clear_all_soft_refs(),
 744     "Flag should have been handled and cleared prior to this point");
 745 
 746   // What else?  We might try synchronous finalization later.  If the total
 747   // space available is large enough for the allocation, then a more
 748   // complete compaction phase than we've tried so far might be
 749   // appropriate.
 750   return NULL;
 751 }
 752 
 753 // Return true if any of the following is true:
 754 // . the allocation won't fit into the current young gen heap
 755 // . gc locker is occupied (jni critical section)
 756 // . heap memory is tight -- the most recent previous collection
 757 //   was a full collection because a partial collection (would
 758 //   have) failed and is likely to fail again
 759 bool GenCollectorPolicy::should_try_older_generation_allocation(
 760         size_t word_size) const {
 761   GenCollectedHeap* gch = GenCollectedHeap::heap();
 762   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 763   return    (word_size > heap_word_size(gen0_capacity))
 764          || GC_locker::is_active_and_needs_gc()
 765          || gch->incremental_collection_failed();
 766 }
 767 
 768 
 769 //
 770 // MarkSweepPolicy methods
 771 //
 772 
 773 MarkSweepPolicy::MarkSweepPolicy() {
 774   initialize_all();
 775 }
 776 
 777 void MarkSweepPolicy::initialize_generations() {
 778   initialize_perm_generation(PermGen::MarkSweepCompact);
 779   _generations = new GenerationSpecPtr[number_of_generations()];
 780   if (_generations == NULL)
 781     vm_exit_during_initialization("Unable to allocate gen spec");
 782 
 783   if (UseParNewGC && ParallelGCThreads > 0) {
 784     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 785   } else {
 786     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 787   }
 788   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 789 
 790   if (_generations[0] == NULL || _generations[1] == NULL)
 791     vm_exit_during_initialization("Unable to allocate gen spec");
 792 }
 793 
 794 void MarkSweepPolicy::initialize_gc_policy_counters() {
 795   // initialize the policy counters - 2 collectors, 3 generations
 796   if (UseParNewGC && ParallelGCThreads > 0) {
 797     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 798   }
 799   else {
 800     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 801   }
 802 }