1 /*
   2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/biasedLocking.hpp"
  31 #include "runtime/handles.inline.hpp"
  32 #include "runtime/interfaceSupport.hpp"
  33 #include "runtime/mutexLocker.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/objectMonitor.inline.hpp"
  36 #include "runtime/osThread.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "runtime/synchronizer.hpp"
  39 #include "utilities/dtrace.hpp"
  40 #include "utilities/events.hpp"
  41 #include "utilities/preserveException.hpp"
  42 #ifdef TARGET_OS_FAMILY_linux
  43 # include "os_linux.inline.hpp"
  44 # include "thread_linux.inline.hpp"
  45 #endif
  46 #ifdef TARGET_OS_FAMILY_solaris
  47 # include "os_solaris.inline.hpp"
  48 # include "thread_solaris.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_FAMILY_windows
  51 # include "os_windows.inline.hpp"
  52 # include "thread_windows.inline.hpp"
  53 #endif
  54 
  55 #if defined(__GNUC__) && !defined(IA64)
  56   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  57   #define ATTR __attribute__((noinline))
  58 #else
  59   #define ATTR
  60 #endif
  61 
  62 // The "core" versions of monitor enter and exit reside in this file.
  63 // The interpreter and compilers contain specialized transliterated
  64 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  65 // for instance.  If you make changes here, make sure to modify the
  66 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  67 //
  68 //
  69 // -----------------------------------------------------------------------------
  70 
  71 #ifdef DTRACE_ENABLED
  72 
  73 // Only bother with this argument setup if dtrace is available
  74 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  75 
  76 HS_DTRACE_PROBE_DECL5(hotspot, monitor__wait,
  77   jlong, uintptr_t, char*, int, long);
  78 HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
  79   jlong, uintptr_t, char*, int);
  80 
  81 #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
  82   char* bytes = NULL;                                                      \
  83   int len = 0;                                                             \
  84   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  85   Symbol* klassname = ((oop)(klassOop))->klass()->klass_part()->name();  \
  86   if (klassname != NULL) {                                                 \
  87     bytes = (char*)klassname->bytes();                                     \
  88     len = klassname->utf8_length();                                        \
  89   }
  90 
  91 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
  92   {                                                                        \
  93     if (DTraceMonitorProbes) {                                            \
  94       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
  95       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
  96                        (monitor), bytes, len, (millis));                   \
  97     }                                                                      \
  98   }
  99 
 100 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
 101   {                                                                        \
 102     if (DTraceMonitorProbes) {                                            \
 103       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
 104       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
 105                        (uintptr_t)(monitor), bytes, len);                  \
 106     }                                                                      \
 107   }
 108 
 109 #else //  ndef DTRACE_ENABLED
 110 
 111 #define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
 112 #define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
 113 
 114 #endif // ndef DTRACE_ENABLED
 115 
 116 // This exists only as a workaround of dtrace bug 6254741
 117 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 118   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 119   return 0;
 120 }
 121 
 122 #define NINFLATIONLOCKS 256
 123 static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
 124 
 125 ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
 126 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
 127 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL ;
 128 int ObjectSynchronizer::gOmInUseCount = 0;
 129 static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
 130 static volatile int MonitorFreeCount  = 0 ;      // # on gFreeList
 131 static volatile int MonitorPopulation = 0 ;      // # Extant -- in circulation
 132 #define CHAINMARKER ((oop)-1)
 133 
 134 // -----------------------------------------------------------------------------
 135 //  Fast Monitor Enter/Exit
 136 // This the fast monitor enter. The interpreter and compiler use
 137 // some assembly copies of this code. Make sure update those code
 138 // if the following function is changed. The implementation is
 139 // extremely sensitive to race condition. Be careful.
 140 
 141 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
 142  if (UseBiasedLocking) {
 143     if (!SafepointSynchronize::is_at_safepoint()) {
 144       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 145       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 146         return;
 147       }
 148     } else {
 149       assert(!attempt_rebias, "can not rebias toward VM thread");
 150       BiasedLocking::revoke_at_safepoint(obj);
 151     }
 152     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 153  }
 154 
 155  slow_enter (obj, lock, THREAD) ;
 156 }
 157 
 158 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 159   assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
 160   // if displaced header is null, the previous enter is recursive enter, no-op
 161   markOop dhw = lock->displaced_header();
 162   markOop mark ;
 163   if (dhw == NULL) {
 164      // Recursive stack-lock.
 165      // Diagnostics -- Could be: stack-locked, inflating, inflated.
 166      mark = object->mark() ;
 167      assert (!mark->is_neutral(), "invariant") ;
 168      if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
 169         assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
 170      }
 171      if (mark->has_monitor()) {
 172         ObjectMonitor * m = mark->monitor() ;
 173         assert(((oop)(m->object()))->mark() == mark, "invariant") ;
 174         assert(m->is_entered(THREAD), "invariant") ;
 175      }
 176      return ;
 177   }
 178 
 179   mark = object->mark() ;
 180 
 181   // If the object is stack-locked by the current thread, try to
 182   // swing the displaced header from the box back to the mark.
 183   if (mark == (markOop) lock) {
 184      assert (dhw->is_neutral(), "invariant") ;
 185      if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
 186         TEVENT (fast_exit: release stacklock) ;
 187         return;
 188      }
 189   }
 190 
 191   ObjectSynchronizer::inflate(THREAD, object)->exit (THREAD) ;
 192 }
 193 
 194 // -----------------------------------------------------------------------------
 195 // Interpreter/Compiler Slow Case
 196 // This routine is used to handle interpreter/compiler slow case
 197 // We don't need to use fast path here, because it must have been
 198 // failed in the interpreter/compiler code.
 199 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 200   markOop mark = obj->mark();
 201   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 202 
 203   if (mark->is_neutral()) {
 204     // Anticipate successful CAS -- the ST of the displaced mark must
 205     // be visible <= the ST performed by the CAS.
 206     lock->set_displaced_header(mark);
 207     if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
 208       TEVENT (slow_enter: release stacklock) ;
 209       return ;
 210     }
 211     // Fall through to inflate() ...
 212   } else
 213   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 214     assert(lock != mark->locker(), "must not re-lock the same lock");
 215     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 216     lock->set_displaced_header(NULL);
 217     return;
 218   }
 219 
 220 #if 0
 221   // The following optimization isn't particularly useful.
 222   if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
 223     lock->set_displaced_header (NULL) ;
 224     return ;
 225   }
 226 #endif
 227 
 228   // The object header will never be displaced to this lock,
 229   // so it does not matter what the value is, except that it
 230   // must be non-zero to avoid looking like a re-entrant lock,
 231   // and must not look locked either.
 232   lock->set_displaced_header(markOopDesc::unused_mark());
 233   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
 234 }
 235 
 236 // This routine is used to handle interpreter/compiler slow case
 237 // We don't need to use fast path here, because it must have
 238 // failed in the interpreter/compiler code. Simply use the heavy
 239 // weight monitor should be ok, unless someone find otherwise.
 240 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 241   fast_exit (object, lock, THREAD) ;
 242 }
 243 
 244 // -----------------------------------------------------------------------------
 245 // Class Loader  support to workaround deadlocks on the class loader lock objects
 246 // Also used by GC
 247 // complete_exit()/reenter() are used to wait on a nested lock
 248 // i.e. to give up an outer lock completely and then re-enter
 249 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 250 //  1) complete_exit lock1 - saving recursion count
 251 //  2) wait on lock2
 252 //  3) when notified on lock2, unlock lock2
 253 //  4) reenter lock1 with original recursion count
 254 //  5) lock lock2
 255 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 256 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 257   TEVENT (complete_exit) ;
 258   if (UseBiasedLocking) {
 259     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 260     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 261   }
 262 
 263   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 264 
 265   return monitor->complete_exit(THREAD);
 266 }
 267 
 268 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 269 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 270   TEVENT (reenter) ;
 271   if (UseBiasedLocking) {
 272     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 273     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 274   }
 275 
 276   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 277 
 278   monitor->reenter(recursion, THREAD);
 279 }
 280 // -----------------------------------------------------------------------------
 281 // JNI locks on java objects
 282 // NOTE: must use heavy weight monitor to handle jni monitor enter
 283 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
 284   // the current locking is from JNI instead of Java code
 285   TEVENT (jni_enter) ;
 286   if (UseBiasedLocking) {
 287     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 288     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 289   }
 290   THREAD->set_current_pending_monitor_is_from_java(false);
 291   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
 292   THREAD->set_current_pending_monitor_is_from_java(true);
 293 }
 294 
 295 // NOTE: must use heavy weight monitor to handle jni monitor enter
 296 bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
 297   if (UseBiasedLocking) {
 298     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 299     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 300   }
 301 
 302   ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
 303   return monitor->try_enter(THREAD);
 304 }
 305 
 306 
 307 // NOTE: must use heavy weight monitor to handle jni monitor exit
 308 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 309   TEVENT (jni_exit) ;
 310   if (UseBiasedLocking) {
 311     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 312   }
 313   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 314 
 315   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
 316   // If this thread has locked the object, exit the monitor.  Note:  can't use
 317   // monitor->check(CHECK); must exit even if an exception is pending.
 318   if (monitor->check(THREAD)) {
 319      monitor->exit(THREAD);
 320   }
 321 }
 322 
 323 // -----------------------------------------------------------------------------
 324 // Internal VM locks on java objects
 325 // standard constructor, allows locking failures
 326 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 327   _dolock = doLock;
 328   _thread = thread;
 329   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 330   _obj = obj;
 331 
 332   if (_dolock) {
 333     TEVENT (ObjectLocker) ;
 334 
 335     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 336   }
 337 }
 338 
 339 ObjectLocker::~ObjectLocker() {
 340   if (_dolock) {
 341     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 342   }
 343 }
 344 
 345 
 346 // -----------------------------------------------------------------------------
 347 //  Wait/Notify/NotifyAll
 348 // NOTE: must use heavy weight monitor to handle wait()
 349 void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 350   if (UseBiasedLocking) {
 351     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 352     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 353   }
 354   if (millis < 0) {
 355     TEVENT (wait - throw IAX) ;
 356     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 357   }
 358   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 359   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 360   monitor->wait(millis, true, THREAD);
 361 
 362   /* This dummy call is in place to get around dtrace bug 6254741.  Once
 363      that's fixed we can uncomment the following line and remove the call */
 364   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 365   dtrace_waited_probe(monitor, obj, THREAD);
 366 }
 367 
 368 void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
 369   if (UseBiasedLocking) {
 370     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 371     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 372   }
 373   if (millis < 0) {
 374     TEVENT (wait - throw IAX) ;
 375     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 376   }
 377   ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
 378 }
 379 
 380 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 381  if (UseBiasedLocking) {
 382     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 383     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 384   }
 385 
 386   markOop mark = obj->mark();
 387   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 388     return;
 389   }
 390   ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
 391 }
 392 
 393 // NOTE: see comment of notify()
 394 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 395   if (UseBiasedLocking) {
 396     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 397     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 398   }
 399 
 400   markOop mark = obj->mark();
 401   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 402     return;
 403   }
 404   ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
 405 }
 406 
 407 // -----------------------------------------------------------------------------
 408 // Hash Code handling
 409 //
 410 // Performance concern:
 411 // OrderAccess::storestore() calls release() which STs 0 into the global volatile
 412 // OrderAccess::Dummy variable.  This store is unnecessary for correctness.
 413 // Many threads STing into a common location causes considerable cache migration
 414 // or "sloshing" on large SMP system.  As such, I avoid using OrderAccess::storestore()
 415 // until it's repaired.  In some cases OrderAccess::fence() -- which incurs local
 416 // latency on the executing processor -- is a better choice as it scales on SMP
 417 // systems.  See http://blogs.sun.com/dave/entry/biased_locking_in_hotspot for a
 418 // discussion of coherency costs.  Note that all our current reference platforms
 419 // provide strong ST-ST order, so the issue is moot on IA32, x64, and SPARC.
 420 //
 421 // As a general policy we use "volatile" to control compiler-based reordering
 422 // and explicit fences (barriers) to control for architectural reordering performed
 423 // by the CPU(s) or platform.
 424 
 425 static int  MBFence (int x) { OrderAccess::fence(); return x; }
 426 
 427 struct SharedGlobals {
 428     // These are highly shared mostly-read variables.
 429     // To avoid false-sharing they need to be the sole occupants of a $ line.
 430     double padPrefix [8];
 431     volatile int stwRandom ;
 432     volatile int stwCycle ;
 433 
 434     // Hot RW variables -- Sequester to avoid false-sharing
 435     double padSuffix [16];
 436     volatile int hcSequence ;
 437     double padFinal [8] ;
 438 } ;
 439 
 440 static SharedGlobals GVars ;
 441 static int MonitorScavengeThreshold = 1000000 ;
 442 static volatile int ForceMonitorScavenge = 0 ; // Scavenge required and pending
 443 
 444 static markOop ReadStableMark (oop obj) {
 445   markOop mark = obj->mark() ;
 446   if (!mark->is_being_inflated()) {
 447     return mark ;       // normal fast-path return
 448   }
 449 
 450   int its = 0 ;
 451   for (;;) {
 452     markOop mark = obj->mark() ;
 453     if (!mark->is_being_inflated()) {
 454       return mark ;    // normal fast-path return
 455     }
 456 
 457     // The object is being inflated by some other thread.
 458     // The caller of ReadStableMark() must wait for inflation to complete.
 459     // Avoid live-lock
 460     // TODO: consider calling SafepointSynchronize::do_call_back() while
 461     // spinning to see if there's a safepoint pending.  If so, immediately
 462     // yielding or blocking would be appropriate.  Avoid spinning while
 463     // there is a safepoint pending.
 464     // TODO: add inflation contention performance counters.
 465     // TODO: restrict the aggregate number of spinners.
 466 
 467     ++its ;
 468     if (its > 10000 || !os::is_MP()) {
 469        if (its & 1) {
 470          os::NakedYield() ;
 471          TEVENT (Inflate: INFLATING - yield) ;
 472        } else {
 473          // Note that the following code attenuates the livelock problem but is not
 474          // a complete remedy.  A more complete solution would require that the inflating
 475          // thread hold the associated inflation lock.  The following code simply restricts
 476          // the number of spinners to at most one.  We'll have N-2 threads blocked
 477          // on the inflationlock, 1 thread holding the inflation lock and using
 478          // a yield/park strategy, and 1 thread in the midst of inflation.
 479          // A more refined approach would be to change the encoding of INFLATING
 480          // to allow encapsulation of a native thread pointer.  Threads waiting for
 481          // inflation to complete would use CAS to push themselves onto a singly linked
 482          // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 483          // and calling park().  When inflation was complete the thread that accomplished inflation
 484          // would detach the list and set the markword to inflated with a single CAS and
 485          // then for each thread on the list, set the flag and unpark() the thread.
 486          // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 487          // wakes at most one thread whereas we need to wake the entire list.
 488          int ix = (intptr_t(obj) >> 5) & (NINFLATIONLOCKS-1) ;
 489          int YieldThenBlock = 0 ;
 490          assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
 491          assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
 492          Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
 493          while (obj->mark() == markOopDesc::INFLATING()) {
 494            // Beware: NakedYield() is advisory and has almost no effect on some platforms
 495            // so we periodically call Self->_ParkEvent->park(1).
 496            // We use a mixed spin/yield/block mechanism.
 497            if ((YieldThenBlock++) >= 16) {
 498               Thread::current()->_ParkEvent->park(1) ;
 499            } else {
 500               os::NakedYield() ;
 501            }
 502          }
 503          Thread::muxRelease (InflationLocks + ix ) ;
 504          TEVENT (Inflate: INFLATING - yield/park) ;
 505        }
 506     } else {
 507        SpinPause() ;       // SMP-polite spinning
 508     }
 509   }
 510 }
 511 
 512 // hashCode() generation :
 513 //
 514 // Possibilities:
 515 // * MD5Digest of {obj,stwRandom}
 516 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 517 // * A DES- or AES-style SBox[] mechanism
 518 // * One of the Phi-based schemes, such as:
 519 //   2654435761 = 2^32 * Phi (golden ratio)
 520 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 521 // * A variation of Marsaglia's shift-xor RNG scheme.
 522 // * (obj ^ stwRandom) is appealing, but can result
 523 //   in undesirable regularity in the hashCode values of adjacent objects
 524 //   (objects allocated back-to-back, in particular).  This could potentially
 525 //   result in hashtable collisions and reduced hashtable efficiency.
 526 //   There are simple ways to "diffuse" the middle address bits over the
 527 //   generated hashCode values:
 528 //
 529 
 530 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 531   intptr_t value = 0 ;
 532   if (hashCode == 0) {
 533      // This form uses an unguarded global Park-Miller RNG,
 534      // so it's possible for two threads to race and generate the same RNG.
 535      // On MP system we'll have lots of RW access to a global, so the
 536      // mechanism induces lots of coherency traffic.
 537      value = os::random() ;
 538   } else
 539   if (hashCode == 1) {
 540      // This variation has the property of being stable (idempotent)
 541      // between STW operations.  This can be useful in some of the 1-0
 542      // synchronization schemes.
 543      intptr_t addrBits = intptr_t(obj) >> 3 ;
 544      value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
 545   } else
 546   if (hashCode == 2) {
 547      value = 1 ;            // for sensitivity testing
 548   } else
 549   if (hashCode == 3) {
 550      value = ++GVars.hcSequence ;
 551   } else
 552   if (hashCode == 4) {
 553      value = intptr_t(obj) ;
 554   } else {
 555      // Marsaglia's xor-shift scheme with thread-specific state
 556      // This is probably the best overall implementation -- we'll
 557      // likely make this the default in future releases.
 558      unsigned t = Self->_hashStateX ;
 559      t ^= (t << 11) ;
 560      Self->_hashStateX = Self->_hashStateY ;
 561      Self->_hashStateY = Self->_hashStateZ ;
 562      Self->_hashStateZ = Self->_hashStateW ;
 563      unsigned v = Self->_hashStateW ;
 564      v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
 565      Self->_hashStateW = v ;
 566      value = v ;
 567   }
 568 
 569   value &= markOopDesc::hash_mask;
 570   if (value == 0) value = 0xBAD ;
 571   assert (value != markOopDesc::no_hash, "invariant") ;
 572   TEVENT (hashCode: GENERATE) ;
 573   return value;
 574 }
 575 //
 576 intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
 577   if (UseBiasedLocking) {
 578     // NOTE: many places throughout the JVM do not expect a safepoint
 579     // to be taken here, in particular most operations on perm gen
 580     // objects. However, we only ever bias Java instances and all of
 581     // the call sites of identity_hash that might revoke biases have
 582     // been checked to make sure they can handle a safepoint. The
 583     // added check of the bias pattern is to avoid useless calls to
 584     // thread-local storage.
 585     if (obj->mark()->has_bias_pattern()) {
 586       // Box and unbox the raw reference just in case we cause a STW safepoint.
 587       Handle hobj (Self, obj) ;
 588       // Relaxing assertion for bug 6320749.
 589       assert (Universe::verify_in_progress() ||
 590               !SafepointSynchronize::is_at_safepoint(),
 591              "biases should not be seen by VM thread here");
 592       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 593       obj = hobj() ;
 594       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 595     }
 596   }
 597 
 598   // hashCode() is a heap mutator ...
 599   // Relaxing assertion for bug 6320749.
 600   assert (Universe::verify_in_progress() ||
 601           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
 602   assert (Universe::verify_in_progress() ||
 603           Self->is_Java_thread() , "invariant") ;
 604   assert (Universe::verify_in_progress() ||
 605          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
 606 
 607   ObjectMonitor* monitor = NULL;
 608   markOop temp, test;
 609   intptr_t hash;
 610   markOop mark = ReadStableMark (obj);
 611 
 612   // object should remain ineligible for biased locking
 613   assert (!mark->has_bias_pattern(), "invariant") ;
 614 
 615   if (mark->is_neutral()) {
 616     hash = mark->hash();              // this is a normal header
 617     if (hash) {                       // if it has hash, just return it
 618       return hash;
 619     }
 620     hash = get_next_hash(Self, obj);  // allocate a new hash code
 621     temp = mark->copy_set_hash(hash); // merge the hash code into header
 622     // use (machine word version) atomic operation to install the hash
 623     test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
 624     if (test == mark) {
 625       return hash;
 626     }
 627     // If atomic operation failed, we must inflate the header
 628     // into heavy weight monitor. We could add more code here
 629     // for fast path, but it does not worth the complexity.
 630   } else if (mark->has_monitor()) {
 631     monitor = mark->monitor();
 632     temp = monitor->header();
 633     assert (temp->is_neutral(), "invariant") ;
 634     hash = temp->hash();
 635     if (hash) {
 636       return hash;
 637     }
 638     // Skip to the following code to reduce code size
 639   } else if (Self->is_lock_owned((address)mark->locker())) {
 640     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 641     assert (temp->is_neutral(), "invariant") ;
 642     hash = temp->hash();              // by current thread, check if the displaced
 643     if (hash) {                       // header contains hash code
 644       return hash;
 645     }
 646     // WARNING:
 647     //   The displaced header is strictly immutable.
 648     // It can NOT be changed in ANY cases. So we have
 649     // to inflate the header into heavyweight monitor
 650     // even the current thread owns the lock. The reason
 651     // is the BasicLock (stack slot) will be asynchronously
 652     // read by other threads during the inflate() function.
 653     // Any change to stack may not propagate to other threads
 654     // correctly.
 655   }
 656 
 657   // Inflate the monitor to set hash code
 658   monitor = ObjectSynchronizer::inflate(Self, obj);
 659   // Load displaced header and check it has hash code
 660   mark = monitor->header();
 661   assert (mark->is_neutral(), "invariant") ;
 662   hash = mark->hash();
 663   if (hash == 0) {
 664     hash = get_next_hash(Self, obj);
 665     temp = mark->copy_set_hash(hash); // merge hash code into header
 666     assert (temp->is_neutral(), "invariant") ;
 667     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
 668     if (test != mark) {
 669       // The only update to the header in the monitor (outside GC)
 670       // is install the hash code. If someone add new usage of
 671       // displaced header, please update this code
 672       hash = test->hash();
 673       assert (test->is_neutral(), "invariant") ;
 674       assert (hash != 0, "Trivial unexpected object/monitor header usage.");
 675     }
 676   }
 677   // We finally get the hash
 678   return hash;
 679 }
 680 
 681 // Deprecated -- use FastHashCode() instead.
 682 
 683 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 684   return FastHashCode (Thread::current(), obj()) ;
 685 }
 686 
 687 
 688 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 689                                                    Handle h_obj) {
 690   if (UseBiasedLocking) {
 691     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 692     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 693   }
 694 
 695   assert(thread == JavaThread::current(), "Can only be called on current thread");
 696   oop obj = h_obj();
 697 
 698   markOop mark = ReadStableMark (obj) ;
 699 
 700   // Uncontended case, header points to stack
 701   if (mark->has_locker()) {
 702     return thread->is_lock_owned((address)mark->locker());
 703   }
 704   // Contended case, header points to ObjectMonitor (tagged pointer)
 705   if (mark->has_monitor()) {
 706     ObjectMonitor* monitor = mark->monitor();
 707     return monitor->is_entered(thread) != 0 ;
 708   }
 709   // Unlocked case, header in place
 710   assert(mark->is_neutral(), "sanity check");
 711   return false;
 712 }
 713 
 714 // Be aware of this method could revoke bias of the lock object.
 715 // This method querys the ownership of the lock handle specified by 'h_obj'.
 716 // If the current thread owns the lock, it returns owner_self. If no
 717 // thread owns the lock, it returns owner_none. Otherwise, it will return
 718 // ower_other.
 719 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 720 (JavaThread *self, Handle h_obj) {
 721   // The caller must beware this method can revoke bias, and
 722   // revocation can result in a safepoint.
 723   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
 724   assert (self->thread_state() != _thread_blocked , "invariant") ;
 725 
 726   // Possible mark states: neutral, biased, stack-locked, inflated
 727 
 728   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 729     // CASE: biased
 730     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 731     assert(!h_obj->mark()->has_bias_pattern(),
 732            "biases should be revoked by now");
 733   }
 734 
 735   assert(self == JavaThread::current(), "Can only be called on current thread");
 736   oop obj = h_obj();
 737   markOop mark = ReadStableMark (obj) ;
 738 
 739   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 740   if (mark->has_locker()) {
 741     return self->is_lock_owned((address)mark->locker()) ?
 742       owner_self : owner_other;
 743   }
 744 
 745   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
 746   // The Object:ObjectMonitor relationship is stable as long as we're
 747   // not at a safepoint.
 748   if (mark->has_monitor()) {
 749     void * owner = mark->monitor()->_owner ;
 750     if (owner == NULL) return owner_none ;
 751     return (owner == self ||
 752             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 753   }
 754 
 755   // CASE: neutral
 756   assert(mark->is_neutral(), "sanity check");
 757   return owner_none ;           // it's unlocked
 758 }
 759 
 760 // FIXME: jvmti should call this
 761 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
 762   if (UseBiasedLocking) {
 763     if (SafepointSynchronize::is_at_safepoint()) {
 764       BiasedLocking::revoke_at_safepoint(h_obj);
 765     } else {
 766       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 767     }
 768     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 769   }
 770 
 771   oop obj = h_obj();
 772   address owner = NULL;
 773 
 774   markOop mark = ReadStableMark (obj) ;
 775 
 776   // Uncontended case, header points to stack
 777   if (mark->has_locker()) {
 778     owner = (address) mark->locker();
 779   }
 780 
 781   // Contended case, header points to ObjectMonitor (tagged pointer)
 782   if (mark->has_monitor()) {
 783     ObjectMonitor* monitor = mark->monitor();
 784     assert(monitor != NULL, "monitor should be non-null");
 785     owner = (address) monitor->owner();
 786   }
 787 
 788   if (owner != NULL) {
 789     return Threads::owning_thread_from_monitor_owner(owner, doLock);
 790   }
 791 
 792   // Unlocked case, header in place
 793   // Cannot have assertion since this object may have been
 794   // locked by another thread when reaching here.
 795   // assert(mark->is_neutral(), "sanity check");
 796 
 797   return NULL;
 798 }
 799 // Visitors ...
 800 
 801 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 802   ObjectMonitor* block = gBlockList;
 803   ObjectMonitor* mid;
 804   while (block) {
 805     assert(block->object() == CHAINMARKER, "must be a block header");
 806     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 807       mid = block + i;
 808       oop object = (oop) mid->object();
 809       if (object != NULL) {
 810         closure->do_monitor(mid);
 811       }
 812     }
 813     block = (ObjectMonitor*) block->FreeNext;
 814   }
 815 }
 816 
 817 // Get the next block in the block list.
 818 static inline ObjectMonitor* next(ObjectMonitor* block) {
 819   assert(block->object() == CHAINMARKER, "must be a block header");
 820   block = block->FreeNext ;
 821   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
 822   return block;
 823 }
 824 
 825 
 826 void ObjectSynchronizer::oops_do(OopClosure* f) {
 827   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 828   for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
 829     assert(block->object() == CHAINMARKER, "must be a block header");
 830     for (int i = 1; i < _BLOCKSIZE; i++) {
 831       ObjectMonitor* mid = &block[i];
 832       if (mid->object() != NULL) {
 833         f->do_oop((oop*)mid->object_addr());
 834       }
 835     }
 836   }
 837 }
 838 
 839 
 840 // -----------------------------------------------------------------------------
 841 // ObjectMonitor Lifecycle
 842 // -----------------------
 843 // Inflation unlinks monitors from the global gFreeList and
 844 // associates them with objects.  Deflation -- which occurs at
 845 // STW-time -- disassociates idle monitors from objects.  Such
 846 // scavenged monitors are returned to the gFreeList.
 847 //
 848 // The global list is protected by ListLock.  All the critical sections
 849 // are short and operate in constant-time.
 850 //
 851 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
 852 //
 853 // Lifecycle:
 854 // --   unassigned and on the global free list
 855 // --   unassigned and on a thread's private omFreeList
 856 // --   assigned to an object.  The object is inflated and the mark refers
 857 //      to the objectmonitor.
 858 //
 859 
 860 
 861 // Constraining monitor pool growth via MonitorBound ...
 862 //
 863 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
 864 // the rate of scavenging is driven primarily by GC.  As such,  we can find
 865 // an inordinate number of monitors in circulation.
 866 // To avoid that scenario we can artificially induce a STW safepoint
 867 // if the pool appears to be growing past some reasonable bound.
 868 // Generally we favor time in space-time tradeoffs, but as there's no
 869 // natural back-pressure on the # of extant monitors we need to impose some
 870 // type of limit.  Beware that if MonitorBound is set to too low a value
 871 // we could just loop. In addition, if MonitorBound is set to a low value
 872 // we'll incur more safepoints, which are harmful to performance.
 873 // See also: GuaranteedSafepointInterval
 874 //
 875 // The current implementation uses asynchronous VM operations.
 876 //
 877 
 878 static void InduceScavenge (Thread * Self, const char * Whence) {
 879   // Induce STW safepoint to trim monitors
 880   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
 881   // More precisely, trigger an asynchronous STW safepoint as the number
 882   // of active monitors passes the specified threshold.
 883   // TODO: assert thread state is reasonable
 884 
 885   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
 886     if (ObjectMonitor::Knob_Verbose) {
 887       ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
 888       ::fflush(stdout) ;
 889     }
 890     // Induce a 'null' safepoint to scavenge monitors
 891     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
 892     // to the VMthread and have a lifespan longer than that of this activation record.
 893     // The VMThread will delete the op when completed.
 894     VMThread::execute (new VM_ForceAsyncSafepoint()) ;
 895 
 896     if (ObjectMonitor::Knob_Verbose) {
 897       ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
 898       ::fflush(stdout) ;
 899     }
 900   }
 901 }
 902 /* Too slow for general assert or debug
 903 void ObjectSynchronizer::verifyInUse (Thread *Self) {
 904    ObjectMonitor* mid;
 905    int inusetally = 0;
 906    for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
 907      inusetally ++;
 908    }
 909    assert(inusetally == Self->omInUseCount, "inuse count off");
 910 
 911    int freetally = 0;
 912    for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
 913      freetally ++;
 914    }
 915    assert(freetally == Self->omFreeCount, "free count off");
 916 }
 917 */
 918 ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
 919     // A large MAXPRIVATE value reduces both list lock contention
 920     // and list coherency traffic, but also tends to increase the
 921     // number of objectMonitors in circulation as well as the STW
 922     // scavenge costs.  As usual, we lean toward time in space-time
 923     // tradeoffs.
 924     const int MAXPRIVATE = 1024 ;
 925     for (;;) {
 926         ObjectMonitor * m ;
 927 
 928         // 1: try to allocate from the thread's local omFreeList.
 929         // Threads will attempt to allocate first from their local list, then
 930         // from the global list, and only after those attempts fail will the thread
 931         // attempt to instantiate new monitors.   Thread-local free lists take
 932         // heat off the ListLock and improve allocation latency, as well as reducing
 933         // coherency traffic on the shared global list.
 934         m = Self->omFreeList ;
 935         if (m != NULL) {
 936            Self->omFreeList = m->FreeNext ;
 937            Self->omFreeCount -- ;
 938            // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
 939            guarantee (m->object() == NULL, "invariant") ;
 940            if (MonitorInUseLists) {
 941              m->FreeNext = Self->omInUseList;
 942              Self->omInUseList = m;
 943              Self->omInUseCount ++;
 944              // verifyInUse(Self);
 945            } else {
 946              m->FreeNext = NULL;
 947            }
 948            return m ;
 949         }
 950 
 951         // 2: try to allocate from the global gFreeList
 952         // CONSIDER: use muxTry() instead of muxAcquire().
 953         // If the muxTry() fails then drop immediately into case 3.
 954         // If we're using thread-local free lists then try
 955         // to reprovision the caller's free list.
 956         if (gFreeList != NULL) {
 957             // Reprovision the thread's omFreeList.
 958             // Use bulk transfers to reduce the allocation rate and heat
 959             // on various locks.
 960             Thread::muxAcquire (&ListLock, "omAlloc") ;
 961             for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL; ) {
 962                 MonitorFreeCount --;
 963                 ObjectMonitor * take = gFreeList ;
 964                 gFreeList = take->FreeNext ;
 965                 guarantee (take->object() == NULL, "invariant") ;
 966                 guarantee (!take->is_busy(), "invariant") ;
 967                 take->Recycle() ;
 968                 omRelease (Self, take, false) ;
 969             }
 970             Thread::muxRelease (&ListLock) ;
 971             Self->omFreeProvision += 1 + (Self->omFreeProvision/2) ;
 972             if (Self->omFreeProvision > MAXPRIVATE ) Self->omFreeProvision = MAXPRIVATE ;
 973             TEVENT (omFirst - reprovision) ;
 974 
 975             const int mx = MonitorBound ;
 976             if (mx > 0 && (MonitorPopulation-MonitorFreeCount) > mx) {
 977               // We can't safely induce a STW safepoint from omAlloc() as our thread
 978               // state may not be appropriate for such activities and callers may hold
 979               // naked oops, so instead we defer the action.
 980               InduceScavenge (Self, "omAlloc") ;
 981             }
 982             continue;
 983         }
 984 
 985         // 3: allocate a block of new ObjectMonitors
 986         // Both the local and global free lists are empty -- resort to malloc().
 987         // In the current implementation objectMonitors are TSM - immortal.
 988         assert (_BLOCKSIZE > 1, "invariant") ;
 989         ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];
 990 
 991         // NOTE: (almost) no way to recover if allocation failed.
 992         // We might be able to induce a STW safepoint and scavenge enough
 993         // objectMonitors to permit progress.
 994         if (temp == NULL) {
 995             vm_exit_out_of_memory (sizeof (ObjectMonitor[_BLOCKSIZE]), "Allocate ObjectMonitors") ;
 996         }
 997 
 998         // Format the block.
 999         // initialize the linked list, each monitor points to its next
1000         // forming the single linked free list, the very first monitor
1001         // will points to next block, which forms the block list.
1002         // The trick of using the 1st element in the block as gBlockList
1003         // linkage should be reconsidered.  A better implementation would
1004         // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1005 
1006         for (int i = 1; i < _BLOCKSIZE ; i++) {
1007            temp[i].FreeNext = &temp[i+1];
1008         }
1009 
1010         // terminate the last monitor as the end of list
1011         temp[_BLOCKSIZE - 1].FreeNext = NULL ;
1012 
1013         // Element [0] is reserved for global list linkage
1014         temp[0].set_object(CHAINMARKER);
1015 
1016         // Consider carving out this thread's current request from the
1017         // block in hand.  This avoids some lock traffic and redundant
1018         // list activity.
1019 
1020         // Acquire the ListLock to manipulate BlockList and FreeList.
1021         // An Oyama-Taura-Yonezawa scheme might be more efficient.
1022         Thread::muxAcquire (&ListLock, "omAlloc [2]") ;
1023         MonitorPopulation += _BLOCKSIZE-1;
1024         MonitorFreeCount += _BLOCKSIZE-1;
1025 
1026         // Add the new block to the list of extant blocks (gBlockList).
1027         // The very first objectMonitor in a block is reserved and dedicated.
1028         // It serves as blocklist "next" linkage.
1029         temp[0].FreeNext = gBlockList;
1030         gBlockList = temp;
1031 
1032         // Add the new string of objectMonitors to the global free list
1033         temp[_BLOCKSIZE - 1].FreeNext = gFreeList ;
1034         gFreeList = temp + 1;
1035         Thread::muxRelease (&ListLock) ;
1036         TEVENT (Allocate block of monitors) ;
1037     }
1038 }
1039 
1040 // Place "m" on the caller's private per-thread omFreeList.
1041 // In practice there's no need to clamp or limit the number of
1042 // monitors on a thread's omFreeList as the only time we'll call
1043 // omRelease is to return a monitor to the free list after a CAS
1044 // attempt failed.  This doesn't allow unbounded #s of monitors to
1045 // accumulate on a thread's free list.
1046 //
1047 
1048 void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
1049     guarantee (m->object() == NULL, "invariant") ;
1050 
1051     // Remove from omInUseList
1052     if (MonitorInUseLists && fromPerThreadAlloc) {
1053       ObjectMonitor* curmidinuse = NULL;
1054       for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; ) {
1055        if (m == mid) {
1056          // extract from per-thread in-use-list
1057          if (mid == Self->omInUseList) {
1058            Self->omInUseList = mid->FreeNext;
1059          } else if (curmidinuse != NULL) {
1060            curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
1061          }
1062          Self->omInUseCount --;
1063          // verifyInUse(Self);
1064          break;
1065        } else {
1066          curmidinuse = mid;
1067          mid = mid->FreeNext;
1068       }
1069     }
1070   }
1071 
1072   // FreeNext is used for both onInUseList and omFreeList, so clear old before setting new
1073   m->FreeNext = Self->omFreeList ;
1074   Self->omFreeList = m ;
1075   Self->omFreeCount ++ ;
1076 }
1077 
1078 // Return the monitors of a moribund thread's local free list to
1079 // the global free list.  Typically a thread calls omFlush() when
1080 // it's dying.  We could also consider having the VM thread steal
1081 // monitors from threads that have not run java code over a few
1082 // consecutive STW safepoints.  Relatedly, we might decay
1083 // omFreeProvision at STW safepoints.
1084 //
1085 // Also return the monitors of a moribund thread"s omInUseList to
1086 // a global gOmInUseList under the global list lock so these
1087 // will continue to be scanned.
1088 //
1089 // We currently call omFlush() from the Thread:: dtor _after the thread
1090 // has been excised from the thread list and is no longer a mutator.
1091 // That means that omFlush() can run concurrently with a safepoint and
1092 // the scavenge operator.  Calling omFlush() from JavaThread::exit() might
1093 // be a better choice as we could safely reason that that the JVM is
1094 // not at a safepoint at the time of the call, and thus there could
1095 // be not inopportune interleavings between omFlush() and the scavenge
1096 // operator.
1097 
1098 void ObjectSynchronizer::omFlush (Thread * Self) {
1099     ObjectMonitor * List = Self->omFreeList ;  // Null-terminated SLL
1100     Self->omFreeList = NULL ;
1101     ObjectMonitor * Tail = NULL ;
1102     int Tally = 0;
1103     if (List != NULL) {
1104       ObjectMonitor * s ;
1105       for (s = List ; s != NULL ; s = s->FreeNext) {
1106           Tally ++ ;
1107           Tail = s ;
1108           guarantee (s->object() == NULL, "invariant") ;
1109           guarantee (!s->is_busy(), "invariant") ;
1110           s->set_owner (NULL) ;   // redundant but good hygiene
1111           TEVENT (omFlush - Move one) ;
1112       }
1113       guarantee (Tail != NULL && List != NULL, "invariant") ;
1114     }
1115 
1116     ObjectMonitor * InUseList = Self->omInUseList;
1117     ObjectMonitor * InUseTail = NULL ;
1118     int InUseTally = 0;
1119     if (InUseList != NULL) {
1120       Self->omInUseList = NULL;
1121       ObjectMonitor *curom;
1122       for (curom = InUseList; curom != NULL; curom = curom->FreeNext) {
1123         InUseTail = curom;
1124         InUseTally++;
1125       }
1126 // TODO debug
1127       assert(Self->omInUseCount == InUseTally, "inuse count off");
1128       Self->omInUseCount = 0;
1129       guarantee (InUseTail != NULL && InUseList != NULL, "invariant");
1130     }
1131 
1132     Thread::muxAcquire (&ListLock, "omFlush") ;
1133     if (Tail != NULL) {
1134       Tail->FreeNext = gFreeList ;
1135       gFreeList = List ;
1136       MonitorFreeCount += Tally;
1137     }
1138 
1139     if (InUseTail != NULL) {
1140       InUseTail->FreeNext = gOmInUseList;
1141       gOmInUseList = InUseList;
1142       gOmInUseCount += InUseTally;
1143     }
1144 
1145     Thread::muxRelease (&ListLock) ;
1146     TEVENT (omFlush) ;
1147 }
1148 
1149 // Fast path code shared by multiple functions
1150 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
1151   markOop mark = obj->mark();
1152   if (mark->has_monitor()) {
1153     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1154     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
1155     return mark->monitor();
1156   }
1157   return ObjectSynchronizer::inflate(Thread::current(), obj);
1158 }
1159 
1160 
1161 // Note that we could encounter some performance loss through false-sharing as
1162 // multiple locks occupy the same $ line.  Padding might be appropriate.
1163 
1164 
1165 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
1166   // Inflate mutates the heap ...
1167   // Relaxing assertion for bug 6320749.
1168   assert (Universe::verify_in_progress() ||
1169           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
1170 
1171   for (;;) {
1172       const markOop mark = object->mark() ;
1173       assert (!mark->has_bias_pattern(), "invariant") ;
1174 
1175       // The mark can be in one of the following states:
1176       // *  Inflated     - just return
1177       // *  Stack-locked - coerce it to inflated
1178       // *  INFLATING    - busy wait for conversion to complete
1179       // *  Neutral      - aggressively inflate the object.
1180       // *  BIASED       - Illegal.  We should never see this
1181 
1182       // CASE: inflated
1183       if (mark->has_monitor()) {
1184           ObjectMonitor * inf = mark->monitor() ;
1185           assert (inf->header()->is_neutral(), "invariant");
1186           assert (inf->object() == object, "invariant") ;
1187           assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1188           return inf ;
1189       }
1190 
1191       // CASE: inflation in progress - inflating over a stack-lock.
1192       // Some other thread is converting from stack-locked to inflated.
1193       // Only that thread can complete inflation -- other threads must wait.
1194       // The INFLATING value is transient.
1195       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1196       // We could always eliminate polling by parking the thread on some auxiliary list.
1197       if (mark == markOopDesc::INFLATING()) {
1198          TEVENT (Inflate: spin while INFLATING) ;
1199          ReadStableMark(object) ;
1200          continue ;
1201       }
1202 
1203       // CASE: stack-locked
1204       // Could be stack-locked either by this thread or by some other thread.
1205       //
1206       // Note that we allocate the objectmonitor speculatively, _before_ attempting
1207       // to install INFLATING into the mark word.  We originally installed INFLATING,
1208       // allocated the objectmonitor, and then finally STed the address of the
1209       // objectmonitor into the mark.  This was correct, but artificially lengthened
1210       // the interval in which INFLATED appeared in the mark, thus increasing
1211       // the odds of inflation contention.
1212       //
1213       // We now use per-thread private objectmonitor free lists.
1214       // These list are reprovisioned from the global free list outside the
1215       // critical INFLATING...ST interval.  A thread can transfer
1216       // multiple objectmonitors en-mass from the global free list to its local free list.
1217       // This reduces coherency traffic and lock contention on the global free list.
1218       // Using such local free lists, it doesn't matter if the omAlloc() call appears
1219       // before or after the CAS(INFLATING) operation.
1220       // See the comments in omAlloc().
1221 
1222       if (mark->has_locker()) {
1223           ObjectMonitor * m = omAlloc (Self) ;
1224           // Optimistically prepare the objectmonitor - anticipate successful CAS
1225           // We do this before the CAS in order to minimize the length of time
1226           // in which INFLATING appears in the mark.
1227           m->Recycle();
1228           m->_Responsible  = NULL ;
1229           m->OwnerIsThread = 0 ;
1230           m->_recursions   = 0 ;
1231           m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;   // Consider: maintain by type/class
1232 
1233           markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
1234           if (cmp != mark) {
1235              omRelease (Self, m, true) ;
1236              continue ;       // Interference -- just retry
1237           }
1238 
1239           // We've successfully installed INFLATING (0) into the mark-word.
1240           // This is the only case where 0 will appear in a mark-work.
1241           // Only the singular thread that successfully swings the mark-word
1242           // to 0 can perform (or more precisely, complete) inflation.
1243           //
1244           // Why do we CAS a 0 into the mark-word instead of just CASing the
1245           // mark-word from the stack-locked value directly to the new inflated state?
1246           // Consider what happens when a thread unlocks a stack-locked object.
1247           // It attempts to use CAS to swing the displaced header value from the
1248           // on-stack basiclock back into the object header.  Recall also that the
1249           // header value (hashcode, etc) can reside in (a) the object header, or
1250           // (b) a displaced header associated with the stack-lock, or (c) a displaced
1251           // header in an objectMonitor.  The inflate() routine must copy the header
1252           // value from the basiclock on the owner's stack to the objectMonitor, all
1253           // the while preserving the hashCode stability invariants.  If the owner
1254           // decides to release the lock while the value is 0, the unlock will fail
1255           // and control will eventually pass from slow_exit() to inflate.  The owner
1256           // will then spin, waiting for the 0 value to disappear.   Put another way,
1257           // the 0 causes the owner to stall if the owner happens to try to
1258           // drop the lock (restoring the header from the basiclock to the object)
1259           // while inflation is in-progress.  This protocol avoids races that might
1260           // would otherwise permit hashCode values to change or "flicker" for an object.
1261           // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1262           // 0 serves as a "BUSY" inflate-in-progress indicator.
1263 
1264 
1265           // fetch the displaced mark from the owner's stack.
1266           // The owner can't die or unwind past the lock while our INFLATING
1267           // object is in the mark.  Furthermore the owner can't complete
1268           // an unlock on the object, either.
1269           markOop dmw = mark->displaced_mark_helper() ;
1270           assert (dmw->is_neutral(), "invariant") ;
1271 
1272           // Setup monitor fields to proper values -- prepare the monitor
1273           m->set_header(dmw) ;
1274 
1275           // Optimization: if the mark->locker stack address is associated
1276           // with this thread we could simply set m->_owner = Self and
1277           // m->OwnerIsThread = 1. Note that a thread can inflate an object
1278           // that it has stack-locked -- as might happen in wait() -- directly
1279           // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1280           m->set_owner(mark->locker());
1281           m->set_object(object);
1282           // TODO-FIXME: assert BasicLock->dhw != 0.
1283 
1284           // Must preserve store ordering. The monitor state must
1285           // be stable at the time of publishing the monitor address.
1286           guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
1287           object->release_set_mark(markOopDesc::encode(m));
1288 
1289           // Hopefully the performance counters are allocated on distinct cache lines
1290           // to avoid false sharing on MP systems ...
1291           if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
1292           TEVENT(Inflate: overwrite stacklock) ;
1293           if (TraceMonitorInflation) {
1294             if (object->is_instance()) {
1295               ResourceMark rm;
1296               tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1297                 (intptr_t) object, (intptr_t) object->mark(),
1298                 Klass::cast(object->klass())->external_name());
1299             }
1300           }
1301           return m ;
1302       }
1303 
1304       // CASE: neutral
1305       // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1306       // If we know we're inflating for entry it's better to inflate by swinging a
1307       // pre-locked objectMonitor pointer into the object header.   A successful
1308       // CAS inflates the object *and* confers ownership to the inflating thread.
1309       // In the current implementation we use a 2-step mechanism where we CAS()
1310       // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1311       // An inflateTry() method that we could call from fast_enter() and slow_enter()
1312       // would be useful.
1313 
1314       assert (mark->is_neutral(), "invariant");
1315       ObjectMonitor * m = omAlloc (Self) ;
1316       // prepare m for installation - set monitor to initial state
1317       m->Recycle();
1318       m->set_header(mark);
1319       m->set_owner(NULL);
1320       m->set_object(object);
1321       m->OwnerIsThread = 1 ;
1322       m->_recursions   = 0 ;
1323       m->_Responsible  = NULL ;
1324       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;       // consider: keep metastats by type/class
1325 
1326       if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
1327           m->set_object (NULL) ;
1328           m->set_owner  (NULL) ;
1329           m->OwnerIsThread = 0 ;
1330           m->Recycle() ;
1331           omRelease (Self, m, true) ;
1332           m = NULL ;
1333           continue ;
1334           // interference - the markword changed - just retry.
1335           // The state-transitions are one-way, so there's no chance of
1336           // live-lock -- "Inflated" is an absorbing state.
1337       }
1338 
1339       // Hopefully the performance counters are allocated on distinct
1340       // cache lines to avoid false sharing on MP systems ...
1341       if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
1342       TEVENT(Inflate: overwrite neutral) ;
1343       if (TraceMonitorInflation) {
1344         if (object->is_instance()) {
1345           ResourceMark rm;
1346           tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1347             (intptr_t) object, (intptr_t) object->mark(),
1348             Klass::cast(object->klass())->external_name());
1349         }
1350       }
1351       return m ;
1352   }
1353 }
1354 
1355 // Note that we could encounter some performance loss through false-sharing as
1356 // multiple locks occupy the same $ line.  Padding might be appropriate.
1357 
1358 
1359 // Deflate_idle_monitors() is called at all safepoints, immediately
1360 // after all mutators are stopped, but before any objects have moved.
1361 // It traverses the list of known monitors, deflating where possible.
1362 // The scavenged monitor are returned to the monitor free list.
1363 //
1364 // Beware that we scavenge at *every* stop-the-world point.
1365 // Having a large number of monitors in-circulation negatively
1366 // impacts the performance of some applications (e.g., PointBase).
1367 // Broadly, we want to minimize the # of monitors in circulation.
1368 //
1369 // We have added a flag, MonitorInUseLists, which creates a list
1370 // of active monitors for each thread. deflate_idle_monitors()
1371 // only scans the per-thread inuse lists. omAlloc() puts all
1372 // assigned monitors on the per-thread list. deflate_idle_monitors()
1373 // returns the non-busy monitors to the global free list.
1374 // When a thread dies, omFlush() adds the list of active monitors for
1375 // that thread to a global gOmInUseList acquiring the
1376 // global list lock. deflate_idle_monitors() acquires the global
1377 // list lock to scan for non-busy monitors to the global free list.
1378 // An alternative could have used a single global inuse list. The
1379 // downside would have been the additional cost of acquiring the global list lock
1380 // for every omAlloc().
1381 //
1382 // Perversely, the heap size -- and thus the STW safepoint rate --
1383 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1384 // which in turn can mean large(r) numbers of objectmonitors in circulation.
1385 // This is an unfortunate aspect of this design.
1386 //
1387 
1388 enum ManifestConstants {
1389     ClearResponsibleAtSTW   = 0,
1390     MaximumRecheckInterval  = 1000
1391 } ;
1392 
1393 // Deflate a single monitor if not in use
1394 // Return true if deflated, false if in use
1395 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1396                                          ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
1397   bool deflated;
1398   // Normal case ... The monitor is associated with obj.
1399   guarantee (obj->mark() == markOopDesc::encode(mid), "invariant") ;
1400   guarantee (mid == obj->mark()->monitor(), "invariant");
1401   guarantee (mid->header()->is_neutral(), "invariant");
1402 
1403   if (mid->is_busy()) {
1404      if (ClearResponsibleAtSTW) mid->_Responsible = NULL ;
1405      deflated = false;
1406   } else {
1407      // Deflate the monitor if it is no longer being used
1408      // It's idle - scavenge and return to the global free list
1409      // plain old deflation ...
1410      TEVENT (deflate_idle_monitors - scavenge1) ;
1411      if (TraceMonitorInflation) {
1412        if (obj->is_instance()) {
1413          ResourceMark rm;
1414            tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1415                 (intptr_t) obj, (intptr_t) obj->mark(), Klass::cast(obj->klass())->external_name());
1416        }
1417      }
1418 
1419      // Restore the header back to obj
1420      obj->release_set_mark(mid->header());
1421      mid->clear();
1422 
1423      assert (mid->object() == NULL, "invariant") ;
1424 
1425      // Move the object to the working free list defined by FreeHead,FreeTail.
1426      if (*FreeHeadp == NULL) *FreeHeadp = mid;
1427      if (*FreeTailp != NULL) {
1428        ObjectMonitor * prevtail = *FreeTailp;
1429        assert(prevtail->FreeNext == NULL, "cleaned up deflated?"); // TODO KK
1430        prevtail->FreeNext = mid;
1431       }
1432      *FreeTailp = mid;
1433      deflated = true;
1434   }
1435   return deflated;
1436 }
1437 
1438 // Caller acquires ListLock
1439 int ObjectSynchronizer::walk_monitor_list(ObjectMonitor** listheadp,
1440                                           ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
1441   ObjectMonitor* mid;
1442   ObjectMonitor* next;
1443   ObjectMonitor* curmidinuse = NULL;
1444   int deflatedcount = 0;
1445 
1446   for (mid = *listheadp; mid != NULL; ) {
1447      oop obj = (oop) mid->object();
1448      bool deflated = false;
1449      if (obj != NULL) {
1450        deflated = deflate_monitor(mid, obj, FreeHeadp, FreeTailp);
1451      }
1452      if (deflated) {
1453        // extract from per-thread in-use-list
1454        if (mid == *listheadp) {
1455          *listheadp = mid->FreeNext;
1456        } else if (curmidinuse != NULL) {
1457          curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
1458        }
1459        next = mid->FreeNext;
1460        mid->FreeNext = NULL;  // This mid is current tail in the FreeHead list
1461        mid = next;
1462        deflatedcount++;
1463      } else {
1464        curmidinuse = mid;
1465        mid = mid->FreeNext;
1466     }
1467   }
1468   return deflatedcount;
1469 }
1470 
1471 void ObjectSynchronizer::deflate_idle_monitors() {
1472   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1473   int nInuse = 0 ;              // currently associated with objects
1474   int nInCirculation = 0 ;      // extant
1475   int nScavenged = 0 ;          // reclaimed
1476   bool deflated = false;
1477 
1478   ObjectMonitor * FreeHead = NULL ;  // Local SLL of scavenged monitors
1479   ObjectMonitor * FreeTail = NULL ;
1480 
1481   TEVENT (deflate_idle_monitors) ;
1482   // Prevent omFlush from changing mids in Thread dtor's during deflation
1483   // And in case the vm thread is acquiring a lock during a safepoint
1484   // See e.g. 6320749
1485   Thread::muxAcquire (&ListLock, "scavenge - return") ;
1486 
1487   if (MonitorInUseLists) {
1488     int inUse = 0;
1489     for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
1490       nInCirculation+= cur->omInUseCount;
1491       int deflatedcount = walk_monitor_list(cur->omInUseList_addr(), &FreeHead, &FreeTail);
1492       cur->omInUseCount-= deflatedcount;
1493       // verifyInUse(cur);
1494       nScavenged += deflatedcount;
1495       nInuse += cur->omInUseCount;
1496      }
1497 
1498    // For moribund threads, scan gOmInUseList
1499    if (gOmInUseList) {
1500      nInCirculation += gOmInUseCount;
1501      int deflatedcount = walk_monitor_list((ObjectMonitor **)&gOmInUseList, &FreeHead, &FreeTail);
1502      gOmInUseCount-= deflatedcount;
1503      nScavenged += deflatedcount;
1504      nInuse += gOmInUseCount;
1505     }
1506 
1507   } else for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
1508   // Iterate over all extant monitors - Scavenge all idle monitors.
1509     assert(block->object() == CHAINMARKER, "must be a block header");
1510     nInCirculation += _BLOCKSIZE ;
1511     for (int i = 1 ; i < _BLOCKSIZE; i++) {
1512       ObjectMonitor* mid = &block[i];
1513       oop obj = (oop) mid->object();
1514 
1515       if (obj == NULL) {
1516         // The monitor is not associated with an object.
1517         // The monitor should either be a thread-specific private
1518         // free list or the global free list.
1519         // obj == NULL IMPLIES mid->is_busy() == 0
1520         guarantee (!mid->is_busy(), "invariant") ;
1521         continue ;
1522       }
1523       deflated = deflate_monitor(mid, obj, &FreeHead, &FreeTail);
1524 
1525       if (deflated) {
1526         mid->FreeNext = NULL ;
1527         nScavenged ++ ;
1528       } else {
1529         nInuse ++;
1530       }
1531     }
1532   }
1533 
1534   MonitorFreeCount += nScavenged;
1535 
1536   // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.
1537 
1538   if (ObjectMonitor::Knob_Verbose) {
1539     ::printf ("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
1540         nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
1541         MonitorPopulation, MonitorFreeCount) ;
1542     ::fflush(stdout) ;
1543   }
1544 
1545   ForceMonitorScavenge = 0;    // Reset
1546 
1547   // Move the scavenged monitors back to the global free list.
1548   if (FreeHead != NULL) {
1549      guarantee (FreeTail != NULL && nScavenged > 0, "invariant") ;
1550      assert (FreeTail->FreeNext == NULL, "invariant") ;
1551      // constant-time list splice - prepend scavenged segment to gFreeList
1552      FreeTail->FreeNext = gFreeList ;
1553      gFreeList = FreeHead ;
1554   }
1555   Thread::muxRelease (&ListLock) ;
1556 
1557   if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged) ;
1558   if (ObjectMonitor::_sync_MonExtant  != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
1559 
1560   // TODO: Add objectMonitor leak detection.
1561   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
1562   GVars.stwRandom = os::random() ;
1563   GVars.stwCycle ++ ;
1564 }
1565 
1566 // Monitor cleanup on JavaThread::exit
1567 
1568 // Iterate through monitor cache and attempt to release thread's monitors
1569 // Gives up on a particular monitor if an exception occurs, but continues
1570 // the overall iteration, swallowing the exception.
1571 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1572 private:
1573   TRAPS;
1574 
1575 public:
1576   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1577   void do_monitor(ObjectMonitor* mid) {
1578     if (mid->owner() == THREAD) {
1579       (void)mid->complete_exit(CHECK);
1580     }
1581   }
1582 };
1583 
1584 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1585 // ignored.  This is meant to be called during JNI thread detach which assumes
1586 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1587 // Scanning the extant monitor list can be time consuming.
1588 // A simple optimization is to add a per-thread flag that indicates a thread
1589 // called jni_monitorenter() during its lifetime.
1590 //
1591 // Instead of No_Savepoint_Verifier it might be cheaper to
1592 // use an idiom of the form:
1593 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1594 //   <code that must not run at safepoint>
1595 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1596 // Since the tests are extremely cheap we could leave them enabled
1597 // for normal product builds.
1598 
1599 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1600   assert(THREAD == JavaThread::current(), "must be current Java thread");
1601   No_Safepoint_Verifier nsv ;
1602   ReleaseJavaMonitorsClosure rjmc(THREAD);
1603   Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
1604   ObjectSynchronizer::monitors_iterate(&rjmc);
1605   Thread::muxRelease(&ListLock);
1606   THREAD->clear_pending_exception();
1607 }
1608 
1609 //------------------------------------------------------------------------------
1610 // Non-product code
1611 
1612 #ifndef PRODUCT
1613 
1614 void ObjectSynchronizer::trace_locking(Handle locking_obj, bool is_compiled,
1615                                        bool is_method, bool is_locking) {
1616   // Don't know what to do here
1617 }
1618 
1619 // Verify all monitors in the monitor cache, the verification is weak.
1620 void ObjectSynchronizer::verify() {
1621   ObjectMonitor* block = gBlockList;
1622   ObjectMonitor* mid;
1623   while (block) {
1624     assert(block->object() == CHAINMARKER, "must be a block header");
1625     for (int i = 1; i < _BLOCKSIZE; i++) {
1626       mid = block + i;
1627       oop object = (oop) mid->object();
1628       if (object != NULL) {
1629         mid->verify();
1630       }
1631     }
1632     block = (ObjectMonitor*) block->FreeNext;
1633   }
1634 }
1635 
1636 // Check if monitor belongs to the monitor cache
1637 // The list is grow-only so it's *relatively* safe to traverse
1638 // the list of extant blocks without taking a lock.
1639 
1640 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
1641   ObjectMonitor* block = gBlockList;
1642 
1643   while (block) {
1644     assert(block->object() == CHAINMARKER, "must be a block header");
1645     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
1646       address mon = (address) monitor;
1647       address blk = (address) block;
1648       size_t diff = mon - blk;
1649       assert((diff % sizeof(ObjectMonitor)) == 0, "check");
1650       return 1;
1651     }
1652     block = (ObjectMonitor*) block->FreeNext;
1653   }
1654   return 0;
1655 }
1656 
1657 #endif