1 /*
   2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/biasedLocking.hpp"
  31 #include "runtime/handles.inline.hpp"
  32 #include "runtime/interfaceSupport.hpp"
  33 #include "runtime/mutexLocker.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/objectMonitor.inline.hpp"
  36 #include "runtime/osThread.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "runtime/synchronizer.hpp"
  39 #include "utilities/dtrace.hpp"
  40 #include "utilities/events.hpp"
  41 #include "utilities/preserveException.hpp"
  42 #ifdef TARGET_OS_FAMILY_linux
  43 # include "os_linux.inline.hpp"
  44 # include "thread_linux.inline.hpp"
  45 #endif
  46 #ifdef TARGET_OS_FAMILY_solaris
  47 # include "os_solaris.inline.hpp"
  48 # include "thread_solaris.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_FAMILY_windows
  51 # include "os_windows.inline.hpp"
  52 # include "thread_windows.inline.hpp"
  53 #endif
  54 #ifdef TARGET_OS_FAMILY_bsd
  55 # include "os_bsd.inline.hpp"
  56 # include "thread_bsd.inline.hpp"
  57 #endif
  58 
  59 #if defined(__GNUC__) && !defined(IA64)
  60   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  61   #define ATTR __attribute__((noinline))
  62 #else
  63   #define ATTR
  64 #endif
  65 
  66 // The "core" versions of monitor enter and exit reside in this file.
  67 // The interpreter and compilers contain specialized transliterated
  68 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  69 // for instance.  If you make changes here, make sure to modify the
  70 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  71 //
  72 //
  73 // -----------------------------------------------------------------------------
  74 
  75 #ifdef DTRACE_ENABLED
  76 
  77 // Only bother with this argument setup if dtrace is available
  78 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  79 
  80 HS_DTRACE_PROBE_DECL5(hotspot, monitor__wait,
  81   jlong, uintptr_t, char*, int, long);
  82 HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
  83   jlong, uintptr_t, char*, int);
  84 
  85 #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
  86   char* bytes = NULL;                                                      \
  87   int len = 0;                                                             \
  88   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  89   Symbol* klassname = ((oop)(klassOop))->klass()->klass_part()->name();  \
  90   if (klassname != NULL) {                                                 \
  91     bytes = (char*)klassname->bytes();                                     \
  92     len = klassname->utf8_length();                                        \
  93   }
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
  96   {                                                                        \
  97     if (DTraceMonitorProbes) {                                            \
  98       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
  99       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
 100                        (monitor), bytes, len, (millis));                   \
 101     }                                                                      \
 102   }
 103 
 104 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
 105   {                                                                        \
 106     if (DTraceMonitorProbes) {                                            \
 107       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
 108       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
 109                        (uintptr_t)(monitor), bytes, len);                  \
 110     }                                                                      \
 111   }
 112 
 113 #else //  ndef DTRACE_ENABLED
 114 
 115 #define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
 116 #define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
 117 
 118 #endif // ndef DTRACE_ENABLED
 119 
 120 // This exists only as a workaround of dtrace bug 6254741
 121 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 122   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 123   return 0;
 124 }
 125 
 126 #define NINFLATIONLOCKS 256
 127 static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
 128 
 129 ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
 130 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
 131 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL ;
 132 int ObjectSynchronizer::gOmInUseCount = 0;
 133 static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
 134 static volatile int MonitorFreeCount  = 0 ;      // # on gFreeList
 135 static volatile int MonitorPopulation = 0 ;      // # Extant -- in circulation
 136 #define CHAINMARKER ((oop)-1)
 137 
 138 // -----------------------------------------------------------------------------
 139 //  Fast Monitor Enter/Exit
 140 // This the fast monitor enter. The interpreter and compiler use
 141 // some assembly copies of this code. Make sure update those code
 142 // if the following function is changed. The implementation is
 143 // extremely sensitive to race condition. Be careful.
 144 
 145 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
 146  if (UseBiasedLocking) {
 147     if (!SafepointSynchronize::is_at_safepoint()) {
 148       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 149       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 150         return;
 151       }
 152     } else {
 153       assert(!attempt_rebias, "can not rebias toward VM thread");
 154       BiasedLocking::revoke_at_safepoint(obj);
 155     }
 156     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 157  }
 158 
 159  slow_enter (obj, lock, THREAD) ;
 160 }
 161 
 162 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 163   assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
 164   // if displaced header is null, the previous enter is recursive enter, no-op
 165   markOop dhw = lock->displaced_header();
 166   markOop mark ;
 167   if (dhw == NULL) {
 168      // Recursive stack-lock.
 169      // Diagnostics -- Could be: stack-locked, inflating, inflated.
 170      mark = object->mark() ;
 171      assert (!mark->is_neutral(), "invariant") ;
 172      if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
 173         assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
 174      }
 175      if (mark->has_monitor()) {
 176         ObjectMonitor * m = mark->monitor() ;
 177         assert(((oop)(m->object()))->mark() == mark, "invariant") ;
 178         assert(m->is_entered(THREAD), "invariant") ;
 179      }
 180      return ;
 181   }
 182 
 183   mark = object->mark() ;
 184 
 185   // If the object is stack-locked by the current thread, try to
 186   // swing the displaced header from the box back to the mark.
 187   if (mark == (markOop) lock) {
 188      assert (dhw->is_neutral(), "invariant") ;
 189      if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
 190         TEVENT (fast_exit: release stacklock) ;
 191         return;
 192      }
 193   }
 194 
 195   ObjectSynchronizer::inflate(THREAD, object)->exit (THREAD) ;
 196 }
 197 
 198 // -----------------------------------------------------------------------------
 199 // Interpreter/Compiler Slow Case
 200 // This routine is used to handle interpreter/compiler slow case
 201 // We don't need to use fast path here, because it must have been
 202 // failed in the interpreter/compiler code.
 203 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 204   markOop mark = obj->mark();
 205   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 206 
 207   if (mark->is_neutral()) {
 208     // Anticipate successful CAS -- the ST of the displaced mark must
 209     // be visible <= the ST performed by the CAS.
 210     lock->set_displaced_header(mark);
 211     if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
 212       TEVENT (slow_enter: release stacklock) ;
 213       return ;
 214     }
 215     // Fall through to inflate() ...
 216   } else
 217   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 218     assert(lock != mark->locker(), "must not re-lock the same lock");
 219     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 220     lock->set_displaced_header(NULL);
 221     return;
 222   }
 223 
 224 #if 0
 225   // The following optimization isn't particularly useful.
 226   if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
 227     lock->set_displaced_header (NULL) ;
 228     return ;
 229   }
 230 #endif
 231 
 232   // The object header will never be displaced to this lock,
 233   // so it does not matter what the value is, except that it
 234   // must be non-zero to avoid looking like a re-entrant lock,
 235   // and must not look locked either.
 236   lock->set_displaced_header(markOopDesc::unused_mark());
 237   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
 238 }
 239 
 240 // This routine is used to handle interpreter/compiler slow case
 241 // We don't need to use fast path here, because it must have
 242 // failed in the interpreter/compiler code. Simply use the heavy
 243 // weight monitor should be ok, unless someone find otherwise.
 244 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 245   fast_exit (object, lock, THREAD) ;
 246 }
 247 
 248 // -----------------------------------------------------------------------------
 249 // Class Loader  support to workaround deadlocks on the class loader lock objects
 250 // Also used by GC
 251 // complete_exit()/reenter() are used to wait on a nested lock
 252 // i.e. to give up an outer lock completely and then re-enter
 253 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 254 //  1) complete_exit lock1 - saving recursion count
 255 //  2) wait on lock2
 256 //  3) when notified on lock2, unlock lock2
 257 //  4) reenter lock1 with original recursion count
 258 //  5) lock lock2
 259 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 260 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 261   TEVENT (complete_exit) ;
 262   if (UseBiasedLocking) {
 263     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 264     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 265   }
 266 
 267   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 268 
 269   return monitor->complete_exit(THREAD);
 270 }
 271 
 272 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 273 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 274   TEVENT (reenter) ;
 275   if (UseBiasedLocking) {
 276     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 277     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 278   }
 279 
 280   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 281 
 282   monitor->reenter(recursion, THREAD);
 283 }
 284 // -----------------------------------------------------------------------------
 285 // JNI locks on java objects
 286 // NOTE: must use heavy weight monitor to handle jni monitor enter
 287 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
 288   // the current locking is from JNI instead of Java code
 289   TEVENT (jni_enter) ;
 290   if (UseBiasedLocking) {
 291     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 292     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 293   }
 294   THREAD->set_current_pending_monitor_is_from_java(false);
 295   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
 296   THREAD->set_current_pending_monitor_is_from_java(true);
 297 }
 298 
 299 // NOTE: must use heavy weight monitor to handle jni monitor enter
 300 bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
 301   if (UseBiasedLocking) {
 302     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 303     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 304   }
 305 
 306   ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
 307   return monitor->try_enter(THREAD);
 308 }
 309 
 310 
 311 // NOTE: must use heavy weight monitor to handle jni monitor exit
 312 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 313   TEVENT (jni_exit) ;
 314   if (UseBiasedLocking) {
 315     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 316   }
 317   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 318 
 319   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
 320   // If this thread has locked the object, exit the monitor.  Note:  can't use
 321   // monitor->check(CHECK); must exit even if an exception is pending.
 322   if (monitor->check(THREAD)) {
 323      monitor->exit(THREAD);
 324   }
 325 }
 326 
 327 // -----------------------------------------------------------------------------
 328 // Internal VM locks on java objects
 329 // standard constructor, allows locking failures
 330 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 331   _dolock = doLock;
 332   _thread = thread;
 333   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 334   _obj = obj;
 335 
 336   if (_dolock) {
 337     TEVENT (ObjectLocker) ;
 338 
 339     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 340   }
 341 }
 342 
 343 ObjectLocker::~ObjectLocker() {
 344   if (_dolock) {
 345     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 346   }
 347 }
 348 
 349 
 350 // -----------------------------------------------------------------------------
 351 //  Wait/Notify/NotifyAll
 352 // NOTE: must use heavy weight monitor to handle wait()
 353 void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 354   if (UseBiasedLocking) {
 355     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 356     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 357   }
 358   if (millis < 0) {
 359     TEVENT (wait - throw IAX) ;
 360     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 361   }
 362   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 363   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 364   monitor->wait(millis, true, THREAD);
 365 
 366   /* This dummy call is in place to get around dtrace bug 6254741.  Once
 367      that's fixed we can uncomment the following line and remove the call */
 368   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 369   dtrace_waited_probe(monitor, obj, THREAD);
 370 }
 371 
 372 void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
 373   if (UseBiasedLocking) {
 374     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 375     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 376   }
 377   if (millis < 0) {
 378     TEVENT (wait - throw IAX) ;
 379     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 380   }
 381   ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
 382 }
 383 
 384 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 385  if (UseBiasedLocking) {
 386     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 387     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 388   }
 389 
 390   markOop mark = obj->mark();
 391   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 392     return;
 393   }
 394   ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
 395 }
 396 
 397 // NOTE: see comment of notify()
 398 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 399   if (UseBiasedLocking) {
 400     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 401     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 402   }
 403 
 404   markOop mark = obj->mark();
 405   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 406     return;
 407   }
 408   ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
 409 }
 410 
 411 // -----------------------------------------------------------------------------
 412 // Hash Code handling
 413 //
 414 // Performance concern:
 415 // OrderAccess::storestore() calls release() which STs 0 into the global volatile
 416 // OrderAccess::Dummy variable.  This store is unnecessary for correctness.
 417 // Many threads STing into a common location causes considerable cache migration
 418 // or "sloshing" on large SMP system.  As such, I avoid using OrderAccess::storestore()
 419 // until it's repaired.  In some cases OrderAccess::fence() -- which incurs local
 420 // latency on the executing processor -- is a better choice as it scales on SMP
 421 // systems.  See http://blogs.sun.com/dave/entry/biased_locking_in_hotspot for a
 422 // discussion of coherency costs.  Note that all our current reference platforms
 423 // provide strong ST-ST order, so the issue is moot on IA32, x64, and SPARC.
 424 //
 425 // As a general policy we use "volatile" to control compiler-based reordering
 426 // and explicit fences (barriers) to control for architectural reordering performed
 427 // by the CPU(s) or platform.
 428 
 429 static int  MBFence (int x) { OrderAccess::fence(); return x; }
 430 
 431 struct SharedGlobals {
 432     // These are highly shared mostly-read variables.
 433     // To avoid false-sharing they need to be the sole occupants of a $ line.
 434     double padPrefix [8];
 435     volatile int stwRandom ;
 436     volatile int stwCycle ;
 437 
 438     // Hot RW variables -- Sequester to avoid false-sharing
 439     double padSuffix [16];
 440     volatile int hcSequence ;
 441     double padFinal [8] ;
 442 } ;
 443 
 444 static SharedGlobals GVars ;
 445 static int MonitorScavengeThreshold = 1000000 ;
 446 static volatile int ForceMonitorScavenge = 0 ; // Scavenge required and pending
 447 
 448 static markOop ReadStableMark (oop obj) {
 449   markOop mark = obj->mark() ;
 450   if (!mark->is_being_inflated()) {
 451     return mark ;       // normal fast-path return
 452   }
 453 
 454   int its = 0 ;
 455   for (;;) {
 456     markOop mark = obj->mark() ;
 457     if (!mark->is_being_inflated()) {
 458       return mark ;    // normal fast-path return
 459     }
 460 
 461     // The object is being inflated by some other thread.
 462     // The caller of ReadStableMark() must wait for inflation to complete.
 463     // Avoid live-lock
 464     // TODO: consider calling SafepointSynchronize::do_call_back() while
 465     // spinning to see if there's a safepoint pending.  If so, immediately
 466     // yielding or blocking would be appropriate.  Avoid spinning while
 467     // there is a safepoint pending.
 468     // TODO: add inflation contention performance counters.
 469     // TODO: restrict the aggregate number of spinners.
 470 
 471     ++its ;
 472     if (its > 10000 || !os::is_MP()) {
 473        if (its & 1) {
 474          os::NakedYield() ;
 475          TEVENT (Inflate: INFLATING - yield) ;
 476        } else {
 477          // Note that the following code attenuates the livelock problem but is not
 478          // a complete remedy.  A more complete solution would require that the inflating
 479          // thread hold the associated inflation lock.  The following code simply restricts
 480          // the number of spinners to at most one.  We'll have N-2 threads blocked
 481          // on the inflationlock, 1 thread holding the inflation lock and using
 482          // a yield/park strategy, and 1 thread in the midst of inflation.
 483          // A more refined approach would be to change the encoding of INFLATING
 484          // to allow encapsulation of a native thread pointer.  Threads waiting for
 485          // inflation to complete would use CAS to push themselves onto a singly linked
 486          // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 487          // and calling park().  When inflation was complete the thread that accomplished inflation
 488          // would detach the list and set the markword to inflated with a single CAS and
 489          // then for each thread on the list, set the flag and unpark() the thread.
 490          // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 491          // wakes at most one thread whereas we need to wake the entire list.
 492          int ix = (intptr_t(obj) >> 5) & (NINFLATIONLOCKS-1) ;
 493          int YieldThenBlock = 0 ;
 494          assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
 495          assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
 496          Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
 497          while (obj->mark() == markOopDesc::INFLATING()) {
 498            // Beware: NakedYield() is advisory and has almost no effect on some platforms
 499            // so we periodically call Self->_ParkEvent->park(1).
 500            // We use a mixed spin/yield/block mechanism.
 501            if ((YieldThenBlock++) >= 16) {
 502               Thread::current()->_ParkEvent->park(1) ;
 503            } else {
 504               os::NakedYield() ;
 505            }
 506          }
 507          Thread::muxRelease (InflationLocks + ix ) ;
 508          TEVENT (Inflate: INFLATING - yield/park) ;
 509        }
 510     } else {
 511        SpinPause() ;       // SMP-polite spinning
 512     }
 513   }
 514 }
 515 
 516 // hashCode() generation :
 517 //
 518 // Possibilities:
 519 // * MD5Digest of {obj,stwRandom}
 520 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 521 // * A DES- or AES-style SBox[] mechanism
 522 // * One of the Phi-based schemes, such as:
 523 //   2654435761 = 2^32 * Phi (golden ratio)
 524 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 525 // * A variation of Marsaglia's shift-xor RNG scheme.
 526 // * (obj ^ stwRandom) is appealing, but can result
 527 //   in undesirable regularity in the hashCode values of adjacent objects
 528 //   (objects allocated back-to-back, in particular).  This could potentially
 529 //   result in hashtable collisions and reduced hashtable efficiency.
 530 //   There are simple ways to "diffuse" the middle address bits over the
 531 //   generated hashCode values:
 532 //
 533 
 534 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 535   intptr_t value = 0 ;
 536   if (hashCode == 0) {
 537      // This form uses an unguarded global Park-Miller RNG,
 538      // so it's possible for two threads to race and generate the same RNG.
 539      // On MP system we'll have lots of RW access to a global, so the
 540      // mechanism induces lots of coherency traffic.
 541      value = os::random() ;
 542   } else
 543   if (hashCode == 1) {
 544      // This variation has the property of being stable (idempotent)
 545      // between STW operations.  This can be useful in some of the 1-0
 546      // synchronization schemes.
 547      intptr_t addrBits = intptr_t(obj) >> 3 ;
 548      value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
 549   } else
 550   if (hashCode == 2) {
 551      value = 1 ;            // for sensitivity testing
 552   } else
 553   if (hashCode == 3) {
 554      value = ++GVars.hcSequence ;
 555   } else
 556   if (hashCode == 4) {
 557      value = intptr_t(obj) ;
 558   } else {
 559      // Marsaglia's xor-shift scheme with thread-specific state
 560      // This is probably the best overall implementation -- we'll
 561      // likely make this the default in future releases.
 562      unsigned t = Self->_hashStateX ;
 563      t ^= (t << 11) ;
 564      Self->_hashStateX = Self->_hashStateY ;
 565      Self->_hashStateY = Self->_hashStateZ ;
 566      Self->_hashStateZ = Self->_hashStateW ;
 567      unsigned v = Self->_hashStateW ;
 568      v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
 569      Self->_hashStateW = v ;
 570      value = v ;
 571   }
 572 
 573   value &= markOopDesc::hash_mask;
 574   if (value == 0) value = 0xBAD ;
 575   assert (value != markOopDesc::no_hash, "invariant") ;
 576   TEVENT (hashCode: GENERATE) ;
 577   return value;
 578 }
 579 //
 580 intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
 581   if (UseBiasedLocking) {
 582     // NOTE: many places throughout the JVM do not expect a safepoint
 583     // to be taken here, in particular most operations on perm gen
 584     // objects. However, we only ever bias Java instances and all of
 585     // the call sites of identity_hash that might revoke biases have
 586     // been checked to make sure they can handle a safepoint. The
 587     // added check of the bias pattern is to avoid useless calls to
 588     // thread-local storage.
 589     if (obj->mark()->has_bias_pattern()) {
 590       // Box and unbox the raw reference just in case we cause a STW safepoint.
 591       Handle hobj (Self, obj) ;
 592       // Relaxing assertion for bug 6320749.
 593       assert (Universe::verify_in_progress() ||
 594               !SafepointSynchronize::is_at_safepoint(),
 595              "biases should not be seen by VM thread here");
 596       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 597       obj = hobj() ;
 598       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 599     }
 600   }
 601 
 602   // hashCode() is a heap mutator ...
 603   // Relaxing assertion for bug 6320749.
 604   assert (Universe::verify_in_progress() ||
 605           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
 606   assert (Universe::verify_in_progress() ||
 607           Self->is_Java_thread() , "invariant") ;
 608   assert (Universe::verify_in_progress() ||
 609          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
 610 
 611   ObjectMonitor* monitor = NULL;
 612   markOop temp, test;
 613   intptr_t hash;
 614   markOop mark = ReadStableMark (obj);
 615 
 616   // object should remain ineligible for biased locking
 617   assert (!mark->has_bias_pattern(), "invariant") ;
 618 
 619   if (mark->is_neutral()) {
 620     hash = mark->hash();              // this is a normal header
 621     if (hash) {                       // if it has hash, just return it
 622       return hash;
 623     }
 624     hash = get_next_hash(Self, obj);  // allocate a new hash code
 625     temp = mark->copy_set_hash(hash); // merge the hash code into header
 626     // use (machine word version) atomic operation to install the hash
 627     test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
 628     if (test == mark) {
 629       return hash;
 630     }
 631     // If atomic operation failed, we must inflate the header
 632     // into heavy weight monitor. We could add more code here
 633     // for fast path, but it does not worth the complexity.
 634   } else if (mark->has_monitor()) {
 635     monitor = mark->monitor();
 636     temp = monitor->header();
 637     assert (temp->is_neutral(), "invariant") ;
 638     hash = temp->hash();
 639     if (hash) {
 640       return hash;
 641     }
 642     // Skip to the following code to reduce code size
 643   } else if (Self->is_lock_owned((address)mark->locker())) {
 644     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 645     assert (temp->is_neutral(), "invariant") ;
 646     hash = temp->hash();              // by current thread, check if the displaced
 647     if (hash) {                       // header contains hash code
 648       return hash;
 649     }
 650     // WARNING:
 651     //   The displaced header is strictly immutable.
 652     // It can NOT be changed in ANY cases. So we have
 653     // to inflate the header into heavyweight monitor
 654     // even the current thread owns the lock. The reason
 655     // is the BasicLock (stack slot) will be asynchronously
 656     // read by other threads during the inflate() function.
 657     // Any change to stack may not propagate to other threads
 658     // correctly.
 659   }
 660 
 661   // Inflate the monitor to set hash code
 662   monitor = ObjectSynchronizer::inflate(Self, obj);
 663   // Load displaced header and check it has hash code
 664   mark = monitor->header();
 665   assert (mark->is_neutral(), "invariant") ;
 666   hash = mark->hash();
 667   if (hash == 0) {
 668     hash = get_next_hash(Self, obj);
 669     temp = mark->copy_set_hash(hash); // merge hash code into header
 670     assert (temp->is_neutral(), "invariant") ;
 671     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
 672     if (test != mark) {
 673       // The only update to the header in the monitor (outside GC)
 674       // is install the hash code. If someone add new usage of
 675       // displaced header, please update this code
 676       hash = test->hash();
 677       assert (test->is_neutral(), "invariant") ;
 678       assert (hash != 0, "Trivial unexpected object/monitor header usage.");
 679     }
 680   }
 681   // We finally get the hash
 682   return hash;
 683 }
 684 
 685 // Deprecated -- use FastHashCode() instead.
 686 
 687 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 688   return FastHashCode (Thread::current(), obj()) ;
 689 }
 690 
 691 
 692 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 693                                                    Handle h_obj) {
 694   if (UseBiasedLocking) {
 695     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 696     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 697   }
 698 
 699   assert(thread == JavaThread::current(), "Can only be called on current thread");
 700   oop obj = h_obj();
 701 
 702   markOop mark = ReadStableMark (obj) ;
 703 
 704   // Uncontended case, header points to stack
 705   if (mark->has_locker()) {
 706     return thread->is_lock_owned((address)mark->locker());
 707   }
 708   // Contended case, header points to ObjectMonitor (tagged pointer)
 709   if (mark->has_monitor()) {
 710     ObjectMonitor* monitor = mark->monitor();
 711     return monitor->is_entered(thread) != 0 ;
 712   }
 713   // Unlocked case, header in place
 714   assert(mark->is_neutral(), "sanity check");
 715   return false;
 716 }
 717 
 718 // Be aware of this method could revoke bias of the lock object.
 719 // This method querys the ownership of the lock handle specified by 'h_obj'.
 720 // If the current thread owns the lock, it returns owner_self. If no
 721 // thread owns the lock, it returns owner_none. Otherwise, it will return
 722 // ower_other.
 723 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 724 (JavaThread *self, Handle h_obj) {
 725   // The caller must beware this method can revoke bias, and
 726   // revocation can result in a safepoint.
 727   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
 728   assert (self->thread_state() != _thread_blocked , "invariant") ;
 729 
 730   // Possible mark states: neutral, biased, stack-locked, inflated
 731 
 732   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 733     // CASE: biased
 734     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 735     assert(!h_obj->mark()->has_bias_pattern(),
 736            "biases should be revoked by now");
 737   }
 738 
 739   assert(self == JavaThread::current(), "Can only be called on current thread");
 740   oop obj = h_obj();
 741   markOop mark = ReadStableMark (obj) ;
 742 
 743   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 744   if (mark->has_locker()) {
 745     return self->is_lock_owned((address)mark->locker()) ?
 746       owner_self : owner_other;
 747   }
 748 
 749   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
 750   // The Object:ObjectMonitor relationship is stable as long as we're
 751   // not at a safepoint.
 752   if (mark->has_monitor()) {
 753     void * owner = mark->monitor()->_owner ;
 754     if (owner == NULL) return owner_none ;
 755     return (owner == self ||
 756             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 757   }
 758 
 759   // CASE: neutral
 760   assert(mark->is_neutral(), "sanity check");
 761   return owner_none ;           // it's unlocked
 762 }
 763 
 764 // FIXME: jvmti should call this
 765 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
 766   if (UseBiasedLocking) {
 767     if (SafepointSynchronize::is_at_safepoint()) {
 768       BiasedLocking::revoke_at_safepoint(h_obj);
 769     } else {
 770       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 771     }
 772     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 773   }
 774 
 775   oop obj = h_obj();
 776   address owner = NULL;
 777 
 778   markOop mark = ReadStableMark (obj) ;
 779 
 780   // Uncontended case, header points to stack
 781   if (mark->has_locker()) {
 782     owner = (address) mark->locker();
 783   }
 784 
 785   // Contended case, header points to ObjectMonitor (tagged pointer)
 786   if (mark->has_monitor()) {
 787     ObjectMonitor* monitor = mark->monitor();
 788     assert(monitor != NULL, "monitor should be non-null");
 789     owner = (address) monitor->owner();
 790   }
 791 
 792   if (owner != NULL) {
 793     return Threads::owning_thread_from_monitor_owner(owner, doLock);
 794   }
 795 
 796   // Unlocked case, header in place
 797   // Cannot have assertion since this object may have been
 798   // locked by another thread when reaching here.
 799   // assert(mark->is_neutral(), "sanity check");
 800 
 801   return NULL;
 802 }
 803 // Visitors ...
 804 
 805 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 806   ObjectMonitor* block = gBlockList;
 807   ObjectMonitor* mid;
 808   while (block) {
 809     assert(block->object() == CHAINMARKER, "must be a block header");
 810     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 811       mid = block + i;
 812       oop object = (oop) mid->object();
 813       if (object != NULL) {
 814         closure->do_monitor(mid);
 815       }
 816     }
 817     block = (ObjectMonitor*) block->FreeNext;
 818   }
 819 }
 820 
 821 // Get the next block in the block list.
 822 static inline ObjectMonitor* next(ObjectMonitor* block) {
 823   assert(block->object() == CHAINMARKER, "must be a block header");
 824   block = block->FreeNext ;
 825   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
 826   return block;
 827 }
 828 
 829 
 830 void ObjectSynchronizer::oops_do(OopClosure* f) {
 831   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 832   for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
 833     assert(block->object() == CHAINMARKER, "must be a block header");
 834     for (int i = 1; i < _BLOCKSIZE; i++) {
 835       ObjectMonitor* mid = &block[i];
 836       if (mid->object() != NULL) {
 837         f->do_oop((oop*)mid->object_addr());
 838       }
 839     }
 840   }
 841 }
 842 
 843 
 844 // -----------------------------------------------------------------------------
 845 // ObjectMonitor Lifecycle
 846 // -----------------------
 847 // Inflation unlinks monitors from the global gFreeList and
 848 // associates them with objects.  Deflation -- which occurs at
 849 // STW-time -- disassociates idle monitors from objects.  Such
 850 // scavenged monitors are returned to the gFreeList.
 851 //
 852 // The global list is protected by ListLock.  All the critical sections
 853 // are short and operate in constant-time.
 854 //
 855 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
 856 //
 857 // Lifecycle:
 858 // --   unassigned and on the global free list
 859 // --   unassigned and on a thread's private omFreeList
 860 // --   assigned to an object.  The object is inflated and the mark refers
 861 //      to the objectmonitor.
 862 //
 863 
 864 
 865 // Constraining monitor pool growth via MonitorBound ...
 866 //
 867 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
 868 // the rate of scavenging is driven primarily by GC.  As such,  we can find
 869 // an inordinate number of monitors in circulation.
 870 // To avoid that scenario we can artificially induce a STW safepoint
 871 // if the pool appears to be growing past some reasonable bound.
 872 // Generally we favor time in space-time tradeoffs, but as there's no
 873 // natural back-pressure on the # of extant monitors we need to impose some
 874 // type of limit.  Beware that if MonitorBound is set to too low a value
 875 // we could just loop. In addition, if MonitorBound is set to a low value
 876 // we'll incur more safepoints, which are harmful to performance.
 877 // See also: GuaranteedSafepointInterval
 878 //
 879 // The current implementation uses asynchronous VM operations.
 880 //
 881 
 882 static void InduceScavenge (Thread * Self, const char * Whence) {
 883   // Induce STW safepoint to trim monitors
 884   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
 885   // More precisely, trigger an asynchronous STW safepoint as the number
 886   // of active monitors passes the specified threshold.
 887   // TODO: assert thread state is reasonable
 888 
 889   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
 890     if (ObjectMonitor::Knob_Verbose) {
 891       ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
 892       ::fflush(stdout) ;
 893     }
 894     // Induce a 'null' safepoint to scavenge monitors
 895     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
 896     // to the VMthread and have a lifespan longer than that of this activation record.
 897     // The VMThread will delete the op when completed.
 898     VMThread::execute (new VM_ForceAsyncSafepoint()) ;
 899 
 900     if (ObjectMonitor::Knob_Verbose) {
 901       ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
 902       ::fflush(stdout) ;
 903     }
 904   }
 905 }
 906 /* Too slow for general assert or debug
 907 void ObjectSynchronizer::verifyInUse (Thread *Self) {
 908    ObjectMonitor* mid;
 909    int inusetally = 0;
 910    for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
 911      inusetally ++;
 912    }
 913    assert(inusetally == Self->omInUseCount, "inuse count off");
 914 
 915    int freetally = 0;
 916    for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
 917      freetally ++;
 918    }
 919    assert(freetally == Self->omFreeCount, "free count off");
 920 }
 921 */
 922 ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
 923     // A large MAXPRIVATE value reduces both list lock contention
 924     // and list coherency traffic, but also tends to increase the
 925     // number of objectMonitors in circulation as well as the STW
 926     // scavenge costs.  As usual, we lean toward time in space-time
 927     // tradeoffs.
 928     const int MAXPRIVATE = 1024 ;
 929     for (;;) {
 930         ObjectMonitor * m ;
 931 
 932         // 1: try to allocate from the thread's local omFreeList.
 933         // Threads will attempt to allocate first from their local list, then
 934         // from the global list, and only after those attempts fail will the thread
 935         // attempt to instantiate new monitors.   Thread-local free lists take
 936         // heat off the ListLock and improve allocation latency, as well as reducing
 937         // coherency traffic on the shared global list.
 938         m = Self->omFreeList ;
 939         if (m != NULL) {
 940            Self->omFreeList = m->FreeNext ;
 941            Self->omFreeCount -- ;
 942            // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
 943            guarantee (m->object() == NULL, "invariant") ;
 944            if (MonitorInUseLists) {
 945              m->FreeNext = Self->omInUseList;
 946              Self->omInUseList = m;
 947              Self->omInUseCount ++;
 948              // verifyInUse(Self);
 949            } else {
 950              m->FreeNext = NULL;
 951            }
 952            return m ;
 953         }
 954 
 955         // 2: try to allocate from the global gFreeList
 956         // CONSIDER: use muxTry() instead of muxAcquire().
 957         // If the muxTry() fails then drop immediately into case 3.
 958         // If we're using thread-local free lists then try
 959         // to reprovision the caller's free list.
 960         if (gFreeList != NULL) {
 961             // Reprovision the thread's omFreeList.
 962             // Use bulk transfers to reduce the allocation rate and heat
 963             // on various locks.
 964             Thread::muxAcquire (&ListLock, "omAlloc") ;
 965             for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL; ) {
 966                 MonitorFreeCount --;
 967                 ObjectMonitor * take = gFreeList ;
 968                 gFreeList = take->FreeNext ;
 969                 guarantee (take->object() == NULL, "invariant") ;
 970                 guarantee (!take->is_busy(), "invariant") ;
 971                 take->Recycle() ;
 972                 omRelease (Self, take, false) ;
 973             }
 974             Thread::muxRelease (&ListLock) ;
 975             Self->omFreeProvision += 1 + (Self->omFreeProvision/2) ;
 976             if (Self->omFreeProvision > MAXPRIVATE ) Self->omFreeProvision = MAXPRIVATE ;
 977             TEVENT (omFirst - reprovision) ;
 978 
 979             const int mx = MonitorBound ;
 980             if (mx > 0 && (MonitorPopulation-MonitorFreeCount) > mx) {
 981               // We can't safely induce a STW safepoint from omAlloc() as our thread
 982               // state may not be appropriate for such activities and callers may hold
 983               // naked oops, so instead we defer the action.
 984               InduceScavenge (Self, "omAlloc") ;
 985             }
 986             continue;
 987         }
 988 
 989         // 3: allocate a block of new ObjectMonitors
 990         // Both the local and global free lists are empty -- resort to malloc().
 991         // In the current implementation objectMonitors are TSM - immortal.
 992         assert (_BLOCKSIZE > 1, "invariant") ;
 993         ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];
 994 
 995         // NOTE: (almost) no way to recover if allocation failed.
 996         // We might be able to induce a STW safepoint and scavenge enough
 997         // objectMonitors to permit progress.
 998         if (temp == NULL) {
 999             vm_exit_out_of_memory (sizeof (ObjectMonitor[_BLOCKSIZE]), "Allocate ObjectMonitors") ;
1000         }
1001 
1002         // Format the block.
1003         // initialize the linked list, each monitor points to its next
1004         // forming the single linked free list, the very first monitor
1005         // will points to next block, which forms the block list.
1006         // The trick of using the 1st element in the block as gBlockList
1007         // linkage should be reconsidered.  A better implementation would
1008         // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1009 
1010         for (int i = 1; i < _BLOCKSIZE ; i++) {
1011            temp[i].FreeNext = &temp[i+1];
1012         }
1013 
1014         // terminate the last monitor as the end of list
1015         temp[_BLOCKSIZE - 1].FreeNext = NULL ;
1016 
1017         // Element [0] is reserved for global list linkage
1018         temp[0].set_object(CHAINMARKER);
1019 
1020         // Consider carving out this thread's current request from the
1021         // block in hand.  This avoids some lock traffic and redundant
1022         // list activity.
1023 
1024         // Acquire the ListLock to manipulate BlockList and FreeList.
1025         // An Oyama-Taura-Yonezawa scheme might be more efficient.
1026         Thread::muxAcquire (&ListLock, "omAlloc [2]") ;
1027         MonitorPopulation += _BLOCKSIZE-1;
1028         MonitorFreeCount += _BLOCKSIZE-1;
1029 
1030         // Add the new block to the list of extant blocks (gBlockList).
1031         // The very first objectMonitor in a block is reserved and dedicated.
1032         // It serves as blocklist "next" linkage.
1033         temp[0].FreeNext = gBlockList;
1034         gBlockList = temp;
1035 
1036         // Add the new string of objectMonitors to the global free list
1037         temp[_BLOCKSIZE - 1].FreeNext = gFreeList ;
1038         gFreeList = temp + 1;
1039         Thread::muxRelease (&ListLock) ;
1040         TEVENT (Allocate block of monitors) ;
1041     }
1042 }
1043 
1044 // Place "m" on the caller's private per-thread omFreeList.
1045 // In practice there's no need to clamp or limit the number of
1046 // monitors on a thread's omFreeList as the only time we'll call
1047 // omRelease is to return a monitor to the free list after a CAS
1048 // attempt failed.  This doesn't allow unbounded #s of monitors to
1049 // accumulate on a thread's free list.
1050 //
1051 
1052 void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
1053     guarantee (m->object() == NULL, "invariant") ;
1054 
1055     // Remove from omInUseList
1056     if (MonitorInUseLists && fromPerThreadAlloc) {
1057       ObjectMonitor* curmidinuse = NULL;
1058       for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; ) {
1059        if (m == mid) {
1060          // extract from per-thread in-use-list
1061          if (mid == Self->omInUseList) {
1062            Self->omInUseList = mid->FreeNext;
1063          } else if (curmidinuse != NULL) {
1064            curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
1065          }
1066          Self->omInUseCount --;
1067          // verifyInUse(Self);
1068          break;
1069        } else {
1070          curmidinuse = mid;
1071          mid = mid->FreeNext;
1072       }
1073     }
1074   }
1075 
1076   // FreeNext is used for both onInUseList and omFreeList, so clear old before setting new
1077   m->FreeNext = Self->omFreeList ;
1078   Self->omFreeList = m ;
1079   Self->omFreeCount ++ ;
1080 }
1081 
1082 // Return the monitors of a moribund thread's local free list to
1083 // the global free list.  Typically a thread calls omFlush() when
1084 // it's dying.  We could also consider having the VM thread steal
1085 // monitors from threads that have not run java code over a few
1086 // consecutive STW safepoints.  Relatedly, we might decay
1087 // omFreeProvision at STW safepoints.
1088 //
1089 // Also return the monitors of a moribund thread"s omInUseList to
1090 // a global gOmInUseList under the global list lock so these
1091 // will continue to be scanned.
1092 //
1093 // We currently call omFlush() from the Thread:: dtor _after the thread
1094 // has been excised from the thread list and is no longer a mutator.
1095 // That means that omFlush() can run concurrently with a safepoint and
1096 // the scavenge operator.  Calling omFlush() from JavaThread::exit() might
1097 // be a better choice as we could safely reason that that the JVM is
1098 // not at a safepoint at the time of the call, and thus there could
1099 // be not inopportune interleavings between omFlush() and the scavenge
1100 // operator.
1101 
1102 void ObjectSynchronizer::omFlush (Thread * Self) {
1103     ObjectMonitor * List = Self->omFreeList ;  // Null-terminated SLL
1104     Self->omFreeList = NULL ;
1105     ObjectMonitor * Tail = NULL ;
1106     int Tally = 0;
1107     if (List != NULL) {
1108       ObjectMonitor * s ;
1109       for (s = List ; s != NULL ; s = s->FreeNext) {
1110           Tally ++ ;
1111           Tail = s ;
1112           guarantee (s->object() == NULL, "invariant") ;
1113           guarantee (!s->is_busy(), "invariant") ;
1114           s->set_owner (NULL) ;   // redundant but good hygiene
1115           TEVENT (omFlush - Move one) ;
1116       }
1117       guarantee (Tail != NULL && List != NULL, "invariant") ;
1118     }
1119 
1120     ObjectMonitor * InUseList = Self->omInUseList;
1121     ObjectMonitor * InUseTail = NULL ;
1122     int InUseTally = 0;
1123     if (InUseList != NULL) {
1124       Self->omInUseList = NULL;
1125       ObjectMonitor *curom;
1126       for (curom = InUseList; curom != NULL; curom = curom->FreeNext) {
1127         InUseTail = curom;
1128         InUseTally++;
1129       }
1130 // TODO debug
1131       assert(Self->omInUseCount == InUseTally, "inuse count off");
1132       Self->omInUseCount = 0;
1133       guarantee (InUseTail != NULL && InUseList != NULL, "invariant");
1134     }
1135 
1136     Thread::muxAcquire (&ListLock, "omFlush") ;
1137     if (Tail != NULL) {
1138       Tail->FreeNext = gFreeList ;
1139       gFreeList = List ;
1140       MonitorFreeCount += Tally;
1141     }
1142 
1143     if (InUseTail != NULL) {
1144       InUseTail->FreeNext = gOmInUseList;
1145       gOmInUseList = InUseList;
1146       gOmInUseCount += InUseTally;
1147     }
1148 
1149     Thread::muxRelease (&ListLock) ;
1150     TEVENT (omFlush) ;
1151 }
1152 
1153 // Fast path code shared by multiple functions
1154 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
1155   markOop mark = obj->mark();
1156   if (mark->has_monitor()) {
1157     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1158     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
1159     return mark->monitor();
1160   }
1161   return ObjectSynchronizer::inflate(Thread::current(), obj);
1162 }
1163 
1164 
1165 // Note that we could encounter some performance loss through false-sharing as
1166 // multiple locks occupy the same $ line.  Padding might be appropriate.
1167 
1168 
1169 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
1170   // Inflate mutates the heap ...
1171   // Relaxing assertion for bug 6320749.
1172   assert (Universe::verify_in_progress() ||
1173           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
1174 
1175   for (;;) {
1176       const markOop mark = object->mark() ;
1177       assert (!mark->has_bias_pattern(), "invariant") ;
1178 
1179       // The mark can be in one of the following states:
1180       // *  Inflated     - just return
1181       // *  Stack-locked - coerce it to inflated
1182       // *  INFLATING    - busy wait for conversion to complete
1183       // *  Neutral      - aggressively inflate the object.
1184       // *  BIASED       - Illegal.  We should never see this
1185 
1186       // CASE: inflated
1187       if (mark->has_monitor()) {
1188           ObjectMonitor * inf = mark->monitor() ;
1189           assert (inf->header()->is_neutral(), "invariant");
1190           assert (inf->object() == object, "invariant") ;
1191           assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1192           return inf ;
1193       }
1194 
1195       // CASE: inflation in progress - inflating over a stack-lock.
1196       // Some other thread is converting from stack-locked to inflated.
1197       // Only that thread can complete inflation -- other threads must wait.
1198       // The INFLATING value is transient.
1199       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1200       // We could always eliminate polling by parking the thread on some auxiliary list.
1201       if (mark == markOopDesc::INFLATING()) {
1202          TEVENT (Inflate: spin while INFLATING) ;
1203          ReadStableMark(object) ;
1204          continue ;
1205       }
1206 
1207       // CASE: stack-locked
1208       // Could be stack-locked either by this thread or by some other thread.
1209       //
1210       // Note that we allocate the objectmonitor speculatively, _before_ attempting
1211       // to install INFLATING into the mark word.  We originally installed INFLATING,
1212       // allocated the objectmonitor, and then finally STed the address of the
1213       // objectmonitor into the mark.  This was correct, but artificially lengthened
1214       // the interval in which INFLATED appeared in the mark, thus increasing
1215       // the odds of inflation contention.
1216       //
1217       // We now use per-thread private objectmonitor free lists.
1218       // These list are reprovisioned from the global free list outside the
1219       // critical INFLATING...ST interval.  A thread can transfer
1220       // multiple objectmonitors en-mass from the global free list to its local free list.
1221       // This reduces coherency traffic and lock contention on the global free list.
1222       // Using such local free lists, it doesn't matter if the omAlloc() call appears
1223       // before or after the CAS(INFLATING) operation.
1224       // See the comments in omAlloc().
1225 
1226       if (mark->has_locker()) {
1227           ObjectMonitor * m = omAlloc (Self) ;
1228           // Optimistically prepare the objectmonitor - anticipate successful CAS
1229           // We do this before the CAS in order to minimize the length of time
1230           // in which INFLATING appears in the mark.
1231           m->Recycle();
1232           m->_Responsible  = NULL ;
1233           m->OwnerIsThread = 0 ;
1234           m->_recursions   = 0 ;
1235           m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;   // Consider: maintain by type/class
1236 
1237           markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
1238           if (cmp != mark) {
1239              omRelease (Self, m, true) ;
1240              continue ;       // Interference -- just retry
1241           }
1242 
1243           // We've successfully installed INFLATING (0) into the mark-word.
1244           // This is the only case where 0 will appear in a mark-work.
1245           // Only the singular thread that successfully swings the mark-word
1246           // to 0 can perform (or more precisely, complete) inflation.
1247           //
1248           // Why do we CAS a 0 into the mark-word instead of just CASing the
1249           // mark-word from the stack-locked value directly to the new inflated state?
1250           // Consider what happens when a thread unlocks a stack-locked object.
1251           // It attempts to use CAS to swing the displaced header value from the
1252           // on-stack basiclock back into the object header.  Recall also that the
1253           // header value (hashcode, etc) can reside in (a) the object header, or
1254           // (b) a displaced header associated with the stack-lock, or (c) a displaced
1255           // header in an objectMonitor.  The inflate() routine must copy the header
1256           // value from the basiclock on the owner's stack to the objectMonitor, all
1257           // the while preserving the hashCode stability invariants.  If the owner
1258           // decides to release the lock while the value is 0, the unlock will fail
1259           // and control will eventually pass from slow_exit() to inflate.  The owner
1260           // will then spin, waiting for the 0 value to disappear.   Put another way,
1261           // the 0 causes the owner to stall if the owner happens to try to
1262           // drop the lock (restoring the header from the basiclock to the object)
1263           // while inflation is in-progress.  This protocol avoids races that might
1264           // would otherwise permit hashCode values to change or "flicker" for an object.
1265           // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1266           // 0 serves as a "BUSY" inflate-in-progress indicator.
1267 
1268 
1269           // fetch the displaced mark from the owner's stack.
1270           // The owner can't die or unwind past the lock while our INFLATING
1271           // object is in the mark.  Furthermore the owner can't complete
1272           // an unlock on the object, either.
1273           markOop dmw = mark->displaced_mark_helper() ;
1274           assert (dmw->is_neutral(), "invariant") ;
1275 
1276           // Setup monitor fields to proper values -- prepare the monitor
1277           m->set_header(dmw) ;
1278 
1279           // Optimization: if the mark->locker stack address is associated
1280           // with this thread we could simply set m->_owner = Self and
1281           // m->OwnerIsThread = 1. Note that a thread can inflate an object
1282           // that it has stack-locked -- as might happen in wait() -- directly
1283           // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1284           m->set_owner(mark->locker());
1285           m->set_object(object);
1286           // TODO-FIXME: assert BasicLock->dhw != 0.
1287 
1288           // Must preserve store ordering. The monitor state must
1289           // be stable at the time of publishing the monitor address.
1290           guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
1291           object->release_set_mark(markOopDesc::encode(m));
1292 
1293           // Hopefully the performance counters are allocated on distinct cache lines
1294           // to avoid false sharing on MP systems ...
1295           if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
1296           TEVENT(Inflate: overwrite stacklock) ;
1297           if (TraceMonitorInflation) {
1298             if (object->is_instance()) {
1299               ResourceMark rm;
1300               tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1301                 (intptr_t) object, (intptr_t) object->mark(),
1302                 Klass::cast(object->klass())->external_name());
1303             }
1304           }
1305           return m ;
1306       }
1307 
1308       // CASE: neutral
1309       // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1310       // If we know we're inflating for entry it's better to inflate by swinging a
1311       // pre-locked objectMonitor pointer into the object header.   A successful
1312       // CAS inflates the object *and* confers ownership to the inflating thread.
1313       // In the current implementation we use a 2-step mechanism where we CAS()
1314       // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1315       // An inflateTry() method that we could call from fast_enter() and slow_enter()
1316       // would be useful.
1317 
1318       assert (mark->is_neutral(), "invariant");
1319       ObjectMonitor * m = omAlloc (Self) ;
1320       // prepare m for installation - set monitor to initial state
1321       m->Recycle();
1322       m->set_header(mark);
1323       m->set_owner(NULL);
1324       m->set_object(object);
1325       m->OwnerIsThread = 1 ;
1326       m->_recursions   = 0 ;
1327       m->_Responsible  = NULL ;
1328       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;       // consider: keep metastats by type/class
1329 
1330       if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
1331           m->set_object (NULL) ;
1332           m->set_owner  (NULL) ;
1333           m->OwnerIsThread = 0 ;
1334           m->Recycle() ;
1335           omRelease (Self, m, true) ;
1336           m = NULL ;
1337           continue ;
1338           // interference - the markword changed - just retry.
1339           // The state-transitions are one-way, so there's no chance of
1340           // live-lock -- "Inflated" is an absorbing state.
1341       }
1342 
1343       // Hopefully the performance counters are allocated on distinct
1344       // cache lines to avoid false sharing on MP systems ...
1345       if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
1346       TEVENT(Inflate: overwrite neutral) ;
1347       if (TraceMonitorInflation) {
1348         if (object->is_instance()) {
1349           ResourceMark rm;
1350           tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1351             (intptr_t) object, (intptr_t) object->mark(),
1352             Klass::cast(object->klass())->external_name());
1353         }
1354       }
1355       return m ;
1356   }
1357 }
1358 
1359 // Note that we could encounter some performance loss through false-sharing as
1360 // multiple locks occupy the same $ line.  Padding might be appropriate.
1361 
1362 
1363 // Deflate_idle_monitors() is called at all safepoints, immediately
1364 // after all mutators are stopped, but before any objects have moved.
1365 // It traverses the list of known monitors, deflating where possible.
1366 // The scavenged monitor are returned to the monitor free list.
1367 //
1368 // Beware that we scavenge at *every* stop-the-world point.
1369 // Having a large number of monitors in-circulation negatively
1370 // impacts the performance of some applications (e.g., PointBase).
1371 // Broadly, we want to minimize the # of monitors in circulation.
1372 //
1373 // We have added a flag, MonitorInUseLists, which creates a list
1374 // of active monitors for each thread. deflate_idle_monitors()
1375 // only scans the per-thread inuse lists. omAlloc() puts all
1376 // assigned monitors on the per-thread list. deflate_idle_monitors()
1377 // returns the non-busy monitors to the global free list.
1378 // When a thread dies, omFlush() adds the list of active monitors for
1379 // that thread to a global gOmInUseList acquiring the
1380 // global list lock. deflate_idle_monitors() acquires the global
1381 // list lock to scan for non-busy monitors to the global free list.
1382 // An alternative could have used a single global inuse list. The
1383 // downside would have been the additional cost of acquiring the global list lock
1384 // for every omAlloc().
1385 //
1386 // Perversely, the heap size -- and thus the STW safepoint rate --
1387 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1388 // which in turn can mean large(r) numbers of objectmonitors in circulation.
1389 // This is an unfortunate aspect of this design.
1390 //
1391 
1392 enum ManifestConstants {
1393     ClearResponsibleAtSTW   = 0,
1394     MaximumRecheckInterval  = 1000
1395 } ;
1396 
1397 // Deflate a single monitor if not in use
1398 // Return true if deflated, false if in use
1399 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1400                                          ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
1401   bool deflated;
1402   // Normal case ... The monitor is associated with obj.
1403   guarantee (obj->mark() == markOopDesc::encode(mid), "invariant") ;
1404   guarantee (mid == obj->mark()->monitor(), "invariant");
1405   guarantee (mid->header()->is_neutral(), "invariant");
1406 
1407   if (mid->is_busy()) {
1408      if (ClearResponsibleAtSTW) mid->_Responsible = NULL ;
1409      deflated = false;
1410   } else {
1411      // Deflate the monitor if it is no longer being used
1412      // It's idle - scavenge and return to the global free list
1413      // plain old deflation ...
1414      TEVENT (deflate_idle_monitors - scavenge1) ;
1415      if (TraceMonitorInflation) {
1416        if (obj->is_instance()) {
1417          ResourceMark rm;
1418            tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1419                 (intptr_t) obj, (intptr_t) obj->mark(), Klass::cast(obj->klass())->external_name());
1420        }
1421      }
1422 
1423      // Restore the header back to obj
1424      obj->release_set_mark(mid->header());
1425      mid->clear();
1426 
1427      assert (mid->object() == NULL, "invariant") ;
1428 
1429      // Move the object to the working free list defined by FreeHead,FreeTail.
1430      if (*FreeHeadp == NULL) *FreeHeadp = mid;
1431      if (*FreeTailp != NULL) {
1432        ObjectMonitor * prevtail = *FreeTailp;
1433        assert(prevtail->FreeNext == NULL, "cleaned up deflated?"); // TODO KK
1434        prevtail->FreeNext = mid;
1435       }
1436      *FreeTailp = mid;
1437      deflated = true;
1438   }
1439   return deflated;
1440 }
1441 
1442 // Caller acquires ListLock
1443 int ObjectSynchronizer::walk_monitor_list(ObjectMonitor** listheadp,
1444                                           ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
1445   ObjectMonitor* mid;
1446   ObjectMonitor* next;
1447   ObjectMonitor* curmidinuse = NULL;
1448   int deflatedcount = 0;
1449 
1450   for (mid = *listheadp; mid != NULL; ) {
1451      oop obj = (oop) mid->object();
1452      bool deflated = false;
1453      if (obj != NULL) {
1454        deflated = deflate_monitor(mid, obj, FreeHeadp, FreeTailp);
1455      }
1456      if (deflated) {
1457        // extract from per-thread in-use-list
1458        if (mid == *listheadp) {
1459          *listheadp = mid->FreeNext;
1460        } else if (curmidinuse != NULL) {
1461          curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
1462        }
1463        next = mid->FreeNext;
1464        mid->FreeNext = NULL;  // This mid is current tail in the FreeHead list
1465        mid = next;
1466        deflatedcount++;
1467      } else {
1468        curmidinuse = mid;
1469        mid = mid->FreeNext;
1470     }
1471   }
1472   return deflatedcount;
1473 }
1474 
1475 void ObjectSynchronizer::deflate_idle_monitors() {
1476   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1477   int nInuse = 0 ;              // currently associated with objects
1478   int nInCirculation = 0 ;      // extant
1479   int nScavenged = 0 ;          // reclaimed
1480   bool deflated = false;
1481 
1482   ObjectMonitor * FreeHead = NULL ;  // Local SLL of scavenged monitors
1483   ObjectMonitor * FreeTail = NULL ;
1484 
1485   TEVENT (deflate_idle_monitors) ;
1486   // Prevent omFlush from changing mids in Thread dtor's during deflation
1487   // And in case the vm thread is acquiring a lock during a safepoint
1488   // See e.g. 6320749
1489   Thread::muxAcquire (&ListLock, "scavenge - return") ;
1490 
1491   if (MonitorInUseLists) {
1492     int inUse = 0;
1493     for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
1494       nInCirculation+= cur->omInUseCount;
1495       int deflatedcount = walk_monitor_list(cur->omInUseList_addr(), &FreeHead, &FreeTail);
1496       cur->omInUseCount-= deflatedcount;
1497       // verifyInUse(cur);
1498       nScavenged += deflatedcount;
1499       nInuse += cur->omInUseCount;
1500      }
1501 
1502    // For moribund threads, scan gOmInUseList
1503    if (gOmInUseList) {
1504      nInCirculation += gOmInUseCount;
1505      int deflatedcount = walk_monitor_list((ObjectMonitor **)&gOmInUseList, &FreeHead, &FreeTail);
1506      gOmInUseCount-= deflatedcount;
1507      nScavenged += deflatedcount;
1508      nInuse += gOmInUseCount;
1509     }
1510 
1511   } else for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
1512   // Iterate over all extant monitors - Scavenge all idle monitors.
1513     assert(block->object() == CHAINMARKER, "must be a block header");
1514     nInCirculation += _BLOCKSIZE ;
1515     for (int i = 1 ; i < _BLOCKSIZE; i++) {
1516       ObjectMonitor* mid = &block[i];
1517       oop obj = (oop) mid->object();
1518 
1519       if (obj == NULL) {
1520         // The monitor is not associated with an object.
1521         // The monitor should either be a thread-specific private
1522         // free list or the global free list.
1523         // obj == NULL IMPLIES mid->is_busy() == 0
1524         guarantee (!mid->is_busy(), "invariant") ;
1525         continue ;
1526       }
1527       deflated = deflate_monitor(mid, obj, &FreeHead, &FreeTail);
1528 
1529       if (deflated) {
1530         mid->FreeNext = NULL ;
1531         nScavenged ++ ;
1532       } else {
1533         nInuse ++;
1534       }
1535     }
1536   }
1537 
1538   MonitorFreeCount += nScavenged;
1539 
1540   // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.
1541 
1542   if (ObjectMonitor::Knob_Verbose) {
1543     ::printf ("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
1544         nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
1545         MonitorPopulation, MonitorFreeCount) ;
1546     ::fflush(stdout) ;
1547   }
1548 
1549   ForceMonitorScavenge = 0;    // Reset
1550 
1551   // Move the scavenged monitors back to the global free list.
1552   if (FreeHead != NULL) {
1553      guarantee (FreeTail != NULL && nScavenged > 0, "invariant") ;
1554      assert (FreeTail->FreeNext == NULL, "invariant") ;
1555      // constant-time list splice - prepend scavenged segment to gFreeList
1556      FreeTail->FreeNext = gFreeList ;
1557      gFreeList = FreeHead ;
1558   }
1559   Thread::muxRelease (&ListLock) ;
1560 
1561   if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged) ;
1562   if (ObjectMonitor::_sync_MonExtant  != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
1563 
1564   // TODO: Add objectMonitor leak detection.
1565   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
1566   GVars.stwRandom = os::random() ;
1567   GVars.stwCycle ++ ;
1568 }
1569 
1570 // Monitor cleanup on JavaThread::exit
1571 
1572 // Iterate through monitor cache and attempt to release thread's monitors
1573 // Gives up on a particular monitor if an exception occurs, but continues
1574 // the overall iteration, swallowing the exception.
1575 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1576 private:
1577   TRAPS;
1578 
1579 public:
1580   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1581   void do_monitor(ObjectMonitor* mid) {
1582     if (mid->owner() == THREAD) {
1583       (void)mid->complete_exit(CHECK);
1584     }
1585   }
1586 };
1587 
1588 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1589 // ignored.  This is meant to be called during JNI thread detach which assumes
1590 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1591 // Scanning the extant monitor list can be time consuming.
1592 // A simple optimization is to add a per-thread flag that indicates a thread
1593 // called jni_monitorenter() during its lifetime.
1594 //
1595 // Instead of No_Savepoint_Verifier it might be cheaper to
1596 // use an idiom of the form:
1597 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1598 //   <code that must not run at safepoint>
1599 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1600 // Since the tests are extremely cheap we could leave them enabled
1601 // for normal product builds.
1602 
1603 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1604   assert(THREAD == JavaThread::current(), "must be current Java thread");
1605   No_Safepoint_Verifier nsv ;
1606   ReleaseJavaMonitorsClosure rjmc(THREAD);
1607   Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
1608   ObjectSynchronizer::monitors_iterate(&rjmc);
1609   Thread::muxRelease(&ListLock);
1610   THREAD->clear_pending_exception();
1611 }
1612 
1613 //------------------------------------------------------------------------------
1614 // Non-product code
1615 
1616 #ifndef PRODUCT
1617 
1618 void ObjectSynchronizer::trace_locking(Handle locking_obj, bool is_compiled,
1619                                        bool is_method, bool is_locking) {
1620   // Don't know what to do here
1621 }
1622 
1623 // Verify all monitors in the monitor cache, the verification is weak.
1624 void ObjectSynchronizer::verify() {
1625   ObjectMonitor* block = gBlockList;
1626   ObjectMonitor* mid;
1627   while (block) {
1628     assert(block->object() == CHAINMARKER, "must be a block header");
1629     for (int i = 1; i < _BLOCKSIZE; i++) {
1630       mid = block + i;
1631       oop object = (oop) mid->object();
1632       if (object != NULL) {
1633         mid->verify();
1634       }
1635     }
1636     block = (ObjectMonitor*) block->FreeNext;
1637   }
1638 }
1639 
1640 // Check if monitor belongs to the monitor cache
1641 // The list is grow-only so it's *relatively* safe to traverse
1642 // the list of extant blocks without taking a lock.
1643 
1644 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
1645   ObjectMonitor* block = gBlockList;
1646 
1647   while (block) {
1648     assert(block->object() == CHAINMARKER, "must be a block header");
1649     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
1650       address mon = (address) monitor;
1651       address blk = (address) block;
1652       size_t diff = mon - blk;
1653       assert((diff % sizeof(ObjectMonitor)) == 0, "check");
1654       return 1;
1655     }
1656     block = (ObjectMonitor*) block->FreeNext;
1657   }
1658   return 0;
1659 }
1660 
1661 #endif