1 /*
   2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_x86.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "oops/compiledICHolderOop.hpp"
  33 #include "prims/jvmtiRedefineClassesTrace.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/vframeArray.hpp"
  36 #include "vmreg_x86.inline.hpp"
  37 #ifdef COMPILER1
  38 #include "c1/c1_Runtime1.hpp"
  39 #endif
  40 #ifdef COMPILER2
  41 #include "opto/runtime.hpp"
  42 #endif
  43 
  44 #define __ masm->
  45 
  46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  47 
  48 class SimpleRuntimeFrame {
  49 
  50   public:
  51 
  52   // Most of the runtime stubs have this simple frame layout.
  53   // This class exists to make the layout shared in one place.
  54   // Offsets are for compiler stack slots, which are jints.
  55   enum layout {
  56     // The frame sender code expects that rbp will be in the "natural" place and
  57     // will override any oopMap setting for it. We must therefore force the layout
  58     // so that it agrees with the frame sender code.
  59     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  60     rbp_off2,
  61     return_off, return_off2,
  62     framesize
  63   };
  64 };
  65 
  66 class RegisterSaver {
  67   // Capture info about frame layout.  Layout offsets are in jint
  68   // units because compiler frame slots are jints.
  69 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  70   enum layout {
  71     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  72     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
  73     DEF_XMM_OFFS(0),
  74     DEF_XMM_OFFS(1),
  75     DEF_XMM_OFFS(2),
  76     DEF_XMM_OFFS(3),
  77     DEF_XMM_OFFS(4),
  78     DEF_XMM_OFFS(5),
  79     DEF_XMM_OFFS(6),
  80     DEF_XMM_OFFS(7),
  81     DEF_XMM_OFFS(8),
  82     DEF_XMM_OFFS(9),
  83     DEF_XMM_OFFS(10),
  84     DEF_XMM_OFFS(11),
  85     DEF_XMM_OFFS(12),
  86     DEF_XMM_OFFS(13),
  87     DEF_XMM_OFFS(14),
  88     DEF_XMM_OFFS(15),
  89     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
  90     fpu_stateH_end,
  91     r15_off, r15H_off,
  92     r14_off, r14H_off,
  93     r13_off, r13H_off,
  94     r12_off, r12H_off,
  95     r11_off, r11H_off,
  96     r10_off, r10H_off,
  97     r9_off,  r9H_off,
  98     r8_off,  r8H_off,
  99     rdi_off, rdiH_off,
 100     rsi_off, rsiH_off,
 101     ignore_off, ignoreH_off,  // extra copy of rbp
 102     rsp_off, rspH_off,
 103     rbx_off, rbxH_off,
 104     rdx_off, rdxH_off,
 105     rcx_off, rcxH_off,
 106     rax_off, raxH_off,
 107     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 108     align_off, alignH_off,
 109     flags_off, flagsH_off,
 110     // The frame sender code expects that rbp will be in the "natural" place and
 111     // will override any oopMap setting for it. We must therefore force the layout
 112     // so that it agrees with the frame sender code.
 113     rbp_off, rbpH_off,        // copy of rbp we will restore
 114     return_off, returnH_off,  // slot for return address
 115     reg_save_size             // size in compiler stack slots
 116   };
 117 
 118  public:
 119   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
 120   static void restore_live_registers(MacroAssembler* masm);
 121 
 122   // Offsets into the register save area
 123   // Used by deoptimization when it is managing result register
 124   // values on its own
 125 
 126   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 127   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 128   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 129   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 130   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 131 
 132   // During deoptimization only the result registers need to be restored,
 133   // all the other values have already been extracted.
 134   static void restore_result_registers(MacroAssembler* masm);
 135 };
 136 
 137 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 138 
 139   // Always make the frame size 16-byte aligned
 140   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
 141                                      reg_save_size*BytesPerInt, 16);
 142   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 143   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 144   // The caller will allocate additional_frame_words
 145   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
 146   // CodeBlob frame size is in words.
 147   int frame_size_in_words = frame_size_in_bytes / wordSize;
 148   *total_frame_words = frame_size_in_words;
 149 
 150   // Save registers, fpu state, and flags.
 151   // We assume caller has already pushed the return address onto the
 152   // stack, so rsp is 8-byte aligned here.
 153   // We push rpb twice in this sequence because we want the real rbp
 154   // to be under the return like a normal enter.
 155 
 156   __ enter();          // rsp becomes 16-byte aligned here
 157   __ push_CPU_state(); // Push a multiple of 16 bytes
 158   if (frame::arg_reg_save_area_bytes != 0) {
 159     // Allocate argument register save area
 160     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 161   }
 162 
 163   // Set an oopmap for the call site.  This oopmap will map all
 164   // oop-registers and debug-info registers as callee-saved.  This
 165   // will allow deoptimization at this safepoint to find all possible
 166   // debug-info recordings, as well as let GC find all oops.
 167 
 168   OopMapSet *oop_maps = new OopMapSet();
 169   OopMap* map = new OopMap(frame_size_in_slots, 0);
 170   map->set_callee_saved(VMRegImpl::stack2reg( rax_off  + additional_frame_slots), rax->as_VMReg());
 171   map->set_callee_saved(VMRegImpl::stack2reg( rcx_off  + additional_frame_slots), rcx->as_VMReg());
 172   map->set_callee_saved(VMRegImpl::stack2reg( rdx_off  + additional_frame_slots), rdx->as_VMReg());
 173   map->set_callee_saved(VMRegImpl::stack2reg( rbx_off  + additional_frame_slots), rbx->as_VMReg());
 174   // rbp location is known implicitly by the frame sender code, needs no oopmap
 175   // and the location where rbp was saved by is ignored
 176   map->set_callee_saved(VMRegImpl::stack2reg( rsi_off  + additional_frame_slots), rsi->as_VMReg());
 177   map->set_callee_saved(VMRegImpl::stack2reg( rdi_off  + additional_frame_slots), rdi->as_VMReg());
 178   map->set_callee_saved(VMRegImpl::stack2reg( r8_off   + additional_frame_slots), r8->as_VMReg());
 179   map->set_callee_saved(VMRegImpl::stack2reg( r9_off   + additional_frame_slots), r9->as_VMReg());
 180   map->set_callee_saved(VMRegImpl::stack2reg( r10_off  + additional_frame_slots), r10->as_VMReg());
 181   map->set_callee_saved(VMRegImpl::stack2reg( r11_off  + additional_frame_slots), r11->as_VMReg());
 182   map->set_callee_saved(VMRegImpl::stack2reg( r12_off  + additional_frame_slots), r12->as_VMReg());
 183   map->set_callee_saved(VMRegImpl::stack2reg( r13_off  + additional_frame_slots), r13->as_VMReg());
 184   map->set_callee_saved(VMRegImpl::stack2reg( r14_off  + additional_frame_slots), r14->as_VMReg());
 185   map->set_callee_saved(VMRegImpl::stack2reg( r15_off  + additional_frame_slots), r15->as_VMReg());
 186   map->set_callee_saved(VMRegImpl::stack2reg(xmm0_off  + additional_frame_slots), xmm0->as_VMReg());
 187   map->set_callee_saved(VMRegImpl::stack2reg(xmm1_off  + additional_frame_slots), xmm1->as_VMReg());
 188   map->set_callee_saved(VMRegImpl::stack2reg(xmm2_off  + additional_frame_slots), xmm2->as_VMReg());
 189   map->set_callee_saved(VMRegImpl::stack2reg(xmm3_off  + additional_frame_slots), xmm3->as_VMReg());
 190   map->set_callee_saved(VMRegImpl::stack2reg(xmm4_off  + additional_frame_slots), xmm4->as_VMReg());
 191   map->set_callee_saved(VMRegImpl::stack2reg(xmm5_off  + additional_frame_slots), xmm5->as_VMReg());
 192   map->set_callee_saved(VMRegImpl::stack2reg(xmm6_off  + additional_frame_slots), xmm6->as_VMReg());
 193   map->set_callee_saved(VMRegImpl::stack2reg(xmm7_off  + additional_frame_slots), xmm7->as_VMReg());
 194   map->set_callee_saved(VMRegImpl::stack2reg(xmm8_off  + additional_frame_slots), xmm8->as_VMReg());
 195   map->set_callee_saved(VMRegImpl::stack2reg(xmm9_off  + additional_frame_slots), xmm9->as_VMReg());
 196   map->set_callee_saved(VMRegImpl::stack2reg(xmm10_off + additional_frame_slots), xmm10->as_VMReg());
 197   map->set_callee_saved(VMRegImpl::stack2reg(xmm11_off + additional_frame_slots), xmm11->as_VMReg());
 198   map->set_callee_saved(VMRegImpl::stack2reg(xmm12_off + additional_frame_slots), xmm12->as_VMReg());
 199   map->set_callee_saved(VMRegImpl::stack2reg(xmm13_off + additional_frame_slots), xmm13->as_VMReg());
 200   map->set_callee_saved(VMRegImpl::stack2reg(xmm14_off + additional_frame_slots), xmm14->as_VMReg());
 201   map->set_callee_saved(VMRegImpl::stack2reg(xmm15_off + additional_frame_slots), xmm15->as_VMReg());
 202 
 203   // %%% These should all be a waste but we'll keep things as they were for now
 204   if (true) {
 205     map->set_callee_saved(VMRegImpl::stack2reg( raxH_off  + additional_frame_slots),
 206                           rax->as_VMReg()->next());
 207     map->set_callee_saved(VMRegImpl::stack2reg( rcxH_off  + additional_frame_slots),
 208                           rcx->as_VMReg()->next());
 209     map->set_callee_saved(VMRegImpl::stack2reg( rdxH_off  + additional_frame_slots),
 210                           rdx->as_VMReg()->next());
 211     map->set_callee_saved(VMRegImpl::stack2reg( rbxH_off  + additional_frame_slots),
 212                           rbx->as_VMReg()->next());
 213     // rbp location is known implicitly by the frame sender code, needs no oopmap
 214     map->set_callee_saved(VMRegImpl::stack2reg( rsiH_off  + additional_frame_slots),
 215                           rsi->as_VMReg()->next());
 216     map->set_callee_saved(VMRegImpl::stack2reg( rdiH_off  + additional_frame_slots),
 217                           rdi->as_VMReg()->next());
 218     map->set_callee_saved(VMRegImpl::stack2reg( r8H_off   + additional_frame_slots),
 219                           r8->as_VMReg()->next());
 220     map->set_callee_saved(VMRegImpl::stack2reg( r9H_off   + additional_frame_slots),
 221                           r9->as_VMReg()->next());
 222     map->set_callee_saved(VMRegImpl::stack2reg( r10H_off  + additional_frame_slots),
 223                           r10->as_VMReg()->next());
 224     map->set_callee_saved(VMRegImpl::stack2reg( r11H_off  + additional_frame_slots),
 225                           r11->as_VMReg()->next());
 226     map->set_callee_saved(VMRegImpl::stack2reg( r12H_off  + additional_frame_slots),
 227                           r12->as_VMReg()->next());
 228     map->set_callee_saved(VMRegImpl::stack2reg( r13H_off  + additional_frame_slots),
 229                           r13->as_VMReg()->next());
 230     map->set_callee_saved(VMRegImpl::stack2reg( r14H_off  + additional_frame_slots),
 231                           r14->as_VMReg()->next());
 232     map->set_callee_saved(VMRegImpl::stack2reg( r15H_off  + additional_frame_slots),
 233                           r15->as_VMReg()->next());
 234     map->set_callee_saved(VMRegImpl::stack2reg(xmm0H_off  + additional_frame_slots),
 235                           xmm0->as_VMReg()->next());
 236     map->set_callee_saved(VMRegImpl::stack2reg(xmm1H_off  + additional_frame_slots),
 237                           xmm1->as_VMReg()->next());
 238     map->set_callee_saved(VMRegImpl::stack2reg(xmm2H_off  + additional_frame_slots),
 239                           xmm2->as_VMReg()->next());
 240     map->set_callee_saved(VMRegImpl::stack2reg(xmm3H_off  + additional_frame_slots),
 241                           xmm3->as_VMReg()->next());
 242     map->set_callee_saved(VMRegImpl::stack2reg(xmm4H_off  + additional_frame_slots),
 243                           xmm4->as_VMReg()->next());
 244     map->set_callee_saved(VMRegImpl::stack2reg(xmm5H_off  + additional_frame_slots),
 245                           xmm5->as_VMReg()->next());
 246     map->set_callee_saved(VMRegImpl::stack2reg(xmm6H_off  + additional_frame_slots),
 247                           xmm6->as_VMReg()->next());
 248     map->set_callee_saved(VMRegImpl::stack2reg(xmm7H_off  + additional_frame_slots),
 249                           xmm7->as_VMReg()->next());
 250     map->set_callee_saved(VMRegImpl::stack2reg(xmm8H_off  + additional_frame_slots),
 251                           xmm8->as_VMReg()->next());
 252     map->set_callee_saved(VMRegImpl::stack2reg(xmm9H_off  + additional_frame_slots),
 253                           xmm9->as_VMReg()->next());
 254     map->set_callee_saved(VMRegImpl::stack2reg(xmm10H_off + additional_frame_slots),
 255                           xmm10->as_VMReg()->next());
 256     map->set_callee_saved(VMRegImpl::stack2reg(xmm11H_off + additional_frame_slots),
 257                           xmm11->as_VMReg()->next());
 258     map->set_callee_saved(VMRegImpl::stack2reg(xmm12H_off + additional_frame_slots),
 259                           xmm12->as_VMReg()->next());
 260     map->set_callee_saved(VMRegImpl::stack2reg(xmm13H_off + additional_frame_slots),
 261                           xmm13->as_VMReg()->next());
 262     map->set_callee_saved(VMRegImpl::stack2reg(xmm14H_off + additional_frame_slots),
 263                           xmm14->as_VMReg()->next());
 264     map->set_callee_saved(VMRegImpl::stack2reg(xmm15H_off + additional_frame_slots),
 265                           xmm15->as_VMReg()->next());
 266   }
 267 
 268   return map;
 269 }
 270 
 271 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 272   if (frame::arg_reg_save_area_bytes != 0) {
 273     // Pop arg register save area
 274     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 275   }
 276   // Recover CPU state
 277   __ pop_CPU_state();
 278   // Get the rbp described implicitly by the calling convention (no oopMap)
 279   __ pop(rbp);
 280 }
 281 
 282 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 283 
 284   // Just restore result register. Only used by deoptimization. By
 285   // now any callee save register that needs to be restored to a c2
 286   // caller of the deoptee has been extracted into the vframeArray
 287   // and will be stuffed into the c2i adapter we create for later
 288   // restoration so only result registers need to be restored here.
 289 
 290   // Restore fp result register
 291   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 292   // Restore integer result register
 293   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 294   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 295 
 296   // Pop all of the register save are off the stack except the return address
 297   __ addptr(rsp, return_offset_in_bytes());
 298 }
 299 
 300 // The java_calling_convention describes stack locations as ideal slots on
 301 // a frame with no abi restrictions. Since we must observe abi restrictions
 302 // (like the placement of the register window) the slots must be biased by
 303 // the following value.
 304 static int reg2offset_in(VMReg r) {
 305   // Account for saved rbp and return address
 306   // This should really be in_preserve_stack_slots
 307   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 308 }
 309 
 310 static int reg2offset_out(VMReg r) {
 311   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 312 }
 313 
 314 // ---------------------------------------------------------------------------
 315 // Read the array of BasicTypes from a signature, and compute where the
 316 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 317 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 318 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 319 // as framesizes are fixed.
 320 // VMRegImpl::stack0 refers to the first slot 0(sp).
 321 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 322 // up to RegisterImpl::number_of_registers) are the 64-bit
 323 // integer registers.
 324 
 325 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 326 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 327 // units regardless of build. Of course for i486 there is no 64 bit build
 328 
 329 // The Java calling convention is a "shifted" version of the C ABI.
 330 // By skipping the first C ABI register we can call non-static jni methods
 331 // with small numbers of arguments without having to shuffle the arguments
 332 // at all. Since we control the java ABI we ought to at least get some
 333 // advantage out of it.
 334 
 335 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 336                                            VMRegPair *regs,
 337                                            int total_args_passed,
 338                                            int is_outgoing) {
 339 
 340   // Create the mapping between argument positions and
 341   // registers.
 342   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 343     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 344   };
 345   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 346     j_farg0, j_farg1, j_farg2, j_farg3,
 347     j_farg4, j_farg5, j_farg6, j_farg7
 348   };
 349 
 350 
 351   uint int_args = 0;
 352   uint fp_args = 0;
 353   uint stk_args = 0; // inc by 2 each time
 354 
 355   for (int i = 0; i < total_args_passed; i++) {
 356     switch (sig_bt[i]) {
 357     case T_BOOLEAN:
 358     case T_CHAR:
 359     case T_BYTE:
 360     case T_SHORT:
 361     case T_INT:
 362       if (int_args < Argument::n_int_register_parameters_j) {
 363         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 364       } else {
 365         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 366         stk_args += 2;
 367       }
 368       break;
 369     case T_VOID:
 370       // halves of T_LONG or T_DOUBLE
 371       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 372       regs[i].set_bad();
 373       break;
 374     case T_LONG:
 375       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 376       // fall through
 377     case T_OBJECT:
 378     case T_ARRAY:
 379     case T_ADDRESS:
 380       if (int_args < Argument::n_int_register_parameters_j) {
 381         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 382       } else {
 383         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 384         stk_args += 2;
 385       }
 386       break;
 387     case T_FLOAT:
 388       if (fp_args < Argument::n_float_register_parameters_j) {
 389         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 390       } else {
 391         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 392         stk_args += 2;
 393       }
 394       break;
 395     case T_DOUBLE:
 396       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 397       if (fp_args < Argument::n_float_register_parameters_j) {
 398         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 399       } else {
 400         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 401         stk_args += 2;
 402       }
 403       break;
 404     default:
 405       ShouldNotReachHere();
 406       break;
 407     }
 408   }
 409 
 410   return round_to(stk_args, 2);
 411 }
 412 
 413 // Patch the callers callsite with entry to compiled code if it exists.
 414 static void patch_callers_callsite(MacroAssembler *masm) {
 415   Label L;
 416   __ verify_oop(rbx);
 417   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 418   __ jcc(Assembler::equal, L);
 419 
 420   // Save the current stack pointer
 421   __ mov(r13, rsp);
 422   // Schedule the branch target address early.
 423   // Call into the VM to patch the caller, then jump to compiled callee
 424   // rax isn't live so capture return address while we easily can
 425   __ movptr(rax, Address(rsp, 0));
 426 
 427   // align stack so push_CPU_state doesn't fault
 428   __ andptr(rsp, -(StackAlignmentInBytes));
 429   __ push_CPU_state();
 430 
 431 
 432   __ verify_oop(rbx);
 433   // VM needs caller's callsite
 434   // VM needs target method
 435   // This needs to be a long call since we will relocate this adapter to
 436   // the codeBuffer and it may not reach
 437 
 438   // Allocate argument register save area
 439   if (frame::arg_reg_save_area_bytes != 0) {
 440     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 441   }
 442   __ mov(c_rarg0, rbx);
 443   __ mov(c_rarg1, rax);
 444   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 445 
 446   // De-allocate argument register save area
 447   if (frame::arg_reg_save_area_bytes != 0) {
 448     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 449   }
 450 
 451   __ pop_CPU_state();
 452   // restore sp
 453   __ mov(rsp, r13);
 454   __ bind(L);
 455 }
 456 
 457 
 458 static void gen_c2i_adapter(MacroAssembler *masm,
 459                             int total_args_passed,
 460                             int comp_args_on_stack,
 461                             const BasicType *sig_bt,
 462                             const VMRegPair *regs,
 463                             Label& skip_fixup) {
 464   // Before we get into the guts of the C2I adapter, see if we should be here
 465   // at all.  We've come from compiled code and are attempting to jump to the
 466   // interpreter, which means the caller made a static call to get here
 467   // (vcalls always get a compiled target if there is one).  Check for a
 468   // compiled target.  If there is one, we need to patch the caller's call.
 469   patch_callers_callsite(masm);
 470 
 471   __ bind(skip_fixup);
 472 
 473   // Since all args are passed on the stack, total_args_passed *
 474   // Interpreter::stackElementSize is the space we need. Plus 1 because
 475   // we also account for the return address location since
 476   // we store it first rather than hold it in rax across all the shuffling
 477 
 478   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 479 
 480   // stack is aligned, keep it that way
 481   extraspace = round_to(extraspace, 2*wordSize);
 482 
 483   // Get return address
 484   __ pop(rax);
 485 
 486   // set senderSP value
 487   __ mov(r13, rsp);
 488 
 489   __ subptr(rsp, extraspace);
 490 
 491   // Store the return address in the expected location
 492   __ movptr(Address(rsp, 0), rax);
 493 
 494   // Now write the args into the outgoing interpreter space
 495   for (int i = 0; i < total_args_passed; i++) {
 496     if (sig_bt[i] == T_VOID) {
 497       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 498       continue;
 499     }
 500 
 501     // offset to start parameters
 502     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 503     int next_off = st_off - Interpreter::stackElementSize;
 504 
 505     // Say 4 args:
 506     // i   st_off
 507     // 0   32 T_LONG
 508     // 1   24 T_VOID
 509     // 2   16 T_OBJECT
 510     // 3    8 T_BOOL
 511     // -    0 return address
 512     //
 513     // However to make thing extra confusing. Because we can fit a long/double in
 514     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 515     // leaves one slot empty and only stores to a single slot. In this case the
 516     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 517 
 518     VMReg r_1 = regs[i].first();
 519     VMReg r_2 = regs[i].second();
 520     if (!r_1->is_valid()) {
 521       assert(!r_2->is_valid(), "");
 522       continue;
 523     }
 524     if (r_1->is_stack()) {
 525       // memory to memory use rax
 526       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 527       if (!r_2->is_valid()) {
 528         // sign extend??
 529         __ movl(rax, Address(rsp, ld_off));
 530         __ movptr(Address(rsp, st_off), rax);
 531 
 532       } else {
 533 
 534         __ movq(rax, Address(rsp, ld_off));
 535 
 536         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 537         // T_DOUBLE and T_LONG use two slots in the interpreter
 538         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 539           // ld_off == LSW, ld_off+wordSize == MSW
 540           // st_off == MSW, next_off == LSW
 541           __ movq(Address(rsp, next_off), rax);
 542 #ifdef ASSERT
 543           // Overwrite the unused slot with known junk
 544           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 545           __ movptr(Address(rsp, st_off), rax);
 546 #endif /* ASSERT */
 547         } else {
 548           __ movq(Address(rsp, st_off), rax);
 549         }
 550       }
 551     } else if (r_1->is_Register()) {
 552       Register r = r_1->as_Register();
 553       if (!r_2->is_valid()) {
 554         // must be only an int (or less ) so move only 32bits to slot
 555         // why not sign extend??
 556         __ movl(Address(rsp, st_off), r);
 557       } else {
 558         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 559         // T_DOUBLE and T_LONG use two slots in the interpreter
 560         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 561           // long/double in gpr
 562 #ifdef ASSERT
 563           // Overwrite the unused slot with known junk
 564           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 565           __ movptr(Address(rsp, st_off), rax);
 566 #endif /* ASSERT */
 567           __ movq(Address(rsp, next_off), r);
 568         } else {
 569           __ movptr(Address(rsp, st_off), r);
 570         }
 571       }
 572     } else {
 573       assert(r_1->is_XMMRegister(), "");
 574       if (!r_2->is_valid()) {
 575         // only a float use just part of the slot
 576         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 577       } else {
 578 #ifdef ASSERT
 579         // Overwrite the unused slot with known junk
 580         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 581         __ movptr(Address(rsp, st_off), rax);
 582 #endif /* ASSERT */
 583         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 584       }
 585     }
 586   }
 587 
 588   // Schedule the branch target address early.
 589   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
 590   __ jmp(rcx);
 591 }
 592 
 593 static void gen_i2c_adapter(MacroAssembler *masm,
 594                             int total_args_passed,
 595                             int comp_args_on_stack,
 596                             const BasicType *sig_bt,
 597                             const VMRegPair *regs) {
 598 
 599   // Note: r13 contains the senderSP on entry. We must preserve it since
 600   // we may do a i2c -> c2i transition if we lose a race where compiled
 601   // code goes non-entrant while we get args ready.
 602   // In addition we use r13 to locate all the interpreter args as
 603   // we must align the stack to 16 bytes on an i2c entry else we
 604   // lose alignment we expect in all compiled code and register
 605   // save code can segv when fxsave instructions find improperly
 606   // aligned stack pointer.
 607 
 608   // Pick up the return address
 609   __ movptr(rax, Address(rsp, 0));
 610 
 611   // Must preserve original SP for loading incoming arguments because
 612   // we need to align the outgoing SP for compiled code.
 613   __ movptr(r11, rsp);
 614 
 615   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 616   // in registers, we will occasionally have no stack args.
 617   int comp_words_on_stack = 0;
 618   if (comp_args_on_stack) {
 619     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 620     // registers are below.  By subtracting stack0, we either get a negative
 621     // number (all values in registers) or the maximum stack slot accessed.
 622 
 623     // Convert 4-byte c2 stack slots to words.
 624     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 625     // Round up to miminum stack alignment, in wordSize
 626     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 627     __ subptr(rsp, comp_words_on_stack * wordSize);
 628   }
 629 
 630 
 631   // Ensure compiled code always sees stack at proper alignment
 632   __ andptr(rsp, -16);
 633 
 634   // push the return address and misalign the stack that youngest frame always sees
 635   // as far as the placement of the call instruction
 636   __ push(rax);
 637 
 638   // Put saved SP in another register
 639   const Register saved_sp = rax;
 640   __ movptr(saved_sp, r11);
 641 
 642   // Will jump to the compiled code just as if compiled code was doing it.
 643   // Pre-load the register-jump target early, to schedule it better.
 644   __ movptr(r11, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
 645 
 646   // Now generate the shuffle code.  Pick up all register args and move the
 647   // rest through the floating point stack top.
 648   for (int i = 0; i < total_args_passed; i++) {
 649     if (sig_bt[i] == T_VOID) {
 650       // Longs and doubles are passed in native word order, but misaligned
 651       // in the 32-bit build.
 652       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 653       continue;
 654     }
 655 
 656     // Pick up 0, 1 or 2 words from SP+offset.
 657 
 658     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 659             "scrambled load targets?");
 660     // Load in argument order going down.
 661     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 662     // Point to interpreter value (vs. tag)
 663     int next_off = ld_off - Interpreter::stackElementSize;
 664     //
 665     //
 666     //
 667     VMReg r_1 = regs[i].first();
 668     VMReg r_2 = regs[i].second();
 669     if (!r_1->is_valid()) {
 670       assert(!r_2->is_valid(), "");
 671       continue;
 672     }
 673     if (r_1->is_stack()) {
 674       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 675       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 676 
 677       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 678       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 679       // will be generated.
 680       if (!r_2->is_valid()) {
 681         // sign extend???
 682         __ movl(r13, Address(saved_sp, ld_off));
 683         __ movptr(Address(rsp, st_off), r13);
 684       } else {
 685         //
 686         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 687         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 688         // So we must adjust where to pick up the data to match the interpreter.
 689         //
 690         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 691         // are accessed as negative so LSW is at LOW address
 692 
 693         // ld_off is MSW so get LSW
 694         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 695                            next_off : ld_off;
 696         __ movq(r13, Address(saved_sp, offset));
 697         // st_off is LSW (i.e. reg.first())
 698         __ movq(Address(rsp, st_off), r13);
 699       }
 700     } else if (r_1->is_Register()) {  // Register argument
 701       Register r = r_1->as_Register();
 702       assert(r != rax, "must be different");
 703       if (r_2->is_valid()) {
 704         //
 705         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 706         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 707         // So we must adjust where to pick up the data to match the interpreter.
 708 
 709         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 710                            next_off : ld_off;
 711 
 712         // this can be a misaligned move
 713         __ movq(r, Address(saved_sp, offset));
 714       } else {
 715         // sign extend and use a full word?
 716         __ movl(r, Address(saved_sp, ld_off));
 717       }
 718     } else {
 719       if (!r_2->is_valid()) {
 720         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 721       } else {
 722         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 723       }
 724     }
 725   }
 726 
 727   // 6243940 We might end up in handle_wrong_method if
 728   // the callee is deoptimized as we race thru here. If that
 729   // happens we don't want to take a safepoint because the
 730   // caller frame will look interpreted and arguments are now
 731   // "compiled" so it is much better to make this transition
 732   // invisible to the stack walking code. Unfortunately if
 733   // we try and find the callee by normal means a safepoint
 734   // is possible. So we stash the desired callee in the thread
 735   // and the vm will find there should this case occur.
 736 
 737   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 738 
 739   // put methodOop where a c2i would expect should we end up there
 740   // only needed becaus eof c2 resolve stubs return methodOop as a result in
 741   // rax
 742   __ mov(rax, rbx);
 743   __ jmp(r11);
 744 }
 745 
 746 // ---------------------------------------------------------------
 747 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 748                                                             int total_args_passed,
 749                                                             int comp_args_on_stack,
 750                                                             const BasicType *sig_bt,
 751                                                             const VMRegPair *regs,
 752                                                             AdapterFingerPrint* fingerprint) {
 753   address i2c_entry = __ pc();
 754 
 755   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 756 
 757   // -------------------------------------------------------------------------
 758   // Generate a C2I adapter.  On entry we know rbx holds the methodOop during calls
 759   // to the interpreter.  The args start out packed in the compiled layout.  They
 760   // need to be unpacked into the interpreter layout.  This will almost always
 761   // require some stack space.  We grow the current (compiled) stack, then repack
 762   // the args.  We  finally end in a jump to the generic interpreter entry point.
 763   // On exit from the interpreter, the interpreter will restore our SP (lest the
 764   // compiled code, which relys solely on SP and not RBP, get sick).
 765 
 766   address c2i_unverified_entry = __ pc();
 767   Label skip_fixup;
 768   Label ok;
 769 
 770   Register holder = rax;
 771   Register receiver = j_rarg0;
 772   Register temp = rbx;
 773 
 774   {
 775     __ verify_oop(holder);
 776     __ load_klass(temp, receiver);
 777     __ verify_oop(temp);
 778 
 779     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
 780     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
 781     __ jcc(Assembler::equal, ok);
 782     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 783 
 784     __ bind(ok);
 785     // Method might have been compiled since the call site was patched to
 786     // interpreted if that is the case treat it as a miss so we can get
 787     // the call site corrected.
 788     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 789     __ jcc(Assembler::equal, skip_fixup);
 790     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 791   }
 792 
 793   address c2i_entry = __ pc();
 794 
 795   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 796 
 797   __ flush();
 798   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 799 }
 800 
 801 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 802                                          VMRegPair *regs,
 803                                          int total_args_passed) {
 804 // We return the amount of VMRegImpl stack slots we need to reserve for all
 805 // the arguments NOT counting out_preserve_stack_slots.
 806 
 807 // NOTE: These arrays will have to change when c1 is ported
 808 #ifdef _WIN64
 809     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 810       c_rarg0, c_rarg1, c_rarg2, c_rarg3
 811     };
 812     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 813       c_farg0, c_farg1, c_farg2, c_farg3
 814     };
 815 #else
 816     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 817       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
 818     };
 819     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 820       c_farg0, c_farg1, c_farg2, c_farg3,
 821       c_farg4, c_farg5, c_farg6, c_farg7
 822     };
 823 #endif // _WIN64
 824 
 825 
 826     uint int_args = 0;
 827     uint fp_args = 0;
 828     uint stk_args = 0; // inc by 2 each time
 829 
 830     for (int i = 0; i < total_args_passed; i++) {
 831       switch (sig_bt[i]) {
 832       case T_BOOLEAN:
 833       case T_CHAR:
 834       case T_BYTE:
 835       case T_SHORT:
 836       case T_INT:
 837         if (int_args < Argument::n_int_register_parameters_c) {
 838           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 839 #ifdef _WIN64
 840           fp_args++;
 841           // Allocate slots for callee to stuff register args the stack.
 842           stk_args += 2;
 843 #endif
 844         } else {
 845           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 846           stk_args += 2;
 847         }
 848         break;
 849       case T_LONG:
 850         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 851         // fall through
 852       case T_OBJECT:
 853       case T_ARRAY:
 854       case T_ADDRESS:
 855         if (int_args < Argument::n_int_register_parameters_c) {
 856           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 857 #ifdef _WIN64
 858           fp_args++;
 859           stk_args += 2;
 860 #endif
 861         } else {
 862           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 863           stk_args += 2;
 864         }
 865         break;
 866       case T_FLOAT:
 867         if (fp_args < Argument::n_float_register_parameters_c) {
 868           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 869 #ifdef _WIN64
 870           int_args++;
 871           // Allocate slots for callee to stuff register args the stack.
 872           stk_args += 2;
 873 #endif
 874         } else {
 875           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 876           stk_args += 2;
 877         }
 878         break;
 879       case T_DOUBLE:
 880         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 881         if (fp_args < Argument::n_float_register_parameters_c) {
 882           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 883 #ifdef _WIN64
 884           int_args++;
 885           // Allocate slots for callee to stuff register args the stack.
 886           stk_args += 2;
 887 #endif
 888         } else {
 889           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 890           stk_args += 2;
 891         }
 892         break;
 893       case T_VOID: // Halves of longs and doubles
 894         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 895         regs[i].set_bad();
 896         break;
 897       default:
 898         ShouldNotReachHere();
 899         break;
 900       }
 901     }
 902 #ifdef _WIN64
 903   // windows abi requires that we always allocate enough stack space
 904   // for 4 64bit registers to be stored down.
 905   if (stk_args < 8) {
 906     stk_args = 8;
 907   }
 908 #endif // _WIN64
 909 
 910   return stk_args;
 911 }
 912 
 913 // On 64 bit we will store integer like items to the stack as
 914 // 64 bits items (sparc abi) even though java would only store
 915 // 32bits for a parameter. On 32bit it will simply be 32 bits
 916 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
 917 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
 918   if (src.first()->is_stack()) {
 919     if (dst.first()->is_stack()) {
 920       // stack to stack
 921       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
 922       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
 923     } else {
 924       // stack to reg
 925       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
 926     }
 927   } else if (dst.first()->is_stack()) {
 928     // reg to stack
 929     // Do we really have to sign extend???
 930     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
 931     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 932   } else {
 933     // Do we really have to sign extend???
 934     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
 935     if (dst.first() != src.first()) {
 936       __ movq(dst.first()->as_Register(), src.first()->as_Register());
 937     }
 938   }
 939 }
 940 
 941 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
 942   if (src.first()->is_stack()) {
 943     if (dst.first()->is_stack()) {
 944       // stack to stack
 945       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
 946       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
 947     } else {
 948       // stack to reg
 949       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
 950     }
 951   } else if (dst.first()->is_stack()) {
 952     // reg to stack
 953     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 954   } else {
 955     if (dst.first() != src.first()) {
 956       __ movq(dst.first()->as_Register(), src.first()->as_Register());
 957     }
 958   }
 959 }
 960 
 961 // An oop arg. Must pass a handle not the oop itself
 962 static void object_move(MacroAssembler* masm,
 963                         OopMap* map,
 964                         int oop_handle_offset,
 965                         int framesize_in_slots,
 966                         VMRegPair src,
 967                         VMRegPair dst,
 968                         bool is_receiver,
 969                         int* receiver_offset) {
 970 
 971   // must pass a handle. First figure out the location we use as a handle
 972 
 973   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
 974 
 975   // See if oop is NULL if it is we need no handle
 976 
 977   if (src.first()->is_stack()) {
 978 
 979     // Oop is already on the stack as an argument
 980     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 981     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
 982     if (is_receiver) {
 983       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
 984     }
 985 
 986     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
 987     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
 988     // conditionally move a NULL
 989     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
 990   } else {
 991 
 992     // Oop is in an a register we must store it to the space we reserve
 993     // on the stack for oop_handles and pass a handle if oop is non-NULL
 994 
 995     const Register rOop = src.first()->as_Register();
 996     int oop_slot;
 997     if (rOop == j_rarg0)
 998       oop_slot = 0;
 999     else if (rOop == j_rarg1)
1000       oop_slot = 1;
1001     else if (rOop == j_rarg2)
1002       oop_slot = 2;
1003     else if (rOop == j_rarg3)
1004       oop_slot = 3;
1005     else if (rOop == j_rarg4)
1006       oop_slot = 4;
1007     else {
1008       assert(rOop == j_rarg5, "wrong register");
1009       oop_slot = 5;
1010     }
1011 
1012     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1013     int offset = oop_slot*VMRegImpl::stack_slot_size;
1014 
1015     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1016     // Store oop in handle area, may be NULL
1017     __ movptr(Address(rsp, offset), rOop);
1018     if (is_receiver) {
1019       *receiver_offset = offset;
1020     }
1021 
1022     __ cmpptr(rOop, (int32_t)NULL_WORD);
1023     __ lea(rHandle, Address(rsp, offset));
1024     // conditionally move a NULL from the handle area where it was just stored
1025     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1026   }
1027 
1028   // If arg is on the stack then place it otherwise it is already in correct reg.
1029   if (dst.first()->is_stack()) {
1030     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1031   }
1032 }
1033 
1034 // A float arg may have to do float reg int reg conversion
1035 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1036   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1037 
1038   // The calling conventions assures us that each VMregpair is either
1039   // all really one physical register or adjacent stack slots.
1040   // This greatly simplifies the cases here compared to sparc.
1041 
1042   if (src.first()->is_stack()) {
1043     if (dst.first()->is_stack()) {
1044       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1045       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1046     } else {
1047       // stack to reg
1048       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1049       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1050     }
1051   } else if (dst.first()->is_stack()) {
1052     // reg to stack
1053     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1054     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1055   } else {
1056     // reg to reg
1057     // In theory these overlap but the ordering is such that this is likely a nop
1058     if ( src.first() != dst.first()) {
1059       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1060     }
1061   }
1062 }
1063 
1064 // A long move
1065 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1066 
1067   // The calling conventions assures us that each VMregpair is either
1068   // all really one physical register or adjacent stack slots.
1069   // This greatly simplifies the cases here compared to sparc.
1070 
1071   if (src.is_single_phys_reg() ) {
1072     if (dst.is_single_phys_reg()) {
1073       if (dst.first() != src.first()) {
1074         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1075       }
1076     } else {
1077       assert(dst.is_single_reg(), "not a stack pair");
1078       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1079     }
1080   } else if (dst.is_single_phys_reg()) {
1081     assert(src.is_single_reg(),  "not a stack pair");
1082     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1083   } else {
1084     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1085     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1086     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1087   }
1088 }
1089 
1090 // A double move
1091 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1092 
1093   // The calling conventions assures us that each VMregpair is either
1094   // all really one physical register or adjacent stack slots.
1095   // This greatly simplifies the cases here compared to sparc.
1096 
1097   if (src.is_single_phys_reg() ) {
1098     if (dst.is_single_phys_reg()) {
1099       // In theory these overlap but the ordering is such that this is likely a nop
1100       if ( src.first() != dst.first()) {
1101         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1102       }
1103     } else {
1104       assert(dst.is_single_reg(), "not a stack pair");
1105       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1106     }
1107   } else if (dst.is_single_phys_reg()) {
1108     assert(src.is_single_reg(),  "not a stack pair");
1109     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1110   } else {
1111     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1112     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1113     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1114   }
1115 }
1116 
1117 
1118 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1119   // We always ignore the frame_slots arg and just use the space just below frame pointer
1120   // which by this time is free to use
1121   switch (ret_type) {
1122   case T_FLOAT:
1123     __ movflt(Address(rbp, -wordSize), xmm0);
1124     break;
1125   case T_DOUBLE:
1126     __ movdbl(Address(rbp, -wordSize), xmm0);
1127     break;
1128   case T_VOID:  break;
1129   default: {
1130     __ movptr(Address(rbp, -wordSize), rax);
1131     }
1132   }
1133 }
1134 
1135 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1136   // We always ignore the frame_slots arg and just use the space just below frame pointer
1137   // which by this time is free to use
1138   switch (ret_type) {
1139   case T_FLOAT:
1140     __ movflt(xmm0, Address(rbp, -wordSize));
1141     break;
1142   case T_DOUBLE:
1143     __ movdbl(xmm0, Address(rbp, -wordSize));
1144     break;
1145   case T_VOID:  break;
1146   default: {
1147     __ movptr(rax, Address(rbp, -wordSize));
1148     }
1149   }
1150 }
1151 
1152 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1153     for ( int i = first_arg ; i < arg_count ; i++ ) {
1154       if (args[i].first()->is_Register()) {
1155         __ push(args[i].first()->as_Register());
1156       } else if (args[i].first()->is_XMMRegister()) {
1157         __ subptr(rsp, 2*wordSize);
1158         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1159       }
1160     }
1161 }
1162 
1163 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1164     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1165       if (args[i].first()->is_Register()) {
1166         __ pop(args[i].first()->as_Register());
1167       } else if (args[i].first()->is_XMMRegister()) {
1168         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1169         __ addptr(rsp, 2*wordSize);
1170       }
1171     }
1172 }
1173 
1174 
1175 static void save_or_restore_arguments(MacroAssembler* masm,
1176                                       const int stack_slots,
1177                                       const int total_in_args,
1178                                       const int arg_save_area,
1179                                       OopMap* map,
1180                                       VMRegPair* in_regs,
1181                                       BasicType* in_sig_bt) {
1182   // if map is non-NULL then the code should store the values,
1183   // otherwise it should load them.
1184   int handle_index = 0;
1185   // Save down double word first
1186   for ( int i = 0; i < total_in_args; i++) {
1187     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1188       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1189       int offset = slot * VMRegImpl::stack_slot_size;
1190       handle_index += 2;
1191       assert(handle_index <= stack_slots, "overflow");
1192       if (map != NULL) {
1193         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1194       } else {
1195         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1196       }
1197     }
1198     if (in_regs[i].first()->is_Register() &&
1199         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1200       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1201       int offset = slot * VMRegImpl::stack_slot_size;
1202       handle_index += 2;
1203       assert(handle_index <= stack_slots, "overflow");
1204       if (map != NULL) {
1205         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
1206         if (in_sig_bt[i] == T_ARRAY) {
1207           map->set_oop(VMRegImpl::stack2reg(slot));;
1208         }
1209       } else {
1210         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
1211       }
1212     }
1213   }
1214   // Save or restore single word registers
1215   for ( int i = 0; i < total_in_args; i++) {
1216     if (in_regs[i].first()->is_Register()) {
1217       int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1218       int offset = slot * VMRegImpl::stack_slot_size;
1219       assert(handle_index <= stack_slots, "overflow");
1220 
1221       // Value is in an input register pass we must flush it to the stack
1222       const Register reg = in_regs[i].first()->as_Register();
1223       switch (in_sig_bt[i]) {
1224         case T_BOOLEAN:
1225         case T_CHAR:
1226         case T_BYTE:
1227         case T_SHORT:
1228         case T_INT:
1229           if (map != NULL) {
1230             __ movl(Address(rsp, offset), reg);
1231           } else {
1232             __ movl(reg, Address(rsp, offset));
1233           }
1234           break;
1235         case T_ARRAY:
1236         case T_LONG:
1237           // handled above
1238           break;
1239         case T_OBJECT:
1240         default: ShouldNotReachHere();
1241       }
1242     } else if (in_regs[i].first()->is_XMMRegister()) {
1243       if (in_sig_bt[i] == T_FLOAT) {
1244         int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1245         int offset = slot * VMRegImpl::stack_slot_size;
1246         assert(handle_index <= stack_slots, "overflow");
1247         if (map != NULL) {
1248           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1249         } else {
1250           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1251         }
1252       }
1253     } else if (in_regs[i].first()->is_stack()) {
1254       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1255         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1256         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1257       }
1258     }
1259   }
1260 }
1261 
1262 
1263 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
1264 // keeps a new JNI critical region from starting until a GC has been
1265 // forced.  Save down any oops in registers and describe them in an
1266 // OopMap.
1267 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1268                                                int stack_slots,
1269                                                int total_c_args,
1270                                                int total_in_args,
1271                                                int arg_save_area,
1272                                                OopMapSet* oop_maps,
1273                                                VMRegPair* in_regs,
1274                                                BasicType* in_sig_bt) {
1275   __ block_comment("check GC_locker::needs_gc");
1276   Label cont;
1277   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
1278   __ jcc(Assembler::equal, cont);
1279 
1280   // Save down any incoming oops and call into the runtime to halt for a GC
1281 
1282   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1283   save_or_restore_arguments(masm, stack_slots, total_in_args,
1284                             arg_save_area, map, in_regs, in_sig_bt);
1285 
1286   address the_pc = __ pc();
1287   oop_maps->add_gc_map( __ offset(), map);
1288   __ set_last_Java_frame(rsp, noreg, the_pc);
1289 
1290   __ block_comment("block_for_jni_critical");
1291   __ movptr(c_rarg0, r15_thread);
1292   __ mov(r12, rsp); // remember sp
1293   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1294   __ andptr(rsp, -16); // align stack as required by ABI
1295   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1296   __ mov(rsp, r12); // restore sp
1297   __ reinit_heapbase();
1298 
1299   __ reset_last_Java_frame(false, true);
1300 
1301   save_or_restore_arguments(masm, stack_slots, total_in_args,
1302                             arg_save_area, NULL, in_regs, in_sig_bt);
1303 
1304   __ bind(cont);
1305 #ifdef ASSERT
1306   if (StressCriticalJNINatives) {
1307     // Stress register saving
1308     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1309     save_or_restore_arguments(masm, stack_slots, total_in_args,
1310                               arg_save_area, map, in_regs, in_sig_bt);
1311     // Destroy argument registers
1312     for (int i = 0; i < total_in_args - 1; i++) {
1313       if (in_regs[i].first()->is_Register()) {
1314         const Register reg = in_regs[i].first()->as_Register();
1315         __ xorptr(reg, reg);
1316       } else if (in_regs[i].first()->is_XMMRegister()) {
1317         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1318       } else if (in_regs[i].first()->is_FloatRegister()) {
1319         ShouldNotReachHere();
1320       } else if (in_regs[i].first()->is_stack()) {
1321         // Nothing to do
1322       } else {
1323         ShouldNotReachHere();
1324       }
1325       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1326         i++;
1327       }
1328     }
1329 
1330     save_or_restore_arguments(masm, stack_slots, total_in_args,
1331                               arg_save_area, NULL, in_regs, in_sig_bt);
1332   }
1333 #endif
1334 }
1335 
1336 // Unpack an array argument into a pointer to the body and the length
1337 // if the array is non-null, otherwise pass 0 for both.
1338 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1339   Register tmp_reg = rax;
1340   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1341          "possible collision");
1342   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1343          "possible collision");
1344 
1345   // Pass the length, ptr pair
1346   Label is_null, done;
1347   VMRegPair tmp;
1348   tmp.set_ptr(tmp_reg->as_VMReg());
1349   if (reg.first()->is_stack()) {
1350     // Load the arg up from the stack
1351     move_ptr(masm, reg, tmp);
1352     reg = tmp;
1353   }
1354   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1355   __ jccb(Assembler::equal, is_null);
1356   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1357   move_ptr(masm, tmp, body_arg);
1358   // load the length relative to the body.
1359   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1360                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1361   move32_64(masm, tmp, length_arg);
1362   __ jmpb(done);
1363   __ bind(is_null);
1364   // Pass zeros
1365   __ xorptr(tmp_reg, tmp_reg);
1366   move_ptr(masm, tmp, body_arg);
1367   move32_64(masm, tmp, length_arg);
1368   __ bind(done);
1369 }
1370 
1371 // ---------------------------------------------------------------------------
1372 // Generate a native wrapper for a given method.  The method takes arguments
1373 // in the Java compiled code convention, marshals them to the native
1374 // convention (handlizes oops, etc), transitions to native, makes the call,
1375 // returns to java state (possibly blocking), unhandlizes any result and
1376 // returns.
1377 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
1378                                                 methodHandle method,
1379                                                 int compile_id,
1380                                                 int total_in_args,
1381                                                 int comp_args_on_stack,
1382                                                 BasicType *in_sig_bt,
1383                                                 VMRegPair *in_regs,
1384                                                 BasicType ret_type) {
1385   bool is_critical_native = true;
1386   address native_func = method->critical_native_function();
1387   if (native_func == NULL) {
1388     native_func = method->native_function();
1389     is_critical_native = false;
1390   }
1391   assert(native_func != NULL, "must have function");
1392 
1393   // An OopMap for lock (and class if static)
1394   OopMapSet *oop_maps = new OopMapSet();
1395   intptr_t start = (intptr_t)__ pc();
1396 
1397   // We have received a description of where all the java arg are located
1398   // on entry to the wrapper. We need to convert these args to where
1399   // the jni function will expect them. To figure out where they go
1400   // we convert the java signature to a C signature by inserting
1401   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1402 
1403   int total_c_args = total_in_args;
1404   if (!is_critical_native) {
1405     total_c_args += 1;
1406     if (method->is_static()) {
1407       total_c_args++;
1408     }
1409   } else {
1410     for (int i = 0; i < total_in_args; i++) {
1411       if (in_sig_bt[i] == T_ARRAY) {
1412         total_c_args++;
1413       }
1414     }
1415   }
1416 
1417   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1418   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1419   BasicType* in_elem_bt = NULL;
1420 
1421   int argc = 0;
1422   if (!is_critical_native) {
1423     out_sig_bt[argc++] = T_ADDRESS;
1424     if (method->is_static()) {
1425       out_sig_bt[argc++] = T_OBJECT;
1426     }
1427 
1428     for (int i = 0; i < total_in_args ; i++ ) {
1429       out_sig_bt[argc++] = in_sig_bt[i];
1430     }
1431   } else {
1432     Thread* THREAD = Thread::current();
1433     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1434     SignatureStream ss(method->signature());
1435     for (int i = 0; i < total_in_args ; i++ ) {
1436       if (in_sig_bt[i] == T_ARRAY) {
1437         // Arrays are passed as int, elem* pair
1438         out_sig_bt[argc++] = T_INT;
1439         out_sig_bt[argc++] = T_ADDRESS;
1440         Symbol* atype = ss.as_symbol(CHECK_NULL);
1441         const char* at = atype->as_C_string();
1442         if (strlen(at) == 2) {
1443           assert(at[0] == '[', "must be");
1444           switch (at[1]) {
1445             case 'B': in_elem_bt[i]  = T_BYTE; break;
1446             case 'C': in_elem_bt[i]  = T_CHAR; break;
1447             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1448             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1449             case 'I': in_elem_bt[i]  = T_INT; break;
1450             case 'J': in_elem_bt[i]  = T_LONG; break;
1451             case 'S': in_elem_bt[i]  = T_SHORT; break;
1452             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1453             default: ShouldNotReachHere();
1454           }
1455         }
1456       } else {
1457         out_sig_bt[argc++] = in_sig_bt[i];
1458         in_elem_bt[i] = T_VOID;
1459       }
1460       if (in_sig_bt[i] != T_VOID) {
1461         assert(in_sig_bt[i] == ss.type(), "must match");
1462         ss.next();
1463       }
1464     }
1465   }
1466 
1467   // Now figure out where the args must be stored and how much stack space
1468   // they require.
1469   int out_arg_slots;
1470   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1471 
1472   // Compute framesize for the wrapper.  We need to handlize all oops in
1473   // incoming registers
1474 
1475   // Calculate the total number of stack slots we will need.
1476 
1477   // First count the abi requirement plus all of the outgoing args
1478   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1479 
1480   // Now the space for the inbound oop handle area
1481   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
1482   if (is_critical_native) {
1483     // Critical natives may have to call out so they need a save area
1484     // for register arguments.
1485     int double_slots = 0;
1486     int single_slots = 0;
1487     for ( int i = 0; i < total_in_args; i++) {
1488       if (in_regs[i].first()->is_Register()) {
1489         const Register reg = in_regs[i].first()->as_Register();
1490         switch (in_sig_bt[i]) {
1491           case T_ARRAY:
1492           case T_BOOLEAN:
1493           case T_BYTE:
1494           case T_SHORT:
1495           case T_CHAR:
1496           case T_INT:  single_slots++; break;
1497           case T_LONG: double_slots++; break;
1498           default:  ShouldNotReachHere();
1499         }
1500       } else if (in_regs[i].first()->is_XMMRegister()) {
1501         switch (in_sig_bt[i]) {
1502           case T_FLOAT:  single_slots++; break;
1503           case T_DOUBLE: double_slots++; break;
1504           default:  ShouldNotReachHere();
1505         }
1506       } else if (in_regs[i].first()->is_FloatRegister()) {
1507         ShouldNotReachHere();
1508       }
1509     }
1510     total_save_slots = double_slots * 2 + single_slots;
1511     // align the save area
1512     if (double_slots != 0) {
1513       stack_slots = round_to(stack_slots, 2);
1514     }
1515   }
1516 
1517   int oop_handle_offset = stack_slots;
1518   stack_slots += total_save_slots;
1519 
1520   // Now any space we need for handlizing a klass if static method
1521 
1522   int klass_slot_offset = 0;
1523   int klass_offset = -1;
1524   int lock_slot_offset = 0;
1525   bool is_static = false;
1526 
1527   if (method->is_static()) {
1528     klass_slot_offset = stack_slots;
1529     stack_slots += VMRegImpl::slots_per_word;
1530     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1531     is_static = true;
1532   }
1533 
1534   // Plus a lock if needed
1535 
1536   if (method->is_synchronized()) {
1537     lock_slot_offset = stack_slots;
1538     stack_slots += VMRegImpl::slots_per_word;
1539   }
1540 
1541   // Now a place (+2) to save return values or temp during shuffling
1542   // + 4 for return address (which we own) and saved rbp
1543   stack_slots += 6;
1544 
1545   // Ok The space we have allocated will look like:
1546   //
1547   //
1548   // FP-> |                     |
1549   //      |---------------------|
1550   //      | 2 slots for moves   |
1551   //      |---------------------|
1552   //      | lock box (if sync)  |
1553   //      |---------------------| <- lock_slot_offset
1554   //      | klass (if static)   |
1555   //      |---------------------| <- klass_slot_offset
1556   //      | oopHandle area      |
1557   //      |---------------------| <- oop_handle_offset (6 java arg registers)
1558   //      | outbound memory     |
1559   //      | based arguments     |
1560   //      |                     |
1561   //      |---------------------|
1562   //      |                     |
1563   // SP-> | out_preserved_slots |
1564   //
1565   //
1566 
1567 
1568   // Now compute actual number of stack words we need rounding to make
1569   // stack properly aligned.
1570   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1571 
1572   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1573 
1574   // First thing make an ic check to see if we should even be here
1575 
1576   // We are free to use all registers as temps without saving them and
1577   // restoring them except rbp. rbp is the only callee save register
1578   // as far as the interpreter and the compiler(s) are concerned.
1579 
1580 
1581   const Register ic_reg = rax;
1582   const Register receiver = j_rarg0;
1583 
1584   Label hit;
1585   Label exception_pending;
1586 
1587   assert_different_registers(ic_reg, receiver, rscratch1);
1588   __ verify_oop(receiver);
1589   __ load_klass(rscratch1, receiver);
1590   __ cmpq(ic_reg, rscratch1);
1591   __ jcc(Assembler::equal, hit);
1592 
1593   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1594 
1595   // Verified entry point must be aligned
1596   __ align(8);
1597 
1598   __ bind(hit);
1599 
1600   int vep_offset = ((intptr_t)__ pc()) - start;
1601 
1602   // The instruction at the verified entry point must be 5 bytes or longer
1603   // because it can be patched on the fly by make_non_entrant. The stack bang
1604   // instruction fits that requirement.
1605 
1606   // Generate stack overflow check
1607 
1608   if (UseStackBanging) {
1609     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
1610   } else {
1611     // need a 5 byte instruction to allow MT safe patching to non-entrant
1612     __ fat_nop();
1613   }
1614 
1615   // Generate a new frame for the wrapper.
1616   __ enter();
1617   // -2 because return address is already present and so is saved rbp
1618   __ subptr(rsp, stack_size - 2*wordSize);
1619 
1620   // Frame is now completed as far as size and linkage.
1621   int frame_complete = ((intptr_t)__ pc()) - start;
1622 
1623 #ifdef ASSERT
1624     {
1625       Label L;
1626       __ mov(rax, rsp);
1627       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
1628       __ cmpptr(rax, rsp);
1629       __ jcc(Assembler::equal, L);
1630       __ stop("improperly aligned stack");
1631       __ bind(L);
1632     }
1633 #endif /* ASSERT */
1634 
1635 
1636   // We use r14 as the oop handle for the receiver/klass
1637   // It is callee save so it survives the call to native
1638 
1639   const Register oop_handle_reg = r14;
1640 
1641   if (is_critical_native) {
1642     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
1643                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
1644   }
1645 
1646   //
1647   // We immediately shuffle the arguments so that any vm call we have to
1648   // make from here on out (sync slow path, jvmti, etc.) we will have
1649   // captured the oops from our caller and have a valid oopMap for
1650   // them.
1651 
1652   // -----------------
1653   // The Grand Shuffle
1654 
1655   // The Java calling convention is either equal (linux) or denser (win64) than the
1656   // c calling convention. However the because of the jni_env argument the c calling
1657   // convention always has at least one more (and two for static) arguments than Java.
1658   // Therefore if we move the args from java -> c backwards then we will never have
1659   // a register->register conflict and we don't have to build a dependency graph
1660   // and figure out how to break any cycles.
1661   //
1662 
1663   // Record esp-based slot for receiver on stack for non-static methods
1664   int receiver_offset = -1;
1665 
1666   // This is a trick. We double the stack slots so we can claim
1667   // the oops in the caller's frame. Since we are sure to have
1668   // more args than the caller doubling is enough to make
1669   // sure we can capture all the incoming oop args from the
1670   // caller.
1671   //
1672   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1673 
1674   // Mark location of rbp (someday)
1675   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
1676 
1677   // Use eax, ebx as temporaries during any memory-memory moves we have to do
1678   // All inbound args are referenced based on rbp and all outbound args via rsp.
1679 
1680 
1681 #ifdef ASSERT
1682   bool reg_destroyed[RegisterImpl::number_of_registers];
1683   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
1684   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
1685     reg_destroyed[r] = false;
1686   }
1687   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
1688     freg_destroyed[f] = false;
1689   }
1690 
1691 #endif /* ASSERT */
1692 
1693   if (is_critical_native) {
1694     // The mapping of Java and C arguments passed in registers are
1695     // rotated by one, which helps when passing arguments to regular
1696     // Java method but for critical natives that creates a cycle which
1697     // can cause arguments to be killed before they are used.  Break
1698     // the cycle by moving the first argument into a temporary
1699     // register.
1700     for (int i = 0; i < total_c_args; i++) {
1701       if (in_regs[i].first()->is_Register() &&
1702           in_regs[i].first()->as_Register() == rdi) {
1703         __ mov(rbx, rdi);
1704         in_regs[i].set1(rbx->as_VMReg());
1705       }
1706     }
1707   }
1708 
1709   // This may iterate in two different directions depending on the
1710   // kind of native it is.  The reason is that for regular JNI natives
1711   // the incoming and outgoing registers are offset upwards and for
1712   // critical natives they are offset down.
1713   int c_arg = total_c_args - 1;
1714   int stride = -1;
1715   int init = total_in_args - 1;
1716   if (is_critical_native) {
1717     // stride forwards
1718     c_arg = 0;
1719     stride = 1;
1720     init = 0;
1721   }
1722   for (int i = init, count = 0; count < total_in_args; i += stride, c_arg += stride, count++ ) {
1723 #ifdef ASSERT
1724     if (in_regs[i].first()->is_Register()) {
1725       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
1726     } else if (in_regs[i].first()->is_XMMRegister()) {
1727       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
1728     }
1729     if (out_regs[c_arg].first()->is_Register()) {
1730       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1731     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
1732       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
1733     }
1734 #endif /* ASSERT */
1735     switch (in_sig_bt[i]) {
1736       case T_ARRAY:
1737         if (is_critical_native) {
1738           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
1739           c_arg++;
1740 #ifdef ASSERT
1741           if (out_regs[c_arg].first()->is_Register()) {
1742             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1743           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
1744             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
1745           }
1746 #endif
1747           break;
1748         }
1749       case T_OBJECT:
1750         assert(!is_critical_native, "no oop arguments");
1751         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1752                     ((i == 0) && (!is_static)),
1753                     &receiver_offset);
1754         break;
1755       case T_VOID:
1756         break;
1757 
1758       case T_FLOAT:
1759         float_move(masm, in_regs[i], out_regs[c_arg]);
1760           break;
1761 
1762       case T_DOUBLE:
1763         assert( i + 1 < total_in_args &&
1764                 in_sig_bt[i + 1] == T_VOID &&
1765                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1766         double_move(masm, in_regs[i], out_regs[c_arg]);
1767         break;
1768 
1769       case T_LONG :
1770         long_move(masm, in_regs[i], out_regs[c_arg]);
1771         break;
1772 
1773       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1774 
1775       default:
1776         move32_64(masm, in_regs[i], out_regs[c_arg]);
1777     }
1778   }
1779 
1780   // point c_arg at the first arg that is already loaded in case we
1781   // need to spill before we call out
1782   c_arg++;
1783 
1784   // Pre-load a static method's oop into r14.  Used both by locking code and
1785   // the normal JNI call code.
1786   if (method->is_static() && !is_critical_native) {
1787 
1788     //  load oop into a register
1789     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
1790 
1791     // Now handlize the static class mirror it's known not-null.
1792     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1793     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1794 
1795     // Now get the handle
1796     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1797     // store the klass handle as second argument
1798     __ movptr(c_rarg1, oop_handle_reg);
1799     // and protect the arg if we must spill
1800     c_arg--;
1801   }
1802 
1803   // Change state to native (we save the return address in the thread, since it might not
1804   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1805   // points into the right code segment. It does not have to be the correct return pc.
1806   // We use the same pc/oopMap repeatedly when we call out
1807 
1808   intptr_t the_pc = (intptr_t) __ pc();
1809   oop_maps->add_gc_map(the_pc - start, map);
1810 
1811   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
1812 
1813 
1814   // We have all of the arguments setup at this point. We must not touch any register
1815   // argument registers at this point (what if we save/restore them there are no oop?
1816 
1817   {
1818     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
1819     // protect the args we've loaded
1820     save_args(masm, total_c_args, c_arg, out_regs);
1821     __ movoop(c_rarg1, JNIHandles::make_local(method()));
1822     __ call_VM_leaf(
1823       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1824       r15_thread, c_rarg1);
1825     restore_args(masm, total_c_args, c_arg, out_regs);
1826   }
1827 
1828   // RedefineClasses() tracing support for obsolete method entry
1829   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1830     // protect the args we've loaded
1831     save_args(masm, total_c_args, c_arg, out_regs);
1832     __ movoop(c_rarg1, JNIHandles::make_local(method()));
1833     __ call_VM_leaf(
1834       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1835       r15_thread, c_rarg1);
1836     restore_args(masm, total_c_args, c_arg, out_regs);
1837   }
1838 
1839   // Lock a synchronized method
1840 
1841   // Register definitions used by locking and unlocking
1842 
1843   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
1844   const Register obj_reg  = rbx;  // Will contain the oop
1845   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
1846   const Register old_hdr  = r13;  // value of old header at unlock time
1847 
1848   Label slow_path_lock;
1849   Label lock_done;
1850 
1851   if (method->is_synchronized()) {
1852     assert(!is_critical_native, "unhandled");
1853 
1854 
1855     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1856 
1857     // Get the handle (the 2nd argument)
1858     __ mov(oop_handle_reg, c_rarg1);
1859 
1860     // Get address of the box
1861 
1862     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
1863 
1864     // Load the oop from the handle
1865     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1866 
1867     if (UseBiasedLocking) {
1868       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
1869     }
1870 
1871     // Load immediate 1 into swap_reg %rax
1872     __ movl(swap_reg, 1);
1873 
1874     // Load (object->mark() | 1) into swap_reg %rax
1875     __ orptr(swap_reg, Address(obj_reg, 0));
1876 
1877     // Save (object->mark() | 1) into BasicLock's displaced header
1878     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1879 
1880     if (os::is_MP()) {
1881       __ lock();
1882     }
1883 
1884     // src -> dest iff dest == rax else rax <- dest
1885     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
1886     __ jcc(Assembler::equal, lock_done);
1887 
1888     // Hmm should this move to the slow path code area???
1889 
1890     // Test if the oopMark is an obvious stack pointer, i.e.,
1891     //  1) (mark & 3) == 0, and
1892     //  2) rsp <= mark < mark + os::pagesize()
1893     // These 3 tests can be done by evaluating the following
1894     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1895     // assuming both stack pointer and pagesize have their
1896     // least significant 2 bits clear.
1897     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
1898 
1899     __ subptr(swap_reg, rsp);
1900     __ andptr(swap_reg, 3 - os::vm_page_size());
1901 
1902     // Save the test result, for recursive case, the result is zero
1903     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1904     __ jcc(Assembler::notEqual, slow_path_lock);
1905 
1906     // Slow path will re-enter here
1907 
1908     __ bind(lock_done);
1909   }
1910 
1911 
1912   // Finally just about ready to make the JNI call
1913 
1914 
1915   // get JNIEnv* which is first argument to native
1916   if (!is_critical_native) {
1917     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
1918   }
1919 
1920   // Now set thread in native
1921   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
1922 
1923   __ call(RuntimeAddress(native_func));
1924 
1925     // Either restore the MXCSR register after returning from the JNI Call
1926     // or verify that it wasn't changed.
1927     if (RestoreMXCSROnJNICalls) {
1928       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
1929 
1930     }
1931     else if (CheckJNICalls ) {
1932       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
1933     }
1934 
1935 
1936   // Unpack native results.
1937   switch (ret_type) {
1938   case T_BOOLEAN: __ c2bool(rax);            break;
1939   case T_CHAR   : __ movzwl(rax, rax);      break;
1940   case T_BYTE   : __ sign_extend_byte (rax); break;
1941   case T_SHORT  : __ sign_extend_short(rax); break;
1942   case T_INT    : /* nothing to do */        break;
1943   case T_DOUBLE :
1944   case T_FLOAT  :
1945     // Result is in xmm0 we'll save as needed
1946     break;
1947   case T_ARRAY:                 // Really a handle
1948   case T_OBJECT:                // Really a handle
1949       break; // can't de-handlize until after safepoint check
1950   case T_VOID: break;
1951   case T_LONG: break;
1952   default       : ShouldNotReachHere();
1953   }
1954 
1955   // Switch thread to "native transition" state before reading the synchronization state.
1956   // This additional state is necessary because reading and testing the synchronization
1957   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1958   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1959   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1960   //     Thread A is resumed to finish this native method, but doesn't block here since it
1961   //     didn't see any synchronization is progress, and escapes.
1962   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1963 
1964   if(os::is_MP()) {
1965     if (UseMembar) {
1966       // Force this write out before the read below
1967       __ membar(Assembler::Membar_mask_bits(
1968            Assembler::LoadLoad | Assembler::LoadStore |
1969            Assembler::StoreLoad | Assembler::StoreStore));
1970     } else {
1971       // Write serialization page so VM thread can do a pseudo remote membar.
1972       // We use the current thread pointer to calculate a thread specific
1973       // offset to write to within the page. This minimizes bus traffic
1974       // due to cache line collision.
1975       __ serialize_memory(r15_thread, rcx);
1976     }
1977   }
1978 
1979   Label after_transition;
1980 
1981   // check for safepoint operation in progress and/or pending suspend requests
1982   {
1983     Label Continue;
1984 
1985     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
1986              SafepointSynchronize::_not_synchronized);
1987 
1988     Label L;
1989     __ jcc(Assembler::notEqual, L);
1990     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
1991     __ jcc(Assembler::equal, Continue);
1992     __ bind(L);
1993 
1994     // Don't use call_VM as it will see a possible pending exception and forward it
1995     // and never return here preventing us from clearing _last_native_pc down below.
1996     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1997     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1998     // by hand.
1999     //
2000     save_native_result(masm, ret_type, stack_slots);
2001     __ mov(c_rarg0, r15_thread);
2002     __ mov(r12, rsp); // remember sp
2003     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2004     __ andptr(rsp, -16); // align stack as required by ABI
2005     if (!is_critical_native) {
2006       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2007     } else {
2008       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2009     }
2010     __ mov(rsp, r12); // restore sp
2011     __ reinit_heapbase();
2012     // Restore any method result value
2013     restore_native_result(masm, ret_type, stack_slots);
2014 
2015     if (is_critical_native) {
2016       // The call above performed the transition to thread_in_Java so
2017       // skip the transition logic below.
2018       __ jmpb(after_transition);
2019     }
2020 
2021     __ bind(Continue);
2022   }
2023 
2024   // change thread state
2025   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2026   __ bind(after_transition);
2027 
2028   Label reguard;
2029   Label reguard_done;
2030   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
2031   __ jcc(Assembler::equal, reguard);
2032   __ bind(reguard_done);
2033 
2034   // native result if any is live
2035 
2036   // Unlock
2037   Label unlock_done;
2038   Label slow_path_unlock;
2039   if (method->is_synchronized()) {
2040 
2041     // Get locked oop from the handle we passed to jni
2042     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2043 
2044     Label done;
2045 
2046     if (UseBiasedLocking) {
2047       __ biased_locking_exit(obj_reg, old_hdr, done);
2048     }
2049 
2050     // Simple recursive lock?
2051 
2052     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2053     __ jcc(Assembler::equal, done);
2054 
2055     // Must save rax if if it is live now because cmpxchg must use it
2056     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2057       save_native_result(masm, ret_type, stack_slots);
2058     }
2059 
2060 
2061     // get address of the stack lock
2062     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2063     //  get old displaced header
2064     __ movptr(old_hdr, Address(rax, 0));
2065 
2066     // Atomic swap old header if oop still contains the stack lock
2067     if (os::is_MP()) {
2068       __ lock();
2069     }
2070     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
2071     __ jcc(Assembler::notEqual, slow_path_unlock);
2072 
2073     // slow path re-enters here
2074     __ bind(unlock_done);
2075     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2076       restore_native_result(masm, ret_type, stack_slots);
2077     }
2078 
2079     __ bind(done);
2080 
2081   }
2082   {
2083     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2084     save_native_result(masm, ret_type, stack_slots);
2085     __ movoop(c_rarg1, JNIHandles::make_local(method()));
2086     __ call_VM_leaf(
2087          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2088          r15_thread, c_rarg1);
2089     restore_native_result(masm, ret_type, stack_slots);
2090   }
2091 
2092   __ reset_last_Java_frame(false, true);
2093 
2094   // Unpack oop result
2095   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2096       Label L;
2097       __ testptr(rax, rax);
2098       __ jcc(Assembler::zero, L);
2099       __ movptr(rax, Address(rax, 0));
2100       __ bind(L);
2101       __ verify_oop(rax);
2102   }
2103 
2104   if (!is_critical_native) {
2105     // reset handle block
2106     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2107     __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
2108   }
2109 
2110   // pop our frame
2111 
2112   __ leave();
2113 
2114   if (!is_critical_native) {
2115     // Any exception pending?
2116     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2117     __ jcc(Assembler::notEqual, exception_pending);
2118   }
2119 
2120   // Return
2121 
2122   __ ret(0);
2123 
2124   // Unexpected paths are out of line and go here
2125 
2126   if (!is_critical_native) {
2127     // forward the exception
2128     __ bind(exception_pending);
2129 
2130     // and forward the exception
2131     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2132   }
2133 
2134   // Slow path locking & unlocking
2135   if (method->is_synchronized()) {
2136 
2137     // BEGIN Slow path lock
2138     __ bind(slow_path_lock);
2139 
2140     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2141     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2142 
2143     // protect the args we've loaded
2144     save_args(masm, total_c_args, c_arg, out_regs);
2145 
2146     __ mov(c_rarg0, obj_reg);
2147     __ mov(c_rarg1, lock_reg);
2148     __ mov(c_rarg2, r15_thread);
2149 
2150     // Not a leaf but we have last_Java_frame setup as we want
2151     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2152     restore_args(masm, total_c_args, c_arg, out_regs);
2153 
2154 #ifdef ASSERT
2155     { Label L;
2156     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2157     __ jcc(Assembler::equal, L);
2158     __ stop("no pending exception allowed on exit from monitorenter");
2159     __ bind(L);
2160     }
2161 #endif
2162     __ jmp(lock_done);
2163 
2164     // END Slow path lock
2165 
2166     // BEGIN Slow path unlock
2167     __ bind(slow_path_unlock);
2168 
2169     // If we haven't already saved the native result we must save it now as xmm registers
2170     // are still exposed.
2171 
2172     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2173       save_native_result(masm, ret_type, stack_slots);
2174     }
2175 
2176     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2177 
2178     __ mov(c_rarg0, obj_reg);
2179     __ mov(r12, rsp); // remember sp
2180     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2181     __ andptr(rsp, -16); // align stack as required by ABI
2182 
2183     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2184     // NOTE that obj_reg == rbx currently
2185     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2186     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2187 
2188     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2189     __ mov(rsp, r12); // restore sp
2190     __ reinit_heapbase();
2191 #ifdef ASSERT
2192     {
2193       Label L;
2194       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2195       __ jcc(Assembler::equal, L);
2196       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2197       __ bind(L);
2198     }
2199 #endif /* ASSERT */
2200 
2201     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2202 
2203     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2204       restore_native_result(masm, ret_type, stack_slots);
2205     }
2206     __ jmp(unlock_done);
2207 
2208     // END Slow path unlock
2209 
2210   } // synchronized
2211 
2212   // SLOW PATH Reguard the stack if needed
2213 
2214   __ bind(reguard);
2215   save_native_result(masm, ret_type, stack_slots);
2216   __ mov(r12, rsp); // remember sp
2217   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2218   __ andptr(rsp, -16); // align stack as required by ABI
2219   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2220   __ mov(rsp, r12); // restore sp
2221   __ reinit_heapbase();
2222   restore_native_result(masm, ret_type, stack_slots);
2223   // and continue
2224   __ jmp(reguard_done);
2225 
2226 
2227 
2228   __ flush();
2229 
2230   nmethod *nm = nmethod::new_native_nmethod(method,
2231                                             compile_id,
2232                                             masm->code(),
2233                                             vep_offset,
2234                                             frame_complete,
2235                                             stack_slots / VMRegImpl::slots_per_word,
2236                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2237                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2238                                             oop_maps);
2239 
2240   if (is_critical_native) {
2241     nm->set_lazy_critical_native(true);
2242   }
2243 
2244   return nm;
2245 
2246 }
2247 
2248 #ifdef HAVE_DTRACE_H
2249 // ---------------------------------------------------------------------------
2250 // Generate a dtrace nmethod for a given signature.  The method takes arguments
2251 // in the Java compiled code convention, marshals them to the native
2252 // abi and then leaves nops at the position you would expect to call a native
2253 // function. When the probe is enabled the nops are replaced with a trap
2254 // instruction that dtrace inserts and the trace will cause a notification
2255 // to dtrace.
2256 //
2257 // The probes are only able to take primitive types and java/lang/String as
2258 // arguments.  No other java types are allowed. Strings are converted to utf8
2259 // strings so that from dtrace point of view java strings are converted to C
2260 // strings. There is an arbitrary fixed limit on the total space that a method
2261 // can use for converting the strings. (256 chars per string in the signature).
2262 // So any java string larger then this is truncated.
2263 
2264 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2265 static bool offsets_initialized = false;
2266 
2267 
2268 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
2269                                                 methodHandle method) {
2270 
2271 
2272   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2273   // be single threaded in this method.
2274   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2275 
2276   if (!offsets_initialized) {
2277     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
2278     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
2279     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
2280     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
2281     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
2282     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
2283 
2284     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
2285     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
2286     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
2287     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
2288     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
2289     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
2290     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
2291     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
2292 
2293     offsets_initialized = true;
2294   }
2295   // Fill in the signature array, for the calling-convention call.
2296   int total_args_passed = method->size_of_parameters();
2297 
2298   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2299   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2300 
2301   // The signature we are going to use for the trap that dtrace will see
2302   // java/lang/String is converted. We drop "this" and any other object
2303   // is converted to NULL.  (A one-slot java/lang/Long object reference
2304   // is converted to a two-slot long, which is why we double the allocation).
2305   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2306   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2307 
2308   int i=0;
2309   int total_strings = 0;
2310   int first_arg_to_pass = 0;
2311   int total_c_args = 0;
2312 
2313   // Skip the receiver as dtrace doesn't want to see it
2314   if( !method->is_static() ) {
2315     in_sig_bt[i++] = T_OBJECT;
2316     first_arg_to_pass = 1;
2317   }
2318 
2319   // We need to convert the java args to where a native (non-jni) function
2320   // would expect them. To figure out where they go we convert the java
2321   // signature to a C signature.
2322 
2323   SignatureStream ss(method->signature());
2324   for ( ; !ss.at_return_type(); ss.next()) {
2325     BasicType bt = ss.type();
2326     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2327     out_sig_bt[total_c_args++] = bt;
2328     if( bt == T_OBJECT) {
2329       Symbol* s = ss.as_symbol_or_null();   // symbol is created
2330       if (s == vmSymbols::java_lang_String()) {
2331         total_strings++;
2332         out_sig_bt[total_c_args-1] = T_ADDRESS;
2333       } else if (s == vmSymbols::java_lang_Boolean() ||
2334                  s == vmSymbols::java_lang_Character() ||
2335                  s == vmSymbols::java_lang_Byte() ||
2336                  s == vmSymbols::java_lang_Short() ||
2337                  s == vmSymbols::java_lang_Integer() ||
2338                  s == vmSymbols::java_lang_Float()) {
2339         out_sig_bt[total_c_args-1] = T_INT;
2340       } else if (s == vmSymbols::java_lang_Long() ||
2341                  s == vmSymbols::java_lang_Double()) {
2342         out_sig_bt[total_c_args-1] = T_LONG;
2343         out_sig_bt[total_c_args++] = T_VOID;
2344       }
2345     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2346       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2347       // We convert double to long
2348       out_sig_bt[total_c_args-1] = T_LONG;
2349       out_sig_bt[total_c_args++] = T_VOID;
2350     } else if ( bt == T_FLOAT) {
2351       // We convert float to int
2352       out_sig_bt[total_c_args-1] = T_INT;
2353     }
2354   }
2355 
2356   assert(i==total_args_passed, "validly parsed signature");
2357 
2358   // Now get the compiled-Java layout as input arguments
2359   int comp_args_on_stack;
2360   comp_args_on_stack = SharedRuntime::java_calling_convention(
2361       in_sig_bt, in_regs, total_args_passed, false);
2362 
2363   // Now figure out where the args must be stored and how much stack space
2364   // they require (neglecting out_preserve_stack_slots but space for storing
2365   // the 1st six register arguments). It's weird see int_stk_helper.
2366 
2367   int out_arg_slots;
2368   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2369 
2370   // Calculate the total number of stack slots we will need.
2371 
2372   // First count the abi requirement plus all of the outgoing args
2373   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2374 
2375   // Now space for the string(s) we must convert
2376   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
2377   for (i = 0; i < total_strings ; i++) {
2378     string_locs[i] = stack_slots;
2379     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
2380   }
2381 
2382   // Plus the temps we might need to juggle register args
2383   // regs take two slots each
2384   stack_slots += (Argument::n_int_register_parameters_c +
2385                   Argument::n_float_register_parameters_c) * 2;
2386 
2387 
2388   // + 4 for return address (which we own) and saved rbp,
2389 
2390   stack_slots += 4;
2391 
2392   // Ok The space we have allocated will look like:
2393   //
2394   //
2395   // FP-> |                     |
2396   //      |---------------------|
2397   //      | string[n]           |
2398   //      |---------------------| <- string_locs[n]
2399   //      | string[n-1]         |
2400   //      |---------------------| <- string_locs[n-1]
2401   //      | ...                 |
2402   //      | ...                 |
2403   //      |---------------------| <- string_locs[1]
2404   //      | string[0]           |
2405   //      |---------------------| <- string_locs[0]
2406   //      | outbound memory     |
2407   //      | based arguments     |
2408   //      |                     |
2409   //      |---------------------|
2410   //      |                     |
2411   // SP-> | out_preserved_slots |
2412   //
2413   //
2414 
2415   // Now compute actual number of stack words we need rounding to make
2416   // stack properly aligned.
2417   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2418 
2419   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2420 
2421   intptr_t start = (intptr_t)__ pc();
2422 
2423   // First thing make an ic check to see if we should even be here
2424 
2425   // We are free to use all registers as temps without saving them and
2426   // restoring them except rbp. rbp, is the only callee save register
2427   // as far as the interpreter and the compiler(s) are concerned.
2428 
2429   const Register ic_reg = rax;
2430   const Register receiver = rcx;
2431   Label hit;
2432   Label exception_pending;
2433 
2434 
2435   __ verify_oop(receiver);
2436   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2437   __ jcc(Assembler::equal, hit);
2438 
2439   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2440 
2441   // verified entry must be aligned for code patching.
2442   // and the first 5 bytes must be in the same cache line
2443   // if we align at 8 then we will be sure 5 bytes are in the same line
2444   __ align(8);
2445 
2446   __ bind(hit);
2447 
2448   int vep_offset = ((intptr_t)__ pc()) - start;
2449 
2450 
2451   // The instruction at the verified entry point must be 5 bytes or longer
2452   // because it can be patched on the fly by make_non_entrant. The stack bang
2453   // instruction fits that requirement.
2454 
2455   // Generate stack overflow check
2456 
2457   if (UseStackBanging) {
2458     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2459       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2460     } else {
2461       __ movl(rax, stack_size);
2462       __ bang_stack_size(rax, rbx);
2463     }
2464   } else {
2465     // need a 5 byte instruction to allow MT safe patching to non-entrant
2466     __ fat_nop();
2467   }
2468 
2469   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
2470          "valid size for make_non_entrant");
2471 
2472   // Generate a new frame for the wrapper.
2473   __ enter();
2474 
2475   // -4 because return address is already present and so is saved rbp,
2476   if (stack_size - 2*wordSize != 0) {
2477     __ subq(rsp, stack_size - 2*wordSize);
2478   }
2479 
2480   // Frame is now completed as far a size and linkage.
2481 
2482   int frame_complete = ((intptr_t)__ pc()) - start;
2483 
2484   int c_arg, j_arg;
2485 
2486   // State of input register args
2487 
2488   bool  live[ConcreteRegisterImpl::number_of_registers];
2489 
2490   live[j_rarg0->as_VMReg()->value()] = false;
2491   live[j_rarg1->as_VMReg()->value()] = false;
2492   live[j_rarg2->as_VMReg()->value()] = false;
2493   live[j_rarg3->as_VMReg()->value()] = false;
2494   live[j_rarg4->as_VMReg()->value()] = false;
2495   live[j_rarg5->as_VMReg()->value()] = false;
2496 
2497   live[j_farg0->as_VMReg()->value()] = false;
2498   live[j_farg1->as_VMReg()->value()] = false;
2499   live[j_farg2->as_VMReg()->value()] = false;
2500   live[j_farg3->as_VMReg()->value()] = false;
2501   live[j_farg4->as_VMReg()->value()] = false;
2502   live[j_farg5->as_VMReg()->value()] = false;
2503   live[j_farg6->as_VMReg()->value()] = false;
2504   live[j_farg7->as_VMReg()->value()] = false;
2505 
2506 
2507   bool rax_is_zero = false;
2508 
2509   // All args (except strings) destined for the stack are moved first
2510   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2511        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2512     VMRegPair src = in_regs[j_arg];
2513     VMRegPair dst = out_regs[c_arg];
2514 
2515     // Get the real reg value or a dummy (rsp)
2516 
2517     int src_reg = src.first()->is_reg() ?
2518                   src.first()->value() :
2519                   rsp->as_VMReg()->value();
2520 
2521     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2522                     (in_sig_bt[j_arg] == T_OBJECT &&
2523                      out_sig_bt[c_arg] != T_INT &&
2524                      out_sig_bt[c_arg] != T_ADDRESS &&
2525                      out_sig_bt[c_arg] != T_LONG);
2526 
2527     live[src_reg] = !useless;
2528 
2529     if (dst.first()->is_stack()) {
2530 
2531       // Even though a string arg in a register is still live after this loop
2532       // after the string conversion loop (next) it will be dead so we take
2533       // advantage of that now for simpler code to manage live.
2534 
2535       live[src_reg] = false;
2536       switch (in_sig_bt[j_arg]) {
2537 
2538         case T_ARRAY:
2539         case T_OBJECT:
2540           {
2541             Address stack_dst(rsp, reg2offset_out(dst.first()));
2542 
2543             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2544               // need to unbox a one-word value
2545               Register in_reg = rax;
2546               if ( src.first()->is_reg() ) {
2547                 in_reg = src.first()->as_Register();
2548               } else {
2549                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
2550                 rax_is_zero = false;
2551               }
2552               Label skipUnbox;
2553               __ movptr(Address(rsp, reg2offset_out(dst.first())),
2554                         (int32_t)NULL_WORD);
2555               __ testq(in_reg, in_reg);
2556               __ jcc(Assembler::zero, skipUnbox);
2557 
2558               BasicType bt = out_sig_bt[c_arg];
2559               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2560               Address src1(in_reg, box_offset);
2561               if ( bt == T_LONG ) {
2562                 __ movq(in_reg,  src1);
2563                 __ movq(stack_dst, in_reg);
2564                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2565                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
2566               } else {
2567                 __ movl(in_reg,  src1);
2568                 __ movl(stack_dst, in_reg);
2569               }
2570 
2571               __ bind(skipUnbox);
2572             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
2573               // Convert the arg to NULL
2574               if (!rax_is_zero) {
2575                 __ xorq(rax, rax);
2576                 rax_is_zero = true;
2577               }
2578               __ movq(stack_dst, rax);
2579             }
2580           }
2581           break;
2582 
2583         case T_VOID:
2584           break;
2585 
2586         case T_FLOAT:
2587           // This does the right thing since we know it is destined for the
2588           // stack
2589           float_move(masm, src, dst);
2590           break;
2591 
2592         case T_DOUBLE:
2593           // This does the right thing since we know it is destined for the
2594           // stack
2595           double_move(masm, src, dst);
2596           break;
2597 
2598         case T_LONG :
2599           long_move(masm, src, dst);
2600           break;
2601 
2602         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2603 
2604         default:
2605           move32_64(masm, src, dst);
2606       }
2607     }
2608 
2609   }
2610 
2611   // If we have any strings we must store any register based arg to the stack
2612   // This includes any still live xmm registers too.
2613 
2614   int sid = 0;
2615 
2616   if (total_strings > 0 ) {
2617     for (j_arg = first_arg_to_pass, c_arg = 0 ;
2618          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2619       VMRegPair src = in_regs[j_arg];
2620       VMRegPair dst = out_regs[c_arg];
2621 
2622       if (src.first()->is_reg()) {
2623         Address src_tmp(rbp, fp_offset[src.first()->value()]);
2624 
2625         // string oops were left untouched by the previous loop even if the
2626         // eventual (converted) arg is destined for the stack so park them
2627         // away now (except for first)
2628 
2629         if (out_sig_bt[c_arg] == T_ADDRESS) {
2630           Address utf8_addr = Address(
2631               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2632           if (sid != 1) {
2633             // The first string arg won't be killed until after the utf8
2634             // conversion
2635             __ movq(utf8_addr, src.first()->as_Register());
2636           }
2637         } else if (dst.first()->is_reg()) {
2638           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
2639 
2640             // Convert the xmm register to an int and store it in the reserved
2641             // location for the eventual c register arg
2642             XMMRegister f = src.first()->as_XMMRegister();
2643             if (in_sig_bt[j_arg] == T_FLOAT) {
2644               __ movflt(src_tmp, f);
2645             } else {
2646               __ movdbl(src_tmp, f);
2647             }
2648           } else {
2649             // If the arg is an oop type we don't support don't bother to store
2650             // it remember string was handled above.
2651             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2652                             (in_sig_bt[j_arg] == T_OBJECT &&
2653                              out_sig_bt[c_arg] != T_INT &&
2654                              out_sig_bt[c_arg] != T_LONG);
2655 
2656             if (!useless) {
2657               __ movq(src_tmp, src.first()->as_Register());
2658             }
2659           }
2660         }
2661       }
2662       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2663         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2664         ++c_arg; // skip over T_VOID to keep the loop indices in sync
2665       }
2666     }
2667 
2668     // Now that the volatile registers are safe, convert all the strings
2669     sid = 0;
2670 
2671     for (j_arg = first_arg_to_pass, c_arg = 0 ;
2672          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2673       if (out_sig_bt[c_arg] == T_ADDRESS) {
2674         // It's a string
2675         Address utf8_addr = Address(
2676             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2677         // The first string we find might still be in the original java arg
2678         // register
2679 
2680         VMReg src = in_regs[j_arg].first();
2681 
2682         // We will need to eventually save the final argument to the trap
2683         // in the von-volatile location dedicated to src. This is the offset
2684         // from fp we will use.
2685         int src_off = src->is_reg() ?
2686             fp_offset[src->value()] : reg2offset_in(src);
2687 
2688         // This is where the argument will eventually reside
2689         VMRegPair dst = out_regs[c_arg];
2690 
2691         if (src->is_reg()) {
2692           if (sid == 1) {
2693             __ movq(c_rarg0, src->as_Register());
2694           } else {
2695             __ movq(c_rarg0, utf8_addr);
2696           }
2697         } else {
2698           // arg is still in the original location
2699           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
2700         }
2701         Label done, convert;
2702 
2703         // see if the oop is NULL
2704         __ testq(c_rarg0, c_rarg0);
2705         __ jcc(Assembler::notEqual, convert);
2706 
2707         if (dst.first()->is_reg()) {
2708           // Save the ptr to utf string in the origina src loc or the tmp
2709           // dedicated to it
2710           __ movq(Address(rbp, src_off), c_rarg0);
2711         } else {
2712           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
2713         }
2714         __ jmp(done);
2715 
2716         __ bind(convert);
2717 
2718         __ lea(c_rarg1, utf8_addr);
2719         if (dst.first()->is_reg()) {
2720           __ movq(Address(rbp, src_off), c_rarg1);
2721         } else {
2722           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
2723         }
2724         // And do the conversion
2725         __ call(RuntimeAddress(
2726                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
2727 
2728         __ bind(done);
2729       }
2730       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2731         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2732         ++c_arg; // skip over T_VOID to keep the loop indices in sync
2733       }
2734     }
2735     // The get_utf call killed all the c_arg registers
2736     live[c_rarg0->as_VMReg()->value()] = false;
2737     live[c_rarg1->as_VMReg()->value()] = false;
2738     live[c_rarg2->as_VMReg()->value()] = false;
2739     live[c_rarg3->as_VMReg()->value()] = false;
2740     live[c_rarg4->as_VMReg()->value()] = false;
2741     live[c_rarg5->as_VMReg()->value()] = false;
2742 
2743     live[c_farg0->as_VMReg()->value()] = false;
2744     live[c_farg1->as_VMReg()->value()] = false;
2745     live[c_farg2->as_VMReg()->value()] = false;
2746     live[c_farg3->as_VMReg()->value()] = false;
2747     live[c_farg4->as_VMReg()->value()] = false;
2748     live[c_farg5->as_VMReg()->value()] = false;
2749     live[c_farg6->as_VMReg()->value()] = false;
2750     live[c_farg7->as_VMReg()->value()] = false;
2751   }
2752 
2753   // Now we can finally move the register args to their desired locations
2754 
2755   rax_is_zero = false;
2756 
2757   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2758        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2759 
2760     VMRegPair src = in_regs[j_arg];
2761     VMRegPair dst = out_regs[c_arg];
2762 
2763     // Only need to look for args destined for the interger registers (since we
2764     // convert float/double args to look like int/long outbound)
2765     if (dst.first()->is_reg()) {
2766       Register r =  dst.first()->as_Register();
2767 
2768       // Check if the java arg is unsupported and thereofre useless
2769       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2770                       (in_sig_bt[j_arg] == T_OBJECT &&
2771                        out_sig_bt[c_arg] != T_INT &&
2772                        out_sig_bt[c_arg] != T_ADDRESS &&
2773                        out_sig_bt[c_arg] != T_LONG);
2774 
2775 
2776       // If we're going to kill an existing arg save it first
2777       if (live[dst.first()->value()]) {
2778         // you can't kill yourself
2779         if (src.first() != dst.first()) {
2780           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
2781         }
2782       }
2783       if (src.first()->is_reg()) {
2784         if (live[src.first()->value()] ) {
2785           if (in_sig_bt[j_arg] == T_FLOAT) {
2786             __ movdl(r, src.first()->as_XMMRegister());
2787           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
2788             __ movdq(r, src.first()->as_XMMRegister());
2789           } else if (r != src.first()->as_Register()) {
2790             if (!useless) {
2791               __ movq(r, src.first()->as_Register());
2792             }
2793           }
2794         } else {
2795           // If the arg is an oop type we don't support don't bother to store
2796           // it
2797           if (!useless) {
2798             if (in_sig_bt[j_arg] == T_DOUBLE ||
2799                 in_sig_bt[j_arg] == T_LONG  ||
2800                 in_sig_bt[j_arg] == T_OBJECT ) {
2801               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
2802             } else {
2803               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
2804             }
2805           }
2806         }
2807         live[src.first()->value()] = false;
2808       } else if (!useless) {
2809         // full sized move even for int should be ok
2810         __ movq(r, Address(rbp, reg2offset_in(src.first())));
2811       }
2812 
2813       // At this point r has the original java arg in the final location
2814       // (assuming it wasn't useless). If the java arg was an oop
2815       // we have a bit more to do
2816 
2817       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
2818         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2819           // need to unbox a one-word value
2820           Label skip;
2821           __ testq(r, r);
2822           __ jcc(Assembler::equal, skip);
2823           BasicType bt = out_sig_bt[c_arg];
2824           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2825           Address src1(r, box_offset);
2826           if ( bt == T_LONG ) {
2827             __ movq(r, src1);
2828           } else {
2829             __ movl(r, src1);
2830           }
2831           __ bind(skip);
2832 
2833         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
2834           // Convert the arg to NULL
2835           __ xorq(r, r);
2836         }
2837       }
2838 
2839       // dst can longer be holding an input value
2840       live[dst.first()->value()] = false;
2841     }
2842     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2843       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2844       ++c_arg; // skip over T_VOID to keep the loop indices in sync
2845     }
2846   }
2847 
2848 
2849   // Ok now we are done. Need to place the nop that dtrace wants in order to
2850   // patch in the trap
2851   int patch_offset = ((intptr_t)__ pc()) - start;
2852 
2853   __ nop();
2854 
2855 
2856   // Return
2857 
2858   __ leave();
2859   __ ret(0);
2860 
2861   __ flush();
2862 
2863   nmethod *nm = nmethod::new_dtrace_nmethod(
2864       method, masm->code(), vep_offset, patch_offset, frame_complete,
2865       stack_slots / VMRegImpl::slots_per_word);
2866   return nm;
2867 
2868 }
2869 
2870 #endif // HAVE_DTRACE_H
2871 
2872 // this function returns the adjust size (in number of words) to a c2i adapter
2873 // activation for use during deoptimization
2874 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2875   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2876 }
2877 
2878 
2879 uint SharedRuntime::out_preserve_stack_slots() {
2880   return 0;
2881 }
2882 
2883 
2884 //------------------------------generate_deopt_blob----------------------------
2885 void SharedRuntime::generate_deopt_blob() {
2886   // Allocate space for the code
2887   ResourceMark rm;
2888   // Setup code generation tools
2889   CodeBuffer buffer("deopt_blob", 2048, 1024);
2890   MacroAssembler* masm = new MacroAssembler(&buffer);
2891   int frame_size_in_words;
2892   OopMap* map = NULL;
2893   OopMapSet *oop_maps = new OopMapSet();
2894 
2895   // -------------
2896   // This code enters when returning to a de-optimized nmethod.  A return
2897   // address has been pushed on the the stack, and return values are in
2898   // registers.
2899   // If we are doing a normal deopt then we were called from the patched
2900   // nmethod from the point we returned to the nmethod. So the return
2901   // address on the stack is wrong by NativeCall::instruction_size
2902   // We will adjust the value so it looks like we have the original return
2903   // address on the stack (like when we eagerly deoptimized).
2904   // In the case of an exception pending when deoptimizing, we enter
2905   // with a return address on the stack that points after the call we patched
2906   // into the exception handler. We have the following register state from,
2907   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2908   //    rax: exception oop
2909   //    rbx: exception handler
2910   //    rdx: throwing pc
2911   // So in this case we simply jam rdx into the useless return address and
2912   // the stack looks just like we want.
2913   //
2914   // At this point we need to de-opt.  We save the argument return
2915   // registers.  We call the first C routine, fetch_unroll_info().  This
2916   // routine captures the return values and returns a structure which
2917   // describes the current frame size and the sizes of all replacement frames.
2918   // The current frame is compiled code and may contain many inlined
2919   // functions, each with their own JVM state.  We pop the current frame, then
2920   // push all the new frames.  Then we call the C routine unpack_frames() to
2921   // populate these frames.  Finally unpack_frames() returns us the new target
2922   // address.  Notice that callee-save registers are BLOWN here; they have
2923   // already been captured in the vframeArray at the time the return PC was
2924   // patched.
2925   address start = __ pc();
2926   Label cont;
2927 
2928   // Prolog for non exception case!
2929 
2930   // Save everything in sight.
2931   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2932 
2933   // Normal deoptimization.  Save exec mode for unpack_frames.
2934   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
2935   __ jmp(cont);
2936 
2937   int reexecute_offset = __ pc() - start;
2938 
2939   // Reexecute case
2940   // return address is the pc describes what bci to do re-execute at
2941 
2942   // No need to update map as each call to save_live_registers will produce identical oopmap
2943   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2944 
2945   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
2946   __ jmp(cont);
2947 
2948   int exception_offset = __ pc() - start;
2949 
2950   // Prolog for exception case
2951 
2952   // all registers are dead at this entry point, except for rax, and
2953   // rdx which contain the exception oop and exception pc
2954   // respectively.  Set them in TLS and fall thru to the
2955   // unpack_with_exception_in_tls entry point.
2956 
2957   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
2958   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
2959 
2960   int exception_in_tls_offset = __ pc() - start;
2961 
2962   // new implementation because exception oop is now passed in JavaThread
2963 
2964   // Prolog for exception case
2965   // All registers must be preserved because they might be used by LinearScan
2966   // Exceptiop oop and throwing PC are passed in JavaThread
2967   // tos: stack at point of call to method that threw the exception (i.e. only
2968   // args are on the stack, no return address)
2969 
2970   // make room on stack for the return address
2971   // It will be patched later with the throwing pc. The correct value is not
2972   // available now because loading it from memory would destroy registers.
2973   __ push(0);
2974 
2975   // Save everything in sight.
2976   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2977 
2978   // Now it is safe to overwrite any register
2979 
2980   // Deopt during an exception.  Save exec mode for unpack_frames.
2981   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
2982 
2983   // load throwing pc from JavaThread and patch it as the return address
2984   // of the current frame. Then clear the field in JavaThread
2985 
2986   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2987   __ movptr(Address(rbp, wordSize), rdx);
2988   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2989 
2990 #ifdef ASSERT
2991   // verify that there is really an exception oop in JavaThread
2992   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2993   __ verify_oop(rax);
2994 
2995   // verify that there is no pending exception
2996   Label no_pending_exception;
2997   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
2998   __ testptr(rax, rax);
2999   __ jcc(Assembler::zero, no_pending_exception);
3000   __ stop("must not have pending exception here");
3001   __ bind(no_pending_exception);
3002 #endif
3003 
3004   __ bind(cont);
3005 
3006   // Call C code.  Need thread and this frame, but NOT official VM entry
3007   // crud.  We cannot block on this call, no GC can happen.
3008   //
3009   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
3010 
3011   // fetch_unroll_info needs to call last_java_frame().
3012 
3013   __ set_last_Java_frame(noreg, noreg, NULL);
3014 #ifdef ASSERT
3015   { Label L;
3016     __ cmpptr(Address(r15_thread,
3017                     JavaThread::last_Java_fp_offset()),
3018             (int32_t)0);
3019     __ jcc(Assembler::equal, L);
3020     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
3021     __ bind(L);
3022   }
3023 #endif // ASSERT
3024   __ mov(c_rarg0, r15_thread);
3025   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
3026 
3027   // Need to have an oopmap that tells fetch_unroll_info where to
3028   // find any register it might need.
3029   oop_maps->add_gc_map(__ pc() - start, map);
3030 
3031   __ reset_last_Java_frame(false, false);
3032 
3033   // Load UnrollBlock* into rdi
3034   __ mov(rdi, rax);
3035 
3036    Label noException;
3037   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
3038   __ jcc(Assembler::notEqual, noException);
3039   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3040   // QQQ this is useless it was NULL above
3041   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3042   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
3043   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3044 
3045   __ verify_oop(rax);
3046 
3047   // Overwrite the result registers with the exception results.
3048   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3049   // I think this is useless
3050   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
3051 
3052   __ bind(noException);
3053 
3054   // Only register save data is on the stack.
3055   // Now restore the result registers.  Everything else is either dead
3056   // or captured in the vframeArray.
3057   RegisterSaver::restore_result_registers(masm);
3058 
3059   // All of the register save area has been popped of the stack. Only the
3060   // return address remains.
3061 
3062   // Pop all the frames we must move/replace.
3063   //
3064   // Frame picture (youngest to oldest)
3065   // 1: self-frame (no frame link)
3066   // 2: deopting frame  (no frame link)
3067   // 3: caller of deopting frame (could be compiled/interpreted).
3068   //
3069   // Note: by leaving the return address of self-frame on the stack
3070   // and using the size of frame 2 to adjust the stack
3071   // when we are done the return to frame 3 will still be on the stack.
3072 
3073   // Pop deoptimized frame
3074   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3075   __ addptr(rsp, rcx);
3076 
3077   // rsp should be pointing at the return address to the caller (3)
3078 
3079   // Stack bang to make sure there's enough room for these interpreter frames.
3080   if (UseStackBanging) {
3081     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3082     __ bang_stack_size(rbx, rcx);
3083   }
3084 
3085   // Load address of array of frame pcs into rcx
3086   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3087 
3088   // Trash the old pc
3089   __ addptr(rsp, wordSize);
3090 
3091   // Load address of array of frame sizes into rsi
3092   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3093 
3094   // Load counter into rdx
3095   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3096 
3097   // Pick up the initial fp we should save
3098   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3099 
3100   // Now adjust the caller's stack to make up for the extra locals
3101   // but record the original sp so that we can save it in the skeletal interpreter
3102   // frame and the stack walking of interpreter_sender will get the unextended sp
3103   // value and not the "real" sp value.
3104 
3105   const Register sender_sp = r8;
3106 
3107   __ mov(sender_sp, rsp);
3108   __ movl(rbx, Address(rdi,
3109                        Deoptimization::UnrollBlock::
3110                        caller_adjustment_offset_in_bytes()));
3111   __ subptr(rsp, rbx);
3112 
3113   // Push interpreter frames in a loop
3114   Label loop;
3115   __ bind(loop);
3116   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3117 #ifdef CC_INTERP
3118   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
3119 #ifdef ASSERT
3120   __ push(0xDEADDEAD);                  // Make a recognizable pattern
3121   __ push(0xDEADDEAD);
3122 #else /* ASSERT */
3123   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
3124 #endif /* ASSERT */
3125 #else
3126   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
3127 #endif // CC_INTERP
3128   __ pushptr(Address(rcx, 0));          // Save return address
3129   __ enter();                           // Save old & set new ebp
3130   __ subptr(rsp, rbx);                  // Prolog
3131 #ifdef CC_INTERP
3132   __ movptr(Address(rbp,
3133                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3134             sender_sp); // Make it walkable
3135 #else /* CC_INTERP */
3136   // This value is corrected by layout_activation_impl
3137   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3138   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
3139 #endif /* CC_INTERP */
3140   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
3141   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3142   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3143   __ decrementl(rdx);                   // Decrement counter
3144   __ jcc(Assembler::notZero, loop);
3145   __ pushptr(Address(rcx, 0));          // Save final return address
3146 
3147   // Re-push self-frame
3148   __ enter();                           // Save old & set new ebp
3149 
3150   // Allocate a full sized register save area.
3151   // Return address and rbp are in place, so we allocate two less words.
3152   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
3153 
3154   // Restore frame locals after moving the frame
3155   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
3156   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3157 
3158   // Call C code.  Need thread but NOT official VM entry
3159   // crud.  We cannot block on this call, no GC can happen.  Call should
3160   // restore return values to their stack-slots with the new SP.
3161   //
3162   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
3163 
3164   // Use rbp because the frames look interpreted now
3165   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3166   // Don't need the precise return PC here, just precise enough to point into this code blob.
3167   address the_pc = __ pc();
3168   __ set_last_Java_frame(noreg, rbp, the_pc);
3169 
3170   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
3171   __ mov(c_rarg0, r15_thread);
3172   __ movl(c_rarg1, r14); // second arg: exec_mode
3173   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3174   // Revert SP alignment after call since we're going to do some SP relative addressing below
3175   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
3176 
3177   // Set an oopmap for the call site
3178   // Use the same PC we used for the last java frame
3179   oop_maps->add_gc_map(the_pc - start,
3180                        new OopMap( frame_size_in_words, 0 ));
3181 
3182   // Clear fp AND pc
3183   __ reset_last_Java_frame(true, true);
3184 
3185   // Collect return values
3186   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
3187   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
3188   // I think this is useless (throwing pc?)
3189   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
3190 
3191   // Pop self-frame.
3192   __ leave();                           // Epilog
3193 
3194   // Jump to interpreter
3195   __ ret(0);
3196 
3197   // Make sure all code is generated
3198   masm->flush();
3199 
3200   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3201   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3202 }
3203 
3204 #ifdef COMPILER2
3205 //------------------------------generate_uncommon_trap_blob--------------------
3206 void SharedRuntime::generate_uncommon_trap_blob() {
3207   // Allocate space for the code
3208   ResourceMark rm;
3209   // Setup code generation tools
3210   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3211   MacroAssembler* masm = new MacroAssembler(&buffer);
3212 
3213   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3214 
3215   address start = __ pc();
3216 
3217   // Push self-frame.  We get here with a return address on the
3218   // stack, so rsp is 8-byte aligned until we allocate our frame.
3219   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3220 
3221   // No callee saved registers. rbp is assumed implicitly saved
3222   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3223 
3224   // compiler left unloaded_class_index in j_rarg0 move to where the
3225   // runtime expects it.
3226   __ movl(c_rarg1, j_rarg0);
3227 
3228   __ set_last_Java_frame(noreg, noreg, NULL);
3229 
3230   // Call C code.  Need thread but NOT official VM entry
3231   // crud.  We cannot block on this call, no GC can happen.  Call should
3232   // capture callee-saved registers as well as return values.
3233   // Thread is in rdi already.
3234   //
3235   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3236 
3237   __ mov(c_rarg0, r15_thread);
3238   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3239 
3240   // Set an oopmap for the call site
3241   OopMapSet* oop_maps = new OopMapSet();
3242   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3243 
3244   // location of rbp is known implicitly by the frame sender code
3245 
3246   oop_maps->add_gc_map(__ pc() - start, map);
3247 
3248   __ reset_last_Java_frame(false, false);
3249 
3250   // Load UnrollBlock* into rdi
3251   __ mov(rdi, rax);
3252 
3253   // Pop all the frames we must move/replace.
3254   //
3255   // Frame picture (youngest to oldest)
3256   // 1: self-frame (no frame link)
3257   // 2: deopting frame  (no frame link)
3258   // 3: caller of deopting frame (could be compiled/interpreted).
3259 
3260   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3261   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3262 
3263   // Pop deoptimized frame (int)
3264   __ movl(rcx, Address(rdi,
3265                        Deoptimization::UnrollBlock::
3266                        size_of_deoptimized_frame_offset_in_bytes()));
3267   __ addptr(rsp, rcx);
3268 
3269   // rsp should be pointing at the return address to the caller (3)
3270 
3271   // Stack bang to make sure there's enough room for these interpreter frames.
3272   if (UseStackBanging) {
3273     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3274     __ bang_stack_size(rbx, rcx);
3275   }
3276 
3277   // Load address of array of frame pcs into rcx (address*)
3278   __ movptr(rcx,
3279             Address(rdi,
3280                     Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3281 
3282   // Trash the return pc
3283   __ addptr(rsp, wordSize);
3284 
3285   // Load address of array of frame sizes into rsi (intptr_t*)
3286   __ movptr(rsi, Address(rdi,
3287                          Deoptimization::UnrollBlock::
3288                          frame_sizes_offset_in_bytes()));
3289 
3290   // Counter
3291   __ movl(rdx, Address(rdi,
3292                        Deoptimization::UnrollBlock::
3293                        number_of_frames_offset_in_bytes())); // (int)
3294 
3295   // Pick up the initial fp we should save
3296   __ movptr(rbp,
3297             Address(rdi,
3298                     Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3299 
3300   // Now adjust the caller's stack to make up for the extra locals but
3301   // record the original sp so that we can save it in the skeletal
3302   // interpreter frame and the stack walking of interpreter_sender
3303   // will get the unextended sp value and not the "real" sp value.
3304 
3305   const Register sender_sp = r8;
3306 
3307   __ mov(sender_sp, rsp);
3308   __ movl(rbx, Address(rdi,
3309                        Deoptimization::UnrollBlock::
3310                        caller_adjustment_offset_in_bytes())); // (int)
3311   __ subptr(rsp, rbx);
3312 
3313   // Push interpreter frames in a loop
3314   Label loop;
3315   __ bind(loop);
3316   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3317   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3318   __ pushptr(Address(rcx, 0));     // Save return address
3319   __ enter();                      // Save old & set new rbp
3320   __ subptr(rsp, rbx);             // Prolog
3321 #ifdef CC_INTERP
3322   __ movptr(Address(rbp,
3323                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3324             sender_sp); // Make it walkable
3325 #else // CC_INTERP
3326   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3327             sender_sp);            // Make it walkable
3328   // This value is corrected by layout_activation_impl
3329   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3330 #endif // CC_INTERP
3331   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3332   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3333   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3334   __ decrementl(rdx);              // Decrement counter
3335   __ jcc(Assembler::notZero, loop);
3336   __ pushptr(Address(rcx, 0));     // Save final return address
3337 
3338   // Re-push self-frame
3339   __ enter();                 // Save old & set new rbp
3340   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3341                               // Prolog
3342 
3343   // Use rbp because the frames look interpreted now
3344   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3345   // Don't need the precise return PC here, just precise enough to point into this code blob.
3346   address the_pc = __ pc();
3347   __ set_last_Java_frame(noreg, rbp, the_pc);
3348 
3349   // Call C code.  Need thread but NOT official VM entry
3350   // crud.  We cannot block on this call, no GC can happen.  Call should
3351   // restore return values to their stack-slots with the new SP.
3352   // Thread is in rdi already.
3353   //
3354   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3355 
3356   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3357   __ mov(c_rarg0, r15_thread);
3358   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3359   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3360 
3361   // Set an oopmap for the call site
3362   // Use the same PC we used for the last java frame
3363   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3364 
3365   // Clear fp AND pc
3366   __ reset_last_Java_frame(true, true);
3367 
3368   // Pop self-frame.
3369   __ leave();                 // Epilog
3370 
3371   // Jump to interpreter
3372   __ ret(0);
3373 
3374   // Make sure all code is generated
3375   masm->flush();
3376 
3377   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3378                                                  SimpleRuntimeFrame::framesize >> 1);
3379 }
3380 #endif // COMPILER2
3381 
3382 
3383 //------------------------------generate_handler_blob------
3384 //
3385 // Generate a special Compile2Runtime blob that saves all registers,
3386 // and setup oopmap.
3387 //
3388 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
3389   assert(StubRoutines::forward_exception_entry() != NULL,
3390          "must be generated before");
3391 
3392   ResourceMark rm;
3393   OopMapSet *oop_maps = new OopMapSet();
3394   OopMap* map;
3395 
3396   // Allocate space for the code.  Setup code generation tools.
3397   CodeBuffer buffer("handler_blob", 2048, 1024);
3398   MacroAssembler* masm = new MacroAssembler(&buffer);
3399 
3400   address start   = __ pc();
3401   address call_pc = NULL;
3402   int frame_size_in_words;
3403 
3404   // Make room for return address (or push it again)
3405   if (!cause_return) {
3406     __ push(rbx);
3407   }
3408 
3409   // Save registers, fpu state, and flags
3410   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3411 
3412   // The following is basically a call_VM.  However, we need the precise
3413   // address of the call in order to generate an oopmap. Hence, we do all the
3414   // work outselves.
3415 
3416   __ set_last_Java_frame(noreg, noreg, NULL);
3417 
3418   // The return address must always be correct so that frame constructor never
3419   // sees an invalid pc.
3420 
3421   if (!cause_return) {
3422     // overwrite the dummy value we pushed on entry
3423     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3424     __ movptr(Address(rbp, wordSize), c_rarg0);
3425   }
3426 
3427   // Do the call
3428   __ mov(c_rarg0, r15_thread);
3429   __ call(RuntimeAddress(call_ptr));
3430 
3431   // Set an oopmap for the call site.  This oopmap will map all
3432   // oop-registers and debug-info registers as callee-saved.  This
3433   // will allow deoptimization at this safepoint to find all possible
3434   // debug-info recordings, as well as let GC find all oops.
3435 
3436   oop_maps->add_gc_map( __ pc() - start, map);
3437 
3438   Label noException;
3439 
3440   __ reset_last_Java_frame(false, false);
3441 
3442   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3443   __ jcc(Assembler::equal, noException);
3444 
3445   // Exception pending
3446 
3447   RegisterSaver::restore_live_registers(masm);
3448 
3449   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3450 
3451   // No exception case
3452   __ bind(noException);
3453 
3454   // Normal exit, restore registers and exit.
3455   RegisterSaver::restore_live_registers(masm);
3456 
3457   __ ret(0);
3458 
3459   // Make sure all code is generated
3460   masm->flush();
3461 
3462   // Fill-out other meta info
3463   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3464 }
3465 
3466 //
3467 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3468 //
3469 // Generate a stub that calls into vm to find out the proper destination
3470 // of a java call. All the argument registers are live at this point
3471 // but since this is generic code we don't know what they are and the caller
3472 // must do any gc of the args.
3473 //
3474 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3475   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3476 
3477   // allocate space for the code
3478   ResourceMark rm;
3479 
3480   CodeBuffer buffer(name, 1000, 512);
3481   MacroAssembler* masm                = new MacroAssembler(&buffer);
3482 
3483   int frame_size_in_words;
3484 
3485   OopMapSet *oop_maps = new OopMapSet();
3486   OopMap* map = NULL;
3487 
3488   int start = __ offset();
3489 
3490   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3491 
3492   int frame_complete = __ offset();
3493 
3494   __ set_last_Java_frame(noreg, noreg, NULL);
3495 
3496   __ mov(c_rarg0, r15_thread);
3497 
3498   __ call(RuntimeAddress(destination));
3499 
3500 
3501   // Set an oopmap for the call site.
3502   // We need this not only for callee-saved registers, but also for volatile
3503   // registers that the compiler might be keeping live across a safepoint.
3504 
3505   oop_maps->add_gc_map( __ offset() - start, map);
3506 
3507   // rax contains the address we are going to jump to assuming no exception got installed
3508 
3509   // clear last_Java_sp
3510   __ reset_last_Java_frame(false, false);
3511   // check for pending exceptions
3512   Label pending;
3513   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3514   __ jcc(Assembler::notEqual, pending);
3515 
3516   // get the returned methodOop
3517   __ movptr(rbx, Address(r15_thread, JavaThread::vm_result_offset()));
3518   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3519 
3520   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3521 
3522   RegisterSaver::restore_live_registers(masm);
3523 
3524   // We are back the the original state on entry and ready to go.
3525 
3526   __ jmp(rax);
3527 
3528   // Pending exception after the safepoint
3529 
3530   __ bind(pending);
3531 
3532   RegisterSaver::restore_live_registers(masm);
3533 
3534   // exception pending => remove activation and forward to exception handler
3535 
3536   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3537 
3538   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3539   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3540 
3541   // -------------
3542   // make sure all code is generated
3543   masm->flush();
3544 
3545   // return the  blob
3546   // frame_size_words or bytes??
3547   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3548 }
3549 
3550 
3551 #ifdef COMPILER2
3552 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3553 //
3554 //------------------------------generate_exception_blob---------------------------
3555 // creates exception blob at the end
3556 // Using exception blob, this code is jumped from a compiled method.
3557 // (see emit_exception_handler in x86_64.ad file)
3558 //
3559 // Given an exception pc at a call we call into the runtime for the
3560 // handler in this method. This handler might merely restore state
3561 // (i.e. callee save registers) unwind the frame and jump to the
3562 // exception handler for the nmethod if there is no Java level handler
3563 // for the nmethod.
3564 //
3565 // This code is entered with a jmp.
3566 //
3567 // Arguments:
3568 //   rax: exception oop
3569 //   rdx: exception pc
3570 //
3571 // Results:
3572 //   rax: exception oop
3573 //   rdx: exception pc in caller or ???
3574 //   destination: exception handler of caller
3575 //
3576 // Note: the exception pc MUST be at a call (precise debug information)
3577 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3578 //
3579 
3580 void OptoRuntime::generate_exception_blob() {
3581   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3582   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3583   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3584 
3585   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3586 
3587   // Allocate space for the code
3588   ResourceMark rm;
3589   // Setup code generation tools
3590   CodeBuffer buffer("exception_blob", 2048, 1024);
3591   MacroAssembler* masm = new MacroAssembler(&buffer);
3592 
3593 
3594   address start = __ pc();
3595 
3596   // Exception pc is 'return address' for stack walker
3597   __ push(rdx);
3598   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
3599 
3600   // Save callee-saved registers.  See x86_64.ad.
3601 
3602   // rbp is an implicitly saved callee saved register (i.e. the calling
3603   // convention will save restore it in prolog/epilog) Other than that
3604   // there are no callee save registers now that adapter frames are gone.
3605 
3606   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3607 
3608   // Store exception in Thread object. We cannot pass any arguments to the
3609   // handle_exception call, since we do not want to make any assumption
3610   // about the size of the frame where the exception happened in.
3611   // c_rarg0 is either rdi (Linux) or rcx (Windows).
3612   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
3613   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3614 
3615   // This call does all the hard work.  It checks if an exception handler
3616   // exists in the method.
3617   // If so, it returns the handler address.
3618   // If not, it prepares for stack-unwinding, restoring the callee-save
3619   // registers of the frame being removed.
3620   //
3621   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3622 
3623   __ set_last_Java_frame(noreg, noreg, NULL);
3624   __ mov(c_rarg0, r15_thread);
3625   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3626 
3627   // Set an oopmap for the call site.  This oopmap will only be used if we
3628   // are unwinding the stack.  Hence, all locations will be dead.
3629   // Callee-saved registers will be the same as the frame above (i.e.,
3630   // handle_exception_stub), since they were restored when we got the
3631   // exception.
3632 
3633   OopMapSet* oop_maps = new OopMapSet();
3634 
3635   oop_maps->add_gc_map( __ pc()-start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3636 
3637   __ reset_last_Java_frame(false, false);
3638 
3639   // Restore callee-saved registers
3640 
3641   // rbp is an implicitly saved callee saved register (i.e. the calling
3642   // convention will save restore it in prolog/epilog) Other than that
3643   // there are no callee save registers no that adapter frames are gone.
3644 
3645   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
3646 
3647   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
3648   __ pop(rdx);                  // No need for exception pc anymore
3649 
3650   // rax: exception handler
3651 
3652   // Restore SP from BP if the exception PC is a MethodHandle call site.
3653   __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
3654   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
3655 
3656   // We have a handler in rax (could be deopt blob).
3657   __ mov(r8, rax);
3658 
3659   // Get the exception oop
3660   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3661   // Get the exception pc in case we are deoptimized
3662   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3663 #ifdef ASSERT
3664   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
3665   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
3666 #endif
3667   // Clear the exception oop so GC no longer processes it as a root.
3668   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
3669 
3670   // rax: exception oop
3671   // r8:  exception handler
3672   // rdx: exception pc
3673   // Jump to handler
3674 
3675   __ jmp(r8);
3676 
3677   // Make sure all code is generated
3678   masm->flush();
3679 
3680   // Set exception blob
3681   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3682 }
3683 #endif // COMPILER2