1 /*
   2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_x86.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "oops/compiledICHolderOop.hpp"
  33 #include "prims/jvmtiRedefineClassesTrace.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/vframeArray.hpp"
  36 #include "vmreg_x86.inline.hpp"
  37 #ifdef COMPILER1
  38 #include "c1/c1_Runtime1.hpp"
  39 #endif
  40 #ifdef COMPILER2
  41 #include "opto/runtime.hpp"
  42 #endif
  43 
  44 #define __ masm->
  45 
  46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  47 
  48 class SimpleRuntimeFrame {
  49 
  50   public:
  51 
  52   // Most of the runtime stubs have this simple frame layout.
  53   // This class exists to make the layout shared in one place.
  54   // Offsets are for compiler stack slots, which are jints.
  55   enum layout {
  56     // The frame sender code expects that rbp will be in the "natural" place and
  57     // will override any oopMap setting for it. We must therefore force the layout
  58     // so that it agrees with the frame sender code.
  59     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  60     rbp_off2,
  61     return_off, return_off2,
  62     framesize
  63   };
  64 };
  65 
  66 class RegisterSaver {
  67   // Capture info about frame layout.  Layout offsets are in jint
  68   // units because compiler frame slots are jints.
  69 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  70   enum layout {
  71     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  72     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
  73     DEF_XMM_OFFS(0),
  74     DEF_XMM_OFFS(1),
  75     DEF_XMM_OFFS(2),
  76     DEF_XMM_OFFS(3),
  77     DEF_XMM_OFFS(4),
  78     DEF_XMM_OFFS(5),
  79     DEF_XMM_OFFS(6),
  80     DEF_XMM_OFFS(7),
  81     DEF_XMM_OFFS(8),
  82     DEF_XMM_OFFS(9),
  83     DEF_XMM_OFFS(10),
  84     DEF_XMM_OFFS(11),
  85     DEF_XMM_OFFS(12),
  86     DEF_XMM_OFFS(13),
  87     DEF_XMM_OFFS(14),
  88     DEF_XMM_OFFS(15),
  89     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
  90     fpu_stateH_end,
  91     r15_off, r15H_off,
  92     r14_off, r14H_off,
  93     r13_off, r13H_off,
  94     r12_off, r12H_off,
  95     r11_off, r11H_off,
  96     r10_off, r10H_off,
  97     r9_off,  r9H_off,
  98     r8_off,  r8H_off,
  99     rdi_off, rdiH_off,
 100     rsi_off, rsiH_off,
 101     ignore_off, ignoreH_off,  // extra copy of rbp
 102     rsp_off, rspH_off,
 103     rbx_off, rbxH_off,
 104     rdx_off, rdxH_off,
 105     rcx_off, rcxH_off,
 106     rax_off, raxH_off,
 107     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 108     align_off, alignH_off,
 109     flags_off, flagsH_off,
 110     // The frame sender code expects that rbp will be in the "natural" place and
 111     // will override any oopMap setting for it. We must therefore force the layout
 112     // so that it agrees with the frame sender code.
 113     rbp_off, rbpH_off,        // copy of rbp we will restore
 114     return_off, returnH_off,  // slot for return address
 115     reg_save_size             // size in compiler stack slots
 116   };
 117 
 118  public:
 119   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
 120   static void restore_live_registers(MacroAssembler* masm);
 121 
 122   // Offsets into the register save area
 123   // Used by deoptimization when it is managing result register
 124   // values on its own
 125 
 126   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 127   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 128   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 129   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 130   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 131 
 132   // During deoptimization only the result registers need to be restored,
 133   // all the other values have already been extracted.
 134   static void restore_result_registers(MacroAssembler* masm);
 135 };
 136 
 137 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 138 
 139   // Always make the frame size 16-byte aligned
 140   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
 141                                      reg_save_size*BytesPerInt, 16);
 142   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 143   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 144   // The caller will allocate additional_frame_words
 145   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
 146   // CodeBlob frame size is in words.
 147   int frame_size_in_words = frame_size_in_bytes / wordSize;
 148   *total_frame_words = frame_size_in_words;
 149 
 150   // Save registers, fpu state, and flags.
 151   // We assume caller has already pushed the return address onto the
 152   // stack, so rsp is 8-byte aligned here.
 153   // We push rpb twice in this sequence because we want the real rbp
 154   // to be under the return like a normal enter.
 155 
 156   __ enter();          // rsp becomes 16-byte aligned here
 157   __ push_CPU_state(); // Push a multiple of 16 bytes
 158   if (frame::arg_reg_save_area_bytes != 0) {
 159     // Allocate argument register save area
 160     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 161   }
 162 
 163   // Set an oopmap for the call site.  This oopmap will map all
 164   // oop-registers and debug-info registers as callee-saved.  This
 165   // will allow deoptimization at this safepoint to find all possible
 166   // debug-info recordings, as well as let GC find all oops.
 167 
 168   OopMapSet *oop_maps = new OopMapSet();
 169   OopMap* map = new OopMap(frame_size_in_slots, 0);
 170   map->set_callee_saved(VMRegImpl::stack2reg( rax_off  + additional_frame_slots), rax->as_VMReg());
 171   map->set_callee_saved(VMRegImpl::stack2reg( rcx_off  + additional_frame_slots), rcx->as_VMReg());
 172   map->set_callee_saved(VMRegImpl::stack2reg( rdx_off  + additional_frame_slots), rdx->as_VMReg());
 173   map->set_callee_saved(VMRegImpl::stack2reg( rbx_off  + additional_frame_slots), rbx->as_VMReg());
 174   // rbp location is known implicitly by the frame sender code, needs no oopmap
 175   // and the location where rbp was saved by is ignored
 176   map->set_callee_saved(VMRegImpl::stack2reg( rsi_off  + additional_frame_slots), rsi->as_VMReg());
 177   map->set_callee_saved(VMRegImpl::stack2reg( rdi_off  + additional_frame_slots), rdi->as_VMReg());
 178   map->set_callee_saved(VMRegImpl::stack2reg( r8_off   + additional_frame_slots), r8->as_VMReg());
 179   map->set_callee_saved(VMRegImpl::stack2reg( r9_off   + additional_frame_slots), r9->as_VMReg());
 180   map->set_callee_saved(VMRegImpl::stack2reg( r10_off  + additional_frame_slots), r10->as_VMReg());
 181   map->set_callee_saved(VMRegImpl::stack2reg( r11_off  + additional_frame_slots), r11->as_VMReg());
 182   map->set_callee_saved(VMRegImpl::stack2reg( r12_off  + additional_frame_slots), r12->as_VMReg());
 183   map->set_callee_saved(VMRegImpl::stack2reg( r13_off  + additional_frame_slots), r13->as_VMReg());
 184   map->set_callee_saved(VMRegImpl::stack2reg( r14_off  + additional_frame_slots), r14->as_VMReg());
 185   map->set_callee_saved(VMRegImpl::stack2reg( r15_off  + additional_frame_slots), r15->as_VMReg());
 186   map->set_callee_saved(VMRegImpl::stack2reg(xmm0_off  + additional_frame_slots), xmm0->as_VMReg());
 187   map->set_callee_saved(VMRegImpl::stack2reg(xmm1_off  + additional_frame_slots), xmm1->as_VMReg());
 188   map->set_callee_saved(VMRegImpl::stack2reg(xmm2_off  + additional_frame_slots), xmm2->as_VMReg());
 189   map->set_callee_saved(VMRegImpl::stack2reg(xmm3_off  + additional_frame_slots), xmm3->as_VMReg());
 190   map->set_callee_saved(VMRegImpl::stack2reg(xmm4_off  + additional_frame_slots), xmm4->as_VMReg());
 191   map->set_callee_saved(VMRegImpl::stack2reg(xmm5_off  + additional_frame_slots), xmm5->as_VMReg());
 192   map->set_callee_saved(VMRegImpl::stack2reg(xmm6_off  + additional_frame_slots), xmm6->as_VMReg());
 193   map->set_callee_saved(VMRegImpl::stack2reg(xmm7_off  + additional_frame_slots), xmm7->as_VMReg());
 194   map->set_callee_saved(VMRegImpl::stack2reg(xmm8_off  + additional_frame_slots), xmm8->as_VMReg());
 195   map->set_callee_saved(VMRegImpl::stack2reg(xmm9_off  + additional_frame_slots), xmm9->as_VMReg());
 196   map->set_callee_saved(VMRegImpl::stack2reg(xmm10_off + additional_frame_slots), xmm10->as_VMReg());
 197   map->set_callee_saved(VMRegImpl::stack2reg(xmm11_off + additional_frame_slots), xmm11->as_VMReg());
 198   map->set_callee_saved(VMRegImpl::stack2reg(xmm12_off + additional_frame_slots), xmm12->as_VMReg());
 199   map->set_callee_saved(VMRegImpl::stack2reg(xmm13_off + additional_frame_slots), xmm13->as_VMReg());
 200   map->set_callee_saved(VMRegImpl::stack2reg(xmm14_off + additional_frame_slots), xmm14->as_VMReg());
 201   map->set_callee_saved(VMRegImpl::stack2reg(xmm15_off + additional_frame_slots), xmm15->as_VMReg());
 202 
 203   // %%% These should all be a waste but we'll keep things as they were for now
 204   if (true) {
 205     map->set_callee_saved(VMRegImpl::stack2reg( raxH_off  + additional_frame_slots),
 206                           rax->as_VMReg()->next());
 207     map->set_callee_saved(VMRegImpl::stack2reg( rcxH_off  + additional_frame_slots),
 208                           rcx->as_VMReg()->next());
 209     map->set_callee_saved(VMRegImpl::stack2reg( rdxH_off  + additional_frame_slots),
 210                           rdx->as_VMReg()->next());
 211     map->set_callee_saved(VMRegImpl::stack2reg( rbxH_off  + additional_frame_slots),
 212                           rbx->as_VMReg()->next());
 213     // rbp location is known implicitly by the frame sender code, needs no oopmap
 214     map->set_callee_saved(VMRegImpl::stack2reg( rsiH_off  + additional_frame_slots),
 215                           rsi->as_VMReg()->next());
 216     map->set_callee_saved(VMRegImpl::stack2reg( rdiH_off  + additional_frame_slots),
 217                           rdi->as_VMReg()->next());
 218     map->set_callee_saved(VMRegImpl::stack2reg( r8H_off   + additional_frame_slots),
 219                           r8->as_VMReg()->next());
 220     map->set_callee_saved(VMRegImpl::stack2reg( r9H_off   + additional_frame_slots),
 221                           r9->as_VMReg()->next());
 222     map->set_callee_saved(VMRegImpl::stack2reg( r10H_off  + additional_frame_slots),
 223                           r10->as_VMReg()->next());
 224     map->set_callee_saved(VMRegImpl::stack2reg( r11H_off  + additional_frame_slots),
 225                           r11->as_VMReg()->next());
 226     map->set_callee_saved(VMRegImpl::stack2reg( r12H_off  + additional_frame_slots),
 227                           r12->as_VMReg()->next());
 228     map->set_callee_saved(VMRegImpl::stack2reg( r13H_off  + additional_frame_slots),
 229                           r13->as_VMReg()->next());
 230     map->set_callee_saved(VMRegImpl::stack2reg( r14H_off  + additional_frame_slots),
 231                           r14->as_VMReg()->next());
 232     map->set_callee_saved(VMRegImpl::stack2reg( r15H_off  + additional_frame_slots),
 233                           r15->as_VMReg()->next());
 234     map->set_callee_saved(VMRegImpl::stack2reg(xmm0H_off  + additional_frame_slots),
 235                           xmm0->as_VMReg()->next());
 236     map->set_callee_saved(VMRegImpl::stack2reg(xmm1H_off  + additional_frame_slots),
 237                           xmm1->as_VMReg()->next());
 238     map->set_callee_saved(VMRegImpl::stack2reg(xmm2H_off  + additional_frame_slots),
 239                           xmm2->as_VMReg()->next());
 240     map->set_callee_saved(VMRegImpl::stack2reg(xmm3H_off  + additional_frame_slots),
 241                           xmm3->as_VMReg()->next());
 242     map->set_callee_saved(VMRegImpl::stack2reg(xmm4H_off  + additional_frame_slots),
 243                           xmm4->as_VMReg()->next());
 244     map->set_callee_saved(VMRegImpl::stack2reg(xmm5H_off  + additional_frame_slots),
 245                           xmm5->as_VMReg()->next());
 246     map->set_callee_saved(VMRegImpl::stack2reg(xmm6H_off  + additional_frame_slots),
 247                           xmm6->as_VMReg()->next());
 248     map->set_callee_saved(VMRegImpl::stack2reg(xmm7H_off  + additional_frame_slots),
 249                           xmm7->as_VMReg()->next());
 250     map->set_callee_saved(VMRegImpl::stack2reg(xmm8H_off  + additional_frame_slots),
 251                           xmm8->as_VMReg()->next());
 252     map->set_callee_saved(VMRegImpl::stack2reg(xmm9H_off  + additional_frame_slots),
 253                           xmm9->as_VMReg()->next());
 254     map->set_callee_saved(VMRegImpl::stack2reg(xmm10H_off + additional_frame_slots),
 255                           xmm10->as_VMReg()->next());
 256     map->set_callee_saved(VMRegImpl::stack2reg(xmm11H_off + additional_frame_slots),
 257                           xmm11->as_VMReg()->next());
 258     map->set_callee_saved(VMRegImpl::stack2reg(xmm12H_off + additional_frame_slots),
 259                           xmm12->as_VMReg()->next());
 260     map->set_callee_saved(VMRegImpl::stack2reg(xmm13H_off + additional_frame_slots),
 261                           xmm13->as_VMReg()->next());
 262     map->set_callee_saved(VMRegImpl::stack2reg(xmm14H_off + additional_frame_slots),
 263                           xmm14->as_VMReg()->next());
 264     map->set_callee_saved(VMRegImpl::stack2reg(xmm15H_off + additional_frame_slots),
 265                           xmm15->as_VMReg()->next());
 266   }
 267 
 268   return map;
 269 }
 270 
 271 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 272   if (frame::arg_reg_save_area_bytes != 0) {
 273     // Pop arg register save area
 274     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 275   }
 276   // Recover CPU state
 277   __ pop_CPU_state();
 278   // Get the rbp described implicitly by the calling convention (no oopMap)
 279   __ pop(rbp);
 280 }
 281 
 282 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 283 
 284   // Just restore result register. Only used by deoptimization. By
 285   // now any callee save register that needs to be restored to a c2
 286   // caller of the deoptee has been extracted into the vframeArray
 287   // and will be stuffed into the c2i adapter we create for later
 288   // restoration so only result registers need to be restored here.
 289 
 290   // Restore fp result register
 291   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 292   // Restore integer result register
 293   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 294   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 295 
 296   // Pop all of the register save are off the stack except the return address
 297   __ addptr(rsp, return_offset_in_bytes());
 298 }
 299 
 300 // The java_calling_convention describes stack locations as ideal slots on
 301 // a frame with no abi restrictions. Since we must observe abi restrictions
 302 // (like the placement of the register window) the slots must be biased by
 303 // the following value.
 304 static int reg2offset_in(VMReg r) {
 305   // Account for saved rbp and return address
 306   // This should really be in_preserve_stack_slots
 307   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 308 }
 309 
 310 static int reg2offset_out(VMReg r) {
 311   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 312 }
 313 
 314 // ---------------------------------------------------------------------------
 315 // Read the array of BasicTypes from a signature, and compute where the
 316 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 317 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 318 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 319 // as framesizes are fixed.
 320 // VMRegImpl::stack0 refers to the first slot 0(sp).
 321 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 322 // up to RegisterImpl::number_of_registers) are the 64-bit
 323 // integer registers.
 324 
 325 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 326 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 327 // units regardless of build. Of course for i486 there is no 64 bit build
 328 
 329 // The Java calling convention is a "shifted" version of the C ABI.
 330 // By skipping the first C ABI register we can call non-static jni methods
 331 // with small numbers of arguments without having to shuffle the arguments
 332 // at all. Since we control the java ABI we ought to at least get some
 333 // advantage out of it.
 334 
 335 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 336                                            VMRegPair *regs,
 337                                            int total_args_passed,
 338                                            int is_outgoing) {
 339 
 340   // Create the mapping between argument positions and
 341   // registers.
 342   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 343     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 344   };
 345   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 346     j_farg0, j_farg1, j_farg2, j_farg3,
 347     j_farg4, j_farg5, j_farg6, j_farg7
 348   };
 349 
 350 
 351   uint int_args = 0;
 352   uint fp_args = 0;
 353   uint stk_args = 0; // inc by 2 each time
 354 
 355   for (int i = 0; i < total_args_passed; i++) {
 356     switch (sig_bt[i]) {
 357     case T_BOOLEAN:
 358     case T_CHAR:
 359     case T_BYTE:
 360     case T_SHORT:
 361     case T_INT:
 362       if (int_args < Argument::n_int_register_parameters_j) {
 363         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 364       } else {
 365         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 366         stk_args += 2;
 367       }
 368       break;
 369     case T_VOID:
 370       // halves of T_LONG or T_DOUBLE
 371       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 372       regs[i].set_bad();
 373       break;
 374     case T_LONG:
 375       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 376       // fall through
 377     case T_OBJECT:
 378     case T_ARRAY:
 379     case T_ADDRESS:
 380       if (int_args < Argument::n_int_register_parameters_j) {
 381         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 382       } else {
 383         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 384         stk_args += 2;
 385       }
 386       break;
 387     case T_FLOAT:
 388       if (fp_args < Argument::n_float_register_parameters_j) {
 389         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 390       } else {
 391         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 392         stk_args += 2;
 393       }
 394       break;
 395     case T_DOUBLE:
 396       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 397       if (fp_args < Argument::n_float_register_parameters_j) {
 398         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 399       } else {
 400         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 401         stk_args += 2;
 402       }
 403       break;
 404     default:
 405       ShouldNotReachHere();
 406       break;
 407     }
 408   }
 409 
 410   return round_to(stk_args, 2);
 411 }
 412 
 413 // Patch the callers callsite with entry to compiled code if it exists.
 414 static void patch_callers_callsite(MacroAssembler *masm) {
 415   Label L;
 416   __ verify_oop(rbx);
 417   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 418   __ jcc(Assembler::equal, L);
 419 
 420   // Save the current stack pointer
 421   __ mov(r13, rsp);
 422   // Schedule the branch target address early.
 423   // Call into the VM to patch the caller, then jump to compiled callee
 424   // rax isn't live so capture return address while we easily can
 425   __ movptr(rax, Address(rsp, 0));
 426 
 427   // align stack so push_CPU_state doesn't fault
 428   __ andptr(rsp, -(StackAlignmentInBytes));
 429   __ push_CPU_state();
 430 
 431 
 432   __ verify_oop(rbx);
 433   // VM needs caller's callsite
 434   // VM needs target method
 435   // This needs to be a long call since we will relocate this adapter to
 436   // the codeBuffer and it may not reach
 437 
 438   // Allocate argument register save area
 439   if (frame::arg_reg_save_area_bytes != 0) {
 440     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 441   }
 442   __ mov(c_rarg0, rbx);
 443   __ mov(c_rarg1, rax);
 444   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 445 
 446   // De-allocate argument register save area
 447   if (frame::arg_reg_save_area_bytes != 0) {
 448     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 449   }
 450 
 451   __ pop_CPU_state();
 452   // restore sp
 453   __ mov(rsp, r13);
 454   __ bind(L);
 455 }
 456 
 457 
 458 static void gen_c2i_adapter(MacroAssembler *masm,
 459                             int total_args_passed,
 460                             int comp_args_on_stack,
 461                             const BasicType *sig_bt,
 462                             const VMRegPair *regs,
 463                             Label& skip_fixup) {
 464   // Before we get into the guts of the C2I adapter, see if we should be here
 465   // at all.  We've come from compiled code and are attempting to jump to the
 466   // interpreter, which means the caller made a static call to get here
 467   // (vcalls always get a compiled target if there is one).  Check for a
 468   // compiled target.  If there is one, we need to patch the caller's call.
 469   patch_callers_callsite(masm);
 470 
 471   __ bind(skip_fixup);
 472 
 473   // Since all args are passed on the stack, total_args_passed *
 474   // Interpreter::stackElementSize is the space we need. Plus 1 because
 475   // we also account for the return address location since
 476   // we store it first rather than hold it in rax across all the shuffling
 477 
 478   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 479 
 480   // stack is aligned, keep it that way
 481   extraspace = round_to(extraspace, 2*wordSize);
 482 
 483   // Get return address
 484   __ pop(rax);
 485 
 486   // set senderSP value
 487   __ mov(r13, rsp);
 488 
 489   __ subptr(rsp, extraspace);
 490 
 491   // Store the return address in the expected location
 492   __ movptr(Address(rsp, 0), rax);
 493 
 494   // Now write the args into the outgoing interpreter space
 495   for (int i = 0; i < total_args_passed; i++) {
 496     if (sig_bt[i] == T_VOID) {
 497       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 498       continue;
 499     }
 500 
 501     // offset to start parameters
 502     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 503     int next_off = st_off - Interpreter::stackElementSize;
 504 
 505     // Say 4 args:
 506     // i   st_off
 507     // 0   32 T_LONG
 508     // 1   24 T_VOID
 509     // 2   16 T_OBJECT
 510     // 3    8 T_BOOL
 511     // -    0 return address
 512     //
 513     // However to make thing extra confusing. Because we can fit a long/double in
 514     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 515     // leaves one slot empty and only stores to a single slot. In this case the
 516     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 517 
 518     VMReg r_1 = regs[i].first();
 519     VMReg r_2 = regs[i].second();
 520     if (!r_1->is_valid()) {
 521       assert(!r_2->is_valid(), "");
 522       continue;
 523     }
 524     if (r_1->is_stack()) {
 525       // memory to memory use rax
 526       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 527       if (!r_2->is_valid()) {
 528         // sign extend??
 529         __ movl(rax, Address(rsp, ld_off));
 530         __ movptr(Address(rsp, st_off), rax);
 531 
 532       } else {
 533 
 534         __ movq(rax, Address(rsp, ld_off));
 535 
 536         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 537         // T_DOUBLE and T_LONG use two slots in the interpreter
 538         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 539           // ld_off == LSW, ld_off+wordSize == MSW
 540           // st_off == MSW, next_off == LSW
 541           __ movq(Address(rsp, next_off), rax);
 542 #ifdef ASSERT
 543           // Overwrite the unused slot with known junk
 544           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 545           __ movptr(Address(rsp, st_off), rax);
 546 #endif /* ASSERT */
 547         } else {
 548           __ movq(Address(rsp, st_off), rax);
 549         }
 550       }
 551     } else if (r_1->is_Register()) {
 552       Register r = r_1->as_Register();
 553       if (!r_2->is_valid()) {
 554         // must be only an int (or less ) so move only 32bits to slot
 555         // why not sign extend??
 556         __ movl(Address(rsp, st_off), r);
 557       } else {
 558         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 559         // T_DOUBLE and T_LONG use two slots in the interpreter
 560         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 561           // long/double in gpr
 562 #ifdef ASSERT
 563           // Overwrite the unused slot with known junk
 564           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 565           __ movptr(Address(rsp, st_off), rax);
 566 #endif /* ASSERT */
 567           __ movq(Address(rsp, next_off), r);
 568         } else {
 569           __ movptr(Address(rsp, st_off), r);
 570         }
 571       }
 572     } else {
 573       assert(r_1->is_XMMRegister(), "");
 574       if (!r_2->is_valid()) {
 575         // only a float use just part of the slot
 576         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 577       } else {
 578 #ifdef ASSERT
 579         // Overwrite the unused slot with known junk
 580         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 581         __ movptr(Address(rsp, st_off), rax);
 582 #endif /* ASSERT */
 583         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 584       }
 585     }
 586   }
 587 
 588   // Schedule the branch target address early.
 589   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
 590   __ jmp(rcx);
 591 }
 592 
 593 static void gen_i2c_adapter(MacroAssembler *masm,
 594                             int total_args_passed,
 595                             int comp_args_on_stack,
 596                             const BasicType *sig_bt,
 597                             const VMRegPair *regs) {
 598 
 599   // Note: r13 contains the senderSP on entry. We must preserve it since
 600   // we may do a i2c -> c2i transition if we lose a race where compiled
 601   // code goes non-entrant while we get args ready.
 602   // In addition we use r13 to locate all the interpreter args as
 603   // we must align the stack to 16 bytes on an i2c entry else we
 604   // lose alignment we expect in all compiled code and register
 605   // save code can segv when fxsave instructions find improperly
 606   // aligned stack pointer.
 607 
 608   // Pick up the return address
 609   __ movptr(rax, Address(rsp, 0));
 610 
 611   // Must preserve original SP for loading incoming arguments because
 612   // we need to align the outgoing SP for compiled code.
 613   __ movptr(r11, rsp);
 614 
 615   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 616   // in registers, we will occasionally have no stack args.
 617   int comp_words_on_stack = 0;
 618   if (comp_args_on_stack) {
 619     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 620     // registers are below.  By subtracting stack0, we either get a negative
 621     // number (all values in registers) or the maximum stack slot accessed.
 622 
 623     // Convert 4-byte c2 stack slots to words.
 624     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 625     // Round up to miminum stack alignment, in wordSize
 626     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 627     __ subptr(rsp, comp_words_on_stack * wordSize);
 628   }
 629 
 630 
 631   // Ensure compiled code always sees stack at proper alignment
 632   __ andptr(rsp, -16);
 633 
 634   // push the return address and misalign the stack that youngest frame always sees
 635   // as far as the placement of the call instruction
 636   __ push(rax);
 637 
 638   // Put saved SP in another register
 639   const Register saved_sp = rax;
 640   __ movptr(saved_sp, r11);
 641 
 642   // Will jump to the compiled code just as if compiled code was doing it.
 643   // Pre-load the register-jump target early, to schedule it better.
 644   __ movptr(r11, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
 645 
 646   // Now generate the shuffle code.  Pick up all register args and move the
 647   // rest through the floating point stack top.
 648   for (int i = 0; i < total_args_passed; i++) {
 649     if (sig_bt[i] == T_VOID) {
 650       // Longs and doubles are passed in native word order, but misaligned
 651       // in the 32-bit build.
 652       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 653       continue;
 654     }
 655 
 656     // Pick up 0, 1 or 2 words from SP+offset.
 657 
 658     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 659             "scrambled load targets?");
 660     // Load in argument order going down.
 661     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 662     // Point to interpreter value (vs. tag)
 663     int next_off = ld_off - Interpreter::stackElementSize;
 664     //
 665     //
 666     //
 667     VMReg r_1 = regs[i].first();
 668     VMReg r_2 = regs[i].second();
 669     if (!r_1->is_valid()) {
 670       assert(!r_2->is_valid(), "");
 671       continue;
 672     }
 673     if (r_1->is_stack()) {
 674       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 675       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 676 
 677       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 678       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 679       // will be generated.
 680       if (!r_2->is_valid()) {
 681         // sign extend???
 682         __ movl(r13, Address(saved_sp, ld_off));
 683         __ movptr(Address(rsp, st_off), r13);
 684       } else {
 685         //
 686         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 687         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 688         // So we must adjust where to pick up the data to match the interpreter.
 689         //
 690         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 691         // are accessed as negative so LSW is at LOW address
 692 
 693         // ld_off is MSW so get LSW
 694         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 695                            next_off : ld_off;
 696         __ movq(r13, Address(saved_sp, offset));
 697         // st_off is LSW (i.e. reg.first())
 698         __ movq(Address(rsp, st_off), r13);
 699       }
 700     } else if (r_1->is_Register()) {  // Register argument
 701       Register r = r_1->as_Register();
 702       assert(r != rax, "must be different");
 703       if (r_2->is_valid()) {
 704         //
 705         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 706         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 707         // So we must adjust where to pick up the data to match the interpreter.
 708 
 709         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 710                            next_off : ld_off;
 711 
 712         // this can be a misaligned move
 713         __ movq(r, Address(saved_sp, offset));
 714       } else {
 715         // sign extend and use a full word?
 716         __ movl(r, Address(saved_sp, ld_off));
 717       }
 718     } else {
 719       if (!r_2->is_valid()) {
 720         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 721       } else {
 722         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 723       }
 724     }
 725   }
 726 
 727   // 6243940 We might end up in handle_wrong_method if
 728   // the callee is deoptimized as we race thru here. If that
 729   // happens we don't want to take a safepoint because the
 730   // caller frame will look interpreted and arguments are now
 731   // "compiled" so it is much better to make this transition
 732   // invisible to the stack walking code. Unfortunately if
 733   // we try and find the callee by normal means a safepoint
 734   // is possible. So we stash the desired callee in the thread
 735   // and the vm will find there should this case occur.
 736 
 737   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 738 
 739   // put methodOop where a c2i would expect should we end up there
 740   // only needed becaus eof c2 resolve stubs return methodOop as a result in
 741   // rax
 742   __ mov(rax, rbx);
 743   __ jmp(r11);
 744 }
 745 
 746 // ---------------------------------------------------------------
 747 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 748                                                             int total_args_passed,
 749                                                             int comp_args_on_stack,
 750                                                             const BasicType *sig_bt,
 751                                                             const VMRegPair *regs,
 752                                                             AdapterFingerPrint* fingerprint) {
 753   address i2c_entry = __ pc();
 754 
 755   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 756 
 757   // -------------------------------------------------------------------------
 758   // Generate a C2I adapter.  On entry we know rbx holds the methodOop during calls
 759   // to the interpreter.  The args start out packed in the compiled layout.  They
 760   // need to be unpacked into the interpreter layout.  This will almost always
 761   // require some stack space.  We grow the current (compiled) stack, then repack
 762   // the args.  We  finally end in a jump to the generic interpreter entry point.
 763   // On exit from the interpreter, the interpreter will restore our SP (lest the
 764   // compiled code, which relys solely on SP and not RBP, get sick).
 765 
 766   address c2i_unverified_entry = __ pc();
 767   Label skip_fixup;
 768   Label ok;
 769 
 770   Register holder = rax;
 771   Register receiver = j_rarg0;
 772   Register temp = rbx;
 773 
 774   {
 775     __ verify_oop(holder);
 776     __ load_klass(temp, receiver);
 777     __ verify_oop(temp);
 778 
 779     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
 780     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
 781     __ jcc(Assembler::equal, ok);
 782     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 783 
 784     __ bind(ok);
 785     // Method might have been compiled since the call site was patched to
 786     // interpreted if that is the case treat it as a miss so we can get
 787     // the call site corrected.
 788     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 789     __ jcc(Assembler::equal, skip_fixup);
 790     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 791   }
 792 
 793   address c2i_entry = __ pc();
 794 
 795   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 796 
 797   __ flush();
 798   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 799 }
 800 
 801 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 802                                          VMRegPair *regs,
 803                                          int total_args_passed) {
 804 // We return the amount of VMRegImpl stack slots we need to reserve for all
 805 // the arguments NOT counting out_preserve_stack_slots.
 806 
 807 // NOTE: These arrays will have to change when c1 is ported
 808 #ifdef _WIN64
 809     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 810       c_rarg0, c_rarg1, c_rarg2, c_rarg3
 811     };
 812     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 813       c_farg0, c_farg1, c_farg2, c_farg3
 814     };
 815 #else
 816     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 817       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
 818     };
 819     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 820       c_farg0, c_farg1, c_farg2, c_farg3,
 821       c_farg4, c_farg5, c_farg6, c_farg7
 822     };
 823 #endif // _WIN64
 824 
 825 
 826     uint int_args = 0;
 827     uint fp_args = 0;
 828     uint stk_args = 0; // inc by 2 each time
 829 
 830     for (int i = 0; i < total_args_passed; i++) {
 831       switch (sig_bt[i]) {
 832       case T_BOOLEAN:
 833       case T_CHAR:
 834       case T_BYTE:
 835       case T_SHORT:
 836       case T_INT:
 837         if (int_args < Argument::n_int_register_parameters_c) {
 838           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 839 #ifdef _WIN64
 840           fp_args++;
 841           // Allocate slots for callee to stuff register args the stack.
 842           stk_args += 2;
 843 #endif
 844         } else {
 845           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 846           stk_args += 2;
 847         }
 848         break;
 849       case T_LONG:
 850         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 851         // fall through
 852       case T_OBJECT:
 853       case T_ARRAY:
 854       case T_ADDRESS:
 855         if (int_args < Argument::n_int_register_parameters_c) {
 856           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 857 #ifdef _WIN64
 858           fp_args++;
 859           stk_args += 2;
 860 #endif
 861         } else {
 862           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 863           stk_args += 2;
 864         }
 865         break;
 866       case T_FLOAT:
 867         if (fp_args < Argument::n_float_register_parameters_c) {
 868           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 869 #ifdef _WIN64
 870           int_args++;
 871           // Allocate slots for callee to stuff register args the stack.
 872           stk_args += 2;
 873 #endif
 874         } else {
 875           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 876           stk_args += 2;
 877         }
 878         break;
 879       case T_DOUBLE:
 880         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 881         if (fp_args < Argument::n_float_register_parameters_c) {
 882           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 883 #ifdef _WIN64
 884           int_args++;
 885           // Allocate slots for callee to stuff register args the stack.
 886           stk_args += 2;
 887 #endif
 888         } else {
 889           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 890           stk_args += 2;
 891         }
 892         break;
 893       case T_VOID: // Halves of longs and doubles
 894         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 895         regs[i].set_bad();
 896         break;
 897       default:
 898         ShouldNotReachHere();
 899         break;
 900       }
 901     }
 902 #ifdef _WIN64
 903   // windows abi requires that we always allocate enough stack space
 904   // for 4 64bit registers to be stored down.
 905   if (stk_args < 8) {
 906     stk_args = 8;
 907   }
 908 #endif // _WIN64
 909 
 910   return stk_args;
 911 }
 912 
 913 // On 64 bit we will store integer like items to the stack as
 914 // 64 bits items (sparc abi) even though java would only store
 915 // 32bits for a parameter. On 32bit it will simply be 32 bits
 916 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
 917 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
 918   if (src.first()->is_stack()) {
 919     if (dst.first()->is_stack()) {
 920       // stack to stack
 921       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
 922       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
 923     } else {
 924       // stack to reg
 925       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
 926     }
 927   } else if (dst.first()->is_stack()) {
 928     // reg to stack
 929     // Do we really have to sign extend???
 930     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
 931     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 932   } else {
 933     // Do we really have to sign extend???
 934     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
 935     if (dst.first() != src.first()) {
 936       __ movq(dst.first()->as_Register(), src.first()->as_Register());
 937     }
 938   }
 939 }
 940 
 941 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
 942   if (src.first()->is_stack()) {
 943     if (dst.first()->is_stack()) {
 944       // stack to stack
 945       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
 946       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
 947     } else {
 948       // stack to reg
 949       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
 950     }
 951   } else if (dst.first()->is_stack()) {
 952     // reg to stack
 953     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 954   } else {
 955     if (dst.first() != src.first()) {
 956       __ movq(dst.first()->as_Register(), src.first()->as_Register());
 957     }
 958   }
 959 }
 960 
 961 // An oop arg. Must pass a handle not the oop itself
 962 static void object_move(MacroAssembler* masm,
 963                         OopMap* map,
 964                         int oop_handle_offset,
 965                         int framesize_in_slots,
 966                         VMRegPair src,
 967                         VMRegPair dst,
 968                         bool is_receiver,
 969                         int* receiver_offset) {
 970 
 971   // must pass a handle. First figure out the location we use as a handle
 972 
 973   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
 974 
 975   // See if oop is NULL if it is we need no handle
 976 
 977   if (src.first()->is_stack()) {
 978 
 979     // Oop is already on the stack as an argument
 980     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 981     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
 982     if (is_receiver) {
 983       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
 984     }
 985 
 986     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
 987     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
 988     // conditionally move a NULL
 989     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
 990   } else {
 991 
 992     // Oop is in an a register we must store it to the space we reserve
 993     // on the stack for oop_handles and pass a handle if oop is non-NULL
 994 
 995     const Register rOop = src.first()->as_Register();
 996     int oop_slot;
 997     if (rOop == j_rarg0)
 998       oop_slot = 0;
 999     else if (rOop == j_rarg1)
1000       oop_slot = 1;
1001     else if (rOop == j_rarg2)
1002       oop_slot = 2;
1003     else if (rOop == j_rarg3)
1004       oop_slot = 3;
1005     else if (rOop == j_rarg4)
1006       oop_slot = 4;
1007     else {
1008       assert(rOop == j_rarg5, "wrong register");
1009       oop_slot = 5;
1010     }
1011 
1012     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1013     int offset = oop_slot*VMRegImpl::stack_slot_size;
1014 
1015     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1016     // Store oop in handle area, may be NULL
1017     __ movptr(Address(rsp, offset), rOop);
1018     if (is_receiver) {
1019       *receiver_offset = offset;
1020     }
1021 
1022     __ cmpptr(rOop, (int32_t)NULL_WORD);
1023     __ lea(rHandle, Address(rsp, offset));
1024     // conditionally move a NULL from the handle area where it was just stored
1025     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1026   }
1027 
1028   // If arg is on the stack then place it otherwise it is already in correct reg.
1029   if (dst.first()->is_stack()) {
1030     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1031   }
1032 }
1033 
1034 // A float arg may have to do float reg int reg conversion
1035 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1036   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1037 
1038   // The calling conventions assures us that each VMregpair is either
1039   // all really one physical register or adjacent stack slots.
1040   // This greatly simplifies the cases here compared to sparc.
1041 
1042   if (src.first()->is_stack()) {
1043     if (dst.first()->is_stack()) {
1044       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1045       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1046     } else {
1047       // stack to reg
1048       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1049       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1050     }
1051   } else if (dst.first()->is_stack()) {
1052     // reg to stack
1053     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1054     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1055   } else {
1056     // reg to reg
1057     // In theory these overlap but the ordering is such that this is likely a nop
1058     if ( src.first() != dst.first()) {
1059       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1060     }
1061   }
1062 }
1063 
1064 // A long move
1065 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1066 
1067   // The calling conventions assures us that each VMregpair is either
1068   // all really one physical register or adjacent stack slots.
1069   // This greatly simplifies the cases here compared to sparc.
1070 
1071   if (src.is_single_phys_reg() ) {
1072     if (dst.is_single_phys_reg()) {
1073       if (dst.first() != src.first()) {
1074         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1075       }
1076     } else {
1077       assert(dst.is_single_reg(), "not a stack pair");
1078       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1079     }
1080   } else if (dst.is_single_phys_reg()) {
1081     assert(src.is_single_reg(),  "not a stack pair");
1082     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1083   } else {
1084     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1085     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1086     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1087   }
1088 }
1089 
1090 // A double move
1091 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1092 
1093   // The calling conventions assures us that each VMregpair is either
1094   // all really one physical register or adjacent stack slots.
1095   // This greatly simplifies the cases here compared to sparc.
1096 
1097   if (src.is_single_phys_reg() ) {
1098     if (dst.is_single_phys_reg()) {
1099       // In theory these overlap but the ordering is such that this is likely a nop
1100       if ( src.first() != dst.first()) {
1101         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1102       }
1103     } else {
1104       assert(dst.is_single_reg(), "not a stack pair");
1105       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1106     }
1107   } else if (dst.is_single_phys_reg()) {
1108     assert(src.is_single_reg(),  "not a stack pair");
1109     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1110   } else {
1111     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1112     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1113     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1114   }
1115 }
1116 
1117 
1118 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1119   // We always ignore the frame_slots arg and just use the space just below frame pointer
1120   // which by this time is free to use
1121   switch (ret_type) {
1122   case T_FLOAT:
1123     __ movflt(Address(rbp, -wordSize), xmm0);
1124     break;
1125   case T_DOUBLE:
1126     __ movdbl(Address(rbp, -wordSize), xmm0);
1127     break;
1128   case T_VOID:  break;
1129   default: {
1130     __ movptr(Address(rbp, -wordSize), rax);
1131     }
1132   }
1133 }
1134 
1135 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1136   // We always ignore the frame_slots arg and just use the space just below frame pointer
1137   // which by this time is free to use
1138   switch (ret_type) {
1139   case T_FLOAT:
1140     __ movflt(xmm0, Address(rbp, -wordSize));
1141     break;
1142   case T_DOUBLE:
1143     __ movdbl(xmm0, Address(rbp, -wordSize));
1144     break;
1145   case T_VOID:  break;
1146   default: {
1147     __ movptr(rax, Address(rbp, -wordSize));
1148     }
1149   }
1150 }
1151 
1152 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1153     for ( int i = first_arg ; i < arg_count ; i++ ) {
1154       if (args[i].first()->is_Register()) {
1155         __ push(args[i].first()->as_Register());
1156       } else if (args[i].first()->is_XMMRegister()) {
1157         __ subptr(rsp, 2*wordSize);
1158         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1159       }
1160     }
1161 }
1162 
1163 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1164     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1165       if (args[i].first()->is_Register()) {
1166         __ pop(args[i].first()->as_Register());
1167       } else if (args[i].first()->is_XMMRegister()) {
1168         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1169         __ addptr(rsp, 2*wordSize);
1170       }
1171     }
1172 }
1173 
1174 
1175 static void save_or_restore_arguments(MacroAssembler* masm,
1176                                       const int stack_slots,
1177                                       const int total_in_args,
1178                                       const int arg_save_area,
1179                                       OopMap* map,
1180                                       VMRegPair* in_regs,
1181                                       BasicType* in_sig_bt) {
1182   // if map is non-NULL then the code should store the values,
1183   // otherwise it should load them.
1184   int slot = arg_save_area;
1185   // Save down double word first
1186   for ( int i = 0; i < total_in_args; i++) {
1187     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1188       int offset = slot * VMRegImpl::stack_slot_size;
1189       slot += VMRegImpl::slots_per_word;
1190       assert(slot <= stack_slots, "overflow");
1191       if (map != NULL) {
1192         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1193       } else {
1194         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1195       }
1196     }
1197     if (in_regs[i].first()->is_Register() &&
1198         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1199       int offset = slot * VMRegImpl::stack_slot_size;
1200       slot += VMRegImpl::slots_per_word;
1201       if (map != NULL) {
1202         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
1203         if (in_sig_bt[i] == T_ARRAY) {
1204           map->set_oop(VMRegImpl::stack2reg(slot));;
1205         }
1206       } else {
1207         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
1208       }
1209     }
1210   }
1211   // Save or restore single word registers
1212   for ( int i = 0; i < total_in_args; i++) {
1213     if (in_regs[i].first()->is_Register()) {
1214       int offset = slot * VMRegImpl::stack_slot_size;
1215       slot++;
1216       assert(slot <= stack_slots, "overflow");
1217 
1218       // Value is in an input register pass we must flush it to the stack
1219       const Register reg = in_regs[i].first()->as_Register();
1220       switch (in_sig_bt[i]) {
1221         case T_BOOLEAN:
1222         case T_CHAR:
1223         case T_BYTE:
1224         case T_SHORT:
1225         case T_INT:
1226           if (map != NULL) {
1227             __ movl(Address(rsp, offset), reg);
1228           } else {
1229             __ movl(reg, Address(rsp, offset));
1230           }
1231           break;
1232         case T_ARRAY:
1233         case T_LONG:
1234           // handled above
1235           break;
1236         case T_OBJECT:
1237         default: ShouldNotReachHere();
1238       }
1239     } else if (in_regs[i].first()->is_XMMRegister()) {
1240       if (in_sig_bt[i] == T_FLOAT) {
1241         int offset = slot * VMRegImpl::stack_slot_size;
1242         slot++;
1243         assert(slot <= stack_slots, "overflow");
1244         if (map != NULL) {
1245           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1246         } else {
1247           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1248         }
1249       }
1250     } else if (in_regs[i].first()->is_stack()) {
1251       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1252         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1253         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1254       }
1255     }
1256   }
1257 }
1258 
1259 
1260 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
1261 // keeps a new JNI critical region from starting until a GC has been
1262 // forced.  Save down any oops in registers and describe them in an
1263 // OopMap.
1264 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1265                                                int stack_slots,
1266                                                int total_c_args,
1267                                                int total_in_args,
1268                                                int arg_save_area,
1269                                                OopMapSet* oop_maps,
1270                                                VMRegPair* in_regs,
1271                                                BasicType* in_sig_bt) {
1272   __ block_comment("check GC_locker::needs_gc");
1273   Label cont;
1274   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
1275   __ jcc(Assembler::equal, cont);
1276 
1277   // Save down any incoming oops and call into the runtime to halt for a GC
1278 
1279   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1280   save_or_restore_arguments(masm, stack_slots, total_in_args,
1281                             arg_save_area, map, in_regs, in_sig_bt);
1282 
1283   address the_pc = __ pc();
1284   oop_maps->add_gc_map( __ offset(), map);
1285   __ set_last_Java_frame(rsp, noreg, the_pc);
1286 
1287   __ block_comment("block_for_jni_critical");
1288   __ movptr(c_rarg0, r15_thread);
1289   __ mov(r12, rsp); // remember sp
1290   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1291   __ andptr(rsp, -16); // align stack as required by ABI
1292   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1293   __ mov(rsp, r12); // restore sp
1294   __ reinit_heapbase();
1295 
1296   __ reset_last_Java_frame(false, true);
1297 
1298   save_or_restore_arguments(masm, stack_slots, total_in_args,
1299                             arg_save_area, NULL, in_regs, in_sig_bt);
1300 
1301   __ bind(cont);
1302 #ifdef ASSERT
1303   if (StressCriticalJNINatives) {
1304     // Stress register saving
1305     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1306     save_or_restore_arguments(masm, stack_slots, total_in_args,
1307                               arg_save_area, map, in_regs, in_sig_bt);
1308     // Destroy argument registers
1309     for (int i = 0; i < total_in_args - 1; i++) {
1310       if (in_regs[i].first()->is_Register()) {
1311         const Register reg = in_regs[i].first()->as_Register();
1312         __ xorptr(reg, reg);
1313       } else if (in_regs[i].first()->is_XMMRegister()) {
1314         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1315       } else if (in_regs[i].first()->is_FloatRegister()) {
1316         ShouldNotReachHere();
1317       } else if (in_regs[i].first()->is_stack()) {
1318         // Nothing to do
1319       } else {
1320         ShouldNotReachHere();
1321       }
1322       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1323         i++;
1324       }
1325     }
1326 
1327     save_or_restore_arguments(masm, stack_slots, total_in_args,
1328                               arg_save_area, NULL, in_regs, in_sig_bt);
1329   }
1330 #endif
1331 }
1332 
1333 // Unpack an array argument into a pointer to the body and the length
1334 // if the array is non-null, otherwise pass 0 for both.
1335 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1336   Register tmp_reg = rax;
1337   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1338          "possible collision");
1339   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1340          "possible collision");
1341 
1342   // Pass the length, ptr pair
1343   Label is_null, done;
1344   VMRegPair tmp;
1345   tmp.set_ptr(tmp_reg->as_VMReg());
1346   if (reg.first()->is_stack()) {
1347     // Load the arg up from the stack
1348     move_ptr(masm, reg, tmp);
1349     reg = tmp;
1350   }
1351   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1352   __ jccb(Assembler::equal, is_null);
1353   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1354   move_ptr(masm, tmp, body_arg);
1355   // load the length relative to the body.
1356   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1357                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1358   move32_64(masm, tmp, length_arg);
1359   __ jmpb(done);
1360   __ bind(is_null);
1361   // Pass zeros
1362   __ xorptr(tmp_reg, tmp_reg);
1363   move_ptr(masm, tmp, body_arg);
1364   move32_64(masm, tmp, length_arg);
1365   __ bind(done);
1366 }
1367 
1368 
1369 class ComputeMoveOrder: public StackObj {
1370   class MoveOperation: public ResourceObj {
1371     friend class ComputeMoveOrder;
1372    private:
1373     VMRegPair        _src;
1374     VMRegPair        _dst;
1375     int              _src_index;
1376     int              _dst_index;
1377     bool             _processed;
1378     MoveOperation*  _next;
1379     MoveOperation*  _prev;
1380 
1381     static int get_id(VMRegPair r) {
1382       return r.first()->value();
1383     }
1384     
1385    public:
1386     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1387       _src(src)
1388     , _src_index(src_index)
1389     , _dst(dst)
1390     , _dst_index(dst_index)
1391     , _next(NULL)
1392     , _prev(NULL)
1393     , _processed(false) {
1394     }
1395     
1396     VMRegPair src() const              { return _src; }
1397     int src_id() const                 { return get_id(src()); }
1398     int src_index() const              { return _src_index; }
1399     VMRegPair dst() const              { return _dst; }
1400     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
1401     int dst_index() const              { return _dst_index; }
1402     int dst_id() const                 { return get_id(dst()); }
1403     MoveOperation* next() const       { return _next; }
1404     MoveOperation* prev() const       { return _prev; }
1405     void set_processed()               { _processed = true; }
1406     bool is_processed() const          { return _processed; }
1407     
1408     // insert 
1409     void break_cycle(VMRegPair temp_register) {
1410       // create a new store following the last store
1411       // to move from the temp_register to the original
1412       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
1413       
1414       // break the cycle of links and insert new_store at the end
1415       // break the reverse link.
1416       MoveOperation* p = prev();
1417       if (p->_next != NULL) {
1418         p->_next->_prev = NULL;
1419       }
1420       p->_next = new_store;
1421       new_store->_prev = p;
1422       
1423       // change the original store to save it's value in the temp.
1424       set_dst(-1, temp_register);
1425     }
1426 
1427     void link(GrowableArray<MoveOperation*>& killer) {
1428       // link this store in front the store that it depends on
1429       MoveOperation* n = killer.at_grow(src_id(), NULL);
1430       if (n != NULL) {
1431         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
1432         _next = n;
1433         n->_prev = this;
1434       }
1435     }
1436   };
1437 
1438  private:
1439   GrowableArray<MoveOperation*> edges;
1440 
1441  public:
1442   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs, 
1443                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
1444     // Move operations where the dest is the stack can all be
1445     // scheduled first since they can't interfere with the other moves.
1446     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1447       if (in_sig_bt[i] == T_ARRAY) {
1448         c_arg--;
1449         if (out_regs[c_arg].first()->is_stack() &&
1450             out_regs[c_arg + 1].first()->is_stack()) {
1451           arg_order.push(i);
1452           arg_order.push(c_arg);
1453         } else {
1454           if (out_regs[c_arg].first()->is_stack() ||
1455               in_regs[i].first() == out_regs[c_arg].first()) {
1456             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
1457           } else {
1458             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1459           }
1460         }
1461       } else if (in_sig_bt[i] == T_VOID) {
1462         arg_order.push(i);
1463         arg_order.push(c_arg);
1464       } else {
1465         if (out_regs[c_arg].first()->is_stack() ||
1466             in_regs[i].first() == out_regs[c_arg].first()) {
1467           arg_order.push(i);
1468           arg_order.push(c_arg);
1469         } else {
1470           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1471         }
1472       }
1473     }
1474     // Break any cycles in the register moves and emit the in the
1475     // proper order.
1476     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
1477     for (int i = 0; i < stores->length(); i++) {
1478       arg_order.push(stores->at(i)->src_index());
1479       arg_order.push(stores->at(i)->dst_index());
1480     }
1481  }
1482 
1483   // Collected all the move operations
1484   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
1485     if (src.first() == dst.first()) return;
1486     edges.append(new MoveOperation(src_index, src, dst_index, dst));
1487   }
1488 
1489   // Walk the edges breaking cycles between moves.  The result list
1490   // can be walked in order to produce the proper set of loads
1491   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
1492     // Record which moves kill which values
1493     GrowableArray<MoveOperation*> killer;
1494     for (int i = 0; i < edges.length(); i++) {
1495       MoveOperation* s = edges.at(i);
1496       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
1497       killer.at_put_grow(s->dst_id(), s, NULL);
1498     }
1499     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
1500            "make sure temp isn't in the registers that are killed");
1501 
1502     // create links between loads and stores
1503     for (int i = 0; i < edges.length(); i++) {
1504       edges.at(i)->link(killer);
1505     }
1506 
1507     // at this point, all the move operations are chained together
1508     // in a doubly linked list.  Processing it backwards finds
1509     // the beginning of the chain, forwards finds the end.  If there's
1510     // a cycle it can be broken at any point,  so pick an edge and walk
1511     // backward until the list ends or we end where we started.
1512     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
1513     for (int e = 0; e < edges.length(); e++) {
1514       MoveOperation* s = edges.at(e);
1515       if (!s->is_processed()) {
1516         MoveOperation* start = s;
1517         // search for the beginning of the chain or cycle
1518         while (start->prev() != NULL && start->prev() != s) {
1519           start = start->prev();
1520         }
1521         if (start->prev() == s) {
1522           start->break_cycle(temp_register);
1523         }
1524         // walk the chain forward inserting to store list
1525         while (start != NULL) {
1526           stores->append(start);
1527           start->set_processed();
1528           start = start->next();
1529         }
1530       }
1531     }
1532     return stores;
1533   }
1534 };
1535 
1536 
1537 // ---------------------------------------------------------------------------
1538 // Generate a native wrapper for a given method.  The method takes arguments
1539 // in the Java compiled code convention, marshals them to the native
1540 // convention (handlizes oops, etc), transitions to native, makes the call,
1541 // returns to java state (possibly blocking), unhandlizes any result and
1542 // returns.
1543 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
1544                                                 methodHandle method,
1545                                                 int compile_id,
1546                                                 int total_in_args,
1547                                                 int comp_args_on_stack,
1548                                                 BasicType *in_sig_bt,
1549                                                 VMRegPair *in_regs,
1550                                                 BasicType ret_type) {
1551   bool is_critical_native = true;
1552   address native_func = method->critical_native_function();
1553   if (native_func == NULL) {
1554     native_func = method->native_function();
1555     is_critical_native = false;
1556   }
1557   assert(native_func != NULL, "must have function");
1558 
1559   // An OopMap for lock (and class if static)
1560   OopMapSet *oop_maps = new OopMapSet();
1561   intptr_t start = (intptr_t)__ pc();
1562 
1563   // We have received a description of where all the java arg are located
1564   // on entry to the wrapper. We need to convert these args to where
1565   // the jni function will expect them. To figure out where they go
1566   // we convert the java signature to a C signature by inserting
1567   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1568 
1569   int total_c_args = total_in_args;
1570   if (!is_critical_native) {
1571     total_c_args += 1;
1572     if (method->is_static()) {
1573       total_c_args++;
1574     }
1575   } else {
1576     for (int i = 0; i < total_in_args; i++) {
1577       if (in_sig_bt[i] == T_ARRAY) {
1578         total_c_args++;
1579       }
1580     }
1581   }
1582 
1583   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1584   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1585   BasicType* in_elem_bt = NULL;
1586 
1587   int argc = 0;
1588   if (!is_critical_native) {
1589     out_sig_bt[argc++] = T_ADDRESS;
1590     if (method->is_static()) {
1591       out_sig_bt[argc++] = T_OBJECT;
1592     }
1593 
1594     for (int i = 0; i < total_in_args ; i++ ) {
1595       out_sig_bt[argc++] = in_sig_bt[i];
1596     }
1597   } else {
1598     Thread* THREAD = Thread::current();
1599     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1600     SignatureStream ss(method->signature());
1601     for (int i = 0; i < total_in_args ; i++ ) {
1602       if (in_sig_bt[i] == T_ARRAY) {
1603         // Arrays are passed as int, elem* pair
1604         out_sig_bt[argc++] = T_INT;
1605         out_sig_bt[argc++] = T_ADDRESS;
1606         Symbol* atype = ss.as_symbol(CHECK_NULL);
1607         const char* at = atype->as_C_string();
1608         if (strlen(at) == 2) {
1609           assert(at[0] == '[', "must be");
1610           switch (at[1]) {
1611             case 'B': in_elem_bt[i]  = T_BYTE; break;
1612             case 'C': in_elem_bt[i]  = T_CHAR; break;
1613             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1614             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1615             case 'I': in_elem_bt[i]  = T_INT; break;
1616             case 'J': in_elem_bt[i]  = T_LONG; break;
1617             case 'S': in_elem_bt[i]  = T_SHORT; break;
1618             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1619             default: ShouldNotReachHere();
1620           }
1621         }
1622       } else {
1623         out_sig_bt[argc++] = in_sig_bt[i];
1624         in_elem_bt[i] = T_VOID;
1625       }
1626       if (in_sig_bt[i] != T_VOID) {
1627         assert(in_sig_bt[i] == ss.type(), "must match");
1628         ss.next();
1629       }
1630     }
1631   }
1632 
1633   // Now figure out where the args must be stored and how much stack space
1634   // they require.
1635   int out_arg_slots;
1636   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1637 
1638   // Compute framesize for the wrapper.  We need to handlize all oops in
1639   // incoming registers
1640 
1641   // Calculate the total number of stack slots we will need.
1642 
1643   // First count the abi requirement plus all of the outgoing args
1644   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1645 
1646   // Now the space for the inbound oop handle area
1647   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
1648   if (is_critical_native) {
1649     // Critical natives may have to call out so they need a save area
1650     // for register arguments.
1651     int double_slots = 0;
1652     int single_slots = 0;
1653     for ( int i = 0; i < total_in_args; i++) {
1654       if (in_regs[i].first()->is_Register()) {
1655         const Register reg = in_regs[i].first()->as_Register();
1656         switch (in_sig_bt[i]) {
1657           case T_BOOLEAN:
1658           case T_BYTE:
1659           case T_SHORT:
1660           case T_CHAR:
1661           case T_INT:  single_slots++; break;
1662           case T_ARRAY:
1663           case T_LONG: double_slots++; break;
1664           default:  ShouldNotReachHere();
1665         }
1666       } else if (in_regs[i].first()->is_XMMRegister()) {
1667         switch (in_sig_bt[i]) {
1668           case T_FLOAT:  single_slots++; break;
1669           case T_DOUBLE: double_slots++; break;
1670           default:  ShouldNotReachHere();
1671         }
1672       } else if (in_regs[i].first()->is_FloatRegister()) {
1673         ShouldNotReachHere();
1674       }
1675     }
1676     total_save_slots = double_slots * 2 + single_slots;
1677     // align the save area
1678     if (double_slots != 0) {
1679       stack_slots = round_to(stack_slots, 2);
1680     }
1681   }
1682 
1683   int oop_handle_offset = stack_slots;
1684   stack_slots += total_save_slots;
1685 
1686   // Now any space we need for handlizing a klass if static method
1687 
1688   int klass_slot_offset = 0;
1689   int klass_offset = -1;
1690   int lock_slot_offset = 0;
1691   bool is_static = false;
1692 
1693   if (method->is_static()) {
1694     klass_slot_offset = stack_slots;
1695     stack_slots += VMRegImpl::slots_per_word;
1696     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1697     is_static = true;
1698   }
1699 
1700   // Plus a lock if needed
1701 
1702   if (method->is_synchronized()) {
1703     lock_slot_offset = stack_slots;
1704     stack_slots += VMRegImpl::slots_per_word;
1705   }
1706 
1707   // Now a place (+2) to save return values or temp during shuffling
1708   // + 4 for return address (which we own) and saved rbp
1709   stack_slots += 6;
1710 
1711   // Ok The space we have allocated will look like:
1712   //
1713   //
1714   // FP-> |                     |
1715   //      |---------------------|
1716   //      | 2 slots for moves   |
1717   //      |---------------------|
1718   //      | lock box (if sync)  |
1719   //      |---------------------| <- lock_slot_offset
1720   //      | klass (if static)   |
1721   //      |---------------------| <- klass_slot_offset
1722   //      | oopHandle area      |
1723   //      |---------------------| <- oop_handle_offset (6 java arg registers)
1724   //      | outbound memory     |
1725   //      | based arguments     |
1726   //      |                     |
1727   //      |---------------------|
1728   //      |                     |
1729   // SP-> | out_preserved_slots |
1730   //
1731   //
1732 
1733 
1734   // Now compute actual number of stack words we need rounding to make
1735   // stack properly aligned.
1736   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1737 
1738   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1739 
1740   // First thing make an ic check to see if we should even be here
1741 
1742   // We are free to use all registers as temps without saving them and
1743   // restoring them except rbp. rbp is the only callee save register
1744   // as far as the interpreter and the compiler(s) are concerned.
1745 
1746 
1747   const Register ic_reg = rax;
1748   const Register receiver = j_rarg0;
1749 
1750   Label hit;
1751   Label exception_pending;
1752 
1753   assert_different_registers(ic_reg, receiver, rscratch1);
1754   __ verify_oop(receiver);
1755   __ load_klass(rscratch1, receiver);
1756   __ cmpq(ic_reg, rscratch1);
1757   __ jcc(Assembler::equal, hit);
1758 
1759   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1760 
1761   // Verified entry point must be aligned
1762   __ align(8);
1763 
1764   __ bind(hit);
1765 
1766   int vep_offset = ((intptr_t)__ pc()) - start;
1767 
1768   // The instruction at the verified entry point must be 5 bytes or longer
1769   // because it can be patched on the fly by make_non_entrant. The stack bang
1770   // instruction fits that requirement.
1771 
1772   // Generate stack overflow check
1773 
1774   if (UseStackBanging) {
1775     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
1776   } else {
1777     // need a 5 byte instruction to allow MT safe patching to non-entrant
1778     __ fat_nop();
1779   }
1780 
1781   // Generate a new frame for the wrapper.
1782   __ enter();
1783   // -2 because return address is already present and so is saved rbp
1784   __ subptr(rsp, stack_size - 2*wordSize);
1785 
1786   // Frame is now completed as far as size and linkage.
1787   int frame_complete = ((intptr_t)__ pc()) - start;
1788 
1789 #ifdef ASSERT
1790     {
1791       Label L;
1792       __ mov(rax, rsp);
1793       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
1794       __ cmpptr(rax, rsp);
1795       __ jcc(Assembler::equal, L);
1796       __ stop("improperly aligned stack");
1797       __ bind(L);
1798     }
1799 #endif /* ASSERT */
1800 
1801 
1802   // We use r14 as the oop handle for the receiver/klass
1803   // It is callee save so it survives the call to native
1804 
1805   const Register oop_handle_reg = r14;
1806 
1807   if (is_critical_native) {
1808     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
1809                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
1810   }
1811 
1812   //
1813   // We immediately shuffle the arguments so that any vm call we have to
1814   // make from here on out (sync slow path, jvmti, etc.) we will have
1815   // captured the oops from our caller and have a valid oopMap for
1816   // them.
1817 
1818   // -----------------
1819   // The Grand Shuffle
1820 
1821   // The Java calling convention is either equal (linux) or denser (win64) than the
1822   // c calling convention. However the because of the jni_env argument the c calling
1823   // convention always has at least one more (and two for static) arguments than Java.
1824   // Therefore if we move the args from java -> c backwards then we will never have
1825   // a register->register conflict and we don't have to build a dependency graph
1826   // and figure out how to break any cycles.
1827   //
1828 
1829   // Record esp-based slot for receiver on stack for non-static methods
1830   int receiver_offset = -1;
1831 
1832   // This is a trick. We double the stack slots so we can claim
1833   // the oops in the caller's frame. Since we are sure to have
1834   // more args than the caller doubling is enough to make
1835   // sure we can capture all the incoming oop args from the
1836   // caller.
1837   //
1838   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1839 
1840   // Mark location of rbp (someday)
1841   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
1842 
1843   // Use eax, ebx as temporaries during any memory-memory moves we have to do
1844   // All inbound args are referenced based on rbp and all outbound args via rsp.
1845 
1846 
1847 #ifdef ASSERT
1848   bool reg_destroyed[RegisterImpl::number_of_registers];
1849   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
1850   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
1851     reg_destroyed[r] = false;
1852   }
1853   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
1854     freg_destroyed[f] = false;
1855   }
1856 
1857 #endif /* ASSERT */
1858 
1859   // This may iterate in two different directions depending on the
1860   // kind of native it is.  The reason is that for regular JNI natives
1861   // the incoming and outgoing registers are offset upwards and for
1862   // critical natives they are offset down.
1863   GrowableArray<int> arg_order(2 * total_in_args);
1864   VMRegPair tmp_vmreg;
1865   tmp_vmreg.set1(rbx->as_VMReg());
1866 
1867   if (!is_critical_native) {
1868     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1869       arg_order.push(i);
1870       arg_order.push(c_arg);
1871     }
1872   } else {
1873     // Compute a valid move order, using tmp_vmreg to break any cycles
1874     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
1875   }
1876 
1877   int temploc = -1;
1878   for (int ai = 0; ai < arg_order.length(); ai += 2) {
1879     int i = arg_order.at(ai);
1880     int c_arg = arg_order.at(ai + 1);
1881     __ block_comment(err_msg("move %d -> %d", i, c_arg));
1882     if (c_arg == -1) {
1883       assert(is_critical_native, "should only be required for critical natives");
1884       // This arg needs to be moved to a temporary
1885       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
1886       in_regs[i] = tmp_vmreg;
1887       temploc = i;
1888       continue;
1889     } else if (i == -1) {
1890       assert(is_critical_native, "should only be required for critical natives");
1891       // Read from the temporary location
1892       assert(temploc != -1, "must be valid");
1893       i = temploc;
1894       temploc = -1;
1895     }
1896 #ifdef ASSERT
1897     if (in_regs[i].first()->is_Register()) {
1898       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
1899     } else if (in_regs[i].first()->is_XMMRegister()) {
1900       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
1901     }
1902     if (out_regs[c_arg].first()->is_Register()) {
1903       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1904     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
1905       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
1906     }
1907 #endif /* ASSERT */
1908     switch (in_sig_bt[i]) {
1909       case T_ARRAY:
1910         if (is_critical_native) {
1911           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
1912           c_arg++;
1913 #ifdef ASSERT
1914           if (out_regs[c_arg].first()->is_Register()) {
1915             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1916           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
1917             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
1918           }
1919 #endif
1920           break;
1921         }
1922       case T_OBJECT:
1923         assert(!is_critical_native, "no oop arguments");
1924         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1925                     ((i == 0) && (!is_static)),
1926                     &receiver_offset);
1927         break;
1928       case T_VOID:
1929         break;
1930 
1931       case T_FLOAT:
1932         float_move(masm, in_regs[i], out_regs[c_arg]);
1933           break;
1934 
1935       case T_DOUBLE:
1936         assert( i + 1 < total_in_args &&
1937                 in_sig_bt[i + 1] == T_VOID &&
1938                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1939         double_move(masm, in_regs[i], out_regs[c_arg]);
1940         break;
1941 
1942       case T_LONG :
1943         long_move(masm, in_regs[i], out_regs[c_arg]);
1944         break;
1945 
1946       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1947 
1948       default:
1949         move32_64(masm, in_regs[i], out_regs[c_arg]);
1950     }
1951   }
1952 
1953   // point c_arg at the first arg that is already loaded in case we
1954   // need to spill before we call out
1955   int c_arg = total_c_args - total_in_args;
1956 
1957   // Pre-load a static method's oop into r14.  Used both by locking code and
1958   // the normal JNI call code.
1959   if (method->is_static() && !is_critical_native) {
1960 
1961     //  load oop into a register
1962     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
1963 
1964     // Now handlize the static class mirror it's known not-null.
1965     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1966     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1967 
1968     // Now get the handle
1969     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1970     // store the klass handle as second argument
1971     __ movptr(c_rarg1, oop_handle_reg);
1972     // and protect the arg if we must spill
1973     c_arg--;
1974   }
1975 
1976   // Change state to native (we save the return address in the thread, since it might not
1977   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1978   // points into the right code segment. It does not have to be the correct return pc.
1979   // We use the same pc/oopMap repeatedly when we call out
1980 
1981   intptr_t the_pc = (intptr_t) __ pc();
1982   oop_maps->add_gc_map(the_pc - start, map);
1983 
1984   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
1985 
1986 
1987   // We have all of the arguments setup at this point. We must not touch any register
1988   // argument registers at this point (what if we save/restore them there are no oop?
1989 
1990   {
1991     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
1992     // protect the args we've loaded
1993     save_args(masm, total_c_args, c_arg, out_regs);
1994     __ movoop(c_rarg1, JNIHandles::make_local(method()));
1995     __ call_VM_leaf(
1996       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1997       r15_thread, c_rarg1);
1998     restore_args(masm, total_c_args, c_arg, out_regs);
1999   }
2000 
2001   // RedefineClasses() tracing support for obsolete method entry
2002   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2003     // protect the args we've loaded
2004     save_args(masm, total_c_args, c_arg, out_regs);
2005     __ movoop(c_rarg1, JNIHandles::make_local(method()));
2006     __ call_VM_leaf(
2007       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2008       r15_thread, c_rarg1);
2009     restore_args(masm, total_c_args, c_arg, out_regs);
2010   }
2011 
2012   // Lock a synchronized method
2013 
2014   // Register definitions used by locking and unlocking
2015 
2016   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2017   const Register obj_reg  = rbx;  // Will contain the oop
2018   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2019   const Register old_hdr  = r13;  // value of old header at unlock time
2020 
2021   Label slow_path_lock;
2022   Label lock_done;
2023 
2024   if (method->is_synchronized()) {
2025     assert(!is_critical_native, "unhandled");
2026 
2027 
2028     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2029 
2030     // Get the handle (the 2nd argument)
2031     __ mov(oop_handle_reg, c_rarg1);
2032 
2033     // Get address of the box
2034 
2035     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2036 
2037     // Load the oop from the handle
2038     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2039 
2040     if (UseBiasedLocking) {
2041       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
2042     }
2043 
2044     // Load immediate 1 into swap_reg %rax
2045     __ movl(swap_reg, 1);
2046 
2047     // Load (object->mark() | 1) into swap_reg %rax
2048     __ orptr(swap_reg, Address(obj_reg, 0));
2049 
2050     // Save (object->mark() | 1) into BasicLock's displaced header
2051     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2052 
2053     if (os::is_MP()) {
2054       __ lock();
2055     }
2056 
2057     // src -> dest iff dest == rax else rax <- dest
2058     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
2059     __ jcc(Assembler::equal, lock_done);
2060 
2061     // Hmm should this move to the slow path code area???
2062 
2063     // Test if the oopMark is an obvious stack pointer, i.e.,
2064     //  1) (mark & 3) == 0, and
2065     //  2) rsp <= mark < mark + os::pagesize()
2066     // These 3 tests can be done by evaluating the following
2067     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2068     // assuming both stack pointer and pagesize have their
2069     // least significant 2 bits clear.
2070     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2071 
2072     __ subptr(swap_reg, rsp);
2073     __ andptr(swap_reg, 3 - os::vm_page_size());
2074 
2075     // Save the test result, for recursive case, the result is zero
2076     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2077     __ jcc(Assembler::notEqual, slow_path_lock);
2078 
2079     // Slow path will re-enter here
2080 
2081     __ bind(lock_done);
2082   }
2083 
2084 
2085   // Finally just about ready to make the JNI call
2086 
2087 
2088   // get JNIEnv* which is first argument to native
2089   if (!is_critical_native) {
2090     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2091   }
2092 
2093   // Now set thread in native
2094   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2095 
2096   __ call(RuntimeAddress(native_func));
2097 
2098     // Either restore the MXCSR register after returning from the JNI Call
2099     // or verify that it wasn't changed.
2100     if (RestoreMXCSROnJNICalls) {
2101       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
2102 
2103     }
2104     else if (CheckJNICalls ) {
2105       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
2106     }
2107 
2108 
2109   // Unpack native results.
2110   switch (ret_type) {
2111   case T_BOOLEAN: __ c2bool(rax);            break;
2112   case T_CHAR   : __ movzwl(rax, rax);      break;
2113   case T_BYTE   : __ sign_extend_byte (rax); break;
2114   case T_SHORT  : __ sign_extend_short(rax); break;
2115   case T_INT    : /* nothing to do */        break;
2116   case T_DOUBLE :
2117   case T_FLOAT  :
2118     // Result is in xmm0 we'll save as needed
2119     break;
2120   case T_ARRAY:                 // Really a handle
2121   case T_OBJECT:                // Really a handle
2122       break; // can't de-handlize until after safepoint check
2123   case T_VOID: break;
2124   case T_LONG: break;
2125   default       : ShouldNotReachHere();
2126   }
2127 
2128   // Switch thread to "native transition" state before reading the synchronization state.
2129   // This additional state is necessary because reading and testing the synchronization
2130   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2131   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2132   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2133   //     Thread A is resumed to finish this native method, but doesn't block here since it
2134   //     didn't see any synchronization is progress, and escapes.
2135   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2136 
2137   if(os::is_MP()) {
2138     if (UseMembar) {
2139       // Force this write out before the read below
2140       __ membar(Assembler::Membar_mask_bits(
2141            Assembler::LoadLoad | Assembler::LoadStore |
2142            Assembler::StoreLoad | Assembler::StoreStore));
2143     } else {
2144       // Write serialization page so VM thread can do a pseudo remote membar.
2145       // We use the current thread pointer to calculate a thread specific
2146       // offset to write to within the page. This minimizes bus traffic
2147       // due to cache line collision.
2148       __ serialize_memory(r15_thread, rcx);
2149     }
2150   }
2151 
2152   Label after_transition;
2153 
2154   // check for safepoint operation in progress and/or pending suspend requests
2155   {
2156     Label Continue;
2157 
2158     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2159              SafepointSynchronize::_not_synchronized);
2160 
2161     Label L;
2162     __ jcc(Assembler::notEqual, L);
2163     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2164     __ jcc(Assembler::equal, Continue);
2165     __ bind(L);
2166 
2167     // Don't use call_VM as it will see a possible pending exception and forward it
2168     // and never return here preventing us from clearing _last_native_pc down below.
2169     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2170     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2171     // by hand.
2172     //
2173     save_native_result(masm, ret_type, stack_slots);
2174     __ mov(c_rarg0, r15_thread);
2175     __ mov(r12, rsp); // remember sp
2176     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2177     __ andptr(rsp, -16); // align stack as required by ABI
2178     if (!is_critical_native) {
2179       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2180     } else {
2181       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2182     }
2183     __ mov(rsp, r12); // restore sp
2184     __ reinit_heapbase();
2185     // Restore any method result value
2186     restore_native_result(masm, ret_type, stack_slots);
2187 
2188     if (is_critical_native) {
2189       // The call above performed the transition to thread_in_Java so
2190       // skip the transition logic below.
2191       __ jmpb(after_transition);
2192     }
2193 
2194     __ bind(Continue);
2195   }
2196 
2197   // change thread state
2198   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2199   __ bind(after_transition);
2200 
2201   Label reguard;
2202   Label reguard_done;
2203   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
2204   __ jcc(Assembler::equal, reguard);
2205   __ bind(reguard_done);
2206 
2207   // native result if any is live
2208 
2209   // Unlock
2210   Label unlock_done;
2211   Label slow_path_unlock;
2212   if (method->is_synchronized()) {
2213 
2214     // Get locked oop from the handle we passed to jni
2215     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2216 
2217     Label done;
2218 
2219     if (UseBiasedLocking) {
2220       __ biased_locking_exit(obj_reg, old_hdr, done);
2221     }
2222 
2223     // Simple recursive lock?
2224 
2225     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2226     __ jcc(Assembler::equal, done);
2227 
2228     // Must save rax if if it is live now because cmpxchg must use it
2229     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2230       save_native_result(masm, ret_type, stack_slots);
2231     }
2232 
2233 
2234     // get address of the stack lock
2235     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2236     //  get old displaced header
2237     __ movptr(old_hdr, Address(rax, 0));
2238 
2239     // Atomic swap old header if oop still contains the stack lock
2240     if (os::is_MP()) {
2241       __ lock();
2242     }
2243     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
2244     __ jcc(Assembler::notEqual, slow_path_unlock);
2245 
2246     // slow path re-enters here
2247     __ bind(unlock_done);
2248     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2249       restore_native_result(masm, ret_type, stack_slots);
2250     }
2251 
2252     __ bind(done);
2253 
2254   }
2255   {
2256     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2257     save_native_result(masm, ret_type, stack_slots);
2258     __ movoop(c_rarg1, JNIHandles::make_local(method()));
2259     __ call_VM_leaf(
2260          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2261          r15_thread, c_rarg1);
2262     restore_native_result(masm, ret_type, stack_slots);
2263   }
2264 
2265   __ reset_last_Java_frame(false, true);
2266 
2267   // Unpack oop result
2268   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2269       Label L;
2270       __ testptr(rax, rax);
2271       __ jcc(Assembler::zero, L);
2272       __ movptr(rax, Address(rax, 0));
2273       __ bind(L);
2274       __ verify_oop(rax);
2275   }
2276 
2277   if (!is_critical_native) {
2278     // reset handle block
2279     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2280     __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
2281   }
2282 
2283   // pop our frame
2284 
2285   __ leave();
2286 
2287   if (!is_critical_native) {
2288     // Any exception pending?
2289     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2290     __ jcc(Assembler::notEqual, exception_pending);
2291   }
2292 
2293   // Return
2294 
2295   __ ret(0);
2296 
2297   // Unexpected paths are out of line and go here
2298 
2299   if (!is_critical_native) {
2300     // forward the exception
2301     __ bind(exception_pending);
2302 
2303     // and forward the exception
2304     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2305   }
2306 
2307   // Slow path locking & unlocking
2308   if (method->is_synchronized()) {
2309 
2310     // BEGIN Slow path lock
2311     __ bind(slow_path_lock);
2312 
2313     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2314     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2315 
2316     // protect the args we've loaded
2317     save_args(masm, total_c_args, c_arg, out_regs);
2318 
2319     __ mov(c_rarg0, obj_reg);
2320     __ mov(c_rarg1, lock_reg);
2321     __ mov(c_rarg2, r15_thread);
2322 
2323     // Not a leaf but we have last_Java_frame setup as we want
2324     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2325     restore_args(masm, total_c_args, c_arg, out_regs);
2326 
2327 #ifdef ASSERT
2328     { Label L;
2329     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2330     __ jcc(Assembler::equal, L);
2331     __ stop("no pending exception allowed on exit from monitorenter");
2332     __ bind(L);
2333     }
2334 #endif
2335     __ jmp(lock_done);
2336 
2337     // END Slow path lock
2338 
2339     // BEGIN Slow path unlock
2340     __ bind(slow_path_unlock);
2341 
2342     // If we haven't already saved the native result we must save it now as xmm registers
2343     // are still exposed.
2344 
2345     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2346       save_native_result(masm, ret_type, stack_slots);
2347     }
2348 
2349     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2350 
2351     __ mov(c_rarg0, obj_reg);
2352     __ mov(r12, rsp); // remember sp
2353     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2354     __ andptr(rsp, -16); // align stack as required by ABI
2355 
2356     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2357     // NOTE that obj_reg == rbx currently
2358     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2359     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2360 
2361     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2362     __ mov(rsp, r12); // restore sp
2363     __ reinit_heapbase();
2364 #ifdef ASSERT
2365     {
2366       Label L;
2367       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2368       __ jcc(Assembler::equal, L);
2369       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2370       __ bind(L);
2371     }
2372 #endif /* ASSERT */
2373 
2374     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2375 
2376     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2377       restore_native_result(masm, ret_type, stack_slots);
2378     }
2379     __ jmp(unlock_done);
2380 
2381     // END Slow path unlock
2382 
2383   } // synchronized
2384 
2385   // SLOW PATH Reguard the stack if needed
2386 
2387   __ bind(reguard);
2388   save_native_result(masm, ret_type, stack_slots);
2389   __ mov(r12, rsp); // remember sp
2390   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2391   __ andptr(rsp, -16); // align stack as required by ABI
2392   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2393   __ mov(rsp, r12); // restore sp
2394   __ reinit_heapbase();
2395   restore_native_result(masm, ret_type, stack_slots);
2396   // and continue
2397   __ jmp(reguard_done);
2398 
2399 
2400 
2401   __ flush();
2402 
2403   nmethod *nm = nmethod::new_native_nmethod(method,
2404                                             compile_id,
2405                                             masm->code(),
2406                                             vep_offset,
2407                                             frame_complete,
2408                                             stack_slots / VMRegImpl::slots_per_word,
2409                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2410                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2411                                             oop_maps);
2412 
2413   if (is_critical_native) {
2414     nm->set_lazy_critical_native(true);
2415   }
2416 
2417   return nm;
2418 
2419 }
2420 
2421 #ifdef HAVE_DTRACE_H
2422 // ---------------------------------------------------------------------------
2423 // Generate a dtrace nmethod for a given signature.  The method takes arguments
2424 // in the Java compiled code convention, marshals them to the native
2425 // abi and then leaves nops at the position you would expect to call a native
2426 // function. When the probe is enabled the nops are replaced with a trap
2427 // instruction that dtrace inserts and the trace will cause a notification
2428 // to dtrace.
2429 //
2430 // The probes are only able to take primitive types and java/lang/String as
2431 // arguments.  No other java types are allowed. Strings are converted to utf8
2432 // strings so that from dtrace point of view java strings are converted to C
2433 // strings. There is an arbitrary fixed limit on the total space that a method
2434 // can use for converting the strings. (256 chars per string in the signature).
2435 // So any java string larger then this is truncated.
2436 
2437 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2438 static bool offsets_initialized = false;
2439 
2440 
2441 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
2442                                                 methodHandle method) {
2443 
2444 
2445   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2446   // be single threaded in this method.
2447   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2448 
2449   if (!offsets_initialized) {
2450     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
2451     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
2452     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
2453     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
2454     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
2455     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
2456 
2457     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
2458     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
2459     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
2460     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
2461     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
2462     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
2463     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
2464     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
2465 
2466     offsets_initialized = true;
2467   }
2468   // Fill in the signature array, for the calling-convention call.
2469   int total_args_passed = method->size_of_parameters();
2470 
2471   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2472   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2473 
2474   // The signature we are going to use for the trap that dtrace will see
2475   // java/lang/String is converted. We drop "this" and any other object
2476   // is converted to NULL.  (A one-slot java/lang/Long object reference
2477   // is converted to a two-slot long, which is why we double the allocation).
2478   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2479   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2480 
2481   int i=0;
2482   int total_strings = 0;
2483   int first_arg_to_pass = 0;
2484   int total_c_args = 0;
2485 
2486   // Skip the receiver as dtrace doesn't want to see it
2487   if( !method->is_static() ) {
2488     in_sig_bt[i++] = T_OBJECT;
2489     first_arg_to_pass = 1;
2490   }
2491 
2492   // We need to convert the java args to where a native (non-jni) function
2493   // would expect them. To figure out where they go we convert the java
2494   // signature to a C signature.
2495 
2496   SignatureStream ss(method->signature());
2497   for ( ; !ss.at_return_type(); ss.next()) {
2498     BasicType bt = ss.type();
2499     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2500     out_sig_bt[total_c_args++] = bt;
2501     if( bt == T_OBJECT) {
2502       Symbol* s = ss.as_symbol_or_null();   // symbol is created
2503       if (s == vmSymbols::java_lang_String()) {
2504         total_strings++;
2505         out_sig_bt[total_c_args-1] = T_ADDRESS;
2506       } else if (s == vmSymbols::java_lang_Boolean() ||
2507                  s == vmSymbols::java_lang_Character() ||
2508                  s == vmSymbols::java_lang_Byte() ||
2509                  s == vmSymbols::java_lang_Short() ||
2510                  s == vmSymbols::java_lang_Integer() ||
2511                  s == vmSymbols::java_lang_Float()) {
2512         out_sig_bt[total_c_args-1] = T_INT;
2513       } else if (s == vmSymbols::java_lang_Long() ||
2514                  s == vmSymbols::java_lang_Double()) {
2515         out_sig_bt[total_c_args-1] = T_LONG;
2516         out_sig_bt[total_c_args++] = T_VOID;
2517       }
2518     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2519       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2520       // We convert double to long
2521       out_sig_bt[total_c_args-1] = T_LONG;
2522       out_sig_bt[total_c_args++] = T_VOID;
2523     } else if ( bt == T_FLOAT) {
2524       // We convert float to int
2525       out_sig_bt[total_c_args-1] = T_INT;
2526     }
2527   }
2528 
2529   assert(i==total_args_passed, "validly parsed signature");
2530 
2531   // Now get the compiled-Java layout as input arguments
2532   int comp_args_on_stack;
2533   comp_args_on_stack = SharedRuntime::java_calling_convention(
2534       in_sig_bt, in_regs, total_args_passed, false);
2535 
2536   // Now figure out where the args must be stored and how much stack space
2537   // they require (neglecting out_preserve_stack_slots but space for storing
2538   // the 1st six register arguments). It's weird see int_stk_helper.
2539 
2540   int out_arg_slots;
2541   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2542 
2543   // Calculate the total number of stack slots we will need.
2544 
2545   // First count the abi requirement plus all of the outgoing args
2546   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2547 
2548   // Now space for the string(s) we must convert
2549   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
2550   for (i = 0; i < total_strings ; i++) {
2551     string_locs[i] = stack_slots;
2552     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
2553   }
2554 
2555   // Plus the temps we might need to juggle register args
2556   // regs take two slots each
2557   stack_slots += (Argument::n_int_register_parameters_c +
2558                   Argument::n_float_register_parameters_c) * 2;
2559 
2560 
2561   // + 4 for return address (which we own) and saved rbp,
2562 
2563   stack_slots += 4;
2564 
2565   // Ok The space we have allocated will look like:
2566   //
2567   //
2568   // FP-> |                     |
2569   //      |---------------------|
2570   //      | string[n]           |
2571   //      |---------------------| <- string_locs[n]
2572   //      | string[n-1]         |
2573   //      |---------------------| <- string_locs[n-1]
2574   //      | ...                 |
2575   //      | ...                 |
2576   //      |---------------------| <- string_locs[1]
2577   //      | string[0]           |
2578   //      |---------------------| <- string_locs[0]
2579   //      | outbound memory     |
2580   //      | based arguments     |
2581   //      |                     |
2582   //      |---------------------|
2583   //      |                     |
2584   // SP-> | out_preserved_slots |
2585   //
2586   //
2587 
2588   // Now compute actual number of stack words we need rounding to make
2589   // stack properly aligned.
2590   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2591 
2592   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2593 
2594   intptr_t start = (intptr_t)__ pc();
2595 
2596   // First thing make an ic check to see if we should even be here
2597 
2598   // We are free to use all registers as temps without saving them and
2599   // restoring them except rbp. rbp, is the only callee save register
2600   // as far as the interpreter and the compiler(s) are concerned.
2601 
2602   const Register ic_reg = rax;
2603   const Register receiver = rcx;
2604   Label hit;
2605   Label exception_pending;
2606 
2607 
2608   __ verify_oop(receiver);
2609   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2610   __ jcc(Assembler::equal, hit);
2611 
2612   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2613 
2614   // verified entry must be aligned for code patching.
2615   // and the first 5 bytes must be in the same cache line
2616   // if we align at 8 then we will be sure 5 bytes are in the same line
2617   __ align(8);
2618 
2619   __ bind(hit);
2620 
2621   int vep_offset = ((intptr_t)__ pc()) - start;
2622 
2623 
2624   // The instruction at the verified entry point must be 5 bytes or longer
2625   // because it can be patched on the fly by make_non_entrant. The stack bang
2626   // instruction fits that requirement.
2627 
2628   // Generate stack overflow check
2629 
2630   if (UseStackBanging) {
2631     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2632       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2633     } else {
2634       __ movl(rax, stack_size);
2635       __ bang_stack_size(rax, rbx);
2636     }
2637   } else {
2638     // need a 5 byte instruction to allow MT safe patching to non-entrant
2639     __ fat_nop();
2640   }
2641 
2642   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
2643          "valid size for make_non_entrant");
2644 
2645   // Generate a new frame for the wrapper.
2646   __ enter();
2647 
2648   // -4 because return address is already present and so is saved rbp,
2649   if (stack_size - 2*wordSize != 0) {
2650     __ subq(rsp, stack_size - 2*wordSize);
2651   }
2652 
2653   // Frame is now completed as far a size and linkage.
2654 
2655   int frame_complete = ((intptr_t)__ pc()) - start;
2656 
2657   int c_arg, j_arg;
2658 
2659   // State of input register args
2660 
2661   bool  live[ConcreteRegisterImpl::number_of_registers];
2662 
2663   live[j_rarg0->as_VMReg()->value()] = false;
2664   live[j_rarg1->as_VMReg()->value()] = false;
2665   live[j_rarg2->as_VMReg()->value()] = false;
2666   live[j_rarg3->as_VMReg()->value()] = false;
2667   live[j_rarg4->as_VMReg()->value()] = false;
2668   live[j_rarg5->as_VMReg()->value()] = false;
2669 
2670   live[j_farg0->as_VMReg()->value()] = false;
2671   live[j_farg1->as_VMReg()->value()] = false;
2672   live[j_farg2->as_VMReg()->value()] = false;
2673   live[j_farg3->as_VMReg()->value()] = false;
2674   live[j_farg4->as_VMReg()->value()] = false;
2675   live[j_farg5->as_VMReg()->value()] = false;
2676   live[j_farg6->as_VMReg()->value()] = false;
2677   live[j_farg7->as_VMReg()->value()] = false;
2678 
2679 
2680   bool rax_is_zero = false;
2681 
2682   // All args (except strings) destined for the stack are moved first
2683   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2684        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2685     VMRegPair src = in_regs[j_arg];
2686     VMRegPair dst = out_regs[c_arg];
2687 
2688     // Get the real reg value or a dummy (rsp)
2689 
2690     int src_reg = src.first()->is_reg() ?
2691                   src.first()->value() :
2692                   rsp->as_VMReg()->value();
2693 
2694     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2695                     (in_sig_bt[j_arg] == T_OBJECT &&
2696                      out_sig_bt[c_arg] != T_INT &&
2697                      out_sig_bt[c_arg] != T_ADDRESS &&
2698                      out_sig_bt[c_arg] != T_LONG);
2699 
2700     live[src_reg] = !useless;
2701 
2702     if (dst.first()->is_stack()) {
2703 
2704       // Even though a string arg in a register is still live after this loop
2705       // after the string conversion loop (next) it will be dead so we take
2706       // advantage of that now for simpler code to manage live.
2707 
2708       live[src_reg] = false;
2709       switch (in_sig_bt[j_arg]) {
2710 
2711         case T_ARRAY:
2712         case T_OBJECT:
2713           {
2714             Address stack_dst(rsp, reg2offset_out(dst.first()));
2715 
2716             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2717               // need to unbox a one-word value
2718               Register in_reg = rax;
2719               if ( src.first()->is_reg() ) {
2720                 in_reg = src.first()->as_Register();
2721               } else {
2722                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
2723                 rax_is_zero = false;
2724               }
2725               Label skipUnbox;
2726               __ movptr(Address(rsp, reg2offset_out(dst.first())),
2727                         (int32_t)NULL_WORD);
2728               __ testq(in_reg, in_reg);
2729               __ jcc(Assembler::zero, skipUnbox);
2730 
2731               BasicType bt = out_sig_bt[c_arg];
2732               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2733               Address src1(in_reg, box_offset);
2734               if ( bt == T_LONG ) {
2735                 __ movq(in_reg,  src1);
2736                 __ movq(stack_dst, in_reg);
2737                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2738                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
2739               } else {
2740                 __ movl(in_reg,  src1);
2741                 __ movl(stack_dst, in_reg);
2742               }
2743 
2744               __ bind(skipUnbox);
2745             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
2746               // Convert the arg to NULL
2747               if (!rax_is_zero) {
2748                 __ xorq(rax, rax);
2749                 rax_is_zero = true;
2750               }
2751               __ movq(stack_dst, rax);
2752             }
2753           }
2754           break;
2755 
2756         case T_VOID:
2757           break;
2758 
2759         case T_FLOAT:
2760           // This does the right thing since we know it is destined for the
2761           // stack
2762           float_move(masm, src, dst);
2763           break;
2764 
2765         case T_DOUBLE:
2766           // This does the right thing since we know it is destined for the
2767           // stack
2768           double_move(masm, src, dst);
2769           break;
2770 
2771         case T_LONG :
2772           long_move(masm, src, dst);
2773           break;
2774 
2775         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2776 
2777         default:
2778           move32_64(masm, src, dst);
2779       }
2780     }
2781 
2782   }
2783 
2784   // If we have any strings we must store any register based arg to the stack
2785   // This includes any still live xmm registers too.
2786 
2787   int sid = 0;
2788 
2789   if (total_strings > 0 ) {
2790     for (j_arg = first_arg_to_pass, c_arg = 0 ;
2791          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2792       VMRegPair src = in_regs[j_arg];
2793       VMRegPair dst = out_regs[c_arg];
2794 
2795       if (src.first()->is_reg()) {
2796         Address src_tmp(rbp, fp_offset[src.first()->value()]);
2797 
2798         // string oops were left untouched by the previous loop even if the
2799         // eventual (converted) arg is destined for the stack so park them
2800         // away now (except for first)
2801 
2802         if (out_sig_bt[c_arg] == T_ADDRESS) {
2803           Address utf8_addr = Address(
2804               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2805           if (sid != 1) {
2806             // The first string arg won't be killed until after the utf8
2807             // conversion
2808             __ movq(utf8_addr, src.first()->as_Register());
2809           }
2810         } else if (dst.first()->is_reg()) {
2811           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
2812 
2813             // Convert the xmm register to an int and store it in the reserved
2814             // location for the eventual c register arg
2815             XMMRegister f = src.first()->as_XMMRegister();
2816             if (in_sig_bt[j_arg] == T_FLOAT) {
2817               __ movflt(src_tmp, f);
2818             } else {
2819               __ movdbl(src_tmp, f);
2820             }
2821           } else {
2822             // If the arg is an oop type we don't support don't bother to store
2823             // it remember string was handled above.
2824             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2825                             (in_sig_bt[j_arg] == T_OBJECT &&
2826                              out_sig_bt[c_arg] != T_INT &&
2827                              out_sig_bt[c_arg] != T_LONG);
2828 
2829             if (!useless) {
2830               __ movq(src_tmp, src.first()->as_Register());
2831             }
2832           }
2833         }
2834       }
2835       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2836         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2837         ++c_arg; // skip over T_VOID to keep the loop indices in sync
2838       }
2839     }
2840 
2841     // Now that the volatile registers are safe, convert all the strings
2842     sid = 0;
2843 
2844     for (j_arg = first_arg_to_pass, c_arg = 0 ;
2845          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2846       if (out_sig_bt[c_arg] == T_ADDRESS) {
2847         // It's a string
2848         Address utf8_addr = Address(
2849             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2850         // The first string we find might still be in the original java arg
2851         // register
2852 
2853         VMReg src = in_regs[j_arg].first();
2854 
2855         // We will need to eventually save the final argument to the trap
2856         // in the von-volatile location dedicated to src. This is the offset
2857         // from fp we will use.
2858         int src_off = src->is_reg() ?
2859             fp_offset[src->value()] : reg2offset_in(src);
2860 
2861         // This is where the argument will eventually reside
2862         VMRegPair dst = out_regs[c_arg];
2863 
2864         if (src->is_reg()) {
2865           if (sid == 1) {
2866             __ movq(c_rarg0, src->as_Register());
2867           } else {
2868             __ movq(c_rarg0, utf8_addr);
2869           }
2870         } else {
2871           // arg is still in the original location
2872           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
2873         }
2874         Label done, convert;
2875 
2876         // see if the oop is NULL
2877         __ testq(c_rarg0, c_rarg0);
2878         __ jcc(Assembler::notEqual, convert);
2879 
2880         if (dst.first()->is_reg()) {
2881           // Save the ptr to utf string in the origina src loc or the tmp
2882           // dedicated to it
2883           __ movq(Address(rbp, src_off), c_rarg0);
2884         } else {
2885           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
2886         }
2887         __ jmp(done);
2888 
2889         __ bind(convert);
2890 
2891         __ lea(c_rarg1, utf8_addr);
2892         if (dst.first()->is_reg()) {
2893           __ movq(Address(rbp, src_off), c_rarg1);
2894         } else {
2895           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
2896         }
2897         // And do the conversion
2898         __ call(RuntimeAddress(
2899                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
2900 
2901         __ bind(done);
2902       }
2903       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2904         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2905         ++c_arg; // skip over T_VOID to keep the loop indices in sync
2906       }
2907     }
2908     // The get_utf call killed all the c_arg registers
2909     live[c_rarg0->as_VMReg()->value()] = false;
2910     live[c_rarg1->as_VMReg()->value()] = false;
2911     live[c_rarg2->as_VMReg()->value()] = false;
2912     live[c_rarg3->as_VMReg()->value()] = false;
2913     live[c_rarg4->as_VMReg()->value()] = false;
2914     live[c_rarg5->as_VMReg()->value()] = false;
2915 
2916     live[c_farg0->as_VMReg()->value()] = false;
2917     live[c_farg1->as_VMReg()->value()] = false;
2918     live[c_farg2->as_VMReg()->value()] = false;
2919     live[c_farg3->as_VMReg()->value()] = false;
2920     live[c_farg4->as_VMReg()->value()] = false;
2921     live[c_farg5->as_VMReg()->value()] = false;
2922     live[c_farg6->as_VMReg()->value()] = false;
2923     live[c_farg7->as_VMReg()->value()] = false;
2924   }
2925 
2926   // Now we can finally move the register args to their desired locations
2927 
2928   rax_is_zero = false;
2929 
2930   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2931        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2932 
2933     VMRegPair src = in_regs[j_arg];
2934     VMRegPair dst = out_regs[c_arg];
2935 
2936     // Only need to look for args destined for the interger registers (since we
2937     // convert float/double args to look like int/long outbound)
2938     if (dst.first()->is_reg()) {
2939       Register r =  dst.first()->as_Register();
2940 
2941       // Check if the java arg is unsupported and thereofre useless
2942       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2943                       (in_sig_bt[j_arg] == T_OBJECT &&
2944                        out_sig_bt[c_arg] != T_INT &&
2945                        out_sig_bt[c_arg] != T_ADDRESS &&
2946                        out_sig_bt[c_arg] != T_LONG);
2947 
2948 
2949       // If we're going to kill an existing arg save it first
2950       if (live[dst.first()->value()]) {
2951         // you can't kill yourself
2952         if (src.first() != dst.first()) {
2953           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
2954         }
2955       }
2956       if (src.first()->is_reg()) {
2957         if (live[src.first()->value()] ) {
2958           if (in_sig_bt[j_arg] == T_FLOAT) {
2959             __ movdl(r, src.first()->as_XMMRegister());
2960           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
2961             __ movdq(r, src.first()->as_XMMRegister());
2962           } else if (r != src.first()->as_Register()) {
2963             if (!useless) {
2964               __ movq(r, src.first()->as_Register());
2965             }
2966           }
2967         } else {
2968           // If the arg is an oop type we don't support don't bother to store
2969           // it
2970           if (!useless) {
2971             if (in_sig_bt[j_arg] == T_DOUBLE ||
2972                 in_sig_bt[j_arg] == T_LONG  ||
2973                 in_sig_bt[j_arg] == T_OBJECT ) {
2974               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
2975             } else {
2976               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
2977             }
2978           }
2979         }
2980         live[src.first()->value()] = false;
2981       } else if (!useless) {
2982         // full sized move even for int should be ok
2983         __ movq(r, Address(rbp, reg2offset_in(src.first())));
2984       }
2985 
2986       // At this point r has the original java arg in the final location
2987       // (assuming it wasn't useless). If the java arg was an oop
2988       // we have a bit more to do
2989 
2990       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
2991         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2992           // need to unbox a one-word value
2993           Label skip;
2994           __ testq(r, r);
2995           __ jcc(Assembler::equal, skip);
2996           BasicType bt = out_sig_bt[c_arg];
2997           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2998           Address src1(r, box_offset);
2999           if ( bt == T_LONG ) {
3000             __ movq(r, src1);
3001           } else {
3002             __ movl(r, src1);
3003           }
3004           __ bind(skip);
3005 
3006         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
3007           // Convert the arg to NULL
3008           __ xorq(r, r);
3009         }
3010       }
3011 
3012       // dst can longer be holding an input value
3013       live[dst.first()->value()] = false;
3014     }
3015     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
3016       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3017       ++c_arg; // skip over T_VOID to keep the loop indices in sync
3018     }
3019   }
3020 
3021 
3022   // Ok now we are done. Need to place the nop that dtrace wants in order to
3023   // patch in the trap
3024   int patch_offset = ((intptr_t)__ pc()) - start;
3025 
3026   __ nop();
3027 
3028 
3029   // Return
3030 
3031   __ leave();
3032   __ ret(0);
3033 
3034   __ flush();
3035 
3036   nmethod *nm = nmethod::new_dtrace_nmethod(
3037       method, masm->code(), vep_offset, patch_offset, frame_complete,
3038       stack_slots / VMRegImpl::slots_per_word);
3039   return nm;
3040 
3041 }
3042 
3043 #endif // HAVE_DTRACE_H
3044 
3045 // this function returns the adjust size (in number of words) to a c2i adapter
3046 // activation for use during deoptimization
3047 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
3048   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
3049 }
3050 
3051 
3052 uint SharedRuntime::out_preserve_stack_slots() {
3053   return 0;
3054 }
3055 
3056 
3057 //------------------------------generate_deopt_blob----------------------------
3058 void SharedRuntime::generate_deopt_blob() {
3059   // Allocate space for the code
3060   ResourceMark rm;
3061   // Setup code generation tools
3062   CodeBuffer buffer("deopt_blob", 2048, 1024);
3063   MacroAssembler* masm = new MacroAssembler(&buffer);
3064   int frame_size_in_words;
3065   OopMap* map = NULL;
3066   OopMapSet *oop_maps = new OopMapSet();
3067 
3068   // -------------
3069   // This code enters when returning to a de-optimized nmethod.  A return
3070   // address has been pushed on the the stack, and return values are in
3071   // registers.
3072   // If we are doing a normal deopt then we were called from the patched
3073   // nmethod from the point we returned to the nmethod. So the return
3074   // address on the stack is wrong by NativeCall::instruction_size
3075   // We will adjust the value so it looks like we have the original return
3076   // address on the stack (like when we eagerly deoptimized).
3077   // In the case of an exception pending when deoptimizing, we enter
3078   // with a return address on the stack that points after the call we patched
3079   // into the exception handler. We have the following register state from,
3080   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
3081   //    rax: exception oop
3082   //    rbx: exception handler
3083   //    rdx: throwing pc
3084   // So in this case we simply jam rdx into the useless return address and
3085   // the stack looks just like we want.
3086   //
3087   // At this point we need to de-opt.  We save the argument return
3088   // registers.  We call the first C routine, fetch_unroll_info().  This
3089   // routine captures the return values and returns a structure which
3090   // describes the current frame size and the sizes of all replacement frames.
3091   // The current frame is compiled code and may contain many inlined
3092   // functions, each with their own JVM state.  We pop the current frame, then
3093   // push all the new frames.  Then we call the C routine unpack_frames() to
3094   // populate these frames.  Finally unpack_frames() returns us the new target
3095   // address.  Notice that callee-save registers are BLOWN here; they have
3096   // already been captured in the vframeArray at the time the return PC was
3097   // patched.
3098   address start = __ pc();
3099   Label cont;
3100 
3101   // Prolog for non exception case!
3102 
3103   // Save everything in sight.
3104   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3105 
3106   // Normal deoptimization.  Save exec mode for unpack_frames.
3107   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
3108   __ jmp(cont);
3109 
3110   int reexecute_offset = __ pc() - start;
3111 
3112   // Reexecute case
3113   // return address is the pc describes what bci to do re-execute at
3114 
3115   // No need to update map as each call to save_live_registers will produce identical oopmap
3116   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3117 
3118   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
3119   __ jmp(cont);
3120 
3121   int exception_offset = __ pc() - start;
3122 
3123   // Prolog for exception case
3124 
3125   // all registers are dead at this entry point, except for rax, and
3126   // rdx which contain the exception oop and exception pc
3127   // respectively.  Set them in TLS and fall thru to the
3128   // unpack_with_exception_in_tls entry point.
3129 
3130   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3131   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
3132 
3133   int exception_in_tls_offset = __ pc() - start;
3134 
3135   // new implementation because exception oop is now passed in JavaThread
3136 
3137   // Prolog for exception case
3138   // All registers must be preserved because they might be used by LinearScan
3139   // Exceptiop oop and throwing PC are passed in JavaThread
3140   // tos: stack at point of call to method that threw the exception (i.e. only
3141   // args are on the stack, no return address)
3142 
3143   // make room on stack for the return address
3144   // It will be patched later with the throwing pc. The correct value is not
3145   // available now because loading it from memory would destroy registers.
3146   __ push(0);
3147 
3148   // Save everything in sight.
3149   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3150 
3151   // Now it is safe to overwrite any register
3152 
3153   // Deopt during an exception.  Save exec mode for unpack_frames.
3154   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
3155 
3156   // load throwing pc from JavaThread and patch it as the return address
3157   // of the current frame. Then clear the field in JavaThread
3158 
3159   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3160   __ movptr(Address(rbp, wordSize), rdx);
3161   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3162 
3163 #ifdef ASSERT
3164   // verify that there is really an exception oop in JavaThread
3165   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3166   __ verify_oop(rax);
3167 
3168   // verify that there is no pending exception
3169   Label no_pending_exception;
3170   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3171   __ testptr(rax, rax);
3172   __ jcc(Assembler::zero, no_pending_exception);
3173   __ stop("must not have pending exception here");
3174   __ bind(no_pending_exception);
3175 #endif
3176 
3177   __ bind(cont);
3178 
3179   // Call C code.  Need thread and this frame, but NOT official VM entry
3180   // crud.  We cannot block on this call, no GC can happen.
3181   //
3182   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
3183 
3184   // fetch_unroll_info needs to call last_java_frame().
3185 
3186   __ set_last_Java_frame(noreg, noreg, NULL);
3187 #ifdef ASSERT
3188   { Label L;
3189     __ cmpptr(Address(r15_thread,
3190                     JavaThread::last_Java_fp_offset()),
3191             (int32_t)0);
3192     __ jcc(Assembler::equal, L);
3193     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
3194     __ bind(L);
3195   }
3196 #endif // ASSERT
3197   __ mov(c_rarg0, r15_thread);
3198   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
3199 
3200   // Need to have an oopmap that tells fetch_unroll_info where to
3201   // find any register it might need.
3202   oop_maps->add_gc_map(__ pc() - start, map);
3203 
3204   __ reset_last_Java_frame(false, false);
3205 
3206   // Load UnrollBlock* into rdi
3207   __ mov(rdi, rax);
3208 
3209    Label noException;
3210   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
3211   __ jcc(Assembler::notEqual, noException);
3212   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3213   // QQQ this is useless it was NULL above
3214   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3215   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
3216   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3217 
3218   __ verify_oop(rax);
3219 
3220   // Overwrite the result registers with the exception results.
3221   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3222   // I think this is useless
3223   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
3224 
3225   __ bind(noException);
3226 
3227   // Only register save data is on the stack.
3228   // Now restore the result registers.  Everything else is either dead
3229   // or captured in the vframeArray.
3230   RegisterSaver::restore_result_registers(masm);
3231 
3232   // All of the register save area has been popped of the stack. Only the
3233   // return address remains.
3234 
3235   // Pop all the frames we must move/replace.
3236   //
3237   // Frame picture (youngest to oldest)
3238   // 1: self-frame (no frame link)
3239   // 2: deopting frame  (no frame link)
3240   // 3: caller of deopting frame (could be compiled/interpreted).
3241   //
3242   // Note: by leaving the return address of self-frame on the stack
3243   // and using the size of frame 2 to adjust the stack
3244   // when we are done the return to frame 3 will still be on the stack.
3245 
3246   // Pop deoptimized frame
3247   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3248   __ addptr(rsp, rcx);
3249 
3250   // rsp should be pointing at the return address to the caller (3)
3251 
3252   // Stack bang to make sure there's enough room for these interpreter frames.
3253   if (UseStackBanging) {
3254     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3255     __ bang_stack_size(rbx, rcx);
3256   }
3257 
3258   // Load address of array of frame pcs into rcx
3259   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3260 
3261   // Trash the old pc
3262   __ addptr(rsp, wordSize);
3263 
3264   // Load address of array of frame sizes into rsi
3265   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3266 
3267   // Load counter into rdx
3268   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3269 
3270   // Pick up the initial fp we should save
3271   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3272 
3273   // Now adjust the caller's stack to make up for the extra locals
3274   // but record the original sp so that we can save it in the skeletal interpreter
3275   // frame and the stack walking of interpreter_sender will get the unextended sp
3276   // value and not the "real" sp value.
3277 
3278   const Register sender_sp = r8;
3279 
3280   __ mov(sender_sp, rsp);
3281   __ movl(rbx, Address(rdi,
3282                        Deoptimization::UnrollBlock::
3283                        caller_adjustment_offset_in_bytes()));
3284   __ subptr(rsp, rbx);
3285 
3286   // Push interpreter frames in a loop
3287   Label loop;
3288   __ bind(loop);
3289   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3290 #ifdef CC_INTERP
3291   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
3292 #ifdef ASSERT
3293   __ push(0xDEADDEAD);                  // Make a recognizable pattern
3294   __ push(0xDEADDEAD);
3295 #else /* ASSERT */
3296   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
3297 #endif /* ASSERT */
3298 #else
3299   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
3300 #endif // CC_INTERP
3301   __ pushptr(Address(rcx, 0));          // Save return address
3302   __ enter();                           // Save old & set new ebp
3303   __ subptr(rsp, rbx);                  // Prolog
3304 #ifdef CC_INTERP
3305   __ movptr(Address(rbp,
3306                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3307             sender_sp); // Make it walkable
3308 #else /* CC_INTERP */
3309   // This value is corrected by layout_activation_impl
3310   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3311   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
3312 #endif /* CC_INTERP */
3313   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
3314   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3315   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3316   __ decrementl(rdx);                   // Decrement counter
3317   __ jcc(Assembler::notZero, loop);
3318   __ pushptr(Address(rcx, 0));          // Save final return address
3319 
3320   // Re-push self-frame
3321   __ enter();                           // Save old & set new ebp
3322 
3323   // Allocate a full sized register save area.
3324   // Return address and rbp are in place, so we allocate two less words.
3325   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
3326 
3327   // Restore frame locals after moving the frame
3328   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
3329   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3330 
3331   // Call C code.  Need thread but NOT official VM entry
3332   // crud.  We cannot block on this call, no GC can happen.  Call should
3333   // restore return values to their stack-slots with the new SP.
3334   //
3335   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
3336 
3337   // Use rbp because the frames look interpreted now
3338   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3339   // Don't need the precise return PC here, just precise enough to point into this code blob.
3340   address the_pc = __ pc();
3341   __ set_last_Java_frame(noreg, rbp, the_pc);
3342 
3343   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
3344   __ mov(c_rarg0, r15_thread);
3345   __ movl(c_rarg1, r14); // second arg: exec_mode
3346   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3347   // Revert SP alignment after call since we're going to do some SP relative addressing below
3348   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
3349 
3350   // Set an oopmap for the call site
3351   // Use the same PC we used for the last java frame
3352   oop_maps->add_gc_map(the_pc - start,
3353                        new OopMap( frame_size_in_words, 0 ));
3354 
3355   // Clear fp AND pc
3356   __ reset_last_Java_frame(true, true);
3357 
3358   // Collect return values
3359   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
3360   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
3361   // I think this is useless (throwing pc?)
3362   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
3363 
3364   // Pop self-frame.
3365   __ leave();                           // Epilog
3366 
3367   // Jump to interpreter
3368   __ ret(0);
3369 
3370   // Make sure all code is generated
3371   masm->flush();
3372 
3373   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3374   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3375 }
3376 
3377 #ifdef COMPILER2
3378 //------------------------------generate_uncommon_trap_blob--------------------
3379 void SharedRuntime::generate_uncommon_trap_blob() {
3380   // Allocate space for the code
3381   ResourceMark rm;
3382   // Setup code generation tools
3383   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3384   MacroAssembler* masm = new MacroAssembler(&buffer);
3385 
3386   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3387 
3388   address start = __ pc();
3389 
3390   // Push self-frame.  We get here with a return address on the
3391   // stack, so rsp is 8-byte aligned until we allocate our frame.
3392   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3393 
3394   // No callee saved registers. rbp is assumed implicitly saved
3395   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3396 
3397   // compiler left unloaded_class_index in j_rarg0 move to where the
3398   // runtime expects it.
3399   __ movl(c_rarg1, j_rarg0);
3400 
3401   __ set_last_Java_frame(noreg, noreg, NULL);
3402 
3403   // Call C code.  Need thread but NOT official VM entry
3404   // crud.  We cannot block on this call, no GC can happen.  Call should
3405   // capture callee-saved registers as well as return values.
3406   // Thread is in rdi already.
3407   //
3408   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3409 
3410   __ mov(c_rarg0, r15_thread);
3411   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3412 
3413   // Set an oopmap for the call site
3414   OopMapSet* oop_maps = new OopMapSet();
3415   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3416 
3417   // location of rbp is known implicitly by the frame sender code
3418 
3419   oop_maps->add_gc_map(__ pc() - start, map);
3420 
3421   __ reset_last_Java_frame(false, false);
3422 
3423   // Load UnrollBlock* into rdi
3424   __ mov(rdi, rax);
3425 
3426   // Pop all the frames we must move/replace.
3427   //
3428   // Frame picture (youngest to oldest)
3429   // 1: self-frame (no frame link)
3430   // 2: deopting frame  (no frame link)
3431   // 3: caller of deopting frame (could be compiled/interpreted).
3432 
3433   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3434   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3435 
3436   // Pop deoptimized frame (int)
3437   __ movl(rcx, Address(rdi,
3438                        Deoptimization::UnrollBlock::
3439                        size_of_deoptimized_frame_offset_in_bytes()));
3440   __ addptr(rsp, rcx);
3441 
3442   // rsp should be pointing at the return address to the caller (3)
3443 
3444   // Stack bang to make sure there's enough room for these interpreter frames.
3445   if (UseStackBanging) {
3446     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3447     __ bang_stack_size(rbx, rcx);
3448   }
3449 
3450   // Load address of array of frame pcs into rcx (address*)
3451   __ movptr(rcx,
3452             Address(rdi,
3453                     Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3454 
3455   // Trash the return pc
3456   __ addptr(rsp, wordSize);
3457 
3458   // Load address of array of frame sizes into rsi (intptr_t*)
3459   __ movptr(rsi, Address(rdi,
3460                          Deoptimization::UnrollBlock::
3461                          frame_sizes_offset_in_bytes()));
3462 
3463   // Counter
3464   __ movl(rdx, Address(rdi,
3465                        Deoptimization::UnrollBlock::
3466                        number_of_frames_offset_in_bytes())); // (int)
3467 
3468   // Pick up the initial fp we should save
3469   __ movptr(rbp,
3470             Address(rdi,
3471                     Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3472 
3473   // Now adjust the caller's stack to make up for the extra locals but
3474   // record the original sp so that we can save it in the skeletal
3475   // interpreter frame and the stack walking of interpreter_sender
3476   // will get the unextended sp value and not the "real" sp value.
3477 
3478   const Register sender_sp = r8;
3479 
3480   __ mov(sender_sp, rsp);
3481   __ movl(rbx, Address(rdi,
3482                        Deoptimization::UnrollBlock::
3483                        caller_adjustment_offset_in_bytes())); // (int)
3484   __ subptr(rsp, rbx);
3485 
3486   // Push interpreter frames in a loop
3487   Label loop;
3488   __ bind(loop);
3489   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3490   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3491   __ pushptr(Address(rcx, 0));     // Save return address
3492   __ enter();                      // Save old & set new rbp
3493   __ subptr(rsp, rbx);             // Prolog
3494 #ifdef CC_INTERP
3495   __ movptr(Address(rbp,
3496                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3497             sender_sp); // Make it walkable
3498 #else // CC_INTERP
3499   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3500             sender_sp);            // Make it walkable
3501   // This value is corrected by layout_activation_impl
3502   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3503 #endif // CC_INTERP
3504   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3505   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3506   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3507   __ decrementl(rdx);              // Decrement counter
3508   __ jcc(Assembler::notZero, loop);
3509   __ pushptr(Address(rcx, 0));     // Save final return address
3510 
3511   // Re-push self-frame
3512   __ enter();                 // Save old & set new rbp
3513   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3514                               // Prolog
3515 
3516   // Use rbp because the frames look interpreted now
3517   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3518   // Don't need the precise return PC here, just precise enough to point into this code blob.
3519   address the_pc = __ pc();
3520   __ set_last_Java_frame(noreg, rbp, the_pc);
3521 
3522   // Call C code.  Need thread but NOT official VM entry
3523   // crud.  We cannot block on this call, no GC can happen.  Call should
3524   // restore return values to their stack-slots with the new SP.
3525   // Thread is in rdi already.
3526   //
3527   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3528 
3529   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3530   __ mov(c_rarg0, r15_thread);
3531   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3532   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3533 
3534   // Set an oopmap for the call site
3535   // Use the same PC we used for the last java frame
3536   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3537 
3538   // Clear fp AND pc
3539   __ reset_last_Java_frame(true, true);
3540 
3541   // Pop self-frame.
3542   __ leave();                 // Epilog
3543 
3544   // Jump to interpreter
3545   __ ret(0);
3546 
3547   // Make sure all code is generated
3548   masm->flush();
3549 
3550   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3551                                                  SimpleRuntimeFrame::framesize >> 1);
3552 }
3553 #endif // COMPILER2
3554 
3555 
3556 //------------------------------generate_handler_blob------
3557 //
3558 // Generate a special Compile2Runtime blob that saves all registers,
3559 // and setup oopmap.
3560 //
3561 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
3562   assert(StubRoutines::forward_exception_entry() != NULL,
3563          "must be generated before");
3564 
3565   ResourceMark rm;
3566   OopMapSet *oop_maps = new OopMapSet();
3567   OopMap* map;
3568 
3569   // Allocate space for the code.  Setup code generation tools.
3570   CodeBuffer buffer("handler_blob", 2048, 1024);
3571   MacroAssembler* masm = new MacroAssembler(&buffer);
3572 
3573   address start   = __ pc();
3574   address call_pc = NULL;
3575   int frame_size_in_words;
3576 
3577   // Make room for return address (or push it again)
3578   if (!cause_return) {
3579     __ push(rbx);
3580   }
3581 
3582   // Save registers, fpu state, and flags
3583   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3584 
3585   // The following is basically a call_VM.  However, we need the precise
3586   // address of the call in order to generate an oopmap. Hence, we do all the
3587   // work outselves.
3588 
3589   __ set_last_Java_frame(noreg, noreg, NULL);
3590 
3591   // The return address must always be correct so that frame constructor never
3592   // sees an invalid pc.
3593 
3594   if (!cause_return) {
3595     // overwrite the dummy value we pushed on entry
3596     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3597     __ movptr(Address(rbp, wordSize), c_rarg0);
3598   }
3599 
3600   // Do the call
3601   __ mov(c_rarg0, r15_thread);
3602   __ call(RuntimeAddress(call_ptr));
3603 
3604   // Set an oopmap for the call site.  This oopmap will map all
3605   // oop-registers and debug-info registers as callee-saved.  This
3606   // will allow deoptimization at this safepoint to find all possible
3607   // debug-info recordings, as well as let GC find all oops.
3608 
3609   oop_maps->add_gc_map( __ pc() - start, map);
3610 
3611   Label noException;
3612 
3613   __ reset_last_Java_frame(false, false);
3614 
3615   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3616   __ jcc(Assembler::equal, noException);
3617 
3618   // Exception pending
3619 
3620   RegisterSaver::restore_live_registers(masm);
3621 
3622   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3623 
3624   // No exception case
3625   __ bind(noException);
3626 
3627   // Normal exit, restore registers and exit.
3628   RegisterSaver::restore_live_registers(masm);
3629 
3630   __ ret(0);
3631 
3632   // Make sure all code is generated
3633   masm->flush();
3634 
3635   // Fill-out other meta info
3636   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3637 }
3638 
3639 //
3640 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3641 //
3642 // Generate a stub that calls into vm to find out the proper destination
3643 // of a java call. All the argument registers are live at this point
3644 // but since this is generic code we don't know what they are and the caller
3645 // must do any gc of the args.
3646 //
3647 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3648   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3649 
3650   // allocate space for the code
3651   ResourceMark rm;
3652 
3653   CodeBuffer buffer(name, 1000, 512);
3654   MacroAssembler* masm                = new MacroAssembler(&buffer);
3655 
3656   int frame_size_in_words;
3657 
3658   OopMapSet *oop_maps = new OopMapSet();
3659   OopMap* map = NULL;
3660 
3661   int start = __ offset();
3662 
3663   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3664 
3665   int frame_complete = __ offset();
3666 
3667   __ set_last_Java_frame(noreg, noreg, NULL);
3668 
3669   __ mov(c_rarg0, r15_thread);
3670 
3671   __ call(RuntimeAddress(destination));
3672 
3673 
3674   // Set an oopmap for the call site.
3675   // We need this not only for callee-saved registers, but also for volatile
3676   // registers that the compiler might be keeping live across a safepoint.
3677 
3678   oop_maps->add_gc_map( __ offset() - start, map);
3679 
3680   // rax contains the address we are going to jump to assuming no exception got installed
3681 
3682   // clear last_Java_sp
3683   __ reset_last_Java_frame(false, false);
3684   // check for pending exceptions
3685   Label pending;
3686   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3687   __ jcc(Assembler::notEqual, pending);
3688 
3689   // get the returned methodOop
3690   __ movptr(rbx, Address(r15_thread, JavaThread::vm_result_offset()));
3691   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3692 
3693   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3694 
3695   RegisterSaver::restore_live_registers(masm);
3696 
3697   // We are back the the original state on entry and ready to go.
3698 
3699   __ jmp(rax);
3700 
3701   // Pending exception after the safepoint
3702 
3703   __ bind(pending);
3704 
3705   RegisterSaver::restore_live_registers(masm);
3706 
3707   // exception pending => remove activation and forward to exception handler
3708 
3709   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3710 
3711   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3712   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3713 
3714   // -------------
3715   // make sure all code is generated
3716   masm->flush();
3717 
3718   // return the  blob
3719   // frame_size_words or bytes??
3720   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3721 }
3722 
3723 
3724 #ifdef COMPILER2
3725 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3726 //
3727 //------------------------------generate_exception_blob---------------------------
3728 // creates exception blob at the end
3729 // Using exception blob, this code is jumped from a compiled method.
3730 // (see emit_exception_handler in x86_64.ad file)
3731 //
3732 // Given an exception pc at a call we call into the runtime for the
3733 // handler in this method. This handler might merely restore state
3734 // (i.e. callee save registers) unwind the frame and jump to the
3735 // exception handler for the nmethod if there is no Java level handler
3736 // for the nmethod.
3737 //
3738 // This code is entered with a jmp.
3739 //
3740 // Arguments:
3741 //   rax: exception oop
3742 //   rdx: exception pc
3743 //
3744 // Results:
3745 //   rax: exception oop
3746 //   rdx: exception pc in caller or ???
3747 //   destination: exception handler of caller
3748 //
3749 // Note: the exception pc MUST be at a call (precise debug information)
3750 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3751 //
3752 
3753 void OptoRuntime::generate_exception_blob() {
3754   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3755   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3756   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3757 
3758   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3759 
3760   // Allocate space for the code
3761   ResourceMark rm;
3762   // Setup code generation tools
3763   CodeBuffer buffer("exception_blob", 2048, 1024);
3764   MacroAssembler* masm = new MacroAssembler(&buffer);
3765 
3766 
3767   address start = __ pc();
3768 
3769   // Exception pc is 'return address' for stack walker
3770   __ push(rdx);
3771   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
3772 
3773   // Save callee-saved registers.  See x86_64.ad.
3774 
3775   // rbp is an implicitly saved callee saved register (i.e. the calling
3776   // convention will save restore it in prolog/epilog) Other than that
3777   // there are no callee save registers now that adapter frames are gone.
3778 
3779   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3780 
3781   // Store exception in Thread object. We cannot pass any arguments to the
3782   // handle_exception call, since we do not want to make any assumption
3783   // about the size of the frame where the exception happened in.
3784   // c_rarg0 is either rdi (Linux) or rcx (Windows).
3785   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
3786   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3787 
3788   // This call does all the hard work.  It checks if an exception handler
3789   // exists in the method.
3790   // If so, it returns the handler address.
3791   // If not, it prepares for stack-unwinding, restoring the callee-save
3792   // registers of the frame being removed.
3793   //
3794   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3795 
3796   __ set_last_Java_frame(noreg, noreg, NULL);
3797   __ mov(c_rarg0, r15_thread);
3798   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3799 
3800   // Set an oopmap for the call site.  This oopmap will only be used if we
3801   // are unwinding the stack.  Hence, all locations will be dead.
3802   // Callee-saved registers will be the same as the frame above (i.e.,
3803   // handle_exception_stub), since they were restored when we got the
3804   // exception.
3805 
3806   OopMapSet* oop_maps = new OopMapSet();
3807 
3808   oop_maps->add_gc_map( __ pc()-start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3809 
3810   __ reset_last_Java_frame(false, false);
3811 
3812   // Restore callee-saved registers
3813 
3814   // rbp is an implicitly saved callee saved register (i.e. the calling
3815   // convention will save restore it in prolog/epilog) Other than that
3816   // there are no callee save registers no that adapter frames are gone.
3817 
3818   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
3819 
3820   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
3821   __ pop(rdx);                  // No need for exception pc anymore
3822 
3823   // rax: exception handler
3824 
3825   // Restore SP from BP if the exception PC is a MethodHandle call site.
3826   __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
3827   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
3828 
3829   // We have a handler in rax (could be deopt blob).
3830   __ mov(r8, rax);
3831 
3832   // Get the exception oop
3833   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3834   // Get the exception pc in case we are deoptimized
3835   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3836 #ifdef ASSERT
3837   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
3838   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
3839 #endif
3840   // Clear the exception oop so GC no longer processes it as a root.
3841   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
3842 
3843   // rax: exception oop
3844   // r8:  exception handler
3845   // rdx: exception pc
3846   // Jump to handler
3847 
3848   __ jmp(r8);
3849 
3850   // Make sure all code is generated
3851   masm->flush();
3852 
3853   // Set exception blob
3854   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3855 }
3856 #endif // COMPILER2