1 //
   2 // Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // AMD64 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // R8-R15 must be encoded with REX.  (RSP, RBP, RSI, RDI need REX when
  64 // used as byte registers)
  65 
  66 // Previously set RBX, RSI, and RDI as save-on-entry for java code
  67 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  68 // Now that allocator is better, turn on RSI and RDI as SOE registers.
  69 
  70 reg_def RAX  (SOC, SOC, Op_RegI,  0, rax->as_VMReg());
  71 reg_def RAX_H(SOC, SOC, Op_RegI,  0, rax->as_VMReg()->next());
  72 
  73 reg_def RCX  (SOC, SOC, Op_RegI,  1, rcx->as_VMReg());
  74 reg_def RCX_H(SOC, SOC, Op_RegI,  1, rcx->as_VMReg()->next());
  75 
  76 reg_def RDX  (SOC, SOC, Op_RegI,  2, rdx->as_VMReg());
  77 reg_def RDX_H(SOC, SOC, Op_RegI,  2, rdx->as_VMReg()->next());
  78 
  79 reg_def RBX  (SOC, SOE, Op_RegI,  3, rbx->as_VMReg());
  80 reg_def RBX_H(SOC, SOE, Op_RegI,  3, rbx->as_VMReg()->next());
  81 
  82 reg_def RSP  (NS,  NS,  Op_RegI,  4, rsp->as_VMReg());
  83 reg_def RSP_H(NS,  NS,  Op_RegI,  4, rsp->as_VMReg()->next());
  84 
  85 // now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
  86 reg_def RBP  (NS, SOE, Op_RegI,  5, rbp->as_VMReg());
  87 reg_def RBP_H(NS, SOE, Op_RegI,  5, rbp->as_VMReg()->next());
  88 
  89 #ifdef _WIN64
  90 
  91 reg_def RSI  (SOC, SOE, Op_RegI,  6, rsi->as_VMReg());
  92 reg_def RSI_H(SOC, SOE, Op_RegI,  6, rsi->as_VMReg()->next());
  93 
  94 reg_def RDI  (SOC, SOE, Op_RegI,  7, rdi->as_VMReg());
  95 reg_def RDI_H(SOC, SOE, Op_RegI,  7, rdi->as_VMReg()->next());
  96 
  97 #else
  98 
  99 reg_def RSI  (SOC, SOC, Op_RegI,  6, rsi->as_VMReg());
 100 reg_def RSI_H(SOC, SOC, Op_RegI,  6, rsi->as_VMReg()->next());
 101 
 102 reg_def RDI  (SOC, SOC, Op_RegI,  7, rdi->as_VMReg());
 103 reg_def RDI_H(SOC, SOC, Op_RegI,  7, rdi->as_VMReg()->next());
 104 
 105 #endif
 106 
 107 reg_def R8   (SOC, SOC, Op_RegI,  8, r8->as_VMReg());
 108 reg_def R8_H (SOC, SOC, Op_RegI,  8, r8->as_VMReg()->next());
 109 
 110 reg_def R9   (SOC, SOC, Op_RegI,  9, r9->as_VMReg());
 111 reg_def R9_H (SOC, SOC, Op_RegI,  9, r9->as_VMReg()->next());
 112 
 113 reg_def R10  (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
 114 reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
 115 
 116 reg_def R11  (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
 117 reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
 118 
 119 reg_def R12  (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
 120 reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
 121 
 122 reg_def R13  (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
 123 reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
 124 
 125 reg_def R14  (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
 126 reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
 127 
 128 reg_def R15  (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
 129 reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
 130 
 131 
 132 // Floating Point Registers
 133 
 134 // XMM registers.  128-bit registers or 4 words each, labeled (a)-d.
 135 // Word a in each register holds a Float, words ab hold a Double.  We
 136 // currently do not use the SIMD capabilities, so registers cd are
 137 // unused at the moment.
 138 // XMM8-XMM15 must be encoded with REX.
 139 // Linux ABI:   No register preserved across function calls
 140 //              XMM0-XMM7 might hold parameters
 141 // Windows ABI: XMM6-XMM15 preserved across function calls
 142 //              XMM0-XMM3 might hold parameters
 143 
 144 reg_def XMM0   (SOC, SOC, Op_RegF,  0, xmm0->as_VMReg());
 145 reg_def XMM0_H (SOC, SOC, Op_RegF,  0, xmm0->as_VMReg()->next());
 146 
 147 reg_def XMM1   (SOC, SOC, Op_RegF,  1, xmm1->as_VMReg());
 148 reg_def XMM1_H (SOC, SOC, Op_RegF,  1, xmm1->as_VMReg()->next());
 149 
 150 reg_def XMM2   (SOC, SOC, Op_RegF,  2, xmm2->as_VMReg());
 151 reg_def XMM2_H (SOC, SOC, Op_RegF,  2, xmm2->as_VMReg()->next());
 152 
 153 reg_def XMM3   (SOC, SOC, Op_RegF,  3, xmm3->as_VMReg());
 154 reg_def XMM3_H (SOC, SOC, Op_RegF,  3, xmm3->as_VMReg()->next());
 155 
 156 reg_def XMM4   (SOC, SOC, Op_RegF,  4, xmm4->as_VMReg());
 157 reg_def XMM4_H (SOC, SOC, Op_RegF,  4, xmm4->as_VMReg()->next());
 158 
 159 reg_def XMM5   (SOC, SOC, Op_RegF,  5, xmm5->as_VMReg());
 160 reg_def XMM5_H (SOC, SOC, Op_RegF,  5, xmm5->as_VMReg()->next());
 161 
 162 #ifdef _WIN64
 163 
 164 reg_def XMM6   (SOC, SOE, Op_RegF,  6, xmm6->as_VMReg());
 165 reg_def XMM6_H (SOC, SOE, Op_RegF,  6, xmm6->as_VMReg()->next());
 166 
 167 reg_def XMM7   (SOC, SOE, Op_RegF,  7, xmm7->as_VMReg());
 168 reg_def XMM7_H (SOC, SOE, Op_RegF,  7, xmm7->as_VMReg()->next());
 169 
 170 reg_def XMM8   (SOC, SOE, Op_RegF,  8, xmm8->as_VMReg());
 171 reg_def XMM8_H (SOC, SOE, Op_RegF,  8, xmm8->as_VMReg()->next());
 172 
 173 reg_def XMM9   (SOC, SOE, Op_RegF,  9, xmm9->as_VMReg());
 174 reg_def XMM9_H (SOC, SOE, Op_RegF,  9, xmm9->as_VMReg()->next());
 175 
 176 reg_def XMM10  (SOC, SOE, Op_RegF, 10, xmm10->as_VMReg());
 177 reg_def XMM10_H(SOC, SOE, Op_RegF, 10, xmm10->as_VMReg()->next());
 178 
 179 reg_def XMM11  (SOC, SOE, Op_RegF, 11, xmm11->as_VMReg());
 180 reg_def XMM11_H(SOC, SOE, Op_RegF, 11, xmm11->as_VMReg()->next());
 181 
 182 reg_def XMM12  (SOC, SOE, Op_RegF, 12, xmm12->as_VMReg());
 183 reg_def XMM12_H(SOC, SOE, Op_RegF, 12, xmm12->as_VMReg()->next());
 184 
 185 reg_def XMM13  (SOC, SOE, Op_RegF, 13, xmm13->as_VMReg());
 186 reg_def XMM13_H(SOC, SOE, Op_RegF, 13, xmm13->as_VMReg()->next());
 187 
 188 reg_def XMM14  (SOC, SOE, Op_RegF, 14, xmm14->as_VMReg());
 189 reg_def XMM14_H(SOC, SOE, Op_RegF, 14, xmm14->as_VMReg()->next());
 190 
 191 reg_def XMM15  (SOC, SOE, Op_RegF, 15, xmm15->as_VMReg());
 192 reg_def XMM15_H(SOC, SOE, Op_RegF, 15, xmm15->as_VMReg()->next());
 193 
 194 #else
 195 
 196 reg_def XMM6   (SOC, SOC, Op_RegF,  6, xmm6->as_VMReg());
 197 reg_def XMM6_H (SOC, SOC, Op_RegF,  6, xmm6->as_VMReg()->next());
 198 
 199 reg_def XMM7   (SOC, SOC, Op_RegF,  7, xmm7->as_VMReg());
 200 reg_def XMM7_H (SOC, SOC, Op_RegF,  7, xmm7->as_VMReg()->next());
 201 
 202 reg_def XMM8   (SOC, SOC, Op_RegF,  8, xmm8->as_VMReg());
 203 reg_def XMM8_H (SOC, SOC, Op_RegF,  8, xmm8->as_VMReg()->next());
 204 
 205 reg_def XMM9   (SOC, SOC, Op_RegF,  9, xmm9->as_VMReg());
 206 reg_def XMM9_H (SOC, SOC, Op_RegF,  9, xmm9->as_VMReg()->next());
 207 
 208 reg_def XMM10  (SOC, SOC, Op_RegF, 10, xmm10->as_VMReg());
 209 reg_def XMM10_H(SOC, SOC, Op_RegF, 10, xmm10->as_VMReg()->next());
 210 
 211 reg_def XMM11  (SOC, SOC, Op_RegF, 11, xmm11->as_VMReg());
 212 reg_def XMM11_H(SOC, SOC, Op_RegF, 11, xmm11->as_VMReg()->next());
 213 
 214 reg_def XMM12  (SOC, SOC, Op_RegF, 12, xmm12->as_VMReg());
 215 reg_def XMM12_H(SOC, SOC, Op_RegF, 12, xmm12->as_VMReg()->next());
 216 
 217 reg_def XMM13  (SOC, SOC, Op_RegF, 13, xmm13->as_VMReg());
 218 reg_def XMM13_H(SOC, SOC, Op_RegF, 13, xmm13->as_VMReg()->next());
 219 
 220 reg_def XMM14  (SOC, SOC, Op_RegF, 14, xmm14->as_VMReg());
 221 reg_def XMM14_H(SOC, SOC, Op_RegF, 14, xmm14->as_VMReg()->next());
 222 
 223 reg_def XMM15  (SOC, SOC, Op_RegF, 15, xmm15->as_VMReg());
 224 reg_def XMM15_H(SOC, SOC, Op_RegF, 15, xmm15->as_VMReg()->next());
 225 
 226 #endif // _WIN64
 227 
 228 reg_def RFLAGS(SOC, SOC, 0, 16, VMRegImpl::Bad());
 229 
 230 // Specify priority of register selection within phases of register
 231 // allocation.  Highest priority is first.  A useful heuristic is to
 232 // give registers a low priority when they are required by machine
 233 // instructions, like EAX and EDX on I486, and choose no-save registers
 234 // before save-on-call, & save-on-call before save-on-entry.  Registers
 235 // which participate in fixed calling sequences should come last.
 236 // Registers which are used as pairs must fall on an even boundary.
 237 
 238 alloc_class chunk0(R10,         R10_H,
 239                    R11,         R11_H,
 240                    R8,          R8_H,
 241                    R9,          R9_H,
 242                    R12,         R12_H,
 243                    RCX,         RCX_H,
 244                    RBX,         RBX_H,
 245                    RDI,         RDI_H,
 246                    RDX,         RDX_H,
 247                    RSI,         RSI_H,
 248                    RAX,         RAX_H,
 249                    RBP,         RBP_H,
 250                    R13,         R13_H,
 251                    R14,         R14_H,
 252                    R15,         R15_H,
 253                    RSP,         RSP_H);
 254 
 255 // XXX probably use 8-15 first on Linux
 256 alloc_class chunk1(XMM0,  XMM0_H,
 257                    XMM1,  XMM1_H,
 258                    XMM2,  XMM2_H,
 259                    XMM3,  XMM3_H,
 260                    XMM4,  XMM4_H,
 261                    XMM5,  XMM5_H,
 262                    XMM6,  XMM6_H,
 263                    XMM7,  XMM7_H,
 264                    XMM8,  XMM8_H,
 265                    XMM9,  XMM9_H,
 266                    XMM10, XMM10_H,
 267                    XMM11, XMM11_H,
 268                    XMM12, XMM12_H,
 269                    XMM13, XMM13_H,
 270                    XMM14, XMM14_H,
 271                    XMM15, XMM15_H);
 272 
 273 alloc_class chunk2(RFLAGS);
 274 
 275 
 276 //----------Architecture Description Register Classes--------------------------
 277 // Several register classes are automatically defined based upon information in
 278 // this architecture description.
 279 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 280 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 281 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // Class for all pointer registers (including RSP)
 286 reg_class any_reg(RAX, RAX_H,
 287                   RDX, RDX_H,
 288                   RBP, RBP_H,
 289                   RDI, RDI_H,
 290                   RSI, RSI_H,
 291                   RCX, RCX_H,
 292                   RBX, RBX_H,
 293                   RSP, RSP_H,
 294                   R8,  R8_H,
 295                   R9,  R9_H,
 296                   R10, R10_H,
 297                   R11, R11_H,
 298                   R12, R12_H,
 299                   R13, R13_H,
 300                   R14, R14_H,
 301                   R15, R15_H);
 302 
 303 // Class for all pointer registers except RSP
 304 reg_class ptr_reg(RAX, RAX_H,
 305                   RDX, RDX_H,
 306                   RBP, RBP_H,
 307                   RDI, RDI_H,
 308                   RSI, RSI_H,
 309                   RCX, RCX_H,
 310                   RBX, RBX_H,
 311                   R8,  R8_H,
 312                   R9,  R9_H,
 313                   R10, R10_H,
 314                   R11, R11_H,
 315                   R13, R13_H,
 316                   R14, R14_H);
 317 
 318 // Class for all pointer registers except RAX and RSP
 319 reg_class ptr_no_rax_reg(RDX, RDX_H,
 320                          RBP, RBP_H,
 321                          RDI, RDI_H,
 322                          RSI, RSI_H,
 323                          RCX, RCX_H,
 324                          RBX, RBX_H,
 325                          R8,  R8_H,
 326                          R9,  R9_H,
 327                          R10, R10_H,
 328                          R11, R11_H,
 329                          R13, R13_H,
 330                          R14, R14_H);
 331 
 332 reg_class ptr_no_rbp_reg(RDX, RDX_H,
 333                          RAX, RAX_H,
 334                          RDI, RDI_H,
 335                          RSI, RSI_H,
 336                          RCX, RCX_H,
 337                          RBX, RBX_H,
 338                          R8,  R8_H,
 339                          R9,  R9_H,
 340                          R10, R10_H,
 341                          R11, R11_H,
 342                          R13, R13_H,
 343                          R14, R14_H);
 344 
 345 // Class for all pointer registers except RAX, RBX and RSP
 346 reg_class ptr_no_rax_rbx_reg(RDX, RDX_H,
 347                              RBP, RBP_H,
 348                              RDI, RDI_H,
 349                              RSI, RSI_H,
 350                              RCX, RCX_H,
 351                              R8,  R8_H,
 352                              R9,  R9_H,
 353                              R10, R10_H,
 354                              R11, R11_H,
 355                              R13, R13_H,
 356                              R14, R14_H);
 357 
 358 // Singleton class for RAX pointer register
 359 reg_class ptr_rax_reg(RAX, RAX_H);
 360 
 361 // Singleton class for RBX pointer register
 362 reg_class ptr_rbx_reg(RBX, RBX_H);
 363 
 364 // Singleton class for RSI pointer register
 365 reg_class ptr_rsi_reg(RSI, RSI_H);
 366 
 367 // Singleton class for RDI pointer register
 368 reg_class ptr_rdi_reg(RDI, RDI_H);
 369 
 370 // Singleton class for RBP pointer register
 371 reg_class ptr_rbp_reg(RBP, RBP_H);
 372 
 373 // Singleton class for stack pointer
 374 reg_class ptr_rsp_reg(RSP, RSP_H);
 375 
 376 // Singleton class for TLS pointer
 377 reg_class ptr_r15_reg(R15, R15_H);
 378 
 379 // Class for all long registers (except RSP)
 380 reg_class long_reg(RAX, RAX_H,
 381                    RDX, RDX_H,
 382                    RBP, RBP_H,
 383                    RDI, RDI_H,
 384                    RSI, RSI_H,
 385                    RCX, RCX_H,
 386                    RBX, RBX_H,
 387                    R8,  R8_H,
 388                    R9,  R9_H,
 389                    R10, R10_H,
 390                    R11, R11_H,
 391                    R13, R13_H,
 392                    R14, R14_H);
 393 
 394 // Class for all long registers except RAX, RDX (and RSP)
 395 reg_class long_no_rax_rdx_reg(RBP, RBP_H,
 396                               RDI, RDI_H,
 397                               RSI, RSI_H,
 398                               RCX, RCX_H,
 399                               RBX, RBX_H,
 400                               R8,  R8_H,
 401                               R9,  R9_H,
 402                               R10, R10_H,
 403                               R11, R11_H,
 404                               R13, R13_H,
 405                               R14, R14_H);
 406 
 407 // Class for all long registers except RCX (and RSP)
 408 reg_class long_no_rcx_reg(RBP, RBP_H,
 409                           RDI, RDI_H,
 410                           RSI, RSI_H,
 411                           RAX, RAX_H,
 412                           RDX, RDX_H,
 413                           RBX, RBX_H,
 414                           R8,  R8_H,
 415                           R9,  R9_H,
 416                           R10, R10_H,
 417                           R11, R11_H,
 418                           R13, R13_H,
 419                           R14, R14_H);
 420 
 421 // Class for all long registers except RAX (and RSP)
 422 reg_class long_no_rax_reg(RBP, RBP_H,
 423                           RDX, RDX_H,
 424                           RDI, RDI_H,
 425                           RSI, RSI_H,
 426                           RCX, RCX_H,
 427                           RBX, RBX_H,
 428                           R8,  R8_H,
 429                           R9,  R9_H,
 430                           R10, R10_H,
 431                           R11, R11_H,
 432                           R13, R13_H,
 433                           R14, R14_H);
 434 
 435 // Singleton class for RAX long register
 436 reg_class long_rax_reg(RAX, RAX_H);
 437 
 438 // Singleton class for RCX long register
 439 reg_class long_rcx_reg(RCX, RCX_H);
 440 
 441 // Singleton class for RDX long register
 442 reg_class long_rdx_reg(RDX, RDX_H);
 443 
 444 // Class for all int registers (except RSP)
 445 reg_class int_reg(RAX,
 446                   RDX,
 447                   RBP,
 448                   RDI,
 449                   RSI,
 450                   RCX,
 451                   RBX,
 452                   R8,
 453                   R9,
 454                   R10,
 455                   R11,
 456                   R13,
 457                   R14);
 458 
 459 // Class for all int registers except RCX (and RSP)
 460 reg_class int_no_rcx_reg(RAX,
 461                          RDX,
 462                          RBP,
 463                          RDI,
 464                          RSI,
 465                          RBX,
 466                          R8,
 467                          R9,
 468                          R10,
 469                          R11,
 470                          R13,
 471                          R14);
 472 
 473 // Class for all int registers except RAX, RDX (and RSP)
 474 reg_class int_no_rax_rdx_reg(RBP,
 475                              RDI,
 476                              RSI,
 477                              RCX,
 478                              RBX,
 479                              R8,
 480                              R9,
 481                              R10,
 482                              R11,
 483                              R13,
 484                              R14);
 485 
 486 // Singleton class for RAX int register
 487 reg_class int_rax_reg(RAX);
 488 
 489 // Singleton class for RBX int register
 490 reg_class int_rbx_reg(RBX);
 491 
 492 // Singleton class for RCX int register
 493 reg_class int_rcx_reg(RCX);
 494 
 495 // Singleton class for RCX int register
 496 reg_class int_rdx_reg(RDX);
 497 
 498 // Singleton class for RCX int register
 499 reg_class int_rdi_reg(RDI);
 500 
 501 // Singleton class for instruction pointer
 502 // reg_class ip_reg(RIP);
 503 
 504 // Singleton class for condition codes
 505 reg_class int_flags(RFLAGS);
 506 
 507 // Class for all float registers
 508 reg_class float_reg(XMM0,
 509                     XMM1,
 510                     XMM2,
 511                     XMM3,
 512                     XMM4,
 513                     XMM5,
 514                     XMM6,
 515                     XMM7,
 516                     XMM8,
 517                     XMM9,
 518                     XMM10,
 519                     XMM11,
 520                     XMM12,
 521                     XMM13,
 522                     XMM14,
 523                     XMM15);
 524 
 525 // Class for all double registers
 526 reg_class double_reg(XMM0,  XMM0_H,
 527                      XMM1,  XMM1_H,
 528                      XMM2,  XMM2_H,
 529                      XMM3,  XMM3_H,
 530                      XMM4,  XMM4_H,
 531                      XMM5,  XMM5_H,
 532                      XMM6,  XMM6_H,
 533                      XMM7,  XMM7_H,
 534                      XMM8,  XMM8_H,
 535                      XMM9,  XMM9_H,
 536                      XMM10, XMM10_H,
 537                      XMM11, XMM11_H,
 538                      XMM12, XMM12_H,
 539                      XMM13, XMM13_H,
 540                      XMM14, XMM14_H,
 541                      XMM15, XMM15_H);
 542 %}
 543 
 544 
 545 //----------SOURCE BLOCK-------------------------------------------------------
 546 // This is a block of C++ code which provides values, functions, and
 547 // definitions necessary in the rest of the architecture description
 548 source %{
 549 #define   RELOC_IMM64    Assembler::imm_operand
 550 #define   RELOC_DISP32   Assembler::disp32_operand
 551 
 552 #define __ _masm.
 553 
 554 static int preserve_SP_size() {
 555   return 3;  // rex.w, op, rm(reg/reg)
 556 }
 557 
 558 // !!!!! Special hack to get all types of calls to specify the byte offset
 559 //       from the start of the call to the point where the return address
 560 //       will point.
 561 int MachCallStaticJavaNode::ret_addr_offset()
 562 {
 563   int offset = 5; // 5 bytes from start of call to where return address points
 564   if (_method_handle_invoke)
 565     offset += preserve_SP_size();
 566   return offset;
 567 }
 568 
 569 int MachCallDynamicJavaNode::ret_addr_offset()
 570 {
 571   return 15; // 15 bytes from start of call to where return address points
 572 }
 573 
 574 // In os_cpu .ad file
 575 // int MachCallRuntimeNode::ret_addr_offset()
 576 
 577 // Indicate if the safepoint node needs the polling page as an input,
 578 // it does if the polling page is more than disp32 away.
 579 bool SafePointNode::needs_polling_address_input()
 580 {
 581   return Assembler::is_polling_page_far();
 582 }
 583 
 584 //
 585 // Compute padding required for nodes which need alignment
 586 //
 587 
 588 // The address of the call instruction needs to be 4-byte aligned to
 589 // ensure that it does not span a cache line so that it can be patched.
 590 int CallStaticJavaDirectNode::compute_padding(int current_offset) const
 591 {
 592   current_offset += 1; // skip call opcode byte
 593   return round_to(current_offset, alignment_required()) - current_offset;
 594 }
 595 
 596 // The address of the call instruction needs to be 4-byte aligned to
 597 // ensure that it does not span a cache line so that it can be patched.
 598 int CallStaticJavaHandleNode::compute_padding(int current_offset) const
 599 {
 600   current_offset += preserve_SP_size();   // skip mov rbp, rsp
 601   current_offset += 1; // skip call opcode byte
 602   return round_to(current_offset, alignment_required()) - current_offset;
 603 }
 604 
 605 // The address of the call instruction needs to be 4-byte aligned to
 606 // ensure that it does not span a cache line so that it can be patched.
 607 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
 608 {
 609   current_offset += 11; // skip movq instruction + call opcode byte
 610   return round_to(current_offset, alignment_required()) - current_offset;
 611 }
 612 
 613 // EMIT_RM()
 614 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 615   unsigned char c = (unsigned char) ((f1 << 6) | (f2 << 3) | f3);
 616   cbuf.insts()->emit_int8(c);
 617 }
 618 
 619 // EMIT_CC()
 620 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 621   unsigned char c = (unsigned char) (f1 | f2);
 622   cbuf.insts()->emit_int8(c);
 623 }
 624 
 625 // EMIT_OPCODE()
 626 void emit_opcode(CodeBuffer &cbuf, int code) {
 627   cbuf.insts()->emit_int8((unsigned char) code);
 628 }
 629 
 630 // EMIT_OPCODE() w/ relocation information
 631 void emit_opcode(CodeBuffer &cbuf,
 632                  int code, relocInfo::relocType reloc, int offset, int format)
 633 {
 634   cbuf.relocate(cbuf.insts_mark() + offset, reloc, format);
 635   emit_opcode(cbuf, code);
 636 }
 637 
 638 // EMIT_D8()
 639 void emit_d8(CodeBuffer &cbuf, int d8) {
 640   cbuf.insts()->emit_int8((unsigned char) d8);
 641 }
 642 
 643 // EMIT_D16()
 644 void emit_d16(CodeBuffer &cbuf, int d16) {
 645   cbuf.insts()->emit_int16(d16);
 646 }
 647 
 648 // EMIT_D32()
 649 void emit_d32(CodeBuffer &cbuf, int d32) {
 650   cbuf.insts()->emit_int32(d32);
 651 }
 652 
 653 // EMIT_D64()
 654 void emit_d64(CodeBuffer &cbuf, int64_t d64) {
 655   cbuf.insts()->emit_int64(d64);
 656 }
 657 
 658 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 659 void emit_d32_reloc(CodeBuffer& cbuf,
 660                     int d32,
 661                     relocInfo::relocType reloc,
 662                     int format)
 663 {
 664   assert(reloc != relocInfo::external_word_type, "use 2-arg emit_d32_reloc");
 665   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 666   cbuf.insts()->emit_int32(d32);
 667 }
 668 
 669 // emit 32 bit value and construct relocation entry from RelocationHolder
 670 void emit_d32_reloc(CodeBuffer& cbuf, int d32, RelocationHolder const& rspec, int format) {
 671 #ifdef ASSERT
 672   if (rspec.reloc()->type() == relocInfo::oop_type &&
 673       d32 != 0 && d32 != (intptr_t) Universe::non_oop_word()) {
 674     assert(oop((intptr_t)d32)->is_oop() && (ScavengeRootsInCode || !oop((intptr_t)d32)->is_scavengable()), "cannot embed scavengable oops in code");
 675   }
 676 #endif
 677   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 678   cbuf.insts()->emit_int32(d32);
 679 }
 680 
 681 void emit_d32_reloc(CodeBuffer& cbuf, address addr) {
 682   address next_ip = cbuf.insts_end() + 4;
 683   emit_d32_reloc(cbuf, (int) (addr - next_ip),
 684                  external_word_Relocation::spec(addr),
 685                  RELOC_DISP32);
 686 }
 687 
 688 
 689 // emit 64 bit value and construct relocation entry from relocInfo::relocType
 690 void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, relocInfo::relocType reloc, int format) {
 691   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 692   cbuf.insts()->emit_int64(d64);
 693 }
 694 
 695 // emit 64 bit value and construct relocation entry from RelocationHolder
 696 void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, RelocationHolder const& rspec, int format) {
 697 #ifdef ASSERT
 698   if (rspec.reloc()->type() == relocInfo::oop_type &&
 699       d64 != 0 && d64 != (int64_t) Universe::non_oop_word()) {
 700     assert(oop(d64)->is_oop() && (ScavengeRootsInCode || !oop(d64)->is_scavengable()),
 701            "cannot embed scavengable oops in code");
 702   }
 703 #endif
 704   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 705   cbuf.insts()->emit_int64(d64);
 706 }
 707 
 708 // Access stack slot for load or store
 709 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp)
 710 {
 711   emit_opcode(cbuf, opcode);                  // (e.g., FILD   [RSP+src])
 712   if (-0x80 <= disp && disp < 0x80) {
 713     emit_rm(cbuf, 0x01, rm_field, RSP_enc);   // R/M byte
 714     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
 715     emit_d8(cbuf, disp);     // Displacement  // R/M byte
 716   } else {
 717     emit_rm(cbuf, 0x02, rm_field, RSP_enc);   // R/M byte
 718     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
 719     emit_d32(cbuf, disp);     // Displacement // R/M byte
 720   }
 721 }
 722 
 723    // rRegI ereg, memory mem) %{    // emit_reg_mem
 724 void encode_RegMem(CodeBuffer &cbuf,
 725                    int reg,
 726                    int base, int index, int scale, int disp, bool disp_is_oop)
 727 {
 728   assert(!disp_is_oop, "cannot have disp");
 729   int regenc = reg & 7;
 730   int baseenc = base & 7;
 731   int indexenc = index & 7;
 732 
 733   // There is no index & no scale, use form without SIB byte
 734   if (index == 0x4 && scale == 0 && base != RSP_enc && base != R12_enc) {
 735     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
 736     if (disp == 0 && base != RBP_enc && base != R13_enc) {
 737       emit_rm(cbuf, 0x0, regenc, baseenc); // *
 738     } else if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
 739       // If 8-bit displacement, mode 0x1
 740       emit_rm(cbuf, 0x1, regenc, baseenc); // *
 741       emit_d8(cbuf, disp);
 742     } else {
 743       // If 32-bit displacement
 744       if (base == -1) { // Special flag for absolute address
 745         emit_rm(cbuf, 0x0, regenc, 0x5); // *
 746         if (disp_is_oop) {
 747           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 748         } else {
 749           emit_d32(cbuf, disp);
 750         }
 751       } else {
 752         // Normal base + offset
 753         emit_rm(cbuf, 0x2, regenc, baseenc); // *
 754         if (disp_is_oop) {
 755           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 756         } else {
 757           emit_d32(cbuf, disp);
 758         }
 759       }
 760     }
 761   } else {
 762     // Else, encode with the SIB byte
 763     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
 764     if (disp == 0 && base != RBP_enc && base != R13_enc) {
 765       // If no displacement
 766       emit_rm(cbuf, 0x0, regenc, 0x4); // *
 767       emit_rm(cbuf, scale, indexenc, baseenc);
 768     } else {
 769       if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
 770         // If 8-bit displacement, mode 0x1
 771         emit_rm(cbuf, 0x1, regenc, 0x4); // *
 772         emit_rm(cbuf, scale, indexenc, baseenc);
 773         emit_d8(cbuf, disp);
 774       } else {
 775         // If 32-bit displacement
 776         if (base == 0x04 ) {
 777           emit_rm(cbuf, 0x2, regenc, 0x4);
 778           emit_rm(cbuf, scale, indexenc, 0x04); // XXX is this valid???
 779         } else {
 780           emit_rm(cbuf, 0x2, regenc, 0x4);
 781           emit_rm(cbuf, scale, indexenc, baseenc); // *
 782         }
 783         if (disp_is_oop) {
 784           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 785         } else {
 786           emit_d32(cbuf, disp);
 787         }
 788       }
 789     }
 790   }
 791 }
 792 
 793 // This could be in MacroAssembler but it's fairly C2 specific
 794 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 795   Label exit;
 796   __ jccb(Assembler::noParity, exit);
 797   __ pushf();
 798   //
 799   // comiss/ucomiss instructions set ZF,PF,CF flags and
 800   // zero OF,AF,SF for NaN values.
 801   // Fixup flags by zeroing ZF,PF so that compare of NaN
 802   // values returns 'less than' result (CF is set).
 803   // Leave the rest of flags unchanged.
 804   //
 805   //    7 6 5 4 3 2 1 0
 806   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 807   //    0 0 1 0 1 0 1 1   (0x2B)
 808   //
 809   __ andq(Address(rsp, 0), 0xffffff2b);
 810   __ popf();
 811   __ bind(exit);
 812 }
 813 
 814 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 815   Label done;
 816   __ movl(dst, -1);
 817   __ jcc(Assembler::parity, done);
 818   __ jcc(Assembler::below, done);
 819   __ setb(Assembler::notEqual, dst);
 820   __ movzbl(dst, dst);
 821   __ bind(done);
 822 }
 823 
 824 
 825 //=============================================================================
 826 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 827 
 828 int Compile::ConstantTable::calculate_table_base_offset() const {
 829   return 0;  // absolute addressing, no offset
 830 }
 831 
 832 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 833   // Empty encoding
 834 }
 835 
 836 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 837   return 0;
 838 }
 839 
 840 #ifndef PRODUCT
 841 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 842   st->print("# MachConstantBaseNode (empty encoding)");
 843 }
 844 #endif
 845 
 846 
 847 //=============================================================================
 848 #ifndef PRODUCT
 849 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 850   Compile* C = ra_->C;
 851 
 852   int framesize = C->frame_slots() << LogBytesPerInt;
 853   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 854   // Remove wordSize for return addr which is already pushed.
 855   framesize -= wordSize;
 856 
 857   if (C->need_stack_bang(framesize)) {
 858     framesize -= wordSize;
 859     st->print("# stack bang");
 860     st->print("\n\t");
 861     st->print("pushq   rbp\t# Save rbp");
 862     if (framesize) {
 863       st->print("\n\t");
 864       st->print("subq    rsp, #%d\t# Create frame",framesize);
 865     }
 866   } else {
 867     st->print("subq    rsp, #%d\t# Create frame",framesize);
 868     st->print("\n\t");
 869     framesize -= wordSize;
 870     st->print("movq    [rsp + #%d], rbp\t# Save rbp",framesize);
 871   }
 872 
 873   if (VerifyStackAtCalls) {
 874     st->print("\n\t");
 875     framesize -= wordSize;
 876     st->print("movq    [rsp + #%d], 0xbadb100d\t# Majik cookie for stack depth check",framesize);
 877 #ifdef ASSERT
 878     st->print("\n\t");
 879     st->print("# stack alignment check");
 880 #endif
 881   }
 882   st->cr();
 883 }
 884 #endif
 885 
 886 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 887   Compile* C = ra_->C;
 888   MacroAssembler _masm(&cbuf);
 889 
 890   int framesize = C->frame_slots() << LogBytesPerInt;
 891 
 892   __ verified_entry(framesize, C->need_stack_bang(framesize), false);
 893 
 894   C->set_frame_complete(cbuf.insts_size());
 895 
 896   if (C->has_mach_constant_base_node()) {
 897     // NOTE: We set the table base offset here because users might be
 898     // emitted before MachConstantBaseNode.
 899     Compile::ConstantTable& constant_table = C->constant_table();
 900     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 901   }
 902 }
 903 
 904 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
 905 {
 906   return MachNode::size(ra_); // too many variables; just compute it
 907                               // the hard way
 908 }
 909 
 910 int MachPrologNode::reloc() const
 911 {
 912   return 0; // a large enough number
 913 }
 914 
 915 //=============================================================================
 916 #ifndef PRODUCT
 917 void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 918 {
 919   Compile* C = ra_->C;
 920   int framesize = C->frame_slots() << LogBytesPerInt;
 921   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 922   // Remove word for return adr already pushed
 923   // and RBP
 924   framesize -= 2*wordSize;
 925 
 926   if (framesize) {
 927     st->print_cr("addq    rsp, %d\t# Destroy frame", framesize);
 928     st->print("\t");
 929   }
 930 
 931   st->print_cr("popq   rbp");
 932   if (do_polling() && C->is_method_compilation()) {
 933     st->print("\t");
 934     if (Assembler::is_polling_page_far()) {
 935       st->print_cr("movq   rscratch1, #polling_page_address\n\t"
 936                    "testl  rax, [rscratch1]\t"
 937                    "# Safepoint: poll for GC");
 938     } else {
 939       st->print_cr("testl  rax, [rip + #offset_to_poll_page]\t"
 940                    "# Safepoint: poll for GC");
 941     }
 942   }
 943 }
 944 #endif
 945 
 946 void MachEpilogNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
 947 {
 948   Compile* C = ra_->C;
 949   int framesize = C->frame_slots() << LogBytesPerInt;
 950   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 951   // Remove word for return adr already pushed
 952   // and RBP
 953   framesize -= 2*wordSize;
 954 
 955   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 956 
 957   if (framesize) {
 958     emit_opcode(cbuf, Assembler::REX_W);
 959     if (framesize < 0x80) {
 960       emit_opcode(cbuf, 0x83); // addq rsp, #framesize
 961       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
 962       emit_d8(cbuf, framesize);
 963     } else {
 964       emit_opcode(cbuf, 0x81); // addq rsp, #framesize
 965       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
 966       emit_d32(cbuf, framesize);
 967     }
 968   }
 969 
 970   // popq rbp
 971   emit_opcode(cbuf, 0x58 | RBP_enc);
 972 
 973   if (do_polling() && C->is_method_compilation()) {
 974     MacroAssembler _masm(&cbuf);
 975     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 976     if (Assembler::is_polling_page_far()) {
 977       __ lea(rscratch1, polling_page);
 978       __ relocate(relocInfo::poll_return_type);
 979       __ testl(rax, Address(rscratch1, 0));
 980     } else {
 981       __ testl(rax, polling_page);
 982     }
 983   }
 984 }
 985 
 986 uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
 987 {
 988   return MachNode::size(ra_); // too many variables; just compute it
 989                               // the hard way
 990 }
 991 
 992 int MachEpilogNode::reloc() const
 993 {
 994   return 2; // a large enough number
 995 }
 996 
 997 const Pipeline* MachEpilogNode::pipeline() const
 998 {
 999   return MachNode::pipeline_class();
1000 }
1001 
1002 int MachEpilogNode::safepoint_offset() const
1003 {
1004   return 0;
1005 }
1006 
1007 //=============================================================================
1008 
1009 enum RC {
1010   rc_bad,
1011   rc_int,
1012   rc_float,
1013   rc_stack
1014 };
1015 
1016 static enum RC rc_class(OptoReg::Name reg)
1017 {
1018   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1019 
1020   if (OptoReg::is_stack(reg)) return rc_stack;
1021 
1022   VMReg r = OptoReg::as_VMReg(reg);
1023 
1024   if (r->is_Register()) return rc_int;
1025 
1026   assert(r->is_XMMRegister(), "must be");
1027   return rc_float;
1028 }
1029 
1030 uint MachSpillCopyNode::implementation(CodeBuffer* cbuf,
1031                                        PhaseRegAlloc* ra_,
1032                                        bool do_size,
1033                                        outputStream* st) const
1034 {
1035 
1036   // Get registers to move
1037   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1038   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1039   OptoReg::Name dst_second = ra_->get_reg_second(this);
1040   OptoReg::Name dst_first = ra_->get_reg_first(this);
1041 
1042   enum RC src_second_rc = rc_class(src_second);
1043   enum RC src_first_rc = rc_class(src_first);
1044   enum RC dst_second_rc = rc_class(dst_second);
1045   enum RC dst_first_rc = rc_class(dst_first);
1046 
1047   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
1048          "must move at least 1 register" );
1049 
1050   if (src_first == dst_first && src_second == dst_second) {
1051     // Self copy, no move
1052     return 0;
1053   } else if (src_first_rc == rc_stack) {
1054     // mem ->
1055     if (dst_first_rc == rc_stack) {
1056       // mem -> mem
1057       assert(src_second != dst_first, "overlap");
1058       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1059           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1060         // 64-bit
1061         int src_offset = ra_->reg2offset(src_first);
1062         int dst_offset = ra_->reg2offset(dst_first);
1063         if (cbuf) {
1064           emit_opcode(*cbuf, 0xFF);
1065           encode_RegMem(*cbuf, RSI_enc, RSP_enc, 0x4, 0, src_offset, false);
1066 
1067           emit_opcode(*cbuf, 0x8F);
1068           encode_RegMem(*cbuf, RAX_enc, RSP_enc, 0x4, 0, dst_offset, false);
1069 
1070 #ifndef PRODUCT
1071         } else if (!do_size) {
1072           st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1073                      "popq    [rsp + #%d]",
1074                      src_offset,
1075                      dst_offset);
1076 #endif
1077         }
1078         return
1079           3 + ((src_offset == 0) ? 0 : (src_offset < 0x80 ? 1 : 4)) +
1080           3 + ((dst_offset == 0) ? 0 : (dst_offset < 0x80 ? 1 : 4));
1081       } else {
1082         // 32-bit
1083         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1084         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1085         // No pushl/popl, so:
1086         int src_offset = ra_->reg2offset(src_first);
1087         int dst_offset = ra_->reg2offset(dst_first);
1088         if (cbuf) {
1089           emit_opcode(*cbuf, Assembler::REX_W);
1090           emit_opcode(*cbuf, 0x89);
1091           emit_opcode(*cbuf, 0x44);
1092           emit_opcode(*cbuf, 0x24);
1093           emit_opcode(*cbuf, 0xF8);
1094 
1095           emit_opcode(*cbuf, 0x8B);
1096           encode_RegMem(*cbuf,
1097                         RAX_enc,
1098                         RSP_enc, 0x4, 0, src_offset,
1099                         false);
1100 
1101           emit_opcode(*cbuf, 0x89);
1102           encode_RegMem(*cbuf,
1103                         RAX_enc,
1104                         RSP_enc, 0x4, 0, dst_offset,
1105                         false);
1106 
1107           emit_opcode(*cbuf, Assembler::REX_W);
1108           emit_opcode(*cbuf, 0x8B);
1109           emit_opcode(*cbuf, 0x44);
1110           emit_opcode(*cbuf, 0x24);
1111           emit_opcode(*cbuf, 0xF8);
1112 
1113 #ifndef PRODUCT
1114         } else if (!do_size) {
1115           st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1116                      "movl    rax, [rsp + #%d]\n\t"
1117                      "movl    [rsp + #%d], rax\n\t"
1118                      "movq    rax, [rsp - #8]",
1119                      src_offset,
1120                      dst_offset);
1121 #endif
1122         }
1123         return
1124           5 + // movq
1125           3 + ((src_offset == 0) ? 0 : (src_offset < 0x80 ? 1 : 4)) + // movl
1126           3 + ((dst_offset == 0) ? 0 : (dst_offset < 0x80 ? 1 : 4)) + // movl
1127           5; // movq
1128       }
1129     } else if (dst_first_rc == rc_int) {
1130       // mem -> gpr
1131       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1132           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1133         // 64-bit
1134         int offset = ra_->reg2offset(src_first);
1135         if (cbuf) {
1136           if (Matcher::_regEncode[dst_first] < 8) {
1137             emit_opcode(*cbuf, Assembler::REX_W);
1138           } else {
1139             emit_opcode(*cbuf, Assembler::REX_WR);
1140           }
1141           emit_opcode(*cbuf, 0x8B);
1142           encode_RegMem(*cbuf,
1143                         Matcher::_regEncode[dst_first],
1144                         RSP_enc, 0x4, 0, offset,
1145                         false);
1146 #ifndef PRODUCT
1147         } else if (!do_size) {
1148           st->print("movq    %s, [rsp + #%d]\t# spill",
1149                      Matcher::regName[dst_first],
1150                      offset);
1151 #endif
1152         }
1153         return
1154           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) + 4; // REX
1155       } else {
1156         // 32-bit
1157         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1158         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1159         int offset = ra_->reg2offset(src_first);
1160         if (cbuf) {
1161           if (Matcher::_regEncode[dst_first] >= 8) {
1162             emit_opcode(*cbuf, Assembler::REX_R);
1163           }
1164           emit_opcode(*cbuf, 0x8B);
1165           encode_RegMem(*cbuf,
1166                         Matcher::_regEncode[dst_first],
1167                         RSP_enc, 0x4, 0, offset,
1168                         false);
1169 #ifndef PRODUCT
1170         } else if (!do_size) {
1171           st->print("movl    %s, [rsp + #%d]\t# spill",
1172                      Matcher::regName[dst_first],
1173                      offset);
1174 #endif
1175         }
1176         return
1177           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
1178           ((Matcher::_regEncode[dst_first] < 8)
1179            ? 3
1180            : 4); // REX
1181       }
1182     } else if (dst_first_rc == rc_float) {
1183       // mem-> xmm
1184       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1185           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1186         // 64-bit
1187         int offset = ra_->reg2offset(src_first);
1188         if (cbuf) {
1189           MacroAssembler _masm(cbuf);
1190           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1191 #ifndef PRODUCT
1192         } else if (!do_size) {
1193           st->print("%s  %s, [rsp + #%d]\t# spill",
1194                      UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
1195                      Matcher::regName[dst_first],
1196                      offset);
1197 #endif
1198         }
1199         return
1200           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
1201           ((Matcher::_regEncode[dst_first] >= 8)
1202            ? 6
1203            : (5 + ((UseAVX>0)?1:0))); // REX
1204       } else {
1205         // 32-bit
1206         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1207         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1208         int offset = ra_->reg2offset(src_first);
1209         if (cbuf) {
1210           MacroAssembler _masm(cbuf);
1211           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1212 #ifndef PRODUCT
1213         } else if (!do_size) {
1214           st->print("movss   %s, [rsp + #%d]\t# spill",
1215                      Matcher::regName[dst_first],
1216                      offset);
1217 #endif
1218         }
1219         return
1220           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
1221           ((Matcher::_regEncode[dst_first] >= 8)
1222            ? 6
1223            : (5 + ((UseAVX>0)?1:0))); // REX
1224       }
1225     }
1226   } else if (src_first_rc == rc_int) {
1227     // gpr ->
1228     if (dst_first_rc == rc_stack) {
1229       // gpr -> mem
1230       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1231           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1232         // 64-bit
1233         int offset = ra_->reg2offset(dst_first);
1234         if (cbuf) {
1235           if (Matcher::_regEncode[src_first] < 8) {
1236             emit_opcode(*cbuf, Assembler::REX_W);
1237           } else {
1238             emit_opcode(*cbuf, Assembler::REX_WR);
1239           }
1240           emit_opcode(*cbuf, 0x89);
1241           encode_RegMem(*cbuf,
1242                         Matcher::_regEncode[src_first],
1243                         RSP_enc, 0x4, 0, offset,
1244                         false);
1245 #ifndef PRODUCT
1246         } else if (!do_size) {
1247           st->print("movq    [rsp + #%d], %s\t# spill",
1248                      offset,
1249                      Matcher::regName[src_first]);
1250 #endif
1251         }
1252         return ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) + 4; // REX
1253       } else {
1254         // 32-bit
1255         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1256         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1257         int offset = ra_->reg2offset(dst_first);
1258         if (cbuf) {
1259           if (Matcher::_regEncode[src_first] >= 8) {
1260             emit_opcode(*cbuf, Assembler::REX_R);
1261           }
1262           emit_opcode(*cbuf, 0x89);
1263           encode_RegMem(*cbuf,
1264                         Matcher::_regEncode[src_first],
1265                         RSP_enc, 0x4, 0, offset,
1266                         false);
1267 #ifndef PRODUCT
1268         } else if (!do_size) {
1269           st->print("movl    [rsp + #%d], %s\t# spill",
1270                      offset,
1271                      Matcher::regName[src_first]);
1272 #endif
1273         }
1274         return
1275           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
1276           ((Matcher::_regEncode[src_first] < 8)
1277            ? 3
1278            : 4); // REX
1279       }
1280     } else if (dst_first_rc == rc_int) {
1281       // gpr -> gpr
1282       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1283           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1284         // 64-bit
1285         if (cbuf) {
1286           if (Matcher::_regEncode[dst_first] < 8) {
1287             if (Matcher::_regEncode[src_first] < 8) {
1288               emit_opcode(*cbuf, Assembler::REX_W);
1289             } else {
1290               emit_opcode(*cbuf, Assembler::REX_WB);
1291             }
1292           } else {
1293             if (Matcher::_regEncode[src_first] < 8) {
1294               emit_opcode(*cbuf, Assembler::REX_WR);
1295             } else {
1296               emit_opcode(*cbuf, Assembler::REX_WRB);
1297             }
1298           }
1299           emit_opcode(*cbuf, 0x8B);
1300           emit_rm(*cbuf, 0x3,
1301                   Matcher::_regEncode[dst_first] & 7,
1302                   Matcher::_regEncode[src_first] & 7);
1303 #ifndef PRODUCT
1304         } else if (!do_size) {
1305           st->print("movq    %s, %s\t# spill",
1306                      Matcher::regName[dst_first],
1307                      Matcher::regName[src_first]);
1308 #endif
1309         }
1310         return 3; // REX
1311       } else {
1312         // 32-bit
1313         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1314         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1315         if (cbuf) {
1316           if (Matcher::_regEncode[dst_first] < 8) {
1317             if (Matcher::_regEncode[src_first] >= 8) {
1318               emit_opcode(*cbuf, Assembler::REX_B);
1319             }
1320           } else {
1321             if (Matcher::_regEncode[src_first] < 8) {
1322               emit_opcode(*cbuf, Assembler::REX_R);
1323             } else {
1324               emit_opcode(*cbuf, Assembler::REX_RB);
1325             }
1326           }
1327           emit_opcode(*cbuf, 0x8B);
1328           emit_rm(*cbuf, 0x3,
1329                   Matcher::_regEncode[dst_first] & 7,
1330                   Matcher::_regEncode[src_first] & 7);
1331 #ifndef PRODUCT
1332         } else if (!do_size) {
1333           st->print("movl    %s, %s\t# spill",
1334                      Matcher::regName[dst_first],
1335                      Matcher::regName[src_first]);
1336 #endif
1337         }
1338         return
1339           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
1340           ? 2
1341           : 3; // REX
1342       }
1343     } else if (dst_first_rc == rc_float) {
1344       // gpr -> xmm
1345       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1346           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1347         // 64-bit
1348         if (cbuf) {
1349           MacroAssembler _masm(cbuf);
1350           __ movdq( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1351 #ifndef PRODUCT
1352         } else if (!do_size) {
1353           st->print("movdq   %s, %s\t# spill",
1354                      Matcher::regName[dst_first],
1355                      Matcher::regName[src_first]);
1356 #endif
1357         }
1358         return 5; // REX
1359       } else {
1360         // 32-bit
1361         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1362         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1363         if (cbuf) {
1364           MacroAssembler _masm(cbuf);
1365           __ movdl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1366 #ifndef PRODUCT
1367         } else if (!do_size) {
1368           st->print("movdl   %s, %s\t# spill",
1369                      Matcher::regName[dst_first],
1370                      Matcher::regName[src_first]);
1371 #endif
1372         }
1373         return
1374           (Matcher::_regEncode[src_first] >= 8 || Matcher::_regEncode[dst_first] >= 8)
1375           ? 5
1376           : (4 + ((UseAVX>0)?1:0)); // REX
1377       }
1378     }
1379   } else if (src_first_rc == rc_float) {
1380     // xmm ->
1381     if (dst_first_rc == rc_stack) {
1382       // xmm -> mem
1383       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1384           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1385         // 64-bit
1386         int offset = ra_->reg2offset(dst_first);
1387         if (cbuf) {
1388           MacroAssembler _masm(cbuf);
1389           __ movdbl( Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1390 #ifndef PRODUCT
1391         } else if (!do_size) {
1392           st->print("movsd   [rsp + #%d], %s\t# spill",
1393                      offset,
1394                      Matcher::regName[src_first]);
1395 #endif
1396         }
1397         return
1398           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
1399           ((Matcher::_regEncode[src_first] >= 8)
1400            ? 6
1401            : (5 + ((UseAVX>0)?1:0))); // REX
1402       } else {
1403         // 32-bit
1404         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1405         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1406         int offset = ra_->reg2offset(dst_first);
1407         if (cbuf) {
1408           MacroAssembler _masm(cbuf);
1409           __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1410 #ifndef PRODUCT
1411         } else if (!do_size) {
1412           st->print("movss   [rsp + #%d], %s\t# spill",
1413                      offset,
1414                      Matcher::regName[src_first]);
1415 #endif
1416         }
1417         return
1418           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
1419           ((Matcher::_regEncode[src_first] >=8)
1420            ? 6
1421            : (5 + ((UseAVX>0)?1:0))); // REX
1422       }
1423     } else if (dst_first_rc == rc_int) {
1424       // xmm -> gpr
1425       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1426           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1427         // 64-bit
1428         if (cbuf) {
1429           MacroAssembler _masm(cbuf);
1430           __ movdq( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1431 #ifndef PRODUCT
1432         } else if (!do_size) {
1433           st->print("movdq   %s, %s\t# spill",
1434                      Matcher::regName[dst_first],
1435                      Matcher::regName[src_first]);
1436 #endif
1437         }
1438         return 5; // REX
1439       } else {
1440         // 32-bit
1441         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1442         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1443         if (cbuf) {
1444           MacroAssembler _masm(cbuf);
1445           __ movdl( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1446 #ifndef PRODUCT
1447         } else if (!do_size) {
1448           st->print("movdl   %s, %s\t# spill",
1449                      Matcher::regName[dst_first],
1450                      Matcher::regName[src_first]);
1451 #endif
1452         }
1453         return
1454           (Matcher::_regEncode[src_first] >= 8 || Matcher::_regEncode[dst_first] >= 8)
1455           ? 5
1456           : (4 + ((UseAVX>0)?1:0)); // REX
1457       }
1458     } else if (dst_first_rc == rc_float) {
1459       // xmm -> xmm
1460       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1461           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1462         // 64-bit
1463         if (cbuf) {
1464           MacroAssembler _masm(cbuf);
1465           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1466 #ifndef PRODUCT
1467         } else if (!do_size) {
1468           st->print("%s  %s, %s\t# spill",
1469                      UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
1470                      Matcher::regName[dst_first],
1471                      Matcher::regName[src_first]);
1472 #endif
1473         }
1474         return
1475           (Matcher::_regEncode[src_first] >= 8 || Matcher::_regEncode[dst_first] >= 8)
1476           ? 5
1477           : (4 + ((UseAVX>0)?1:0)); // REX
1478       } else {
1479         // 32-bit
1480         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1481         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1482         if (cbuf) {
1483           MacroAssembler _masm(cbuf);
1484           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1485 #ifndef PRODUCT
1486         } else if (!do_size) {
1487           st->print("%s  %s, %s\t# spill",
1488                      UseXmmRegToRegMoveAll ? "movaps" : "movss ",
1489                      Matcher::regName[dst_first],
1490                      Matcher::regName[src_first]);
1491 #endif
1492         }
1493         return ((UseAVX>0) ? 5:
1494           ((Matcher::_regEncode[src_first] >= 8 || Matcher::_regEncode[dst_first] >= 8)
1495            ? (UseXmmRegToRegMoveAll ? 4 : 5)
1496            : (UseXmmRegToRegMoveAll ? 3 : 4))); // REX
1497       }
1498     }
1499   }
1500 
1501   assert(0," foo ");
1502   Unimplemented();
1503 
1504   return 0;
1505 }
1506 
1507 #ifndef PRODUCT
1508 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const
1509 {
1510   implementation(NULL, ra_, false, st);
1511 }
1512 #endif
1513 
1514 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const
1515 {
1516   implementation(&cbuf, ra_, false, NULL);
1517 }
1518 
1519 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const
1520 {
1521   return implementation(NULL, ra_, true, NULL);
1522 }
1523 
1524 //=============================================================================
1525 #ifndef PRODUCT
1526 void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1527 {
1528   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1529   int reg = ra_->get_reg_first(this);
1530   st->print("leaq    %s, [rsp + #%d]\t# box lock",
1531             Matcher::regName[reg], offset);
1532 }
1533 #endif
1534 
1535 void BoxLockNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1536 {
1537   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1538   int reg = ra_->get_encode(this);
1539   if (offset >= 0x80) {
1540     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1541     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1542     emit_rm(cbuf, 0x2, reg & 7, 0x04);
1543     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1544     emit_d32(cbuf, offset);
1545   } else {
1546     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1547     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1548     emit_rm(cbuf, 0x1, reg & 7, 0x04);
1549     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1550     emit_d8(cbuf, offset);
1551   }
1552 }
1553 
1554 uint BoxLockNode::size(PhaseRegAlloc *ra_) const
1555 {
1556   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1557   return (offset < 0x80) ? 5 : 8; // REX
1558 }
1559 
1560 //=============================================================================
1561 
1562 // emit call stub, compiled java to interpreter
1563 void emit_java_to_interp(CodeBuffer& cbuf)
1564 {
1565   // Stub is fixed up when the corresponding call is converted from
1566   // calling compiled code to calling interpreted code.
1567   // movq rbx, 0
1568   // jmp -5 # to self
1569 
1570   address mark = cbuf.insts_mark();  // get mark within main instrs section
1571 
1572   // Note that the code buffer's insts_mark is always relative to insts.
1573   // That's why we must use the macroassembler to generate a stub.
1574   MacroAssembler _masm(&cbuf);
1575 
1576   address base =
1577   __ start_a_stub(Compile::MAX_stubs_size);
1578   if (base == NULL)  return;  // CodeBuffer::expand failed
1579   // static stub relocation stores the instruction address of the call
1580   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM64);
1581   // static stub relocation also tags the methodOop in the code-stream.
1582   __ movoop(rbx, (jobject) NULL);  // method is zapped till fixup time
1583   // This is recognized as unresolved by relocs/nativeinst/ic code
1584   __ jump(RuntimeAddress(__ pc()));
1585 
1586   // Update current stubs pointer and restore insts_end.
1587   __ end_a_stub();
1588 }
1589 
1590 // size of call stub, compiled java to interpretor
1591 uint size_java_to_interp()
1592 {
1593   return 15;  // movq (1+1+8); jmp (1+4)
1594 }
1595 
1596 // relocation entries for call stub, compiled java to interpretor
1597 uint reloc_java_to_interp()
1598 {
1599   return 4; // 3 in emit_java_to_interp + 1 in Java_Static_Call
1600 }
1601 
1602 //=============================================================================
1603 #ifndef PRODUCT
1604 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1605 {
1606   if (UseCompressedOops) {
1607     st->print_cr("movl    rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
1608     if (Universe::narrow_oop_shift() != 0) {
1609       st->print_cr("\tdecode_heap_oop_not_null rscratch1, rscratch1");
1610     }
1611     st->print_cr("\tcmpq    rax, rscratch1\t # Inline cache check");
1612   } else {
1613     st->print_cr("\tcmpq    rax, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t"
1614                  "# Inline cache check");
1615   }
1616   st->print_cr("\tjne     SharedRuntime::_ic_miss_stub");
1617   st->print_cr("\tnop\t# nops to align entry point");
1618 }
1619 #endif
1620 
1621 void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1622 {
1623   MacroAssembler masm(&cbuf);
1624   uint insts_size = cbuf.insts_size();
1625   if (UseCompressedOops) {
1626     masm.load_klass(rscratch1, j_rarg0);
1627     masm.cmpptr(rax, rscratch1);
1628   } else {
1629     masm.cmpptr(rax, Address(j_rarg0, oopDesc::klass_offset_in_bytes()));
1630   }
1631 
1632   masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1633 
1634   /* WARNING these NOPs are critical so that verified entry point is properly
1635      4 bytes aligned for patching by NativeJump::patch_verified_entry() */
1636   int nops_cnt = 4 - ((cbuf.insts_size() - insts_size) & 0x3);
1637   if (OptoBreakpoint) {
1638     // Leave space for int3
1639     nops_cnt -= 1;
1640   }
1641   nops_cnt &= 0x3; // Do not add nops if code is aligned.
1642   if (nops_cnt > 0)
1643     masm.nop(nops_cnt);
1644 }
1645 
1646 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
1647 {
1648   return MachNode::size(ra_); // too many variables; just compute it
1649                               // the hard way
1650 }
1651 
1652 
1653 //=============================================================================
1654 uint size_exception_handler()
1655 {
1656   // NativeCall instruction size is the same as NativeJump.
1657   // Note that this value is also credited (in output.cpp) to
1658   // the size of the code section.
1659   return NativeJump::instruction_size;
1660 }
1661 
1662 // Emit exception handler code.
1663 int emit_exception_handler(CodeBuffer& cbuf)
1664 {
1665 
1666   // Note that the code buffer's insts_mark is always relative to insts.
1667   // That's why we must use the macroassembler to generate a handler.
1668   MacroAssembler _masm(&cbuf);
1669   address base =
1670   __ start_a_stub(size_exception_handler());
1671   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1672   int offset = __ offset();
1673   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
1674   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1675   __ end_a_stub();
1676   return offset;
1677 }
1678 
1679 uint size_deopt_handler()
1680 {
1681   // three 5 byte instructions
1682   return 15;
1683 }
1684 
1685 // Emit deopt handler code.
1686 int emit_deopt_handler(CodeBuffer& cbuf)
1687 {
1688 
1689   // Note that the code buffer's insts_mark is always relative to insts.
1690   // That's why we must use the macroassembler to generate a handler.
1691   MacroAssembler _masm(&cbuf);
1692   address base =
1693   __ start_a_stub(size_deopt_handler());
1694   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1695   int offset = __ offset();
1696   address the_pc = (address) __ pc();
1697   Label next;
1698   // push a "the_pc" on the stack without destroying any registers
1699   // as they all may be live.
1700 
1701   // push address of "next"
1702   __ call(next, relocInfo::none); // reloc none is fine since it is a disp32
1703   __ bind(next);
1704   // adjust it so it matches "the_pc"
1705   __ subptr(Address(rsp, 0), __ offset() - offset);
1706   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1707   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1708   __ end_a_stub();
1709   return offset;
1710 }
1711 
1712 
1713 const bool Matcher::match_rule_supported(int opcode) {
1714   if (!has_match_rule(opcode))
1715     return false;
1716 
1717   switch (opcode) {
1718     case Op_PopCountI:
1719     case Op_PopCountL:
1720       if (!UsePopCountInstruction)
1721         return false;
1722     break;
1723   }
1724 
1725   return true;  // Per default match rules are supported.
1726 }
1727 
1728 int Matcher::regnum_to_fpu_offset(int regnum)
1729 {
1730   return regnum - 32; // The FP registers are in the second chunk
1731 }
1732 
1733 // This is UltraSparc specific, true just means we have fast l2f conversion
1734 const bool Matcher::convL2FSupported(void) {
1735   return true;
1736 }
1737 
1738 // Vector width in bytes
1739 const uint Matcher::vector_width_in_bytes(void) {
1740   return 8;
1741 }
1742 
1743 // Vector ideal reg
1744 const uint Matcher::vector_ideal_reg(void) {
1745   return Op_RegD;
1746 }
1747 
1748 // Is this branch offset short enough that a short branch can be used?
1749 //
1750 // NOTE: If the platform does not provide any short branch variants, then
1751 //       this method should return false for offset 0.
1752 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1753   // The passed offset is relative to address of the branch.
1754   // On 86 a branch displacement is calculated relative to address
1755   // of a next instruction.
1756   offset -= br_size;
1757 
1758   // the short version of jmpConUCF2 contains multiple branches,
1759   // making the reach slightly less
1760   if (rule == jmpConUCF2_rule)
1761     return (-126 <= offset && offset <= 125);
1762   return (-128 <= offset && offset <= 127);
1763 }
1764 
1765 const bool Matcher::isSimpleConstant64(jlong value) {
1766   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1767   //return value == (int) value;  // Cf. storeImmL and immL32.
1768 
1769   // Probably always true, even if a temp register is required.
1770   return true;
1771 }
1772 
1773 // The ecx parameter to rep stosq for the ClearArray node is in words.
1774 const bool Matcher::init_array_count_is_in_bytes = false;
1775 
1776 // Threshold size for cleararray.
1777 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1778 
1779 // No additional cost for CMOVL.
1780 const int Matcher::long_cmove_cost() { return 0; }
1781 
1782 // No CMOVF/CMOVD with SSE2
1783 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
1784 
1785 // Should the Matcher clone shifts on addressing modes, expecting them
1786 // to be subsumed into complex addressing expressions or compute them
1787 // into registers?  True for Intel but false for most RISCs
1788 const bool Matcher::clone_shift_expressions = true;
1789 
1790 // Do we need to mask the count passed to shift instructions or does
1791 // the cpu only look at the lower 5/6 bits anyway?
1792 const bool Matcher::need_masked_shift_count = false;
1793 
1794 bool Matcher::narrow_oop_use_complex_address() {
1795   assert(UseCompressedOops, "only for compressed oops code");
1796   return (LogMinObjAlignmentInBytes <= 3);
1797 }
1798 
1799 // Is it better to copy float constants, or load them directly from
1800 // memory?  Intel can load a float constant from a direct address,
1801 // requiring no extra registers.  Most RISCs will have to materialize
1802 // an address into a register first, so they would do better to copy
1803 // the constant from stack.
1804 const bool Matcher::rematerialize_float_constants = true; // XXX
1805 
1806 // If CPU can load and store mis-aligned doubles directly then no
1807 // fixup is needed.  Else we split the double into 2 integer pieces
1808 // and move it piece-by-piece.  Only happens when passing doubles into
1809 // C code as the Java calling convention forces doubles to be aligned.
1810 const bool Matcher::misaligned_doubles_ok = true;
1811 
1812 // No-op on amd64
1813 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {}
1814 
1815 // Advertise here if the CPU requires explicit rounding operations to
1816 // implement the UseStrictFP mode.
1817 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1818 
1819 // Are floats conerted to double when stored to stack during deoptimization?
1820 // On x64 it is stored without convertion so we can use normal access.
1821 bool Matcher::float_in_double() { return false; }
1822 
1823 // Do ints take an entire long register or just half?
1824 const bool Matcher::int_in_long = true;
1825 
1826 // Return whether or not this register is ever used as an argument.
1827 // This function is used on startup to build the trampoline stubs in
1828 // generateOptoStub.  Registers not mentioned will be killed by the VM
1829 // call in the trampoline, and arguments in those registers not be
1830 // available to the callee.
1831 bool Matcher::can_be_java_arg(int reg)
1832 {
1833   return
1834     reg ==  RDI_num || reg ==  RDI_H_num ||
1835     reg ==  RSI_num || reg ==  RSI_H_num ||
1836     reg ==  RDX_num || reg ==  RDX_H_num ||
1837     reg ==  RCX_num || reg ==  RCX_H_num ||
1838     reg ==   R8_num || reg ==   R8_H_num ||
1839     reg ==   R9_num || reg ==   R9_H_num ||
1840     reg ==  R12_num || reg ==  R12_H_num ||
1841     reg == XMM0_num || reg == XMM0_H_num ||
1842     reg == XMM1_num || reg == XMM1_H_num ||
1843     reg == XMM2_num || reg == XMM2_H_num ||
1844     reg == XMM3_num || reg == XMM3_H_num ||
1845     reg == XMM4_num || reg == XMM4_H_num ||
1846     reg == XMM5_num || reg == XMM5_H_num ||
1847     reg == XMM6_num || reg == XMM6_H_num ||
1848     reg == XMM7_num || reg == XMM7_H_num;
1849 }
1850 
1851 bool Matcher::is_spillable_arg(int reg)
1852 {
1853   return can_be_java_arg(reg);
1854 }
1855 
1856 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1857   // In 64 bit mode a code which use multiply when
1858   // devisor is constant is faster than hardware
1859   // DIV instruction (it uses MulHiL).
1860   return false;
1861 }
1862 
1863 // Register for DIVI projection of divmodI
1864 RegMask Matcher::divI_proj_mask() {
1865   return INT_RAX_REG_mask();
1866 }
1867 
1868 // Register for MODI projection of divmodI
1869 RegMask Matcher::modI_proj_mask() {
1870   return INT_RDX_REG_mask();
1871 }
1872 
1873 // Register for DIVL projection of divmodL
1874 RegMask Matcher::divL_proj_mask() {
1875   return LONG_RAX_REG_mask();
1876 }
1877 
1878 // Register for MODL projection of divmodL
1879 RegMask Matcher::modL_proj_mask() {
1880   return LONG_RDX_REG_mask();
1881 }
1882 
1883 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1884   return PTR_RBP_REG_mask();
1885 }
1886 
1887 static Address build_address(int b, int i, int s, int d) {
1888   Register index = as_Register(i);
1889   Address::ScaleFactor scale = (Address::ScaleFactor)s;
1890   if (index == rsp) {
1891     index = noreg;
1892     scale = Address::no_scale;
1893   }
1894   Address addr(as_Register(b), index, scale, d);
1895   return addr;
1896 }
1897 
1898 %}
1899 
1900 //----------ENCODING BLOCK-----------------------------------------------------
1901 // This block specifies the encoding classes used by the compiler to
1902 // output byte streams.  Encoding classes are parameterized macros
1903 // used by Machine Instruction Nodes in order to generate the bit
1904 // encoding of the instruction.  Operands specify their base encoding
1905 // interface with the interface keyword.  There are currently
1906 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
1907 // COND_INTER.  REG_INTER causes an operand to generate a function
1908 // which returns its register number when queried.  CONST_INTER causes
1909 // an operand to generate a function which returns the value of the
1910 // constant when queried.  MEMORY_INTER causes an operand to generate
1911 // four functions which return the Base Register, the Index Register,
1912 // the Scale Value, and the Offset Value of the operand when queried.
1913 // COND_INTER causes an operand to generate six functions which return
1914 // the encoding code (ie - encoding bits for the instruction)
1915 // associated with each basic boolean condition for a conditional
1916 // instruction.
1917 //
1918 // Instructions specify two basic values for encoding.  Again, a
1919 // function is available to check if the constant displacement is an
1920 // oop. They use the ins_encode keyword to specify their encoding
1921 // classes (which must be a sequence of enc_class names, and their
1922 // parameters, specified in the encoding block), and they use the
1923 // opcode keyword to specify, in order, their primary, secondary, and
1924 // tertiary opcode.  Only the opcode sections which a particular
1925 // instruction needs for encoding need to be specified.
1926 encode %{
1927   // Build emit functions for each basic byte or larger field in the
1928   // intel encoding scheme (opcode, rm, sib, immediate), and call them
1929   // from C++ code in the enc_class source block.  Emit functions will
1930   // live in the main source block for now.  In future, we can
1931   // generalize this by adding a syntax that specifies the sizes of
1932   // fields in an order, so that the adlc can build the emit functions
1933   // automagically
1934 
1935   // Emit primary opcode
1936   enc_class OpcP
1937   %{
1938     emit_opcode(cbuf, $primary);
1939   %}
1940 
1941   // Emit secondary opcode
1942   enc_class OpcS
1943   %{
1944     emit_opcode(cbuf, $secondary);
1945   %}
1946 
1947   // Emit tertiary opcode
1948   enc_class OpcT
1949   %{
1950     emit_opcode(cbuf, $tertiary);
1951   %}
1952 
1953   // Emit opcode directly
1954   enc_class Opcode(immI d8)
1955   %{
1956     emit_opcode(cbuf, $d8$$constant);
1957   %}
1958 
1959   // Emit size prefix
1960   enc_class SizePrefix
1961   %{
1962     emit_opcode(cbuf, 0x66);
1963   %}
1964 
1965   enc_class reg(rRegI reg)
1966   %{
1967     emit_rm(cbuf, 0x3, 0, $reg$$reg & 7);
1968   %}
1969 
1970   enc_class reg_reg(rRegI dst, rRegI src)
1971   %{
1972     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1973   %}
1974 
1975   enc_class opc_reg_reg(immI opcode, rRegI dst, rRegI src)
1976   %{
1977     emit_opcode(cbuf, $opcode$$constant);
1978     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1979   %}
1980 
1981   enc_class cdql_enc(no_rax_rdx_RegI div)
1982   %{
1983     // Full implementation of Java idiv and irem; checks for
1984     // special case as described in JVM spec., p.243 & p.271.
1985     //
1986     //         normal case                           special case
1987     //
1988     // input : rax: dividend                         min_int
1989     //         reg: divisor                          -1
1990     //
1991     // output: rax: quotient  (= rax idiv reg)       min_int
1992     //         rdx: remainder (= rax irem reg)       0
1993     //
1994     //  Code sequnce:
1995     //
1996     //    0:   3d 00 00 00 80          cmp    $0x80000000,%eax
1997     //    5:   75 07/08                jne    e <normal>
1998     //    7:   33 d2                   xor    %edx,%edx
1999     //  [div >= 8 -> offset + 1]
2000     //  [REX_B]
2001     //    9:   83 f9 ff                cmp    $0xffffffffffffffff,$div
2002     //    c:   74 03/04                je     11 <done>
2003     // 000000000000000e <normal>:
2004     //    e:   99                      cltd
2005     //  [div >= 8 -> offset + 1]
2006     //  [REX_B]
2007     //    f:   f7 f9                   idiv   $div
2008     // 0000000000000011 <done>:
2009 
2010     // cmp    $0x80000000,%eax
2011     emit_opcode(cbuf, 0x3d);
2012     emit_d8(cbuf, 0x00);
2013     emit_d8(cbuf, 0x00);
2014     emit_d8(cbuf, 0x00);
2015     emit_d8(cbuf, 0x80);
2016 
2017     // jne    e <normal>
2018     emit_opcode(cbuf, 0x75);
2019     emit_d8(cbuf, $div$$reg < 8 ? 0x07 : 0x08);
2020 
2021     // xor    %edx,%edx
2022     emit_opcode(cbuf, 0x33);
2023     emit_d8(cbuf, 0xD2);
2024 
2025     // cmp    $0xffffffffffffffff,%ecx
2026     if ($div$$reg >= 8) {
2027       emit_opcode(cbuf, Assembler::REX_B);
2028     }
2029     emit_opcode(cbuf, 0x83);
2030     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
2031     emit_d8(cbuf, 0xFF);
2032 
2033     // je     11 <done>
2034     emit_opcode(cbuf, 0x74);
2035     emit_d8(cbuf, $div$$reg < 8 ? 0x03 : 0x04);
2036 
2037     // <normal>
2038     // cltd
2039     emit_opcode(cbuf, 0x99);
2040 
2041     // idivl (note: must be emitted by the user of this rule)
2042     // <done>
2043   %}
2044 
2045   enc_class cdqq_enc(no_rax_rdx_RegL div)
2046   %{
2047     // Full implementation of Java ldiv and lrem; checks for
2048     // special case as described in JVM spec., p.243 & p.271.
2049     //
2050     //         normal case                           special case
2051     //
2052     // input : rax: dividend                         min_long
2053     //         reg: divisor                          -1
2054     //
2055     // output: rax: quotient  (= rax idiv reg)       min_long
2056     //         rdx: remainder (= rax irem reg)       0
2057     //
2058     //  Code sequnce:
2059     //
2060     //    0:   48 ba 00 00 00 00 00    mov    $0x8000000000000000,%rdx
2061     //    7:   00 00 80
2062     //    a:   48 39 d0                cmp    %rdx,%rax
2063     //    d:   75 08                   jne    17 <normal>
2064     //    f:   33 d2                   xor    %edx,%edx
2065     //   11:   48 83 f9 ff             cmp    $0xffffffffffffffff,$div
2066     //   15:   74 05                   je     1c <done>
2067     // 0000000000000017 <normal>:
2068     //   17:   48 99                   cqto
2069     //   19:   48 f7 f9                idiv   $div
2070     // 000000000000001c <done>:
2071 
2072     // mov    $0x8000000000000000,%rdx
2073     emit_opcode(cbuf, Assembler::REX_W);
2074     emit_opcode(cbuf, 0xBA);
2075     emit_d8(cbuf, 0x00);
2076     emit_d8(cbuf, 0x00);
2077     emit_d8(cbuf, 0x00);
2078     emit_d8(cbuf, 0x00);
2079     emit_d8(cbuf, 0x00);
2080     emit_d8(cbuf, 0x00);
2081     emit_d8(cbuf, 0x00);
2082     emit_d8(cbuf, 0x80);
2083 
2084     // cmp    %rdx,%rax
2085     emit_opcode(cbuf, Assembler::REX_W);
2086     emit_opcode(cbuf, 0x39);
2087     emit_d8(cbuf, 0xD0);
2088 
2089     // jne    17 <normal>
2090     emit_opcode(cbuf, 0x75);
2091     emit_d8(cbuf, 0x08);
2092 
2093     // xor    %edx,%edx
2094     emit_opcode(cbuf, 0x33);
2095     emit_d8(cbuf, 0xD2);
2096 
2097     // cmp    $0xffffffffffffffff,$div
2098     emit_opcode(cbuf, $div$$reg < 8 ? Assembler::REX_W : Assembler::REX_WB);
2099     emit_opcode(cbuf, 0x83);
2100     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
2101     emit_d8(cbuf, 0xFF);
2102 
2103     // je     1e <done>
2104     emit_opcode(cbuf, 0x74);
2105     emit_d8(cbuf, 0x05);
2106 
2107     // <normal>
2108     // cqto
2109     emit_opcode(cbuf, Assembler::REX_W);
2110     emit_opcode(cbuf, 0x99);
2111 
2112     // idivq (note: must be emitted by the user of this rule)
2113     // <done>
2114   %}
2115 
2116   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
2117   enc_class OpcSE(immI imm)
2118   %{
2119     // Emit primary opcode and set sign-extend bit
2120     // Check for 8-bit immediate, and set sign extend bit in opcode
2121     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2122       emit_opcode(cbuf, $primary | 0x02);
2123     } else {
2124       // 32-bit immediate
2125       emit_opcode(cbuf, $primary);
2126     }
2127   %}
2128 
2129   enc_class OpcSErm(rRegI dst, immI imm)
2130   %{
2131     // OpcSEr/m
2132     int dstenc = $dst$$reg;
2133     if (dstenc >= 8) {
2134       emit_opcode(cbuf, Assembler::REX_B);
2135       dstenc -= 8;
2136     }
2137     // Emit primary opcode and set sign-extend bit
2138     // Check for 8-bit immediate, and set sign extend bit in opcode
2139     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2140       emit_opcode(cbuf, $primary | 0x02);
2141     } else {
2142       // 32-bit immediate
2143       emit_opcode(cbuf, $primary);
2144     }
2145     // Emit r/m byte with secondary opcode, after primary opcode.
2146     emit_rm(cbuf, 0x3, $secondary, dstenc);
2147   %}
2148 
2149   enc_class OpcSErm_wide(rRegL dst, immI imm)
2150   %{
2151     // OpcSEr/m
2152     int dstenc = $dst$$reg;
2153     if (dstenc < 8) {
2154       emit_opcode(cbuf, Assembler::REX_W);
2155     } else {
2156       emit_opcode(cbuf, Assembler::REX_WB);
2157       dstenc -= 8;
2158     }
2159     // Emit primary opcode and set sign-extend bit
2160     // Check for 8-bit immediate, and set sign extend bit in opcode
2161     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2162       emit_opcode(cbuf, $primary | 0x02);
2163     } else {
2164       // 32-bit immediate
2165       emit_opcode(cbuf, $primary);
2166     }
2167     // Emit r/m byte with secondary opcode, after primary opcode.
2168     emit_rm(cbuf, 0x3, $secondary, dstenc);
2169   %}
2170 
2171   enc_class Con8or32(immI imm)
2172   %{
2173     // Check for 8-bit immediate, and set sign extend bit in opcode
2174     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2175       $$$emit8$imm$$constant;
2176     } else {
2177       // 32-bit immediate
2178       $$$emit32$imm$$constant;
2179     }
2180   %}
2181 
2182   enc_class opc2_reg(rRegI dst)
2183   %{
2184     // BSWAP
2185     emit_cc(cbuf, $secondary, $dst$$reg);
2186   %}
2187 
2188   enc_class opc3_reg(rRegI dst)
2189   %{
2190     // BSWAP
2191     emit_cc(cbuf, $tertiary, $dst$$reg);
2192   %}
2193 
2194   enc_class reg_opc(rRegI div)
2195   %{
2196     // INC, DEC, IDIV, IMOD, JMP indirect, ...
2197     emit_rm(cbuf, 0x3, $secondary, $div$$reg & 7);
2198   %}
2199 
2200   enc_class enc_cmov(cmpOp cop)
2201   %{
2202     // CMOV
2203     $$$emit8$primary;
2204     emit_cc(cbuf, $secondary, $cop$$cmpcode);
2205   %}
2206 
2207   enc_class enc_PartialSubtypeCheck()
2208   %{
2209     Register Rrdi = as_Register(RDI_enc); // result register
2210     Register Rrax = as_Register(RAX_enc); // super class
2211     Register Rrcx = as_Register(RCX_enc); // killed
2212     Register Rrsi = as_Register(RSI_enc); // sub class
2213     Label miss;
2214     const bool set_cond_codes = true;
2215 
2216     MacroAssembler _masm(&cbuf);
2217     __ check_klass_subtype_slow_path(Rrsi, Rrax, Rrcx, Rrdi,
2218                                      NULL, &miss,
2219                                      /*set_cond_codes:*/ true);
2220     if ($primary) {
2221       __ xorptr(Rrdi, Rrdi);
2222     }
2223     __ bind(miss);
2224   %}
2225 
2226   enc_class Java_To_Interpreter(method meth)
2227   %{
2228     // CALL Java_To_Interpreter
2229     // This is the instruction starting address for relocation info.
2230     cbuf.set_insts_mark();
2231     $$$emit8$primary;
2232     // CALL directly to the runtime
2233     emit_d32_reloc(cbuf,
2234                    (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2235                    runtime_call_Relocation::spec(),
2236                    RELOC_DISP32);
2237   %}
2238 
2239   enc_class Java_Static_Call(method meth)
2240   %{
2241     // JAVA STATIC CALL
2242     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to
2243     // determine who we intended to call.
2244     cbuf.set_insts_mark();
2245     $$$emit8$primary;
2246 
2247     if (!_method) {
2248       emit_d32_reloc(cbuf,
2249                      (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2250                      runtime_call_Relocation::spec(),
2251                      RELOC_DISP32);
2252     } else if (_optimized_virtual) {
2253       emit_d32_reloc(cbuf,
2254                      (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2255                      opt_virtual_call_Relocation::spec(),
2256                      RELOC_DISP32);
2257     } else {
2258       emit_d32_reloc(cbuf,
2259                      (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2260                      static_call_Relocation::spec(),
2261                      RELOC_DISP32);
2262     }
2263     if (_method) {
2264       // Emit stub for static call
2265       emit_java_to_interp(cbuf);
2266     }
2267   %}
2268 
2269   enc_class Java_Dynamic_Call(method meth)
2270   %{
2271     // JAVA DYNAMIC CALL
2272     // !!!!!
2273     // Generate  "movq rax, -1", placeholder instruction to load oop-info
2274     // emit_call_dynamic_prologue( cbuf );
2275     cbuf.set_insts_mark();
2276 
2277     // movq rax, -1
2278     emit_opcode(cbuf, Assembler::REX_W);
2279     emit_opcode(cbuf, 0xB8 | RAX_enc);
2280     emit_d64_reloc(cbuf,
2281                    (int64_t) Universe::non_oop_word(),
2282                    oop_Relocation::spec_for_immediate(), RELOC_IMM64);
2283     address virtual_call_oop_addr = cbuf.insts_mark();
2284     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2285     // who we intended to call.
2286     cbuf.set_insts_mark();
2287     $$$emit8$primary;
2288     emit_d32_reloc(cbuf,
2289                    (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2290                    virtual_call_Relocation::spec(virtual_call_oop_addr),
2291                    RELOC_DISP32);
2292   %}
2293 
2294   enc_class Java_Compiled_Call(method meth)
2295   %{
2296     // JAVA COMPILED CALL
2297     int disp = in_bytes(methodOopDesc:: from_compiled_offset());
2298 
2299     // XXX XXX offset is 128 is 1.5 NON-PRODUCT !!!
2300     // assert(-0x80 <= disp && disp < 0x80, "compiled_code_offset isn't small");
2301 
2302     // callq *disp(%rax)
2303     cbuf.set_insts_mark();
2304     $$$emit8$primary;
2305     if (disp < 0x80) {
2306       emit_rm(cbuf, 0x01, $secondary, RAX_enc); // R/M byte
2307       emit_d8(cbuf, disp); // Displacement
2308     } else {
2309       emit_rm(cbuf, 0x02, $secondary, RAX_enc); // R/M byte
2310       emit_d32(cbuf, disp); // Displacement
2311     }
2312   %}
2313 
2314   enc_class reg_opc_imm(rRegI dst, immI8 shift)
2315   %{
2316     // SAL, SAR, SHR
2317     int dstenc = $dst$$reg;
2318     if (dstenc >= 8) {
2319       emit_opcode(cbuf, Assembler::REX_B);
2320       dstenc -= 8;
2321     }
2322     $$$emit8$primary;
2323     emit_rm(cbuf, 0x3, $secondary, dstenc);
2324     $$$emit8$shift$$constant;
2325   %}
2326 
2327   enc_class reg_opc_imm_wide(rRegL dst, immI8 shift)
2328   %{
2329     // SAL, SAR, SHR
2330     int dstenc = $dst$$reg;
2331     if (dstenc < 8) {
2332       emit_opcode(cbuf, Assembler::REX_W);
2333     } else {
2334       emit_opcode(cbuf, Assembler::REX_WB);
2335       dstenc -= 8;
2336     }
2337     $$$emit8$primary;
2338     emit_rm(cbuf, 0x3, $secondary, dstenc);
2339     $$$emit8$shift$$constant;
2340   %}
2341 
2342   enc_class load_immI(rRegI dst, immI src)
2343   %{
2344     int dstenc = $dst$$reg;
2345     if (dstenc >= 8) {
2346       emit_opcode(cbuf, Assembler::REX_B);
2347       dstenc -= 8;
2348     }
2349     emit_opcode(cbuf, 0xB8 | dstenc);
2350     $$$emit32$src$$constant;
2351   %}
2352 
2353   enc_class load_immL(rRegL dst, immL src)
2354   %{
2355     int dstenc = $dst$$reg;
2356     if (dstenc < 8) {
2357       emit_opcode(cbuf, Assembler::REX_W);
2358     } else {
2359       emit_opcode(cbuf, Assembler::REX_WB);
2360       dstenc -= 8;
2361     }
2362     emit_opcode(cbuf, 0xB8 | dstenc);
2363     emit_d64(cbuf, $src$$constant);
2364   %}
2365 
2366   enc_class load_immUL32(rRegL dst, immUL32 src)
2367   %{
2368     // same as load_immI, but this time we care about zeroes in the high word
2369     int dstenc = $dst$$reg;
2370     if (dstenc >= 8) {
2371       emit_opcode(cbuf, Assembler::REX_B);
2372       dstenc -= 8;
2373     }
2374     emit_opcode(cbuf, 0xB8 | dstenc);
2375     $$$emit32$src$$constant;
2376   %}
2377 
2378   enc_class load_immL32(rRegL dst, immL32 src)
2379   %{
2380     int dstenc = $dst$$reg;
2381     if (dstenc < 8) {
2382       emit_opcode(cbuf, Assembler::REX_W);
2383     } else {
2384       emit_opcode(cbuf, Assembler::REX_WB);
2385       dstenc -= 8;
2386     }
2387     emit_opcode(cbuf, 0xC7);
2388     emit_rm(cbuf, 0x03, 0x00, dstenc);
2389     $$$emit32$src$$constant;
2390   %}
2391 
2392   enc_class load_immP31(rRegP dst, immP32 src)
2393   %{
2394     // same as load_immI, but this time we care about zeroes in the high word
2395     int dstenc = $dst$$reg;
2396     if (dstenc >= 8) {
2397       emit_opcode(cbuf, Assembler::REX_B);
2398       dstenc -= 8;
2399     }
2400     emit_opcode(cbuf, 0xB8 | dstenc);
2401     $$$emit32$src$$constant;
2402   %}
2403 
2404   enc_class load_immP(rRegP dst, immP src)
2405   %{
2406     int dstenc = $dst$$reg;
2407     if (dstenc < 8) {
2408       emit_opcode(cbuf, Assembler::REX_W);
2409     } else {
2410       emit_opcode(cbuf, Assembler::REX_WB);
2411       dstenc -= 8;
2412     }
2413     emit_opcode(cbuf, 0xB8 | dstenc);
2414     // This next line should be generated from ADLC
2415     if ($src->constant_is_oop()) {
2416       emit_d64_reloc(cbuf, $src$$constant, relocInfo::oop_type, RELOC_IMM64);
2417     } else {
2418       emit_d64(cbuf, $src$$constant);
2419     }
2420   %}
2421 
2422   enc_class Con32(immI src)
2423   %{
2424     // Output immediate
2425     $$$emit32$src$$constant;
2426   %}
2427 
2428   enc_class Con64(immL src)
2429   %{
2430     // Output immediate
2431     emit_d64($src$$constant);
2432   %}
2433 
2434   enc_class Con32F_as_bits(immF src)
2435   %{
2436     // Output Float immediate bits
2437     jfloat jf = $src$$constant;
2438     jint jf_as_bits = jint_cast(jf);
2439     emit_d32(cbuf, jf_as_bits);
2440   %}
2441 
2442   enc_class Con16(immI src)
2443   %{
2444     // Output immediate
2445     $$$emit16$src$$constant;
2446   %}
2447 
2448   // How is this different from Con32??? XXX
2449   enc_class Con_d32(immI src)
2450   %{
2451     emit_d32(cbuf,$src$$constant);
2452   %}
2453 
2454   enc_class conmemref (rRegP t1) %{    // Con32(storeImmI)
2455     // Output immediate memory reference
2456     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2457     emit_d32(cbuf, 0x00);
2458   %}
2459 
2460   enc_class lock_prefix()
2461   %{
2462     if (os::is_MP()) {
2463       emit_opcode(cbuf, 0xF0); // lock
2464     }
2465   %}
2466 
2467   enc_class REX_mem(memory mem)
2468   %{
2469     if ($mem$$base >= 8) {
2470       if ($mem$$index < 8) {
2471         emit_opcode(cbuf, Assembler::REX_B);
2472       } else {
2473         emit_opcode(cbuf, Assembler::REX_XB);
2474       }
2475     } else {
2476       if ($mem$$index >= 8) {
2477         emit_opcode(cbuf, Assembler::REX_X);
2478       }
2479     }
2480   %}
2481 
2482   enc_class REX_mem_wide(memory mem)
2483   %{
2484     if ($mem$$base >= 8) {
2485       if ($mem$$index < 8) {
2486         emit_opcode(cbuf, Assembler::REX_WB);
2487       } else {
2488         emit_opcode(cbuf, Assembler::REX_WXB);
2489       }
2490     } else {
2491       if ($mem$$index < 8) {
2492         emit_opcode(cbuf, Assembler::REX_W);
2493       } else {
2494         emit_opcode(cbuf, Assembler::REX_WX);
2495       }
2496     }
2497   %}
2498 
2499   // for byte regs
2500   enc_class REX_breg(rRegI reg)
2501   %{
2502     if ($reg$$reg >= 4) {
2503       emit_opcode(cbuf, $reg$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2504     }
2505   %}
2506 
2507   // for byte regs
2508   enc_class REX_reg_breg(rRegI dst, rRegI src)
2509   %{
2510     if ($dst$$reg < 8) {
2511       if ($src$$reg >= 4) {
2512         emit_opcode(cbuf, $src$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2513       }
2514     } else {
2515       if ($src$$reg < 8) {
2516         emit_opcode(cbuf, Assembler::REX_R);
2517       } else {
2518         emit_opcode(cbuf, Assembler::REX_RB);
2519       }
2520     }
2521   %}
2522 
2523   // for byte regs
2524   enc_class REX_breg_mem(rRegI reg, memory mem)
2525   %{
2526     if ($reg$$reg < 8) {
2527       if ($mem$$base < 8) {
2528         if ($mem$$index >= 8) {
2529           emit_opcode(cbuf, Assembler::REX_X);
2530         } else if ($reg$$reg >= 4) {
2531           emit_opcode(cbuf, Assembler::REX);
2532         }
2533       } else {
2534         if ($mem$$index < 8) {
2535           emit_opcode(cbuf, Assembler::REX_B);
2536         } else {
2537           emit_opcode(cbuf, Assembler::REX_XB);
2538         }
2539       }
2540     } else {
2541       if ($mem$$base < 8) {
2542         if ($mem$$index < 8) {
2543           emit_opcode(cbuf, Assembler::REX_R);
2544         } else {
2545           emit_opcode(cbuf, Assembler::REX_RX);
2546         }
2547       } else {
2548         if ($mem$$index < 8) {
2549           emit_opcode(cbuf, Assembler::REX_RB);
2550         } else {
2551           emit_opcode(cbuf, Assembler::REX_RXB);
2552         }
2553       }
2554     }
2555   %}
2556 
2557   enc_class REX_reg(rRegI reg)
2558   %{
2559     if ($reg$$reg >= 8) {
2560       emit_opcode(cbuf, Assembler::REX_B);
2561     }
2562   %}
2563 
2564   enc_class REX_reg_wide(rRegI reg)
2565   %{
2566     if ($reg$$reg < 8) {
2567       emit_opcode(cbuf, Assembler::REX_W);
2568     } else {
2569       emit_opcode(cbuf, Assembler::REX_WB);
2570     }
2571   %}
2572 
2573   enc_class REX_reg_reg(rRegI dst, rRegI src)
2574   %{
2575     if ($dst$$reg < 8) {
2576       if ($src$$reg >= 8) {
2577         emit_opcode(cbuf, Assembler::REX_B);
2578       }
2579     } else {
2580       if ($src$$reg < 8) {
2581         emit_opcode(cbuf, Assembler::REX_R);
2582       } else {
2583         emit_opcode(cbuf, Assembler::REX_RB);
2584       }
2585     }
2586   %}
2587 
2588   enc_class REX_reg_reg_wide(rRegI dst, rRegI src)
2589   %{
2590     if ($dst$$reg < 8) {
2591       if ($src$$reg < 8) {
2592         emit_opcode(cbuf, Assembler::REX_W);
2593       } else {
2594         emit_opcode(cbuf, Assembler::REX_WB);
2595       }
2596     } else {
2597       if ($src$$reg < 8) {
2598         emit_opcode(cbuf, Assembler::REX_WR);
2599       } else {
2600         emit_opcode(cbuf, Assembler::REX_WRB);
2601       }
2602     }
2603   %}
2604 
2605   enc_class REX_reg_mem(rRegI reg, memory mem)
2606   %{
2607     if ($reg$$reg < 8) {
2608       if ($mem$$base < 8) {
2609         if ($mem$$index >= 8) {
2610           emit_opcode(cbuf, Assembler::REX_X);
2611         }
2612       } else {
2613         if ($mem$$index < 8) {
2614           emit_opcode(cbuf, Assembler::REX_B);
2615         } else {
2616           emit_opcode(cbuf, Assembler::REX_XB);
2617         }
2618       }
2619     } else {
2620       if ($mem$$base < 8) {
2621         if ($mem$$index < 8) {
2622           emit_opcode(cbuf, Assembler::REX_R);
2623         } else {
2624           emit_opcode(cbuf, Assembler::REX_RX);
2625         }
2626       } else {
2627         if ($mem$$index < 8) {
2628           emit_opcode(cbuf, Assembler::REX_RB);
2629         } else {
2630           emit_opcode(cbuf, Assembler::REX_RXB);
2631         }
2632       }
2633     }
2634   %}
2635 
2636   enc_class REX_reg_mem_wide(rRegL reg, memory mem)
2637   %{
2638     if ($reg$$reg < 8) {
2639       if ($mem$$base < 8) {
2640         if ($mem$$index < 8) {
2641           emit_opcode(cbuf, Assembler::REX_W);
2642         } else {
2643           emit_opcode(cbuf, Assembler::REX_WX);
2644         }
2645       } else {
2646         if ($mem$$index < 8) {
2647           emit_opcode(cbuf, Assembler::REX_WB);
2648         } else {
2649           emit_opcode(cbuf, Assembler::REX_WXB);
2650         }
2651       }
2652     } else {
2653       if ($mem$$base < 8) {
2654         if ($mem$$index < 8) {
2655           emit_opcode(cbuf, Assembler::REX_WR);
2656         } else {
2657           emit_opcode(cbuf, Assembler::REX_WRX);
2658         }
2659       } else {
2660         if ($mem$$index < 8) {
2661           emit_opcode(cbuf, Assembler::REX_WRB);
2662         } else {
2663           emit_opcode(cbuf, Assembler::REX_WRXB);
2664         }
2665       }
2666     }
2667   %}
2668 
2669   enc_class reg_mem(rRegI ereg, memory mem)
2670   %{
2671     // High registers handle in encode_RegMem
2672     int reg = $ereg$$reg;
2673     int base = $mem$$base;
2674     int index = $mem$$index;
2675     int scale = $mem$$scale;
2676     int disp = $mem$$disp;
2677     bool disp_is_oop = $mem->disp_is_oop();
2678 
2679     encode_RegMem(cbuf, reg, base, index, scale, disp, disp_is_oop);
2680   %}
2681 
2682   enc_class RM_opc_mem(immI rm_opcode, memory mem)
2683   %{
2684     int rm_byte_opcode = $rm_opcode$$constant;
2685 
2686     // High registers handle in encode_RegMem
2687     int base = $mem$$base;
2688     int index = $mem$$index;
2689     int scale = $mem$$scale;
2690     int displace = $mem$$disp;
2691 
2692     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when
2693                                             // working with static
2694                                             // globals
2695     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace,
2696                   disp_is_oop);
2697   %}
2698 
2699   enc_class reg_lea(rRegI dst, rRegI src0, immI src1)
2700   %{
2701     int reg_encoding = $dst$$reg;
2702     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2703     int index        = 0x04;            // 0x04 indicates no index
2704     int scale        = 0x00;            // 0x00 indicates no scale
2705     int displace     = $src1$$constant; // 0x00 indicates no displacement
2706     bool disp_is_oop = false;
2707     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace,
2708                   disp_is_oop);
2709   %}
2710 
2711   enc_class neg_reg(rRegI dst)
2712   %{
2713     int dstenc = $dst$$reg;
2714     if (dstenc >= 8) {
2715       emit_opcode(cbuf, Assembler::REX_B);
2716       dstenc -= 8;
2717     }
2718     // NEG $dst
2719     emit_opcode(cbuf, 0xF7);
2720     emit_rm(cbuf, 0x3, 0x03, dstenc);
2721   %}
2722 
2723   enc_class neg_reg_wide(rRegI dst)
2724   %{
2725     int dstenc = $dst$$reg;
2726     if (dstenc < 8) {
2727       emit_opcode(cbuf, Assembler::REX_W);
2728     } else {
2729       emit_opcode(cbuf, Assembler::REX_WB);
2730       dstenc -= 8;
2731     }
2732     // NEG $dst
2733     emit_opcode(cbuf, 0xF7);
2734     emit_rm(cbuf, 0x3, 0x03, dstenc);
2735   %}
2736 
2737   enc_class setLT_reg(rRegI dst)
2738   %{
2739     int dstenc = $dst$$reg;
2740     if (dstenc >= 8) {
2741       emit_opcode(cbuf, Assembler::REX_B);
2742       dstenc -= 8;
2743     } else if (dstenc >= 4) {
2744       emit_opcode(cbuf, Assembler::REX);
2745     }
2746     // SETLT $dst
2747     emit_opcode(cbuf, 0x0F);
2748     emit_opcode(cbuf, 0x9C);
2749     emit_rm(cbuf, 0x3, 0x0, dstenc);
2750   %}
2751 
2752   enc_class setNZ_reg(rRegI dst)
2753   %{
2754     int dstenc = $dst$$reg;
2755     if (dstenc >= 8) {
2756       emit_opcode(cbuf, Assembler::REX_B);
2757       dstenc -= 8;
2758     } else if (dstenc >= 4) {
2759       emit_opcode(cbuf, Assembler::REX);
2760     }
2761     // SETNZ $dst
2762     emit_opcode(cbuf, 0x0F);
2763     emit_opcode(cbuf, 0x95);
2764     emit_rm(cbuf, 0x3, 0x0, dstenc);
2765   %}
2766 
2767 
2768   // Compare the lonogs and set -1, 0, or 1 into dst
2769   enc_class cmpl3_flag(rRegL src1, rRegL src2, rRegI dst)
2770   %{
2771     int src1enc = $src1$$reg;
2772     int src2enc = $src2$$reg;
2773     int dstenc = $dst$$reg;
2774 
2775     // cmpq $src1, $src2
2776     if (src1enc < 8) {
2777       if (src2enc < 8) {
2778         emit_opcode(cbuf, Assembler::REX_W);
2779       } else {
2780         emit_opcode(cbuf, Assembler::REX_WB);
2781       }
2782     } else {
2783       if (src2enc < 8) {
2784         emit_opcode(cbuf, Assembler::REX_WR);
2785       } else {
2786         emit_opcode(cbuf, Assembler::REX_WRB);
2787       }
2788     }
2789     emit_opcode(cbuf, 0x3B);
2790     emit_rm(cbuf, 0x3, src1enc & 7, src2enc & 7);
2791 
2792     // movl $dst, -1
2793     if (dstenc >= 8) {
2794       emit_opcode(cbuf, Assembler::REX_B);
2795     }
2796     emit_opcode(cbuf, 0xB8 | (dstenc & 7));
2797     emit_d32(cbuf, -1);
2798 
2799     // jl,s done
2800     emit_opcode(cbuf, 0x7C);
2801     emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
2802 
2803     // setne $dst
2804     if (dstenc >= 4) {
2805       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
2806     }
2807     emit_opcode(cbuf, 0x0F);
2808     emit_opcode(cbuf, 0x95);
2809     emit_opcode(cbuf, 0xC0 | (dstenc & 7));
2810 
2811     // movzbl $dst, $dst
2812     if (dstenc >= 4) {
2813       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
2814     }
2815     emit_opcode(cbuf, 0x0F);
2816     emit_opcode(cbuf, 0xB6);
2817     emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
2818   %}
2819 
2820   enc_class Push_ResultXD(regD dst) %{
2821     MacroAssembler _masm(&cbuf);
2822     __ fstp_d(Address(rsp, 0));
2823     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2824     __ addptr(rsp, 8);
2825   %}
2826 
2827   enc_class Push_SrcXD(regD src) %{
2828     MacroAssembler _masm(&cbuf);
2829     __ subptr(rsp, 8);
2830     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2831     __ fld_d(Address(rsp, 0));
2832   %}
2833 
2834 
2835   // obj: object to lock
2836   // box: box address (header location) -- killed
2837   // tmp: rax -- killed
2838   // scr: rbx -- killed
2839   //
2840   // What follows is a direct transliteration of fast_lock() and fast_unlock()
2841   // from i486.ad.  See that file for comments.
2842   // TODO: where possible switch from movq (r, 0) to movl(r,0) and
2843   // use the shorter encoding.  (Movl clears the high-order 32-bits).
2844 
2845 
2846   enc_class Fast_Lock(rRegP obj, rRegP box, rax_RegI tmp, rRegP scr)
2847   %{
2848     Register objReg = as_Register((int)$obj$$reg);
2849     Register boxReg = as_Register((int)$box$$reg);
2850     Register tmpReg = as_Register($tmp$$reg);
2851     Register scrReg = as_Register($scr$$reg);
2852     MacroAssembler masm(&cbuf);
2853 
2854     // Verify uniqueness of register assignments -- necessary but not sufficient
2855     assert (objReg != boxReg && objReg != tmpReg &&
2856             objReg != scrReg && tmpReg != scrReg, "invariant") ;
2857 
2858     if (_counters != NULL) {
2859       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
2860     }
2861     if (EmitSync & 1) {
2862         // Without cast to int32_t a movptr will destroy r10 which is typically obj
2863         masm.movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark())) ;
2864         masm.cmpptr(rsp, (int32_t)NULL_WORD) ;
2865     } else
2866     if (EmitSync & 2) {
2867         Label DONE_LABEL;
2868         if (UseBiasedLocking) {
2869            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
2870           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
2871         }
2872         // QQQ was movl...
2873         masm.movptr(tmpReg, 0x1);
2874         masm.orptr(tmpReg, Address(objReg, 0));
2875         masm.movptr(Address(boxReg, 0), tmpReg);
2876         if (os::is_MP()) {
2877           masm.lock();
2878         }
2879         masm.cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg
2880         masm.jcc(Assembler::equal, DONE_LABEL);
2881 
2882         // Recursive locking
2883         masm.subptr(tmpReg, rsp);
2884         masm.andptr(tmpReg, 7 - os::vm_page_size());
2885         masm.movptr(Address(boxReg, 0), tmpReg);
2886 
2887         masm.bind(DONE_LABEL);
2888         masm.nop(); // avoid branch to branch
2889     } else {
2890         Label DONE_LABEL, IsInflated, Egress;
2891 
2892         masm.movptr(tmpReg, Address(objReg, 0)) ;
2893         masm.testl (tmpReg, 0x02) ;         // inflated vs stack-locked|neutral|biased
2894         masm.jcc   (Assembler::notZero, IsInflated) ;
2895 
2896         // it's stack-locked, biased or neutral
2897         // TODO: optimize markword triage order to reduce the number of
2898         // conditional branches in the most common cases.
2899         // Beware -- there's a subtle invariant that fetch of the markword
2900         // at [FETCH], below, will never observe a biased encoding (*101b).
2901         // If this invariant is not held we'll suffer exclusion (safety) failure.
2902 
2903         if (UseBiasedLocking && !UseOptoBiasInlining) {
2904           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, true, DONE_LABEL, NULL, _counters);
2905           masm.movptr(tmpReg, Address(objReg, 0)) ;        // [FETCH]
2906         }
2907 
2908         // was q will it destroy high?
2909         masm.orl   (tmpReg, 1) ;
2910         masm.movptr(Address(boxReg, 0), tmpReg) ;
2911         if (os::is_MP()) { masm.lock(); }
2912         masm.cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg
2913         if (_counters != NULL) {
2914            masm.cond_inc32(Assembler::equal,
2915                            ExternalAddress((address) _counters->fast_path_entry_count_addr()));
2916         }
2917         masm.jcc   (Assembler::equal, DONE_LABEL);
2918 
2919         // Recursive locking
2920         masm.subptr(tmpReg, rsp);
2921         masm.andptr(tmpReg, 7 - os::vm_page_size());
2922         masm.movptr(Address(boxReg, 0), tmpReg);
2923         if (_counters != NULL) {
2924            masm.cond_inc32(Assembler::equal,
2925                            ExternalAddress((address) _counters->fast_path_entry_count_addr()));
2926         }
2927         masm.jmp   (DONE_LABEL) ;
2928 
2929         masm.bind  (IsInflated) ;
2930         // It's inflated
2931 
2932         // TODO: someday avoid the ST-before-CAS penalty by
2933         // relocating (deferring) the following ST.
2934         // We should also think about trying a CAS without having
2935         // fetched _owner.  If the CAS is successful we may
2936         // avoid an RTO->RTS upgrade on the $line.
2937         // Without cast to int32_t a movptr will destroy r10 which is typically obj
2938         masm.movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark())) ;
2939 
2940         masm.mov    (boxReg, tmpReg) ;
2941         masm.movptr (tmpReg, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
2942         masm.testptr(tmpReg, tmpReg) ;
2943         masm.jcc    (Assembler::notZero, DONE_LABEL) ;
2944 
2945         // It's inflated and appears unlocked
2946         if (os::is_MP()) { masm.lock(); }
2947         masm.cmpxchgptr(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
2948         // Intentional fall-through into DONE_LABEL ...
2949 
2950         masm.bind  (DONE_LABEL) ;
2951         masm.nop   () ;                 // avoid jmp to jmp
2952     }
2953   %}
2954 
2955   // obj: object to unlock
2956   // box: box address (displaced header location), killed
2957   // RBX: killed tmp; cannot be obj nor box
2958   enc_class Fast_Unlock(rRegP obj, rax_RegP box, rRegP tmp)
2959   %{
2960 
2961     Register objReg = as_Register($obj$$reg);
2962     Register boxReg = as_Register($box$$reg);
2963     Register tmpReg = as_Register($tmp$$reg);
2964     MacroAssembler masm(&cbuf);
2965 
2966     if (EmitSync & 4) {
2967        masm.cmpptr(rsp, 0) ;
2968     } else
2969     if (EmitSync & 8) {
2970        Label DONE_LABEL;
2971        if (UseBiasedLocking) {
2972          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
2973        }
2974 
2975        // Check whether the displaced header is 0
2976        //(=> recursive unlock)
2977        masm.movptr(tmpReg, Address(boxReg, 0));
2978        masm.testptr(tmpReg, tmpReg);
2979        masm.jcc(Assembler::zero, DONE_LABEL);
2980 
2981        // If not recursive lock, reset the header to displaced header
2982        if (os::is_MP()) {
2983          masm.lock();
2984        }
2985        masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2986        masm.bind(DONE_LABEL);
2987        masm.nop(); // avoid branch to branch
2988     } else {
2989        Label DONE_LABEL, Stacked, CheckSucc ;
2990 
2991        if (UseBiasedLocking && !UseOptoBiasInlining) {
2992          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
2993        }
2994 
2995        masm.movptr(tmpReg, Address(objReg, 0)) ;
2996        masm.cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD) ;
2997        masm.jcc   (Assembler::zero, DONE_LABEL) ;
2998        masm.testl (tmpReg, 0x02) ;
2999        masm.jcc   (Assembler::zero, Stacked) ;
3000 
3001        // It's inflated
3002        masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3003        masm.xorptr(boxReg, r15_thread) ;
3004        masm.orptr (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3005        masm.jcc   (Assembler::notZero, DONE_LABEL) ;
3006        masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ;
3007        masm.orptr (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ;
3008        masm.jcc   (Assembler::notZero, CheckSucc) ;
3009        masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
3010        masm.jmp   (DONE_LABEL) ;
3011 
3012        if ((EmitSync & 65536) == 0) {
3013          Label LSuccess, LGoSlowPath ;
3014          masm.bind  (CheckSucc) ;
3015          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
3016          masm.jcc   (Assembler::zero, LGoSlowPath) ;
3017 
3018          // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
3019          // the explicit ST;MEMBAR combination, but masm doesn't currently support
3020          // "ANDQ M,IMM".  Don't use MFENCE here.  lock:add to TOS, xchg, etc
3021          // are all faster when the write buffer is populated.
3022          masm.movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
3023          if (os::is_MP()) {
3024             masm.lock () ; masm.addl (Address(rsp, 0), 0) ;
3025          }
3026          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
3027          masm.jcc   (Assembler::notZero, LSuccess) ;
3028 
3029          masm.movptr (boxReg, (int32_t)NULL_WORD) ;                   // box is really EAX
3030          if (os::is_MP()) { masm.lock(); }
3031          masm.cmpxchgptr(r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3032          masm.jcc   (Assembler::notEqual, LSuccess) ;
3033          // Intentional fall-through into slow-path
3034 
3035          masm.bind  (LGoSlowPath) ;
3036          masm.orl   (boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3037          masm.jmp   (DONE_LABEL) ;
3038 
3039          masm.bind  (LSuccess) ;
3040          masm.testl (boxReg, 0) ;                      // set ICC.ZF=1 to indicate success
3041          masm.jmp   (DONE_LABEL) ;
3042        }
3043 
3044        masm.bind  (Stacked) ;
3045        masm.movptr(tmpReg, Address (boxReg, 0)) ;      // re-fetch
3046        if (os::is_MP()) { masm.lock(); }
3047        masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
3048 
3049        if (EmitSync & 65536) {
3050           masm.bind (CheckSucc) ;
3051        }
3052        masm.bind(DONE_LABEL);
3053        if (EmitSync & 32768) {
3054           masm.nop();                      // avoid branch to branch
3055        }
3056     }
3057   %}
3058 
3059 
3060   enc_class enc_rethrow()
3061   %{
3062     cbuf.set_insts_mark();
3063     emit_opcode(cbuf, 0xE9); // jmp entry
3064     emit_d32_reloc(cbuf,
3065                    (int) (OptoRuntime::rethrow_stub() - cbuf.insts_end() - 4),
3066                    runtime_call_Relocation::spec(),
3067                    RELOC_DISP32);
3068   %}
3069 
3070 %}
3071 
3072 
3073 
3074 //----------FRAME--------------------------------------------------------------
3075 // Definition of frame structure and management information.
3076 //
3077 //  S T A C K   L A Y O U T    Allocators stack-slot number
3078 //                             |   (to get allocators register number
3079 //  G  Owned by    |        |  v    add OptoReg::stack0())
3080 //  r   CALLER     |        |
3081 //  o     |        +--------+      pad to even-align allocators stack-slot
3082 //  w     V        |  pad0  |        numbers; owned by CALLER
3083 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3084 //  h     ^        |   in   |  5
3085 //        |        |  args  |  4   Holes in incoming args owned by SELF
3086 //  |     |        |        |  3
3087 //  |     |        +--------+
3088 //  V     |        | old out|      Empty on Intel, window on Sparc
3089 //        |    old |preserve|      Must be even aligned.
3090 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
3091 //        |        |   in   |  3   area for Intel ret address
3092 //     Owned by    |preserve|      Empty on Sparc.
3093 //       SELF      +--------+
3094 //        |        |  pad2  |  2   pad to align old SP
3095 //        |        +--------+  1
3096 //        |        | locks  |  0
3097 //        |        +--------+----> OptoReg::stack0(), even aligned
3098 //        |        |  pad1  | 11   pad to align new SP
3099 //        |        +--------+
3100 //        |        |        | 10
3101 //        |        | spills |  9   spills
3102 //        V        |        |  8   (pad0 slot for callee)
3103 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3104 //        ^        |  out   |  7
3105 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3106 //     Owned by    +--------+
3107 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3108 //        |    new |preserve|      Must be even-aligned.
3109 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3110 //        |        |        |
3111 //
3112 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3113 //         known from SELF's arguments and the Java calling convention.
3114 //         Region 6-7 is determined per call site.
3115 // Note 2: If the calling convention leaves holes in the incoming argument
3116 //         area, those holes are owned by SELF.  Holes in the outgoing area
3117 //         are owned by the CALLEE.  Holes should not be nessecary in the
3118 //         incoming area, as the Java calling convention is completely under
3119 //         the control of the AD file.  Doubles can be sorted and packed to
3120 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3121 //         varargs C calling conventions.
3122 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3123 //         even aligned with pad0 as needed.
3124 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3125 //         region 6-11 is even aligned; it may be padded out more so that
3126 //         the region from SP to FP meets the minimum stack alignment.
3127 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
3128 //         alignment.  Region 11, pad1, may be dynamically extended so that
3129 //         SP meets the minimum alignment.
3130 
3131 frame
3132 %{
3133   // What direction does stack grow in (assumed to be same for C & Java)
3134   stack_direction(TOWARDS_LOW);
3135 
3136   // These three registers define part of the calling convention
3137   // between compiled code and the interpreter.
3138   inline_cache_reg(RAX);                // Inline Cache Register
3139   interpreter_method_oop_reg(RBX);      // Method Oop Register when
3140                                         // calling interpreter
3141 
3142   // Optional: name the operand used by cisc-spilling to access
3143   // [stack_pointer + offset]
3144   cisc_spilling_operand_name(indOffset32);
3145 
3146   // Number of stack slots consumed by locking an object
3147   sync_stack_slots(2);
3148 
3149   // Compiled code's Frame Pointer
3150   frame_pointer(RSP);
3151 
3152   // Interpreter stores its frame pointer in a register which is
3153   // stored to the stack by I2CAdaptors.
3154   // I2CAdaptors convert from interpreted java to compiled java.
3155   interpreter_frame_pointer(RBP);
3156 
3157   // Stack alignment requirement
3158   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
3159 
3160   // Number of stack slots between incoming argument block and the start of
3161   // a new frame.  The PROLOG must add this many slots to the stack.  The
3162   // EPILOG must remove this many slots.  amd64 needs two slots for
3163   // return address.
3164   in_preserve_stack_slots(4 + 2 * VerifyStackAtCalls);
3165 
3166   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3167   // for calls to C.  Supports the var-args backing area for register parms.
3168   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
3169 
3170   // The after-PROLOG location of the return address.  Location of
3171   // return address specifies a type (REG or STACK) and a number
3172   // representing the register number (i.e. - use a register name) or
3173   // stack slot.
3174   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
3175   // Otherwise, it is above the locks and verification slot and alignment word
3176   return_addr(STACK - 2 +
3177               round_to((Compile::current()->in_preserve_stack_slots() +
3178                         Compile::current()->fixed_slots()),
3179                        stack_alignment_in_slots()));
3180 
3181   // Body of function which returns an integer array locating
3182   // arguments either in registers or in stack slots.  Passed an array
3183   // of ideal registers called "sig" and a "length" count.  Stack-slot
3184   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3185   // arguments for a CALLEE.  Incoming stack arguments are
3186   // automatically biased by the preserve_stack_slots field above.
3187 
3188   calling_convention
3189   %{
3190     // No difference between ingoing/outgoing just pass false
3191     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3192   %}
3193 
3194   c_calling_convention
3195   %{
3196     // This is obviously always outgoing
3197     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3198   %}
3199 
3200   // Location of compiled Java return values.  Same as C for now.
3201   return_value
3202   %{
3203     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
3204            "only return normal values");
3205 
3206     static const int lo[Op_RegL + 1] = {
3207       0,
3208       0,
3209       RAX_num,  // Op_RegN
3210       RAX_num,  // Op_RegI
3211       RAX_num,  // Op_RegP
3212       XMM0_num, // Op_RegF
3213       XMM0_num, // Op_RegD
3214       RAX_num   // Op_RegL
3215     };
3216     static const int hi[Op_RegL + 1] = {
3217       0,
3218       0,
3219       OptoReg::Bad, // Op_RegN
3220       OptoReg::Bad, // Op_RegI
3221       RAX_H_num,    // Op_RegP
3222       OptoReg::Bad, // Op_RegF
3223       XMM0_H_num,   // Op_RegD
3224       RAX_H_num     // Op_RegL
3225     };
3226     assert(ARRAY_SIZE(hi) == _last_machine_leaf - 1, "missing type");
3227     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
3228   %}
3229 %}
3230 
3231 //----------ATTRIBUTES---------------------------------------------------------
3232 //----------Operand Attributes-------------------------------------------------
3233 op_attrib op_cost(0);        // Required cost attribute
3234 
3235 //----------Instruction Attributes---------------------------------------------
3236 ins_attrib ins_cost(100);       // Required cost attribute
3237 ins_attrib ins_size(8);         // Required size attribute (in bits)
3238 ins_attrib ins_short_branch(0); // Required flag: is this instruction
3239                                 // a non-matching short branch variant
3240                                 // of some long branch?
3241 ins_attrib ins_alignment(1);    // Required alignment attribute (must
3242                                 // be a power of 2) specifies the
3243                                 // alignment that some part of the
3244                                 // instruction (not necessarily the
3245                                 // start) requires.  If > 1, a
3246                                 // compute_padding() function must be
3247                                 // provided for the instruction
3248 
3249 //----------OPERANDS-----------------------------------------------------------
3250 // Operand definitions must precede instruction definitions for correct parsing
3251 // in the ADLC because operands constitute user defined types which are used in
3252 // instruction definitions.
3253 
3254 //----------Simple Operands----------------------------------------------------
3255 // Immediate Operands
3256 // Integer Immediate
3257 operand immI()
3258 %{
3259   match(ConI);
3260 
3261   op_cost(10);
3262   format %{ %}
3263   interface(CONST_INTER);
3264 %}
3265 
3266 // Constant for test vs zero
3267 operand immI0()
3268 %{
3269   predicate(n->get_int() == 0);
3270   match(ConI);
3271 
3272   op_cost(0);
3273   format %{ %}
3274   interface(CONST_INTER);
3275 %}
3276 
3277 // Constant for increment
3278 operand immI1()
3279 %{
3280   predicate(n->get_int() == 1);
3281   match(ConI);
3282 
3283   op_cost(0);
3284   format %{ %}
3285   interface(CONST_INTER);
3286 %}
3287 
3288 // Constant for decrement
3289 operand immI_M1()
3290 %{
3291   predicate(n->get_int() == -1);
3292   match(ConI);
3293 
3294   op_cost(0);
3295   format %{ %}
3296   interface(CONST_INTER);
3297 %}
3298 
3299 // Valid scale values for addressing modes
3300 operand immI2()
3301 %{
3302   predicate(0 <= n->get_int() && (n->get_int() <= 3));
3303   match(ConI);
3304 
3305   format %{ %}
3306   interface(CONST_INTER);
3307 %}
3308 
3309 operand immI8()
3310 %{
3311   predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
3312   match(ConI);
3313 
3314   op_cost(5);
3315   format %{ %}
3316   interface(CONST_INTER);
3317 %}
3318 
3319 operand immI16()
3320 %{
3321   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
3322   match(ConI);
3323 
3324   op_cost(10);
3325   format %{ %}
3326   interface(CONST_INTER);
3327 %}
3328 
3329 // Constant for long shifts
3330 operand immI_32()
3331 %{
3332   predicate( n->get_int() == 32 );
3333   match(ConI);
3334 
3335   op_cost(0);
3336   format %{ %}
3337   interface(CONST_INTER);
3338 %}
3339 
3340 // Constant for long shifts
3341 operand immI_64()
3342 %{
3343   predicate( n->get_int() == 64 );
3344   match(ConI);
3345 
3346   op_cost(0);
3347   format %{ %}
3348   interface(CONST_INTER);
3349 %}
3350 
3351 // Pointer Immediate
3352 operand immP()
3353 %{
3354   match(ConP);
3355 
3356   op_cost(10);
3357   format %{ %}
3358   interface(CONST_INTER);
3359 %}
3360 
3361 // NULL Pointer Immediate
3362 operand immP0()
3363 %{
3364   predicate(n->get_ptr() == 0);
3365   match(ConP);
3366 
3367   op_cost(5);
3368   format %{ %}
3369   interface(CONST_INTER);
3370 %}
3371 
3372 // Pointer Immediate
3373 operand immN() %{
3374   match(ConN);
3375 
3376   op_cost(10);
3377   format %{ %}
3378   interface(CONST_INTER);
3379 %}
3380 
3381 // NULL Pointer Immediate
3382 operand immN0() %{
3383   predicate(n->get_narrowcon() == 0);
3384   match(ConN);
3385 
3386   op_cost(5);
3387   format %{ %}
3388   interface(CONST_INTER);
3389 %}
3390 
3391 operand immP31()
3392 %{
3393   predicate(!n->as_Type()->type()->isa_oopptr()
3394             && (n->get_ptr() >> 31) == 0);
3395   match(ConP);
3396 
3397   op_cost(5);
3398   format %{ %}
3399   interface(CONST_INTER);
3400 %}
3401 
3402 
3403 // Long Immediate
3404 operand immL()
3405 %{
3406   match(ConL);
3407 
3408   op_cost(20);
3409   format %{ %}
3410   interface(CONST_INTER);
3411 %}
3412 
3413 // Long Immediate 8-bit
3414 operand immL8()
3415 %{
3416   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
3417   match(ConL);
3418 
3419   op_cost(5);
3420   format %{ %}
3421   interface(CONST_INTER);
3422 %}
3423 
3424 // Long Immediate 32-bit unsigned
3425 operand immUL32()
3426 %{
3427   predicate(n->get_long() == (unsigned int) (n->get_long()));
3428   match(ConL);
3429 
3430   op_cost(10);
3431   format %{ %}
3432   interface(CONST_INTER);
3433 %}
3434 
3435 // Long Immediate 32-bit signed
3436 operand immL32()
3437 %{
3438   predicate(n->get_long() == (int) (n->get_long()));
3439   match(ConL);
3440 
3441   op_cost(15);
3442   format %{ %}
3443   interface(CONST_INTER);
3444 %}
3445 
3446 // Long Immediate zero
3447 operand immL0()
3448 %{
3449   predicate(n->get_long() == 0L);
3450   match(ConL);
3451 
3452   op_cost(10);
3453   format %{ %}
3454   interface(CONST_INTER);
3455 %}
3456 
3457 // Constant for increment
3458 operand immL1()
3459 %{
3460   predicate(n->get_long() == 1);
3461   match(ConL);
3462 
3463   format %{ %}
3464   interface(CONST_INTER);
3465 %}
3466 
3467 // Constant for decrement
3468 operand immL_M1()
3469 %{
3470   predicate(n->get_long() == -1);
3471   match(ConL);
3472 
3473   format %{ %}
3474   interface(CONST_INTER);
3475 %}
3476 
3477 // Long Immediate: the value 10
3478 operand immL10()
3479 %{
3480   predicate(n->get_long() == 10);
3481   match(ConL);
3482 
3483   format %{ %}
3484   interface(CONST_INTER);
3485 %}
3486 
3487 // Long immediate from 0 to 127.
3488 // Used for a shorter form of long mul by 10.
3489 operand immL_127()
3490 %{
3491   predicate(0 <= n->get_long() && n->get_long() < 0x80);
3492   match(ConL);
3493 
3494   op_cost(10);
3495   format %{ %}
3496   interface(CONST_INTER);
3497 %}
3498 
3499 // Long Immediate: low 32-bit mask
3500 operand immL_32bits()
3501 %{
3502   predicate(n->get_long() == 0xFFFFFFFFL);
3503   match(ConL);
3504   op_cost(20);
3505 
3506   format %{ %}
3507   interface(CONST_INTER);
3508 %}
3509 
3510 // Float Immediate zero
3511 operand immF0()
3512 %{
3513   predicate(jint_cast(n->getf()) == 0);
3514   match(ConF);
3515 
3516   op_cost(5);
3517   format %{ %}
3518   interface(CONST_INTER);
3519 %}
3520 
3521 // Float Immediate
3522 operand immF()
3523 %{
3524   match(ConF);
3525 
3526   op_cost(15);
3527   format %{ %}
3528   interface(CONST_INTER);
3529 %}
3530 
3531 // Double Immediate zero
3532 operand immD0()
3533 %{
3534   predicate(jlong_cast(n->getd()) == 0);
3535   match(ConD);
3536 
3537   op_cost(5);
3538   format %{ %}
3539   interface(CONST_INTER);
3540 %}
3541 
3542 // Double Immediate
3543 operand immD()
3544 %{
3545   match(ConD);
3546 
3547   op_cost(15);
3548   format %{ %}
3549   interface(CONST_INTER);
3550 %}
3551 
3552 // Immediates for special shifts (sign extend)
3553 
3554 // Constants for increment
3555 operand immI_16()
3556 %{
3557   predicate(n->get_int() == 16);
3558   match(ConI);
3559 
3560   format %{ %}
3561   interface(CONST_INTER);
3562 %}
3563 
3564 operand immI_24()
3565 %{
3566   predicate(n->get_int() == 24);
3567   match(ConI);
3568 
3569   format %{ %}
3570   interface(CONST_INTER);
3571 %}
3572 
3573 // Constant for byte-wide masking
3574 operand immI_255()
3575 %{
3576   predicate(n->get_int() == 255);
3577   match(ConI);
3578 
3579   format %{ %}
3580   interface(CONST_INTER);
3581 %}
3582 
3583 // Constant for short-wide masking
3584 operand immI_65535()
3585 %{
3586   predicate(n->get_int() == 65535);
3587   match(ConI);
3588 
3589   format %{ %}
3590   interface(CONST_INTER);
3591 %}
3592 
3593 // Constant for byte-wide masking
3594 operand immL_255()
3595 %{
3596   predicate(n->get_long() == 255);
3597   match(ConL);
3598 
3599   format %{ %}
3600   interface(CONST_INTER);
3601 %}
3602 
3603 // Constant for short-wide masking
3604 operand immL_65535()
3605 %{
3606   predicate(n->get_long() == 65535);
3607   match(ConL);
3608 
3609   format %{ %}
3610   interface(CONST_INTER);
3611 %}
3612 
3613 // Register Operands
3614 // Integer Register
3615 operand rRegI()
3616 %{
3617   constraint(ALLOC_IN_RC(int_reg));
3618   match(RegI);
3619 
3620   match(rax_RegI);
3621   match(rbx_RegI);
3622   match(rcx_RegI);
3623   match(rdx_RegI);
3624   match(rdi_RegI);
3625 
3626   format %{ %}
3627   interface(REG_INTER);
3628 %}
3629 
3630 // Special Registers
3631 operand rax_RegI()
3632 %{
3633   constraint(ALLOC_IN_RC(int_rax_reg));
3634   match(RegI);
3635   match(rRegI);
3636 
3637   format %{ "RAX" %}
3638   interface(REG_INTER);
3639 %}
3640 
3641 // Special Registers
3642 operand rbx_RegI()
3643 %{
3644   constraint(ALLOC_IN_RC(int_rbx_reg));
3645   match(RegI);
3646   match(rRegI);
3647 
3648   format %{ "RBX" %}
3649   interface(REG_INTER);
3650 %}
3651 
3652 operand rcx_RegI()
3653 %{
3654   constraint(ALLOC_IN_RC(int_rcx_reg));
3655   match(RegI);
3656   match(rRegI);
3657 
3658   format %{ "RCX" %}
3659   interface(REG_INTER);
3660 %}
3661 
3662 operand rdx_RegI()
3663 %{
3664   constraint(ALLOC_IN_RC(int_rdx_reg));
3665   match(RegI);
3666   match(rRegI);
3667 
3668   format %{ "RDX" %}
3669   interface(REG_INTER);
3670 %}
3671 
3672 operand rdi_RegI()
3673 %{
3674   constraint(ALLOC_IN_RC(int_rdi_reg));
3675   match(RegI);
3676   match(rRegI);
3677 
3678   format %{ "RDI" %}
3679   interface(REG_INTER);
3680 %}
3681 
3682 operand no_rcx_RegI()
3683 %{
3684   constraint(ALLOC_IN_RC(int_no_rcx_reg));
3685   match(RegI);
3686   match(rax_RegI);
3687   match(rbx_RegI);
3688   match(rdx_RegI);
3689   match(rdi_RegI);
3690 
3691   format %{ %}
3692   interface(REG_INTER);
3693 %}
3694 
3695 operand no_rax_rdx_RegI()
3696 %{
3697   constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
3698   match(RegI);
3699   match(rbx_RegI);
3700   match(rcx_RegI);
3701   match(rdi_RegI);
3702 
3703   format %{ %}
3704   interface(REG_INTER);
3705 %}
3706 
3707 // Pointer Register
3708 operand any_RegP()
3709 %{
3710   constraint(ALLOC_IN_RC(any_reg));
3711   match(RegP);
3712   match(rax_RegP);
3713   match(rbx_RegP);
3714   match(rdi_RegP);
3715   match(rsi_RegP);
3716   match(rbp_RegP);
3717   match(r15_RegP);
3718   match(rRegP);
3719 
3720   format %{ %}
3721   interface(REG_INTER);
3722 %}
3723 
3724 operand rRegP()
3725 %{
3726   constraint(ALLOC_IN_RC(ptr_reg));
3727   match(RegP);
3728   match(rax_RegP);
3729   match(rbx_RegP);
3730   match(rdi_RegP);
3731   match(rsi_RegP);
3732   match(rbp_RegP);
3733   match(r15_RegP);  // See Q&A below about r15_RegP.
3734 
3735   format %{ %}
3736   interface(REG_INTER);
3737 %}
3738 
3739 operand rRegN() %{
3740   constraint(ALLOC_IN_RC(int_reg));
3741   match(RegN);
3742 
3743   format %{ %}
3744   interface(REG_INTER);
3745 %}
3746 
3747 // Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
3748 // Answer: Operand match rules govern the DFA as it processes instruction inputs.
3749 // It's fine for an instruction input which expects rRegP to match a r15_RegP.
3750 // The output of an instruction is controlled by the allocator, which respects
3751 // register class masks, not match rules.  Unless an instruction mentions
3752 // r15_RegP or any_RegP explicitly as its output, r15 will not be considered
3753 // by the allocator as an input.
3754 
3755 operand no_rax_RegP()
3756 %{
3757   constraint(ALLOC_IN_RC(ptr_no_rax_reg));
3758   match(RegP);
3759   match(rbx_RegP);
3760   match(rsi_RegP);
3761   match(rdi_RegP);
3762 
3763   format %{ %}
3764   interface(REG_INTER);
3765 %}
3766 
3767 operand no_rbp_RegP()
3768 %{
3769   constraint(ALLOC_IN_RC(ptr_no_rbp_reg));
3770   match(RegP);
3771   match(rbx_RegP);
3772   match(rsi_RegP);
3773   match(rdi_RegP);
3774 
3775   format %{ %}
3776   interface(REG_INTER);
3777 %}
3778 
3779 operand no_rax_rbx_RegP()
3780 %{
3781   constraint(ALLOC_IN_RC(ptr_no_rax_rbx_reg));
3782   match(RegP);
3783   match(rsi_RegP);
3784   match(rdi_RegP);
3785 
3786   format %{ %}
3787   interface(REG_INTER);
3788 %}
3789 
3790 // Special Registers
3791 // Return a pointer value
3792 operand rax_RegP()
3793 %{
3794   constraint(ALLOC_IN_RC(ptr_rax_reg));
3795   match(RegP);
3796   match(rRegP);
3797 
3798   format %{ %}
3799   interface(REG_INTER);
3800 %}
3801 
3802 // Special Registers
3803 // Return a compressed pointer value
3804 operand rax_RegN()
3805 %{
3806   constraint(ALLOC_IN_RC(int_rax_reg));
3807   match(RegN);
3808   match(rRegN);
3809 
3810   format %{ %}
3811   interface(REG_INTER);
3812 %}
3813 
3814 // Used in AtomicAdd
3815 operand rbx_RegP()
3816 %{
3817   constraint(ALLOC_IN_RC(ptr_rbx_reg));
3818   match(RegP);
3819   match(rRegP);
3820 
3821   format %{ %}
3822   interface(REG_INTER);
3823 %}
3824 
3825 operand rsi_RegP()
3826 %{
3827   constraint(ALLOC_IN_RC(ptr_rsi_reg));
3828   match(RegP);
3829   match(rRegP);
3830 
3831   format %{ %}
3832   interface(REG_INTER);
3833 %}
3834 
3835 // Used in rep stosq
3836 operand rdi_RegP()
3837 %{
3838   constraint(ALLOC_IN_RC(ptr_rdi_reg));
3839   match(RegP);
3840   match(rRegP);
3841 
3842   format %{ %}
3843   interface(REG_INTER);
3844 %}
3845 
3846 operand rbp_RegP()
3847 %{
3848   constraint(ALLOC_IN_RC(ptr_rbp_reg));
3849   match(RegP);
3850   match(rRegP);
3851 
3852   format %{ %}
3853   interface(REG_INTER);
3854 %}
3855 
3856 operand r15_RegP()
3857 %{
3858   constraint(ALLOC_IN_RC(ptr_r15_reg));
3859   match(RegP);
3860   match(rRegP);
3861 
3862   format %{ %}
3863   interface(REG_INTER);
3864 %}
3865 
3866 operand rRegL()
3867 %{
3868   constraint(ALLOC_IN_RC(long_reg));
3869   match(RegL);
3870   match(rax_RegL);
3871   match(rdx_RegL);
3872 
3873   format %{ %}
3874   interface(REG_INTER);
3875 %}
3876 
3877 // Special Registers
3878 operand no_rax_rdx_RegL()
3879 %{
3880   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3881   match(RegL);
3882   match(rRegL);
3883 
3884   format %{ %}
3885   interface(REG_INTER);
3886 %}
3887 
3888 operand no_rax_RegL()
3889 %{
3890   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3891   match(RegL);
3892   match(rRegL);
3893   match(rdx_RegL);
3894 
3895   format %{ %}
3896   interface(REG_INTER);
3897 %}
3898 
3899 operand no_rcx_RegL()
3900 %{
3901   constraint(ALLOC_IN_RC(long_no_rcx_reg));
3902   match(RegL);
3903   match(rRegL);
3904 
3905   format %{ %}
3906   interface(REG_INTER);
3907 %}
3908 
3909 operand rax_RegL()
3910 %{
3911   constraint(ALLOC_IN_RC(long_rax_reg));
3912   match(RegL);
3913   match(rRegL);
3914 
3915   format %{ "RAX" %}
3916   interface(REG_INTER);
3917 %}
3918 
3919 operand rcx_RegL()
3920 %{
3921   constraint(ALLOC_IN_RC(long_rcx_reg));
3922   match(RegL);
3923   match(rRegL);
3924 
3925   format %{ %}
3926   interface(REG_INTER);
3927 %}
3928 
3929 operand rdx_RegL()
3930 %{
3931   constraint(ALLOC_IN_RC(long_rdx_reg));
3932   match(RegL);
3933   match(rRegL);
3934 
3935   format %{ %}
3936   interface(REG_INTER);
3937 %}
3938 
3939 // Flags register, used as output of compare instructions
3940 operand rFlagsReg()
3941 %{
3942   constraint(ALLOC_IN_RC(int_flags));
3943   match(RegFlags);
3944 
3945   format %{ "RFLAGS" %}
3946   interface(REG_INTER);
3947 %}
3948 
3949 // Flags register, used as output of FLOATING POINT compare instructions
3950 operand rFlagsRegU()
3951 %{
3952   constraint(ALLOC_IN_RC(int_flags));
3953   match(RegFlags);
3954 
3955   format %{ "RFLAGS_U" %}
3956   interface(REG_INTER);
3957 %}
3958 
3959 operand rFlagsRegUCF() %{
3960   constraint(ALLOC_IN_RC(int_flags));
3961   match(RegFlags);
3962   predicate(false);
3963 
3964   format %{ "RFLAGS_U_CF" %}
3965   interface(REG_INTER);
3966 %}
3967 
3968 // Float register operands
3969 operand regF()
3970 %{
3971   constraint(ALLOC_IN_RC(float_reg));
3972   match(RegF);
3973 
3974   format %{ %}
3975   interface(REG_INTER);
3976 %}
3977 
3978 // Double register operands
3979 operand regD()
3980 %{
3981   constraint(ALLOC_IN_RC(double_reg));
3982   match(RegD);
3983 
3984   format %{ %}
3985   interface(REG_INTER);
3986 %}
3987 
3988 
3989 //----------Memory Operands----------------------------------------------------
3990 // Direct Memory Operand
3991 // operand direct(immP addr)
3992 // %{
3993 //   match(addr);
3994 
3995 //   format %{ "[$addr]" %}
3996 //   interface(MEMORY_INTER) %{
3997 //     base(0xFFFFFFFF);
3998 //     index(0x4);
3999 //     scale(0x0);
4000 //     disp($addr);
4001 //   %}
4002 // %}
4003 
4004 // Indirect Memory Operand
4005 operand indirect(any_RegP reg)
4006 %{
4007   constraint(ALLOC_IN_RC(ptr_reg));
4008   match(reg);
4009 
4010   format %{ "[$reg]" %}
4011   interface(MEMORY_INTER) %{
4012     base($reg);
4013     index(0x4);
4014     scale(0x0);
4015     disp(0x0);
4016   %}
4017 %}
4018 
4019 // Indirect Memory Plus Short Offset Operand
4020 operand indOffset8(any_RegP reg, immL8 off)
4021 %{
4022   constraint(ALLOC_IN_RC(ptr_reg));
4023   match(AddP reg off);
4024 
4025   format %{ "[$reg + $off (8-bit)]" %}
4026   interface(MEMORY_INTER) %{
4027     base($reg);
4028     index(0x4);
4029     scale(0x0);
4030     disp($off);
4031   %}
4032 %}
4033 
4034 // Indirect Memory Plus Long Offset Operand
4035 operand indOffset32(any_RegP reg, immL32 off)
4036 %{
4037   constraint(ALLOC_IN_RC(ptr_reg));
4038   match(AddP reg off);
4039 
4040   format %{ "[$reg + $off (32-bit)]" %}
4041   interface(MEMORY_INTER) %{
4042     base($reg);
4043     index(0x4);
4044     scale(0x0);
4045     disp($off);
4046   %}
4047 %}
4048 
4049 // Indirect Memory Plus Index Register Plus Offset Operand
4050 operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
4051 %{
4052   constraint(ALLOC_IN_RC(ptr_reg));
4053   match(AddP (AddP reg lreg) off);
4054 
4055   op_cost(10);
4056   format %{"[$reg + $off + $lreg]" %}
4057   interface(MEMORY_INTER) %{
4058     base($reg);
4059     index($lreg);
4060     scale(0x0);
4061     disp($off);
4062   %}
4063 %}
4064 
4065 // Indirect Memory Plus Index Register Plus Offset Operand
4066 operand indIndex(any_RegP reg, rRegL lreg)
4067 %{
4068   constraint(ALLOC_IN_RC(ptr_reg));
4069   match(AddP reg lreg);
4070 
4071   op_cost(10);
4072   format %{"[$reg + $lreg]" %}
4073   interface(MEMORY_INTER) %{
4074     base($reg);
4075     index($lreg);
4076     scale(0x0);
4077     disp(0x0);
4078   %}
4079 %}
4080 
4081 // Indirect Memory Times Scale Plus Index Register
4082 operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
4083 %{
4084   constraint(ALLOC_IN_RC(ptr_reg));
4085   match(AddP reg (LShiftL lreg scale));
4086 
4087   op_cost(10);
4088   format %{"[$reg + $lreg << $scale]" %}
4089   interface(MEMORY_INTER) %{
4090     base($reg);
4091     index($lreg);
4092     scale($scale);
4093     disp(0x0);
4094   %}
4095 %}
4096 
4097 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4098 operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
4099 %{
4100   constraint(ALLOC_IN_RC(ptr_reg));
4101   match(AddP (AddP reg (LShiftL lreg scale)) off);
4102 
4103   op_cost(10);
4104   format %{"[$reg + $off + $lreg << $scale]" %}
4105   interface(MEMORY_INTER) %{
4106     base($reg);
4107     index($lreg);
4108     scale($scale);
4109     disp($off);
4110   %}
4111 %}
4112 
4113 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
4114 operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
4115 %{
4116   constraint(ALLOC_IN_RC(ptr_reg));
4117   predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
4118   match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
4119 
4120   op_cost(10);
4121   format %{"[$reg + $off + $idx << $scale]" %}
4122   interface(MEMORY_INTER) %{
4123     base($reg);
4124     index($idx);
4125     scale($scale);
4126     disp($off);
4127   %}
4128 %}
4129 
4130 // Indirect Narrow Oop Plus Offset Operand
4131 // Note: x86 architecture doesn't support "scale * index + offset" without a base
4132 // we can't free r12 even with Universe::narrow_oop_base() == NULL.
4133 operand indCompressedOopOffset(rRegN reg, immL32 off) %{
4134   predicate(UseCompressedOops && (Universe::narrow_oop_shift() == Address::times_8));
4135   constraint(ALLOC_IN_RC(ptr_reg));
4136   match(AddP (DecodeN reg) off);
4137 
4138   op_cost(10);
4139   format %{"[R12 + $reg << 3 + $off] (compressed oop addressing)" %}
4140   interface(MEMORY_INTER) %{
4141     base(0xc); // R12
4142     index($reg);
4143     scale(0x3);
4144     disp($off);
4145   %}
4146 %}
4147 
4148 // Indirect Memory Operand
4149 operand indirectNarrow(rRegN reg)
4150 %{
4151   predicate(Universe::narrow_oop_shift() == 0);
4152   constraint(ALLOC_IN_RC(ptr_reg));
4153   match(DecodeN reg);
4154 
4155   format %{ "[$reg]" %}
4156   interface(MEMORY_INTER) %{
4157     base($reg);
4158     index(0x4);
4159     scale(0x0);
4160     disp(0x0);
4161   %}
4162 %}
4163 
4164 // Indirect Memory Plus Short Offset Operand
4165 operand indOffset8Narrow(rRegN reg, immL8 off)
4166 %{
4167   predicate(Universe::narrow_oop_shift() == 0);
4168   constraint(ALLOC_IN_RC(ptr_reg));
4169   match(AddP (DecodeN reg) off);
4170 
4171   format %{ "[$reg + $off (8-bit)]" %}
4172   interface(MEMORY_INTER) %{
4173     base($reg);
4174     index(0x4);
4175     scale(0x0);
4176     disp($off);
4177   %}
4178 %}
4179 
4180 // Indirect Memory Plus Long Offset Operand
4181 operand indOffset32Narrow(rRegN reg, immL32 off)
4182 %{
4183   predicate(Universe::narrow_oop_shift() == 0);
4184   constraint(ALLOC_IN_RC(ptr_reg));
4185   match(AddP (DecodeN reg) off);
4186 
4187   format %{ "[$reg + $off (32-bit)]" %}
4188   interface(MEMORY_INTER) %{
4189     base($reg);
4190     index(0x4);
4191     scale(0x0);
4192     disp($off);
4193   %}
4194 %}
4195 
4196 // Indirect Memory Plus Index Register Plus Offset Operand
4197 operand indIndexOffsetNarrow(rRegN reg, rRegL lreg, immL32 off)
4198 %{
4199   predicate(Universe::narrow_oop_shift() == 0);
4200   constraint(ALLOC_IN_RC(ptr_reg));
4201   match(AddP (AddP (DecodeN reg) lreg) off);
4202 
4203   op_cost(10);
4204   format %{"[$reg + $off + $lreg]" %}
4205   interface(MEMORY_INTER) %{
4206     base($reg);
4207     index($lreg);
4208     scale(0x0);
4209     disp($off);
4210   %}
4211 %}
4212 
4213 // Indirect Memory Plus Index Register Plus Offset Operand
4214 operand indIndexNarrow(rRegN reg, rRegL lreg)
4215 %{
4216   predicate(Universe::narrow_oop_shift() == 0);
4217   constraint(ALLOC_IN_RC(ptr_reg));
4218   match(AddP (DecodeN reg) lreg);
4219 
4220   op_cost(10);
4221   format %{"[$reg + $lreg]" %}
4222   interface(MEMORY_INTER) %{
4223     base($reg);
4224     index($lreg);
4225     scale(0x0);
4226     disp(0x0);
4227   %}
4228 %}
4229 
4230 // Indirect Memory Times Scale Plus Index Register
4231 operand indIndexScaleNarrow(rRegN reg, rRegL lreg, immI2 scale)
4232 %{
4233   predicate(Universe::narrow_oop_shift() == 0);
4234   constraint(ALLOC_IN_RC(ptr_reg));
4235   match(AddP (DecodeN reg) (LShiftL lreg scale));
4236 
4237   op_cost(10);
4238   format %{"[$reg + $lreg << $scale]" %}
4239   interface(MEMORY_INTER) %{
4240     base($reg);
4241     index($lreg);
4242     scale($scale);
4243     disp(0x0);
4244   %}
4245 %}
4246 
4247 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4248 operand indIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegL lreg, immI2 scale)
4249 %{
4250   predicate(Universe::narrow_oop_shift() == 0);
4251   constraint(ALLOC_IN_RC(ptr_reg));
4252   match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
4253 
4254   op_cost(10);
4255   format %{"[$reg + $off + $lreg << $scale]" %}
4256   interface(MEMORY_INTER) %{
4257     base($reg);
4258     index($lreg);
4259     scale($scale);
4260     disp($off);
4261   %}
4262 %}
4263 
4264 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
4265 operand indPosIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegI idx, immI2 scale)
4266 %{
4267   constraint(ALLOC_IN_RC(ptr_reg));
4268   predicate(Universe::narrow_oop_shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
4269   match(AddP (AddP (DecodeN reg) (LShiftL (ConvI2L idx) scale)) off);
4270 
4271   op_cost(10);
4272   format %{"[$reg + $off + $idx << $scale]" %}
4273   interface(MEMORY_INTER) %{
4274     base($reg);
4275     index($idx);
4276     scale($scale);
4277     disp($off);
4278   %}
4279 %}
4280 
4281 
4282 //----------Special Memory Operands--------------------------------------------
4283 // Stack Slot Operand - This operand is used for loading and storing temporary
4284 //                      values on the stack where a match requires a value to
4285 //                      flow through memory.
4286 operand stackSlotP(sRegP reg)
4287 %{
4288   constraint(ALLOC_IN_RC(stack_slots));
4289   // No match rule because this operand is only generated in matching
4290 
4291   format %{ "[$reg]" %}
4292   interface(MEMORY_INTER) %{
4293     base(0x4);   // RSP
4294     index(0x4);  // No Index
4295     scale(0x0);  // No Scale
4296     disp($reg);  // Stack Offset
4297   %}
4298 %}
4299 
4300 operand stackSlotI(sRegI reg)
4301 %{
4302   constraint(ALLOC_IN_RC(stack_slots));
4303   // No match rule because this operand is only generated in matching
4304 
4305   format %{ "[$reg]" %}
4306   interface(MEMORY_INTER) %{
4307     base(0x4);   // RSP
4308     index(0x4);  // No Index
4309     scale(0x0);  // No Scale
4310     disp($reg);  // Stack Offset
4311   %}
4312 %}
4313 
4314 operand stackSlotF(sRegF reg)
4315 %{
4316   constraint(ALLOC_IN_RC(stack_slots));
4317   // No match rule because this operand is only generated in matching
4318 
4319   format %{ "[$reg]" %}
4320   interface(MEMORY_INTER) %{
4321     base(0x4);   // RSP
4322     index(0x4);  // No Index
4323     scale(0x0);  // No Scale
4324     disp($reg);  // Stack Offset
4325   %}
4326 %}
4327 
4328 operand stackSlotD(sRegD reg)
4329 %{
4330   constraint(ALLOC_IN_RC(stack_slots));
4331   // No match rule because this operand is only generated in matching
4332 
4333   format %{ "[$reg]" %}
4334   interface(MEMORY_INTER) %{
4335     base(0x4);   // RSP
4336     index(0x4);  // No Index
4337     scale(0x0);  // No Scale
4338     disp($reg);  // Stack Offset
4339   %}
4340 %}
4341 operand stackSlotL(sRegL reg)
4342 %{
4343   constraint(ALLOC_IN_RC(stack_slots));
4344   // No match rule because this operand is only generated in matching
4345 
4346   format %{ "[$reg]" %}
4347   interface(MEMORY_INTER) %{
4348     base(0x4);   // RSP
4349     index(0x4);  // No Index
4350     scale(0x0);  // No Scale
4351     disp($reg);  // Stack Offset
4352   %}
4353 %}
4354 
4355 //----------Conditional Branch Operands----------------------------------------
4356 // Comparison Op  - This is the operation of the comparison, and is limited to
4357 //                  the following set of codes:
4358 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4359 //
4360 // Other attributes of the comparison, such as unsignedness, are specified
4361 // by the comparison instruction that sets a condition code flags register.
4362 // That result is represented by a flags operand whose subtype is appropriate
4363 // to the unsignedness (etc.) of the comparison.
4364 //
4365 // Later, the instruction which matches both the Comparison Op (a Bool) and
4366 // the flags (produced by the Cmp) specifies the coding of the comparison op
4367 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4368 
4369 // Comparision Code
4370 operand cmpOp()
4371 %{
4372   match(Bool);
4373 
4374   format %{ "" %}
4375   interface(COND_INTER) %{
4376     equal(0x4, "e");
4377     not_equal(0x5, "ne");
4378     less(0xC, "l");
4379     greater_equal(0xD, "ge");
4380     less_equal(0xE, "le");
4381     greater(0xF, "g");
4382   %}
4383 %}
4384 
4385 // Comparison Code, unsigned compare.  Used by FP also, with
4386 // C2 (unordered) turned into GT or LT already.  The other bits
4387 // C0 and C3 are turned into Carry & Zero flags.
4388 operand cmpOpU()
4389 %{
4390   match(Bool);
4391 
4392   format %{ "" %}
4393   interface(COND_INTER) %{
4394     equal(0x4, "e");
4395     not_equal(0x5, "ne");
4396     less(0x2, "b");
4397     greater_equal(0x3, "nb");
4398     less_equal(0x6, "be");
4399     greater(0x7, "nbe");
4400   %}
4401 %}
4402 
4403 
4404 // Floating comparisons that don't require any fixup for the unordered case
4405 operand cmpOpUCF() %{
4406   match(Bool);
4407   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4408             n->as_Bool()->_test._test == BoolTest::ge ||
4409             n->as_Bool()->_test._test == BoolTest::le ||
4410             n->as_Bool()->_test._test == BoolTest::gt);
4411   format %{ "" %}
4412   interface(COND_INTER) %{
4413     equal(0x4, "e");
4414     not_equal(0x5, "ne");
4415     less(0x2, "b");
4416     greater_equal(0x3, "nb");
4417     less_equal(0x6, "be");
4418     greater(0x7, "nbe");
4419   %}
4420 %}
4421 
4422 
4423 // Floating comparisons that can be fixed up with extra conditional jumps
4424 operand cmpOpUCF2() %{
4425   match(Bool);
4426   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
4427             n->as_Bool()->_test._test == BoolTest::eq);
4428   format %{ "" %}
4429   interface(COND_INTER) %{
4430     equal(0x4, "e");
4431     not_equal(0x5, "ne");
4432     less(0x2, "b");
4433     greater_equal(0x3, "nb");
4434     less_equal(0x6, "be");
4435     greater(0x7, "nbe");
4436   %}
4437 %}
4438 
4439 
4440 //----------OPERAND CLASSES----------------------------------------------------
4441 // Operand Classes are groups of operands that are used as to simplify
4442 // instruction definitions by not requiring the AD writer to specify separate
4443 // instructions for every form of operand when the instruction accepts
4444 // multiple operand types with the same basic encoding and format.  The classic
4445 // case of this is memory operands.
4446 
4447 opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
4448                indIndexScale, indIndexScaleOffset, indPosIndexScaleOffset,
4449                indCompressedOopOffset,
4450                indirectNarrow, indOffset8Narrow, indOffset32Narrow,
4451                indIndexOffsetNarrow, indIndexNarrow, indIndexScaleNarrow,
4452                indIndexScaleOffsetNarrow, indPosIndexScaleOffsetNarrow);
4453 
4454 //----------PIPELINE-----------------------------------------------------------
4455 // Rules which define the behavior of the target architectures pipeline.
4456 pipeline %{
4457 
4458 //----------ATTRIBUTES---------------------------------------------------------
4459 attributes %{
4460   variable_size_instructions;        // Fixed size instructions
4461   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
4462   instruction_unit_size = 1;         // An instruction is 1 bytes long
4463   instruction_fetch_unit_size = 16;  // The processor fetches one line
4464   instruction_fetch_units = 1;       // of 16 bytes
4465 
4466   // List of nop instructions
4467   nops( MachNop );
4468 %}
4469 
4470 //----------RESOURCES----------------------------------------------------------
4471 // Resources are the functional units available to the machine
4472 
4473 // Generic P2/P3 pipeline
4474 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
4475 // 3 instructions decoded per cycle.
4476 // 2 load/store ops per cycle, 1 branch, 1 FPU,
4477 // 3 ALU op, only ALU0 handles mul instructions.
4478 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
4479            MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
4480            BR, FPU,
4481            ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
4482 
4483 //----------PIPELINE DESCRIPTION-----------------------------------------------
4484 // Pipeline Description specifies the stages in the machine's pipeline
4485 
4486 // Generic P2/P3 pipeline
4487 pipe_desc(S0, S1, S2, S3, S4, S5);
4488 
4489 //----------PIPELINE CLASSES---------------------------------------------------
4490 // Pipeline Classes describe the stages in which input and output are
4491 // referenced by the hardware pipeline.
4492 
4493 // Naming convention: ialu or fpu
4494 // Then: _reg
4495 // Then: _reg if there is a 2nd register
4496 // Then: _long if it's a pair of instructions implementing a long
4497 // Then: _fat if it requires the big decoder
4498 //   Or: _mem if it requires the big decoder and a memory unit.
4499 
4500 // Integer ALU reg operation
4501 pipe_class ialu_reg(rRegI dst)
4502 %{
4503     single_instruction;
4504     dst    : S4(write);
4505     dst    : S3(read);
4506     DECODE : S0;        // any decoder
4507     ALU    : S3;        // any alu
4508 %}
4509 
4510 // Long ALU reg operation
4511 pipe_class ialu_reg_long(rRegL dst)
4512 %{
4513     instruction_count(2);
4514     dst    : S4(write);
4515     dst    : S3(read);
4516     DECODE : S0(2);     // any 2 decoders
4517     ALU    : S3(2);     // both alus
4518 %}
4519 
4520 // Integer ALU reg operation using big decoder
4521 pipe_class ialu_reg_fat(rRegI dst)
4522 %{
4523     single_instruction;
4524     dst    : S4(write);
4525     dst    : S3(read);
4526     D0     : S0;        // big decoder only
4527     ALU    : S3;        // any alu
4528 %}
4529 
4530 // Long ALU reg operation using big decoder
4531 pipe_class ialu_reg_long_fat(rRegL dst)
4532 %{
4533     instruction_count(2);
4534     dst    : S4(write);
4535     dst    : S3(read);
4536     D0     : S0(2);     // big decoder only; twice
4537     ALU    : S3(2);     // any 2 alus
4538 %}
4539 
4540 // Integer ALU reg-reg operation
4541 pipe_class ialu_reg_reg(rRegI dst, rRegI src)
4542 %{
4543     single_instruction;
4544     dst    : S4(write);
4545     src    : S3(read);
4546     DECODE : S0;        // any decoder
4547     ALU    : S3;        // any alu
4548 %}
4549 
4550 // Long ALU reg-reg operation
4551 pipe_class ialu_reg_reg_long(rRegL dst, rRegL src)
4552 %{
4553     instruction_count(2);
4554     dst    : S4(write);
4555     src    : S3(read);
4556     DECODE : S0(2);     // any 2 decoders
4557     ALU    : S3(2);     // both alus
4558 %}
4559 
4560 // Integer ALU reg-reg operation
4561 pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
4562 %{
4563     single_instruction;
4564     dst    : S4(write);
4565     src    : S3(read);
4566     D0     : S0;        // big decoder only
4567     ALU    : S3;        // any alu
4568 %}
4569 
4570 // Long ALU reg-reg operation
4571 pipe_class ialu_reg_reg_long_fat(rRegL dst, rRegL src)
4572 %{
4573     instruction_count(2);
4574     dst    : S4(write);
4575     src    : S3(read);
4576     D0     : S0(2);     // big decoder only; twice
4577     ALU    : S3(2);     // both alus
4578 %}
4579 
4580 // Integer ALU reg-mem operation
4581 pipe_class ialu_reg_mem(rRegI dst, memory mem)
4582 %{
4583     single_instruction;
4584     dst    : S5(write);
4585     mem    : S3(read);
4586     D0     : S0;        // big decoder only
4587     ALU    : S4;        // any alu
4588     MEM    : S3;        // any mem
4589 %}
4590 
4591 // Integer mem operation (prefetch)
4592 pipe_class ialu_mem(memory mem)
4593 %{
4594     single_instruction;
4595     mem    : S3(read);
4596     D0     : S0;        // big decoder only
4597     MEM    : S3;        // any mem
4598 %}
4599 
4600 // Integer Store to Memory
4601 pipe_class ialu_mem_reg(memory mem, rRegI src)
4602 %{
4603     single_instruction;
4604     mem    : S3(read);
4605     src    : S5(read);
4606     D0     : S0;        // big decoder only
4607     ALU    : S4;        // any alu
4608     MEM    : S3;
4609 %}
4610 
4611 // // Long Store to Memory
4612 // pipe_class ialu_mem_long_reg(memory mem, rRegL src)
4613 // %{
4614 //     instruction_count(2);
4615 //     mem    : S3(read);
4616 //     src    : S5(read);
4617 //     D0     : S0(2);          // big decoder only; twice
4618 //     ALU    : S4(2);     // any 2 alus
4619 //     MEM    : S3(2);  // Both mems
4620 // %}
4621 
4622 // Integer Store to Memory
4623 pipe_class ialu_mem_imm(memory mem)
4624 %{
4625     single_instruction;
4626     mem    : S3(read);
4627     D0     : S0;        // big decoder only
4628     ALU    : S4;        // any alu
4629     MEM    : S3;
4630 %}
4631 
4632 // Integer ALU0 reg-reg operation
4633 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
4634 %{
4635     single_instruction;
4636     dst    : S4(write);
4637     src    : S3(read);
4638     D0     : S0;        // Big decoder only
4639     ALU0   : S3;        // only alu0
4640 %}
4641 
4642 // Integer ALU0 reg-mem operation
4643 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
4644 %{
4645     single_instruction;
4646     dst    : S5(write);
4647     mem    : S3(read);
4648     D0     : S0;        // big decoder only
4649     ALU0   : S4;        // ALU0 only
4650     MEM    : S3;        // any mem
4651 %}
4652 
4653 // Integer ALU reg-reg operation
4654 pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
4655 %{
4656     single_instruction;
4657     cr     : S4(write);
4658     src1   : S3(read);
4659     src2   : S3(read);
4660     DECODE : S0;        // any decoder
4661     ALU    : S3;        // any alu
4662 %}
4663 
4664 // Integer ALU reg-imm operation
4665 pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
4666 %{
4667     single_instruction;
4668     cr     : S4(write);
4669     src1   : S3(read);
4670     DECODE : S0;        // any decoder
4671     ALU    : S3;        // any alu
4672 %}
4673 
4674 // Integer ALU reg-mem operation
4675 pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
4676 %{
4677     single_instruction;
4678     cr     : S4(write);
4679     src1   : S3(read);
4680     src2   : S3(read);
4681     D0     : S0;        // big decoder only
4682     ALU    : S4;        // any alu
4683     MEM    : S3;
4684 %}
4685 
4686 // Conditional move reg-reg
4687 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
4688 %{
4689     instruction_count(4);
4690     y      : S4(read);
4691     q      : S3(read);
4692     p      : S3(read);
4693     DECODE : S0(4);     // any decoder
4694 %}
4695 
4696 // Conditional move reg-reg
4697 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
4698 %{
4699     single_instruction;
4700     dst    : S4(write);
4701     src    : S3(read);
4702     cr     : S3(read);
4703     DECODE : S0;        // any decoder
4704 %}
4705 
4706 // Conditional move reg-mem
4707 pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
4708 %{
4709     single_instruction;
4710     dst    : S4(write);
4711     src    : S3(read);
4712     cr     : S3(read);
4713     DECODE : S0;        // any decoder
4714     MEM    : S3;
4715 %}
4716 
4717 // Conditional move reg-reg long
4718 pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
4719 %{
4720     single_instruction;
4721     dst    : S4(write);
4722     src    : S3(read);
4723     cr     : S3(read);
4724     DECODE : S0(2);     // any 2 decoders
4725 %}
4726 
4727 // XXX
4728 // // Conditional move double reg-reg
4729 // pipe_class pipe_cmovD_reg( rFlagsReg cr, regDPR1 dst, regD src)
4730 // %{
4731 //     single_instruction;
4732 //     dst    : S4(write);
4733 //     src    : S3(read);
4734 //     cr     : S3(read);
4735 //     DECODE : S0;     // any decoder
4736 // %}
4737 
4738 // Float reg-reg operation
4739 pipe_class fpu_reg(regD dst)
4740 %{
4741     instruction_count(2);
4742     dst    : S3(read);
4743     DECODE : S0(2);     // any 2 decoders
4744     FPU    : S3;
4745 %}
4746 
4747 // Float reg-reg operation
4748 pipe_class fpu_reg_reg(regD dst, regD src)
4749 %{
4750     instruction_count(2);
4751     dst    : S4(write);
4752     src    : S3(read);
4753     DECODE : S0(2);     // any 2 decoders
4754     FPU    : S3;
4755 %}
4756 
4757 // Float reg-reg operation
4758 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
4759 %{
4760     instruction_count(3);
4761     dst    : S4(write);
4762     src1   : S3(read);
4763     src2   : S3(read);
4764     DECODE : S0(3);     // any 3 decoders
4765     FPU    : S3(2);
4766 %}
4767 
4768 // Float reg-reg operation
4769 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
4770 %{
4771     instruction_count(4);
4772     dst    : S4(write);
4773     src1   : S3(read);
4774     src2   : S3(read);
4775     src3   : S3(read);
4776     DECODE : S0(4);     // any 3 decoders
4777     FPU    : S3(2);
4778 %}
4779 
4780 // Float reg-reg operation
4781 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
4782 %{
4783     instruction_count(4);
4784     dst    : S4(write);
4785     src1   : S3(read);
4786     src2   : S3(read);
4787     src3   : S3(read);
4788     DECODE : S1(3);     // any 3 decoders
4789     D0     : S0;        // Big decoder only
4790     FPU    : S3(2);
4791     MEM    : S3;
4792 %}
4793 
4794 // Float reg-mem operation
4795 pipe_class fpu_reg_mem(regD dst, memory mem)
4796 %{
4797     instruction_count(2);
4798     dst    : S5(write);
4799     mem    : S3(read);
4800     D0     : S0;        // big decoder only
4801     DECODE : S1;        // any decoder for FPU POP
4802     FPU    : S4;
4803     MEM    : S3;        // any mem
4804 %}
4805 
4806 // Float reg-mem operation
4807 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
4808 %{
4809     instruction_count(3);
4810     dst    : S5(write);
4811     src1   : S3(read);
4812     mem    : S3(read);
4813     D0     : S0;        // big decoder only
4814     DECODE : S1(2);     // any decoder for FPU POP
4815     FPU    : S4;
4816     MEM    : S3;        // any mem
4817 %}
4818 
4819 // Float mem-reg operation
4820 pipe_class fpu_mem_reg(memory mem, regD src)
4821 %{
4822     instruction_count(2);
4823     src    : S5(read);
4824     mem    : S3(read);
4825     DECODE : S0;        // any decoder for FPU PUSH
4826     D0     : S1;        // big decoder only
4827     FPU    : S4;
4828     MEM    : S3;        // any mem
4829 %}
4830 
4831 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
4832 %{
4833     instruction_count(3);
4834     src1   : S3(read);
4835     src2   : S3(read);
4836     mem    : S3(read);
4837     DECODE : S0(2);     // any decoder for FPU PUSH
4838     D0     : S1;        // big decoder only
4839     FPU    : S4;
4840     MEM    : S3;        // any mem
4841 %}
4842 
4843 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
4844 %{
4845     instruction_count(3);
4846     src1   : S3(read);
4847     src2   : S3(read);
4848     mem    : S4(read);
4849     DECODE : S0;        // any decoder for FPU PUSH
4850     D0     : S0(2);     // big decoder only
4851     FPU    : S4;
4852     MEM    : S3(2);     // any mem
4853 %}
4854 
4855 pipe_class fpu_mem_mem(memory dst, memory src1)
4856 %{
4857     instruction_count(2);
4858     src1   : S3(read);
4859     dst    : S4(read);
4860     D0     : S0(2);     // big decoder only
4861     MEM    : S3(2);     // any mem
4862 %}
4863 
4864 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
4865 %{
4866     instruction_count(3);
4867     src1   : S3(read);
4868     src2   : S3(read);
4869     dst    : S4(read);
4870     D0     : S0(3);     // big decoder only
4871     FPU    : S4;
4872     MEM    : S3(3);     // any mem
4873 %}
4874 
4875 pipe_class fpu_mem_reg_con(memory mem, regD src1)
4876 %{
4877     instruction_count(3);
4878     src1   : S4(read);
4879     mem    : S4(read);
4880     DECODE : S0;        // any decoder for FPU PUSH
4881     D0     : S0(2);     // big decoder only
4882     FPU    : S4;
4883     MEM    : S3(2);     // any mem
4884 %}
4885 
4886 // Float load constant
4887 pipe_class fpu_reg_con(regD dst)
4888 %{
4889     instruction_count(2);
4890     dst    : S5(write);
4891     D0     : S0;        // big decoder only for the load
4892     DECODE : S1;        // any decoder for FPU POP
4893     FPU    : S4;
4894     MEM    : S3;        // any mem
4895 %}
4896 
4897 // Float load constant
4898 pipe_class fpu_reg_reg_con(regD dst, regD src)
4899 %{
4900     instruction_count(3);
4901     dst    : S5(write);
4902     src    : S3(read);
4903     D0     : S0;        // big decoder only for the load
4904     DECODE : S1(2);     // any decoder for FPU POP
4905     FPU    : S4;
4906     MEM    : S3;        // any mem
4907 %}
4908 
4909 // UnConditional branch
4910 pipe_class pipe_jmp(label labl)
4911 %{
4912     single_instruction;
4913     BR   : S3;
4914 %}
4915 
4916 // Conditional branch
4917 pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
4918 %{
4919     single_instruction;
4920     cr    : S1(read);
4921     BR    : S3;
4922 %}
4923 
4924 // Allocation idiom
4925 pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
4926 %{
4927     instruction_count(1); force_serialization;
4928     fixed_latency(6);
4929     heap_ptr : S3(read);
4930     DECODE   : S0(3);
4931     D0       : S2;
4932     MEM      : S3;
4933     ALU      : S3(2);
4934     dst      : S5(write);
4935     BR       : S5;
4936 %}
4937 
4938 // Generic big/slow expanded idiom
4939 pipe_class pipe_slow()
4940 %{
4941     instruction_count(10); multiple_bundles; force_serialization;
4942     fixed_latency(100);
4943     D0  : S0(2);
4944     MEM : S3(2);
4945 %}
4946 
4947 // The real do-nothing guy
4948 pipe_class empty()
4949 %{
4950     instruction_count(0);
4951 %}
4952 
4953 // Define the class for the Nop node
4954 define
4955 %{
4956    MachNop = empty;
4957 %}
4958 
4959 %}
4960 
4961 //----------INSTRUCTIONS-------------------------------------------------------
4962 //
4963 // match      -- States which machine-independent subtree may be replaced
4964 //               by this instruction.
4965 // ins_cost   -- The estimated cost of this instruction is used by instruction
4966 //               selection to identify a minimum cost tree of machine
4967 //               instructions that matches a tree of machine-independent
4968 //               instructions.
4969 // format     -- A string providing the disassembly for this instruction.
4970 //               The value of an instruction's operand may be inserted
4971 //               by referring to it with a '$' prefix.
4972 // opcode     -- Three instruction opcodes may be provided.  These are referred
4973 //               to within an encode class as $primary, $secondary, and $tertiary
4974 //               rrspectively.  The primary opcode is commonly used to
4975 //               indicate the type of machine instruction, while secondary
4976 //               and tertiary are often used for prefix options or addressing
4977 //               modes.
4978 // ins_encode -- A list of encode classes with parameters. The encode class
4979 //               name must have been defined in an 'enc_class' specification
4980 //               in the encode section of the architecture description.
4981 
4982 
4983 //----------Load/Store/Move Instructions---------------------------------------
4984 //----------Load Instructions--------------------------------------------------
4985 
4986 // Load Byte (8 bit signed)
4987 instruct loadB(rRegI dst, memory mem)
4988 %{
4989   match(Set dst (LoadB mem));
4990 
4991   ins_cost(125);
4992   format %{ "movsbl  $dst, $mem\t# byte" %}
4993 
4994   ins_encode %{
4995     __ movsbl($dst$$Register, $mem$$Address);
4996   %}
4997 
4998   ins_pipe(ialu_reg_mem);
4999 %}
5000 
5001 // Load Byte (8 bit signed) into Long Register
5002 instruct loadB2L(rRegL dst, memory mem)
5003 %{
5004   match(Set dst (ConvI2L (LoadB mem)));
5005 
5006   ins_cost(125);
5007   format %{ "movsbq  $dst, $mem\t# byte -> long" %}
5008 
5009   ins_encode %{
5010     __ movsbq($dst$$Register, $mem$$Address);
5011   %}
5012 
5013   ins_pipe(ialu_reg_mem);
5014 %}
5015 
5016 // Load Unsigned Byte (8 bit UNsigned)
5017 instruct loadUB(rRegI dst, memory mem)
5018 %{
5019   match(Set dst (LoadUB mem));
5020 
5021   ins_cost(125);
5022   format %{ "movzbl  $dst, $mem\t# ubyte" %}
5023 
5024   ins_encode %{
5025     __ movzbl($dst$$Register, $mem$$Address);
5026   %}
5027 
5028   ins_pipe(ialu_reg_mem);
5029 %}
5030 
5031 // Load Unsigned Byte (8 bit UNsigned) into Long Register
5032 instruct loadUB2L(rRegL dst, memory mem)
5033 %{
5034   match(Set dst (ConvI2L (LoadUB mem)));
5035 
5036   ins_cost(125);
5037   format %{ "movzbq  $dst, $mem\t# ubyte -> long" %}
5038 
5039   ins_encode %{
5040     __ movzbq($dst$$Register, $mem$$Address);
5041   %}
5042 
5043   ins_pipe(ialu_reg_mem);
5044 %}
5045 
5046 // Load Unsigned Byte (8 bit UNsigned) with a 8-bit mask into Long Register
5047 instruct loadUB2L_immI8(rRegL dst, memory mem, immI8 mask, rFlagsReg cr) %{
5048   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5049   effect(KILL cr);
5050 
5051   format %{ "movzbq  $dst, $mem\t# ubyte & 8-bit mask -> long\n\t"
5052             "andl    $dst, $mask" %}
5053   ins_encode %{
5054     Register Rdst = $dst$$Register;
5055     __ movzbq(Rdst, $mem$$Address);
5056     __ andl(Rdst, $mask$$constant);
5057   %}
5058   ins_pipe(ialu_reg_mem);
5059 %}
5060 
5061 // Load Short (16 bit signed)
5062 instruct loadS(rRegI dst, memory mem)
5063 %{
5064   match(Set dst (LoadS mem));
5065 
5066   ins_cost(125);
5067   format %{ "movswl $dst, $mem\t# short" %}
5068 
5069   ins_encode %{
5070     __ movswl($dst$$Register, $mem$$Address);
5071   %}
5072 
5073   ins_pipe(ialu_reg_mem);
5074 %}
5075 
5076 // Load Short (16 bit signed) to Byte (8 bit signed)
5077 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5078   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5079 
5080   ins_cost(125);
5081   format %{ "movsbl $dst, $mem\t# short -> byte" %}
5082   ins_encode %{
5083     __ movsbl($dst$$Register, $mem$$Address);
5084   %}
5085   ins_pipe(ialu_reg_mem);
5086 %}
5087 
5088 // Load Short (16 bit signed) into Long Register
5089 instruct loadS2L(rRegL dst, memory mem)
5090 %{
5091   match(Set dst (ConvI2L (LoadS mem)));
5092 
5093   ins_cost(125);
5094   format %{ "movswq $dst, $mem\t# short -> long" %}
5095 
5096   ins_encode %{
5097     __ movswq($dst$$Register, $mem$$Address);
5098   %}
5099 
5100   ins_pipe(ialu_reg_mem);
5101 %}
5102 
5103 // Load Unsigned Short/Char (16 bit UNsigned)
5104 instruct loadUS(rRegI dst, memory mem)
5105 %{
5106   match(Set dst (LoadUS mem));
5107 
5108   ins_cost(125);
5109   format %{ "movzwl  $dst, $mem\t# ushort/char" %}
5110 
5111   ins_encode %{
5112     __ movzwl($dst$$Register, $mem$$Address);
5113   %}
5114 
5115   ins_pipe(ialu_reg_mem);
5116 %}
5117 
5118 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5119 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5120   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5121 
5122   ins_cost(125);
5123   format %{ "movsbl $dst, $mem\t# ushort -> byte" %}
5124   ins_encode %{
5125     __ movsbl($dst$$Register, $mem$$Address);
5126   %}
5127   ins_pipe(ialu_reg_mem);
5128 %}
5129 
5130 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
5131 instruct loadUS2L(rRegL dst, memory mem)
5132 %{
5133   match(Set dst (ConvI2L (LoadUS mem)));
5134 
5135   ins_cost(125);
5136   format %{ "movzwq  $dst, $mem\t# ushort/char -> long" %}
5137 
5138   ins_encode %{
5139     __ movzwq($dst$$Register, $mem$$Address);
5140   %}
5141 
5142   ins_pipe(ialu_reg_mem);
5143 %}
5144 
5145 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
5146 instruct loadUS2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
5147   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5148 
5149   format %{ "movzbq  $dst, $mem\t# ushort/char & 0xFF -> long" %}
5150   ins_encode %{
5151     __ movzbq($dst$$Register, $mem$$Address);
5152   %}
5153   ins_pipe(ialu_reg_mem);
5154 %}
5155 
5156 // Load Unsigned Short/Char (16 bit UNsigned) with mask into Long Register
5157 instruct loadUS2L_immI16(rRegL dst, memory mem, immI16 mask, rFlagsReg cr) %{
5158   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5159   effect(KILL cr);
5160 
5161   format %{ "movzwq  $dst, $mem\t# ushort/char & 16-bit mask -> long\n\t"
5162             "andl    $dst, $mask" %}
5163   ins_encode %{
5164     Register Rdst = $dst$$Register;
5165     __ movzwq(Rdst, $mem$$Address);
5166     __ andl(Rdst, $mask$$constant);
5167   %}
5168   ins_pipe(ialu_reg_mem);
5169 %}
5170 
5171 // Load Integer
5172 instruct loadI(rRegI dst, memory mem)
5173 %{
5174   match(Set dst (LoadI mem));
5175 
5176   ins_cost(125);
5177   format %{ "movl    $dst, $mem\t# int" %}
5178 
5179   ins_encode %{
5180     __ movl($dst$$Register, $mem$$Address);
5181   %}
5182 
5183   ins_pipe(ialu_reg_mem);
5184 %}
5185 
5186 // Load Integer (32 bit signed) to Byte (8 bit signed)
5187 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5188   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5189 
5190   ins_cost(125);
5191   format %{ "movsbl  $dst, $mem\t# int -> byte" %}
5192   ins_encode %{
5193     __ movsbl($dst$$Register, $mem$$Address);
5194   %}
5195   ins_pipe(ialu_reg_mem);
5196 %}
5197 
5198 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
5199 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
5200   match(Set dst (AndI (LoadI mem) mask));
5201 
5202   ins_cost(125);
5203   format %{ "movzbl  $dst, $mem\t# int -> ubyte" %}
5204   ins_encode %{
5205     __ movzbl($dst$$Register, $mem$$Address);
5206   %}
5207   ins_pipe(ialu_reg_mem);
5208 %}
5209 
5210 // Load Integer (32 bit signed) to Short (16 bit signed)
5211 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
5212   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5213 
5214   ins_cost(125);
5215   format %{ "movswl  $dst, $mem\t# int -> short" %}
5216   ins_encode %{
5217     __ movswl($dst$$Register, $mem$$Address);
5218   %}
5219   ins_pipe(ialu_reg_mem);
5220 %}
5221 
5222 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
5223 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
5224   match(Set dst (AndI (LoadI mem) mask));
5225 
5226   ins_cost(125);
5227   format %{ "movzwl  $dst, $mem\t# int -> ushort/char" %}
5228   ins_encode %{
5229     __ movzwl($dst$$Register, $mem$$Address);
5230   %}
5231   ins_pipe(ialu_reg_mem);
5232 %}
5233 
5234 // Load Integer into Long Register
5235 instruct loadI2L(rRegL dst, memory mem)
5236 %{
5237   match(Set dst (ConvI2L (LoadI mem)));
5238 
5239   ins_cost(125);
5240   format %{ "movslq  $dst, $mem\t# int -> long" %}
5241 
5242   ins_encode %{
5243     __ movslq($dst$$Register, $mem$$Address);
5244   %}
5245 
5246   ins_pipe(ialu_reg_mem);
5247 %}
5248 
5249 // Load Integer with mask 0xFF into Long Register
5250 instruct loadI2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
5251   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5252 
5253   format %{ "movzbq  $dst, $mem\t# int & 0xFF -> long" %}
5254   ins_encode %{
5255     __ movzbq($dst$$Register, $mem$$Address);
5256   %}
5257   ins_pipe(ialu_reg_mem);
5258 %}
5259 
5260 // Load Integer with mask 0xFFFF into Long Register
5261 instruct loadI2L_immI_65535(rRegL dst, memory mem, immI_65535 mask) %{
5262   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5263 
5264   format %{ "movzwq  $dst, $mem\t# int & 0xFFFF -> long" %}
5265   ins_encode %{
5266     __ movzwq($dst$$Register, $mem$$Address);
5267   %}
5268   ins_pipe(ialu_reg_mem);
5269 %}
5270 
5271 // Load Integer with a 32-bit mask into Long Register
5272 instruct loadI2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
5273   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5274   effect(KILL cr);
5275 
5276   format %{ "movl    $dst, $mem\t# int & 32-bit mask -> long\n\t"
5277             "andl    $dst, $mask" %}
5278   ins_encode %{
5279     Register Rdst = $dst$$Register;
5280     __ movl(Rdst, $mem$$Address);
5281     __ andl(Rdst, $mask$$constant);
5282   %}
5283   ins_pipe(ialu_reg_mem);
5284 %}
5285 
5286 // Load Unsigned Integer into Long Register
5287 instruct loadUI2L(rRegL dst, memory mem)
5288 %{
5289   match(Set dst (LoadUI2L mem));
5290 
5291   ins_cost(125);
5292   format %{ "movl    $dst, $mem\t# uint -> long" %}
5293 
5294   ins_encode %{
5295     __ movl($dst$$Register, $mem$$Address);
5296   %}
5297 
5298   ins_pipe(ialu_reg_mem);
5299 %}
5300 
5301 // Load Long
5302 instruct loadL(rRegL dst, memory mem)
5303 %{
5304   match(Set dst (LoadL mem));
5305 
5306   ins_cost(125);
5307   format %{ "movq    $dst, $mem\t# long" %}
5308 
5309   ins_encode %{
5310     __ movq($dst$$Register, $mem$$Address);
5311   %}
5312 
5313   ins_pipe(ialu_reg_mem); // XXX
5314 %}
5315 
5316 // Load Range
5317 instruct loadRange(rRegI dst, memory mem)
5318 %{
5319   match(Set dst (LoadRange mem));
5320 
5321   ins_cost(125); // XXX
5322   format %{ "movl    $dst, $mem\t# range" %}
5323   opcode(0x8B);
5324   ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
5325   ins_pipe(ialu_reg_mem);
5326 %}
5327 
5328 // Load Pointer
5329 instruct loadP(rRegP dst, memory mem)
5330 %{
5331   match(Set dst (LoadP mem));
5332 
5333   ins_cost(125); // XXX
5334   format %{ "movq    $dst, $mem\t# ptr" %}
5335   opcode(0x8B);
5336   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5337   ins_pipe(ialu_reg_mem); // XXX
5338 %}
5339 
5340 // Load Compressed Pointer
5341 instruct loadN(rRegN dst, memory mem)
5342 %{
5343    match(Set dst (LoadN mem));
5344 
5345    ins_cost(125); // XXX
5346    format %{ "movl    $dst, $mem\t# compressed ptr" %}
5347    ins_encode %{
5348      __ movl($dst$$Register, $mem$$Address);
5349    %}
5350    ins_pipe(ialu_reg_mem); // XXX
5351 %}
5352 
5353 
5354 // Load Klass Pointer
5355 instruct loadKlass(rRegP dst, memory mem)
5356 %{
5357   match(Set dst (LoadKlass mem));
5358 
5359   ins_cost(125); // XXX
5360   format %{ "movq    $dst, $mem\t# class" %}
5361   opcode(0x8B);
5362   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5363   ins_pipe(ialu_reg_mem); // XXX
5364 %}
5365 
5366 // Load narrow Klass Pointer
5367 instruct loadNKlass(rRegN dst, memory mem)
5368 %{
5369   match(Set dst (LoadNKlass mem));
5370 
5371   ins_cost(125); // XXX
5372   format %{ "movl    $dst, $mem\t# compressed klass ptr" %}
5373   ins_encode %{
5374     __ movl($dst$$Register, $mem$$Address);
5375   %}
5376   ins_pipe(ialu_reg_mem); // XXX
5377 %}
5378 
5379 // Load Float
5380 instruct loadF(regF dst, memory mem)
5381 %{
5382   match(Set dst (LoadF mem));
5383 
5384   ins_cost(145); // XXX
5385   format %{ "movss   $dst, $mem\t# float" %}
5386   ins_encode %{
5387     __ movflt($dst$$XMMRegister, $mem$$Address);
5388   %}
5389   ins_pipe(pipe_slow); // XXX
5390 %}
5391 
5392 // Load Double
5393 instruct loadD_partial(regD dst, memory mem)
5394 %{
5395   predicate(!UseXmmLoadAndClearUpper);
5396   match(Set dst (LoadD mem));
5397 
5398   ins_cost(145); // XXX
5399   format %{ "movlpd  $dst, $mem\t# double" %}
5400   ins_encode %{
5401     __ movdbl($dst$$XMMRegister, $mem$$Address);
5402   %}
5403   ins_pipe(pipe_slow); // XXX
5404 %}
5405 
5406 instruct loadD(regD dst, memory mem)
5407 %{
5408   predicate(UseXmmLoadAndClearUpper);
5409   match(Set dst (LoadD mem));
5410 
5411   ins_cost(145); // XXX
5412   format %{ "movsd   $dst, $mem\t# double" %}
5413   ins_encode %{
5414     __ movdbl($dst$$XMMRegister, $mem$$Address);
5415   %}
5416   ins_pipe(pipe_slow); // XXX
5417 %}
5418 
5419 // Load Aligned Packed Byte to XMM register
5420 instruct loadA8B(regD dst, memory mem) %{
5421   match(Set dst (Load8B mem));
5422   ins_cost(125);
5423   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
5424   ins_encode %{
5425     __ movq($dst$$XMMRegister, $mem$$Address);
5426   %}
5427   ins_pipe( pipe_slow );
5428 %}
5429 
5430 // Load Aligned Packed Short to XMM register
5431 instruct loadA4S(regD dst, memory mem) %{
5432   match(Set dst (Load4S mem));
5433   ins_cost(125);
5434   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
5435   ins_encode %{
5436     __ movq($dst$$XMMRegister, $mem$$Address);
5437   %}
5438   ins_pipe( pipe_slow );
5439 %}
5440 
5441 // Load Aligned Packed Char to XMM register
5442 instruct loadA4C(regD dst, memory mem) %{
5443   match(Set dst (Load4C mem));
5444   ins_cost(125);
5445   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
5446   ins_encode %{
5447     __ movq($dst$$XMMRegister, $mem$$Address);
5448   %}
5449   ins_pipe( pipe_slow );
5450 %}
5451 
5452 // Load Aligned Packed Integer to XMM register
5453 instruct load2IU(regD dst, memory mem) %{
5454   match(Set dst (Load2I mem));
5455   ins_cost(125);
5456   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
5457   ins_encode %{
5458     __ movq($dst$$XMMRegister, $mem$$Address);
5459   %}
5460   ins_pipe( pipe_slow );
5461 %}
5462 
5463 // Load Aligned Packed Single to XMM
5464 instruct loadA2F(regD dst, memory mem) %{
5465   match(Set dst (Load2F mem));
5466   ins_cost(125);
5467   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
5468   ins_encode %{
5469     __ movq($dst$$XMMRegister, $mem$$Address);
5470   %}
5471   ins_pipe( pipe_slow );
5472 %}
5473 
5474 // Load Effective Address
5475 instruct leaP8(rRegP dst, indOffset8 mem)
5476 %{
5477   match(Set dst mem);
5478 
5479   ins_cost(110); // XXX
5480   format %{ "leaq    $dst, $mem\t# ptr 8" %}
5481   opcode(0x8D);
5482   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5483   ins_pipe(ialu_reg_reg_fat);
5484 %}
5485 
5486 instruct leaP32(rRegP dst, indOffset32 mem)
5487 %{
5488   match(Set dst mem);
5489 
5490   ins_cost(110);
5491   format %{ "leaq    $dst, $mem\t# ptr 32" %}
5492   opcode(0x8D);
5493   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5494   ins_pipe(ialu_reg_reg_fat);
5495 %}
5496 
5497 // instruct leaPIdx(rRegP dst, indIndex mem)
5498 // %{
5499 //   match(Set dst mem);
5500 
5501 //   ins_cost(110);
5502 //   format %{ "leaq    $dst, $mem\t# ptr idx" %}
5503 //   opcode(0x8D);
5504 //   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5505 //   ins_pipe(ialu_reg_reg_fat);
5506 // %}
5507 
5508 instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
5509 %{
5510   match(Set dst mem);
5511 
5512   ins_cost(110);
5513   format %{ "leaq    $dst, $mem\t# ptr idxoff" %}
5514   opcode(0x8D);
5515   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5516   ins_pipe(ialu_reg_reg_fat);
5517 %}
5518 
5519 instruct leaPIdxScale(rRegP dst, indIndexScale mem)
5520 %{
5521   match(Set dst mem);
5522 
5523   ins_cost(110);
5524   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
5525   opcode(0x8D);
5526   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5527   ins_pipe(ialu_reg_reg_fat);
5528 %}
5529 
5530 instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
5531 %{
5532   match(Set dst mem);
5533 
5534   ins_cost(110);
5535   format %{ "leaq    $dst, $mem\t# ptr idxscaleoff" %}
5536   opcode(0x8D);
5537   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5538   ins_pipe(ialu_reg_reg_fat);
5539 %}
5540 
5541 instruct leaPPosIdxScaleOff(rRegP dst, indPosIndexScaleOffset mem)
5542 %{
5543   match(Set dst mem);
5544 
5545   ins_cost(110);
5546   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoff" %}
5547   opcode(0x8D);
5548   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5549   ins_pipe(ialu_reg_reg_fat);
5550 %}
5551 
5552 // Load Effective Address which uses Narrow (32-bits) oop
5553 instruct leaPCompressedOopOffset(rRegP dst, indCompressedOopOffset mem)
5554 %{
5555   predicate(UseCompressedOops && (Universe::narrow_oop_shift() != 0));
5556   match(Set dst mem);
5557 
5558   ins_cost(110);
5559   format %{ "leaq    $dst, $mem\t# ptr compressedoopoff32" %}
5560   opcode(0x8D);
5561   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5562   ins_pipe(ialu_reg_reg_fat);
5563 %}
5564 
5565 instruct leaP8Narrow(rRegP dst, indOffset8Narrow mem)
5566 %{
5567   predicate(Universe::narrow_oop_shift() == 0);
5568   match(Set dst mem);
5569 
5570   ins_cost(110); // XXX
5571   format %{ "leaq    $dst, $mem\t# ptr off8narrow" %}
5572   opcode(0x8D);
5573   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5574   ins_pipe(ialu_reg_reg_fat);
5575 %}
5576 
5577 instruct leaP32Narrow(rRegP dst, indOffset32Narrow mem)
5578 %{
5579   predicate(Universe::narrow_oop_shift() == 0);
5580   match(Set dst mem);
5581 
5582   ins_cost(110);
5583   format %{ "leaq    $dst, $mem\t# ptr off32narrow" %}
5584   opcode(0x8D);
5585   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5586   ins_pipe(ialu_reg_reg_fat);
5587 %}
5588 
5589 instruct leaPIdxOffNarrow(rRegP dst, indIndexOffsetNarrow mem)
5590 %{
5591   predicate(Universe::narrow_oop_shift() == 0);
5592   match(Set dst mem);
5593 
5594   ins_cost(110);
5595   format %{ "leaq    $dst, $mem\t# ptr idxoffnarrow" %}
5596   opcode(0x8D);
5597   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5598   ins_pipe(ialu_reg_reg_fat);
5599 %}
5600 
5601 instruct leaPIdxScaleNarrow(rRegP dst, indIndexScaleNarrow mem)
5602 %{
5603   predicate(Universe::narrow_oop_shift() == 0);
5604   match(Set dst mem);
5605 
5606   ins_cost(110);
5607   format %{ "leaq    $dst, $mem\t# ptr idxscalenarrow" %}
5608   opcode(0x8D);
5609   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5610   ins_pipe(ialu_reg_reg_fat);
5611 %}
5612 
5613 instruct leaPIdxScaleOffNarrow(rRegP dst, indIndexScaleOffsetNarrow mem)
5614 %{
5615   predicate(Universe::narrow_oop_shift() == 0);
5616   match(Set dst mem);
5617 
5618   ins_cost(110);
5619   format %{ "leaq    $dst, $mem\t# ptr idxscaleoffnarrow" %}
5620   opcode(0x8D);
5621   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5622   ins_pipe(ialu_reg_reg_fat);
5623 %}
5624 
5625 instruct leaPPosIdxScaleOffNarrow(rRegP dst, indPosIndexScaleOffsetNarrow mem)
5626 %{
5627   predicate(Universe::narrow_oop_shift() == 0);
5628   match(Set dst mem);
5629 
5630   ins_cost(110);
5631   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoffnarrow" %}
5632   opcode(0x8D);
5633   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5634   ins_pipe(ialu_reg_reg_fat);
5635 %}
5636 
5637 instruct loadConI(rRegI dst, immI src)
5638 %{
5639   match(Set dst src);
5640 
5641   format %{ "movl    $dst, $src\t# int" %}
5642   ins_encode(load_immI(dst, src));
5643   ins_pipe(ialu_reg_fat); // XXX
5644 %}
5645 
5646 instruct loadConI0(rRegI dst, immI0 src, rFlagsReg cr)
5647 %{
5648   match(Set dst src);
5649   effect(KILL cr);
5650 
5651   ins_cost(50);
5652   format %{ "xorl    $dst, $dst\t# int" %}
5653   opcode(0x33); /* + rd */
5654   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5655   ins_pipe(ialu_reg);
5656 %}
5657 
5658 instruct loadConL(rRegL dst, immL src)
5659 %{
5660   match(Set dst src);
5661 
5662   ins_cost(150);
5663   format %{ "movq    $dst, $src\t# long" %}
5664   ins_encode(load_immL(dst, src));
5665   ins_pipe(ialu_reg);
5666 %}
5667 
5668 instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
5669 %{
5670   match(Set dst src);
5671   effect(KILL cr);
5672 
5673   ins_cost(50);
5674   format %{ "xorl    $dst, $dst\t# long" %}
5675   opcode(0x33); /* + rd */
5676   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5677   ins_pipe(ialu_reg); // XXX
5678 %}
5679 
5680 instruct loadConUL32(rRegL dst, immUL32 src)
5681 %{
5682   match(Set dst src);
5683 
5684   ins_cost(60);
5685   format %{ "movl    $dst, $src\t# long (unsigned 32-bit)" %}
5686   ins_encode(load_immUL32(dst, src));
5687   ins_pipe(ialu_reg);
5688 %}
5689 
5690 instruct loadConL32(rRegL dst, immL32 src)
5691 %{
5692   match(Set dst src);
5693 
5694   ins_cost(70);
5695   format %{ "movq    $dst, $src\t# long (32-bit)" %}
5696   ins_encode(load_immL32(dst, src));
5697   ins_pipe(ialu_reg);
5698 %}
5699 
5700 instruct loadConP(rRegP dst, immP con) %{
5701   match(Set dst con);
5702 
5703   format %{ "movq    $dst, $con\t# ptr" %}
5704   ins_encode(load_immP(dst, con));
5705   ins_pipe(ialu_reg_fat); // XXX
5706 %}
5707 
5708 instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
5709 %{
5710   match(Set dst src);
5711   effect(KILL cr);
5712 
5713   ins_cost(50);
5714   format %{ "xorl    $dst, $dst\t# ptr" %}
5715   opcode(0x33); /* + rd */
5716   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5717   ins_pipe(ialu_reg);
5718 %}
5719 
5720 instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
5721 %{
5722   match(Set dst src);
5723   effect(KILL cr);
5724 
5725   ins_cost(60);
5726   format %{ "movl    $dst, $src\t# ptr (positive 32-bit)" %}
5727   ins_encode(load_immP31(dst, src));
5728   ins_pipe(ialu_reg);
5729 %}
5730 
5731 instruct loadConF(regF dst, immF con) %{
5732   match(Set dst con);
5733   ins_cost(125);
5734   format %{ "movss   $dst, [$constantaddress]\t# load from constant table: float=$con" %}
5735   ins_encode %{
5736     __ movflt($dst$$XMMRegister, $constantaddress($con));
5737   %}
5738   ins_pipe(pipe_slow);
5739 %}
5740 
5741 instruct loadConN0(rRegN dst, immN0 src, rFlagsReg cr) %{
5742   match(Set dst src);
5743   effect(KILL cr);
5744   format %{ "xorq    $dst, $src\t# compressed NULL ptr" %}
5745   ins_encode %{
5746     __ xorq($dst$$Register, $dst$$Register);
5747   %}
5748   ins_pipe(ialu_reg);
5749 %}
5750 
5751 instruct loadConN(rRegN dst, immN src) %{
5752   match(Set dst src);
5753 
5754   ins_cost(125);
5755   format %{ "movl    $dst, $src\t# compressed ptr" %}
5756   ins_encode %{
5757     address con = (address)$src$$constant;
5758     if (con == NULL) {
5759       ShouldNotReachHere();
5760     } else {
5761       __ set_narrow_oop($dst$$Register, (jobject)$src$$constant);
5762     }
5763   %}
5764   ins_pipe(ialu_reg_fat); // XXX
5765 %}
5766 
5767 instruct loadConF0(regF dst, immF0 src)
5768 %{
5769   match(Set dst src);
5770   ins_cost(100);
5771 
5772   format %{ "xorps   $dst, $dst\t# float 0.0" %}
5773   ins_encode %{
5774     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
5775   %}
5776   ins_pipe(pipe_slow);
5777 %}
5778 
5779 // Use the same format since predicate() can not be used here.
5780 instruct loadConD(regD dst, immD con) %{
5781   match(Set dst con);
5782   ins_cost(125);
5783   format %{ "movsd   $dst, [$constantaddress]\t# load from constant table: double=$con" %}
5784   ins_encode %{
5785     __ movdbl($dst$$XMMRegister, $constantaddress($con));
5786   %}
5787   ins_pipe(pipe_slow);
5788 %}
5789 
5790 instruct loadConD0(regD dst, immD0 src)
5791 %{
5792   match(Set dst src);
5793   ins_cost(100);
5794 
5795   format %{ "xorpd   $dst, $dst\t# double 0.0" %}
5796   ins_encode %{
5797     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
5798   %}
5799   ins_pipe(pipe_slow);
5800 %}
5801 
5802 instruct loadSSI(rRegI dst, stackSlotI src)
5803 %{
5804   match(Set dst src);
5805 
5806   ins_cost(125);
5807   format %{ "movl    $dst, $src\t# int stk" %}
5808   opcode(0x8B);
5809   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
5810   ins_pipe(ialu_reg_mem);
5811 %}
5812 
5813 instruct loadSSL(rRegL dst, stackSlotL src)
5814 %{
5815   match(Set dst src);
5816 
5817   ins_cost(125);
5818   format %{ "movq    $dst, $src\t# long stk" %}
5819   opcode(0x8B);
5820   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5821   ins_pipe(ialu_reg_mem);
5822 %}
5823 
5824 instruct loadSSP(rRegP dst, stackSlotP src)
5825 %{
5826   match(Set dst src);
5827 
5828   ins_cost(125);
5829   format %{ "movq    $dst, $src\t# ptr stk" %}
5830   opcode(0x8B);
5831   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5832   ins_pipe(ialu_reg_mem);
5833 %}
5834 
5835 instruct loadSSF(regF dst, stackSlotF src)
5836 %{
5837   match(Set dst src);
5838 
5839   ins_cost(125);
5840   format %{ "movss   $dst, $src\t# float stk" %}
5841   ins_encode %{
5842     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
5843   %}
5844   ins_pipe(pipe_slow); // XXX
5845 %}
5846 
5847 // Use the same format since predicate() can not be used here.
5848 instruct loadSSD(regD dst, stackSlotD src)
5849 %{
5850   match(Set dst src);
5851 
5852   ins_cost(125);
5853   format %{ "movsd   $dst, $src\t# double stk" %}
5854   ins_encode  %{
5855     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
5856   %}
5857   ins_pipe(pipe_slow); // XXX
5858 %}
5859 
5860 // Prefetch instructions.
5861 // Must be safe to execute with invalid address (cannot fault).
5862 
5863 instruct prefetchr( memory mem ) %{
5864   predicate(ReadPrefetchInstr==3);
5865   match(PrefetchRead mem);
5866   ins_cost(125);
5867 
5868   format %{ "PREFETCHR $mem\t# Prefetch into level 1 cache" %}
5869   ins_encode %{
5870     __ prefetchr($mem$$Address);
5871   %}
5872   ins_pipe(ialu_mem);
5873 %}
5874 
5875 instruct prefetchrNTA( memory mem ) %{
5876   predicate(ReadPrefetchInstr==0);
5877   match(PrefetchRead mem);
5878   ins_cost(125);
5879 
5880   format %{ "PREFETCHNTA $mem\t# Prefetch into non-temporal cache for read" %}
5881   ins_encode %{
5882     __ prefetchnta($mem$$Address);
5883   %}
5884   ins_pipe(ialu_mem);
5885 %}
5886 
5887 instruct prefetchrT0( memory mem ) %{
5888   predicate(ReadPrefetchInstr==1);
5889   match(PrefetchRead mem);
5890   ins_cost(125);
5891 
5892   format %{ "PREFETCHT0 $mem\t# prefetch into L1 and L2 caches for read" %}
5893   ins_encode %{
5894     __ prefetcht0($mem$$Address);
5895   %}
5896   ins_pipe(ialu_mem);
5897 %}
5898 
5899 instruct prefetchrT2( memory mem ) %{
5900   predicate(ReadPrefetchInstr==2);
5901   match(PrefetchRead mem);
5902   ins_cost(125);
5903 
5904   format %{ "PREFETCHT2 $mem\t# prefetch into L2 caches for read" %}
5905   ins_encode %{
5906     __ prefetcht2($mem$$Address);
5907   %}
5908   ins_pipe(ialu_mem);
5909 %}
5910 
5911 instruct prefetchwNTA( memory mem ) %{
5912   match(PrefetchWrite mem);
5913   ins_cost(125);
5914 
5915   format %{ "PREFETCHNTA $mem\t# Prefetch to non-temporal cache for write" %}
5916   ins_encode %{
5917     __ prefetchnta($mem$$Address);
5918   %}
5919   ins_pipe(ialu_mem);
5920 %}
5921 
5922 // Prefetch instructions for allocation.
5923 
5924 instruct prefetchAlloc( memory mem ) %{
5925   predicate(AllocatePrefetchInstr==3);
5926   match(PrefetchAllocation mem);
5927   ins_cost(125);
5928 
5929   format %{ "PREFETCHW $mem\t# Prefetch allocation into level 1 cache and mark modified" %}
5930   ins_encode %{
5931     __ prefetchw($mem$$Address);
5932   %}
5933   ins_pipe(ialu_mem);
5934 %}
5935 
5936 instruct prefetchAllocNTA( memory mem ) %{
5937   predicate(AllocatePrefetchInstr==0);
5938   match(PrefetchAllocation mem);
5939   ins_cost(125);
5940 
5941   format %{ "PREFETCHNTA $mem\t# Prefetch allocation to non-temporal cache for write" %}
5942   ins_encode %{
5943     __ prefetchnta($mem$$Address);
5944   %}
5945   ins_pipe(ialu_mem);
5946 %}
5947 
5948 instruct prefetchAllocT0( memory mem ) %{
5949   predicate(AllocatePrefetchInstr==1);
5950   match(PrefetchAllocation mem);
5951   ins_cost(125);
5952 
5953   format %{ "PREFETCHT0 $mem\t# Prefetch allocation to level 1 and 2 caches for write" %}
5954   ins_encode %{
5955     __ prefetcht0($mem$$Address);
5956   %}
5957   ins_pipe(ialu_mem);
5958 %}
5959 
5960 instruct prefetchAllocT2( memory mem ) %{
5961   predicate(AllocatePrefetchInstr==2);
5962   match(PrefetchAllocation mem);
5963   ins_cost(125);
5964 
5965   format %{ "PREFETCHT2 $mem\t# Prefetch allocation to level 2 cache for write" %}
5966   ins_encode %{
5967     __ prefetcht2($mem$$Address);
5968   %}
5969   ins_pipe(ialu_mem);
5970 %}
5971 
5972 //----------Store Instructions-------------------------------------------------
5973 
5974 // Store Byte
5975 instruct storeB(memory mem, rRegI src)
5976 %{
5977   match(Set mem (StoreB mem src));
5978 
5979   ins_cost(125); // XXX
5980   format %{ "movb    $mem, $src\t# byte" %}
5981   opcode(0x88);
5982   ins_encode(REX_breg_mem(src, mem), OpcP, reg_mem(src, mem));
5983   ins_pipe(ialu_mem_reg);
5984 %}
5985 
5986 // Store Char/Short
5987 instruct storeC(memory mem, rRegI src)
5988 %{
5989   match(Set mem (StoreC mem src));
5990 
5991   ins_cost(125); // XXX
5992   format %{ "movw    $mem, $src\t# char/short" %}
5993   opcode(0x89);
5994   ins_encode(SizePrefix, REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
5995   ins_pipe(ialu_mem_reg);
5996 %}
5997 
5998 // Store Integer
5999 instruct storeI(memory mem, rRegI src)
6000 %{
6001   match(Set mem (StoreI mem src));
6002 
6003   ins_cost(125); // XXX
6004   format %{ "movl    $mem, $src\t# int" %}
6005   opcode(0x89);
6006   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
6007   ins_pipe(ialu_mem_reg);
6008 %}
6009 
6010 // Store Long
6011 instruct storeL(memory mem, rRegL src)
6012 %{
6013   match(Set mem (StoreL mem src));
6014 
6015   ins_cost(125); // XXX
6016   format %{ "movq    $mem, $src\t# long" %}
6017   opcode(0x89);
6018   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
6019   ins_pipe(ialu_mem_reg); // XXX
6020 %}
6021 
6022 // Store Pointer
6023 instruct storeP(memory mem, any_RegP src)
6024 %{
6025   match(Set mem (StoreP mem src));
6026 
6027   ins_cost(125); // XXX
6028   format %{ "movq    $mem, $src\t# ptr" %}
6029   opcode(0x89);
6030   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
6031   ins_pipe(ialu_mem_reg);
6032 %}
6033 
6034 instruct storeImmP0(memory mem, immP0 zero)
6035 %{
6036   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
6037   match(Set mem (StoreP mem zero));
6038 
6039   ins_cost(125); // XXX
6040   format %{ "movq    $mem, R12\t# ptr (R12_heapbase==0)" %}
6041   ins_encode %{
6042     __ movq($mem$$Address, r12);
6043   %}
6044   ins_pipe(ialu_mem_reg);
6045 %}
6046 
6047 // Store NULL Pointer, mark word, or other simple pointer constant.
6048 instruct storeImmP(memory mem, immP31 src)
6049 %{
6050   match(Set mem (StoreP mem src));
6051 
6052   ins_cost(150); // XXX
6053   format %{ "movq    $mem, $src\t# ptr" %}
6054   opcode(0xC7); /* C7 /0 */
6055   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6056   ins_pipe(ialu_mem_imm);
6057 %}
6058 
6059 // Store Compressed Pointer
6060 instruct storeN(memory mem, rRegN src)
6061 %{
6062   match(Set mem (StoreN mem src));
6063 
6064   ins_cost(125); // XXX
6065   format %{ "movl    $mem, $src\t# compressed ptr" %}
6066   ins_encode %{
6067     __ movl($mem$$Address, $src$$Register);
6068   %}
6069   ins_pipe(ialu_mem_reg);
6070 %}
6071 
6072 instruct storeImmN0(memory mem, immN0 zero)
6073 %{
6074   predicate(Universe::narrow_oop_base() == NULL);
6075   match(Set mem (StoreN mem zero));
6076 
6077   ins_cost(125); // XXX
6078   format %{ "movl    $mem, R12\t# compressed ptr (R12_heapbase==0)" %}
6079   ins_encode %{
6080     __ movl($mem$$Address, r12);
6081   %}
6082   ins_pipe(ialu_mem_reg);
6083 %}
6084 
6085 instruct storeImmN(memory mem, immN src)
6086 %{
6087   match(Set mem (StoreN mem src));
6088 
6089   ins_cost(150); // XXX
6090   format %{ "movl    $mem, $src\t# compressed ptr" %}
6091   ins_encode %{
6092     address con = (address)$src$$constant;
6093     if (con == NULL) {
6094       __ movl($mem$$Address, (int32_t)0);
6095     } else {
6096       __ set_narrow_oop($mem$$Address, (jobject)$src$$constant);
6097     }
6098   %}
6099   ins_pipe(ialu_mem_imm);
6100 %}
6101 
6102 // Store Integer Immediate
6103 instruct storeImmI0(memory mem, immI0 zero)
6104 %{
6105   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
6106   match(Set mem (StoreI mem zero));
6107 
6108   ins_cost(125); // XXX
6109   format %{ "movl    $mem, R12\t# int (R12_heapbase==0)" %}
6110   ins_encode %{
6111     __ movl($mem$$Address, r12);
6112   %}
6113   ins_pipe(ialu_mem_reg);
6114 %}
6115 
6116 instruct storeImmI(memory mem, immI src)
6117 %{
6118   match(Set mem (StoreI mem src));
6119 
6120   ins_cost(150);
6121   format %{ "movl    $mem, $src\t# int" %}
6122   opcode(0xC7); /* C7 /0 */
6123   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6124   ins_pipe(ialu_mem_imm);
6125 %}
6126 
6127 // Store Long Immediate
6128 instruct storeImmL0(memory mem, immL0 zero)
6129 %{
6130   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
6131   match(Set mem (StoreL mem zero));
6132 
6133   ins_cost(125); // XXX
6134   format %{ "movq    $mem, R12\t# long (R12_heapbase==0)" %}
6135   ins_encode %{
6136     __ movq($mem$$Address, r12);
6137   %}
6138   ins_pipe(ialu_mem_reg);
6139 %}
6140 
6141 instruct storeImmL(memory mem, immL32 src)
6142 %{
6143   match(Set mem (StoreL mem src));
6144 
6145   ins_cost(150);
6146   format %{ "movq    $mem, $src\t# long" %}
6147   opcode(0xC7); /* C7 /0 */
6148   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6149   ins_pipe(ialu_mem_imm);
6150 %}
6151 
6152 // Store Short/Char Immediate
6153 instruct storeImmC0(memory mem, immI0 zero)
6154 %{
6155   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
6156   match(Set mem (StoreC mem zero));
6157 
6158   ins_cost(125); // XXX
6159   format %{ "movw    $mem, R12\t# short/char (R12_heapbase==0)" %}
6160   ins_encode %{
6161     __ movw($mem$$Address, r12);
6162   %}
6163   ins_pipe(ialu_mem_reg);
6164 %}
6165 
6166 instruct storeImmI16(memory mem, immI16 src)
6167 %{
6168   predicate(UseStoreImmI16);
6169   match(Set mem (StoreC mem src));
6170 
6171   ins_cost(150);
6172   format %{ "movw    $mem, $src\t# short/char" %}
6173   opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
6174   ins_encode(SizePrefix, REX_mem(mem), OpcP, RM_opc_mem(0x00, mem),Con16(src));
6175   ins_pipe(ialu_mem_imm);
6176 %}
6177 
6178 // Store Byte Immediate
6179 instruct storeImmB0(memory mem, immI0 zero)
6180 %{
6181   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
6182   match(Set mem (StoreB mem zero));
6183 
6184   ins_cost(125); // XXX
6185   format %{ "movb    $mem, R12\t# short/char (R12_heapbase==0)" %}
6186   ins_encode %{
6187     __ movb($mem$$Address, r12);
6188   %}
6189   ins_pipe(ialu_mem_reg);
6190 %}
6191 
6192 instruct storeImmB(memory mem, immI8 src)
6193 %{
6194   match(Set mem (StoreB mem src));
6195 
6196   ins_cost(150); // XXX
6197   format %{ "movb    $mem, $src\t# byte" %}
6198   opcode(0xC6); /* C6 /0 */
6199   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
6200   ins_pipe(ialu_mem_imm);
6201 %}
6202 
6203 // Store Aligned Packed Byte XMM register to memory
6204 instruct storeA8B(memory mem, regD src) %{
6205   match(Set mem (Store8B mem src));
6206   ins_cost(145);
6207   format %{ "MOVQ  $mem,$src\t! packed8B" %}
6208   ins_encode %{
6209     __ movq($mem$$Address, $src$$XMMRegister);
6210   %}
6211   ins_pipe( pipe_slow );
6212 %}
6213 
6214 // Store Aligned Packed Char/Short XMM register to memory
6215 instruct storeA4C(memory mem, regD src) %{
6216   match(Set mem (Store4C mem src));
6217   ins_cost(145);
6218   format %{ "MOVQ  $mem,$src\t! packed4C" %}
6219   ins_encode %{
6220     __ movq($mem$$Address, $src$$XMMRegister);
6221   %}
6222   ins_pipe( pipe_slow );
6223 %}
6224 
6225 // Store Aligned Packed Integer XMM register to memory
6226 instruct storeA2I(memory mem, regD src) %{
6227   match(Set mem (Store2I mem src));
6228   ins_cost(145);
6229   format %{ "MOVQ  $mem,$src\t! packed2I" %}
6230   ins_encode %{
6231     __ movq($mem$$Address, $src$$XMMRegister);
6232   %}
6233   ins_pipe( pipe_slow );
6234 %}
6235 
6236 // Store CMS card-mark Immediate
6237 instruct storeImmCM0_reg(memory mem, immI0 zero)
6238 %{
6239   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
6240   match(Set mem (StoreCM mem zero));
6241 
6242   ins_cost(125); // XXX
6243   format %{ "movb    $mem, R12\t# CMS card-mark byte 0 (R12_heapbase==0)" %}
6244   ins_encode %{
6245     __ movb($mem$$Address, r12);
6246   %}
6247   ins_pipe(ialu_mem_reg);
6248 %}
6249 
6250 instruct storeImmCM0(memory mem, immI0 src)
6251 %{
6252   match(Set mem (StoreCM mem src));
6253 
6254   ins_cost(150); // XXX
6255   format %{ "movb    $mem, $src\t# CMS card-mark byte 0" %}
6256   opcode(0xC6); /* C6 /0 */
6257   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
6258   ins_pipe(ialu_mem_imm);
6259 %}
6260 
6261 // Store Aligned Packed Single Float XMM register to memory
6262 instruct storeA2F(memory mem, regD src) %{
6263   match(Set mem (Store2F mem src));
6264   ins_cost(145);
6265   format %{ "MOVQ  $mem,$src\t! packed2F" %}
6266   ins_encode %{
6267     __ movq($mem$$Address, $src$$XMMRegister);
6268   %}
6269   ins_pipe( pipe_slow );
6270 %}
6271 
6272 // Store Float
6273 instruct storeF(memory mem, regF src)
6274 %{
6275   match(Set mem (StoreF mem src));
6276 
6277   ins_cost(95); // XXX
6278   format %{ "movss   $mem, $src\t# float" %}
6279   ins_encode %{
6280     __ movflt($mem$$Address, $src$$XMMRegister);
6281   %}
6282   ins_pipe(pipe_slow); // XXX
6283 %}
6284 
6285 // Store immediate Float value (it is faster than store from XMM register)
6286 instruct storeF0(memory mem, immF0 zero)
6287 %{
6288   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
6289   match(Set mem (StoreF mem zero));
6290 
6291   ins_cost(25); // XXX
6292   format %{ "movl    $mem, R12\t# float 0. (R12_heapbase==0)" %}
6293   ins_encode %{
6294     __ movl($mem$$Address, r12);
6295   %}
6296   ins_pipe(ialu_mem_reg);
6297 %}
6298 
6299 instruct storeF_imm(memory mem, immF src)
6300 %{
6301   match(Set mem (StoreF mem src));
6302 
6303   ins_cost(50);
6304   format %{ "movl    $mem, $src\t# float" %}
6305   opcode(0xC7); /* C7 /0 */
6306   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6307   ins_pipe(ialu_mem_imm);
6308 %}
6309 
6310 // Store Double
6311 instruct storeD(memory mem, regD src)
6312 %{
6313   match(Set mem (StoreD mem src));
6314 
6315   ins_cost(95); // XXX
6316   format %{ "movsd   $mem, $src\t# double" %}
6317   ins_encode %{
6318     __ movdbl($mem$$Address, $src$$XMMRegister);
6319   %}
6320   ins_pipe(pipe_slow); // XXX
6321 %}
6322 
6323 // Store immediate double 0.0 (it is faster than store from XMM register)
6324 instruct storeD0_imm(memory mem, immD0 src)
6325 %{
6326   predicate(!UseCompressedOops || (Universe::narrow_oop_base() != NULL));
6327   match(Set mem (StoreD mem src));
6328 
6329   ins_cost(50);
6330   format %{ "movq    $mem, $src\t# double 0." %}
6331   opcode(0xC7); /* C7 /0 */
6332   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6333   ins_pipe(ialu_mem_imm);
6334 %}
6335 
6336 instruct storeD0(memory mem, immD0 zero)
6337 %{
6338   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
6339   match(Set mem (StoreD mem zero));
6340 
6341   ins_cost(25); // XXX
6342   format %{ "movq    $mem, R12\t# double 0. (R12_heapbase==0)" %}
6343   ins_encode %{
6344     __ movq($mem$$Address, r12);
6345   %}
6346   ins_pipe(ialu_mem_reg);
6347 %}
6348 
6349 instruct storeSSI(stackSlotI dst, rRegI src)
6350 %{
6351   match(Set dst src);
6352 
6353   ins_cost(100);
6354   format %{ "movl    $dst, $src\t# int stk" %}
6355   opcode(0x89);
6356   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
6357   ins_pipe( ialu_mem_reg );
6358 %}
6359 
6360 instruct storeSSL(stackSlotL dst, rRegL src)
6361 %{
6362   match(Set dst src);
6363 
6364   ins_cost(100);
6365   format %{ "movq    $dst, $src\t# long stk" %}
6366   opcode(0x89);
6367   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6368   ins_pipe(ialu_mem_reg);
6369 %}
6370 
6371 instruct storeSSP(stackSlotP dst, rRegP src)
6372 %{
6373   match(Set dst src);
6374 
6375   ins_cost(100);
6376   format %{ "movq    $dst, $src\t# ptr stk" %}
6377   opcode(0x89);
6378   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6379   ins_pipe(ialu_mem_reg);
6380 %}
6381 
6382 instruct storeSSF(stackSlotF dst, regF src)
6383 %{
6384   match(Set dst src);
6385 
6386   ins_cost(95); // XXX
6387   format %{ "movss   $dst, $src\t# float stk" %}
6388   ins_encode %{
6389     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
6390   %}
6391   ins_pipe(pipe_slow); // XXX
6392 %}
6393 
6394 instruct storeSSD(stackSlotD dst, regD src)
6395 %{
6396   match(Set dst src);
6397 
6398   ins_cost(95); // XXX
6399   format %{ "movsd   $dst, $src\t# double stk" %}
6400   ins_encode %{
6401     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
6402   %}
6403   ins_pipe(pipe_slow); // XXX
6404 %}
6405 
6406 //----------BSWAP Instructions-------------------------------------------------
6407 instruct bytes_reverse_int(rRegI dst) %{
6408   match(Set dst (ReverseBytesI dst));
6409 
6410   format %{ "bswapl  $dst" %}
6411   opcode(0x0F, 0xC8);  /*Opcode 0F /C8 */
6412   ins_encode( REX_reg(dst), OpcP, opc2_reg(dst) );
6413   ins_pipe( ialu_reg );
6414 %}
6415 
6416 instruct bytes_reverse_long(rRegL dst) %{
6417   match(Set dst (ReverseBytesL dst));
6418 
6419   format %{ "bswapq  $dst" %}
6420 
6421   opcode(0x0F, 0xC8); /* Opcode 0F /C8 */
6422   ins_encode( REX_reg_wide(dst), OpcP, opc2_reg(dst) );
6423   ins_pipe( ialu_reg);
6424 %}
6425 
6426 instruct bytes_reverse_unsigned_short(rRegI dst) %{
6427   match(Set dst (ReverseBytesUS dst));
6428 
6429   format %{ "bswapl  $dst\n\t"
6430             "shrl    $dst,16\n\t" %}
6431   ins_encode %{
6432     __ bswapl($dst$$Register);
6433     __ shrl($dst$$Register, 16);
6434   %}
6435   ins_pipe( ialu_reg );
6436 %}
6437 
6438 instruct bytes_reverse_short(rRegI dst) %{
6439   match(Set dst (ReverseBytesS dst));
6440 
6441   format %{ "bswapl  $dst\n\t"
6442             "sar     $dst,16\n\t" %}
6443   ins_encode %{
6444     __ bswapl($dst$$Register);
6445     __ sarl($dst$$Register, 16);
6446   %}
6447   ins_pipe( ialu_reg );
6448 %}
6449 
6450 //---------- Zeros Count Instructions ------------------------------------------
6451 
6452 instruct countLeadingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6453   predicate(UseCountLeadingZerosInstruction);
6454   match(Set dst (CountLeadingZerosI src));
6455   effect(KILL cr);
6456 
6457   format %{ "lzcntl  $dst, $src\t# count leading zeros (int)" %}
6458   ins_encode %{
6459     __ lzcntl($dst$$Register, $src$$Register);
6460   %}
6461   ins_pipe(ialu_reg);
6462 %}
6463 
6464 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, rFlagsReg cr) %{
6465   predicate(!UseCountLeadingZerosInstruction);
6466   match(Set dst (CountLeadingZerosI src));
6467   effect(KILL cr);
6468 
6469   format %{ "bsrl    $dst, $src\t# count leading zeros (int)\n\t"
6470             "jnz     skip\n\t"
6471             "movl    $dst, -1\n"
6472       "skip:\n\t"
6473             "negl    $dst\n\t"
6474             "addl    $dst, 31" %}
6475   ins_encode %{
6476     Register Rdst = $dst$$Register;
6477     Register Rsrc = $src$$Register;
6478     Label skip;
6479     __ bsrl(Rdst, Rsrc);
6480     __ jccb(Assembler::notZero, skip);
6481     __ movl(Rdst, -1);
6482     __ bind(skip);
6483     __ negl(Rdst);
6484     __ addl(Rdst, BitsPerInt - 1);
6485   %}
6486   ins_pipe(ialu_reg);
6487 %}
6488 
6489 instruct countLeadingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6490   predicate(UseCountLeadingZerosInstruction);
6491   match(Set dst (CountLeadingZerosL src));
6492   effect(KILL cr);
6493 
6494   format %{ "lzcntq  $dst, $src\t# count leading zeros (long)" %}
6495   ins_encode %{
6496     __ lzcntq($dst$$Register, $src$$Register);
6497   %}
6498   ins_pipe(ialu_reg);
6499 %}
6500 
6501 instruct countLeadingZerosL_bsr(rRegI dst, rRegL src, rFlagsReg cr) %{
6502   predicate(!UseCountLeadingZerosInstruction);
6503   match(Set dst (CountLeadingZerosL src));
6504   effect(KILL cr);
6505 
6506   format %{ "bsrq    $dst, $src\t# count leading zeros (long)\n\t"
6507             "jnz     skip\n\t"
6508             "movl    $dst, -1\n"
6509       "skip:\n\t"
6510             "negl    $dst\n\t"
6511             "addl    $dst, 63" %}
6512   ins_encode %{
6513     Register Rdst = $dst$$Register;
6514     Register Rsrc = $src$$Register;
6515     Label skip;
6516     __ bsrq(Rdst, Rsrc);
6517     __ jccb(Assembler::notZero, skip);
6518     __ movl(Rdst, -1);
6519     __ bind(skip);
6520     __ negl(Rdst);
6521     __ addl(Rdst, BitsPerLong - 1);
6522   %}
6523   ins_pipe(ialu_reg);
6524 %}
6525 
6526 instruct countTrailingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6527   match(Set dst (CountTrailingZerosI src));
6528   effect(KILL cr);
6529 
6530   format %{ "bsfl    $dst, $src\t# count trailing zeros (int)\n\t"
6531             "jnz     done\n\t"
6532             "movl    $dst, 32\n"
6533       "done:" %}
6534   ins_encode %{
6535     Register Rdst = $dst$$Register;
6536     Label done;
6537     __ bsfl(Rdst, $src$$Register);
6538     __ jccb(Assembler::notZero, done);
6539     __ movl(Rdst, BitsPerInt);
6540     __ bind(done);
6541   %}
6542   ins_pipe(ialu_reg);
6543 %}
6544 
6545 instruct countTrailingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6546   match(Set dst (CountTrailingZerosL src));
6547   effect(KILL cr);
6548 
6549   format %{ "bsfq    $dst, $src\t# count trailing zeros (long)\n\t"
6550             "jnz     done\n\t"
6551             "movl    $dst, 64\n"
6552       "done:" %}
6553   ins_encode %{
6554     Register Rdst = $dst$$Register;
6555     Label done;
6556     __ bsfq(Rdst, $src$$Register);
6557     __ jccb(Assembler::notZero, done);
6558     __ movl(Rdst, BitsPerLong);
6559     __ bind(done);
6560   %}
6561   ins_pipe(ialu_reg);
6562 %}
6563 
6564 
6565 //---------- Population Count Instructions -------------------------------------
6566 
6567 instruct popCountI(rRegI dst, rRegI src) %{
6568   predicate(UsePopCountInstruction);
6569   match(Set dst (PopCountI src));
6570 
6571   format %{ "popcnt  $dst, $src" %}
6572   ins_encode %{
6573     __ popcntl($dst$$Register, $src$$Register);
6574   %}
6575   ins_pipe(ialu_reg);
6576 %}
6577 
6578 instruct popCountI_mem(rRegI dst, memory mem) %{
6579   predicate(UsePopCountInstruction);
6580   match(Set dst (PopCountI (LoadI mem)));
6581 
6582   format %{ "popcnt  $dst, $mem" %}
6583   ins_encode %{
6584     __ popcntl($dst$$Register, $mem$$Address);
6585   %}
6586   ins_pipe(ialu_reg);
6587 %}
6588 
6589 // Note: Long.bitCount(long) returns an int.
6590 instruct popCountL(rRegI dst, rRegL src) %{
6591   predicate(UsePopCountInstruction);
6592   match(Set dst (PopCountL src));
6593 
6594   format %{ "popcnt  $dst, $src" %}
6595   ins_encode %{
6596     __ popcntq($dst$$Register, $src$$Register);
6597   %}
6598   ins_pipe(ialu_reg);
6599 %}
6600 
6601 // Note: Long.bitCount(long) returns an int.
6602 instruct popCountL_mem(rRegI dst, memory mem) %{
6603   predicate(UsePopCountInstruction);
6604   match(Set dst (PopCountL (LoadL mem)));
6605 
6606   format %{ "popcnt  $dst, $mem" %}
6607   ins_encode %{
6608     __ popcntq($dst$$Register, $mem$$Address);
6609   %}
6610   ins_pipe(ialu_reg);
6611 %}
6612 
6613 
6614 //----------MemBar Instructions-----------------------------------------------
6615 // Memory barrier flavors
6616 
6617 instruct membar_acquire()
6618 %{
6619   match(MemBarAcquire);
6620   ins_cost(0);
6621 
6622   size(0);
6623   format %{ "MEMBAR-acquire ! (empty encoding)" %}
6624   ins_encode();
6625   ins_pipe(empty);
6626 %}
6627 
6628 instruct membar_acquire_lock()
6629 %{
6630   match(MemBarAcquireLock);
6631   ins_cost(0);
6632 
6633   size(0);
6634   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
6635   ins_encode();
6636   ins_pipe(empty);
6637 %}
6638 
6639 instruct membar_release()
6640 %{
6641   match(MemBarRelease);
6642   ins_cost(0);
6643 
6644   size(0);
6645   format %{ "MEMBAR-release ! (empty encoding)" %}
6646   ins_encode();
6647   ins_pipe(empty);
6648 %}
6649 
6650 instruct membar_release_lock()
6651 %{
6652   match(MemBarReleaseLock);
6653   ins_cost(0);
6654 
6655   size(0);
6656   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
6657   ins_encode();
6658   ins_pipe(empty);
6659 %}
6660 
6661 instruct membar_volatile(rFlagsReg cr) %{
6662   match(MemBarVolatile);
6663   effect(KILL cr);
6664   ins_cost(400);
6665 
6666   format %{
6667     $$template
6668     if (os::is_MP()) {
6669       $$emit$$"lock addl [rsp + #0], 0\t! membar_volatile"
6670     } else {
6671       $$emit$$"MEMBAR-volatile ! (empty encoding)"
6672     }
6673   %}
6674   ins_encode %{
6675     __ membar(Assembler::StoreLoad);
6676   %}
6677   ins_pipe(pipe_slow);
6678 %}
6679 
6680 instruct unnecessary_membar_volatile()
6681 %{
6682   match(MemBarVolatile);
6683   predicate(Matcher::post_store_load_barrier(n));
6684   ins_cost(0);
6685 
6686   size(0);
6687   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
6688   ins_encode();
6689   ins_pipe(empty);
6690 %}
6691 
6692 instruct membar_storestore() %{
6693   match(MemBarStoreStore);
6694   ins_cost(0);
6695 
6696   size(0);
6697   format %{ "MEMBAR-storestore (empty encoding)" %}
6698   ins_encode( );
6699   ins_pipe(empty);
6700 %}
6701 
6702 //----------Move Instructions--------------------------------------------------
6703 
6704 instruct castX2P(rRegP dst, rRegL src)
6705 %{
6706   match(Set dst (CastX2P src));
6707 
6708   format %{ "movq    $dst, $src\t# long->ptr" %}
6709   ins_encode %{
6710     if ($dst$$reg != $src$$reg) {
6711       __ movptr($dst$$Register, $src$$Register);
6712     }
6713   %}
6714   ins_pipe(ialu_reg_reg); // XXX
6715 %}
6716 
6717 instruct castP2X(rRegL dst, rRegP src)
6718 %{
6719   match(Set dst (CastP2X src));
6720 
6721   format %{ "movq    $dst, $src\t# ptr -> long" %}
6722   ins_encode %{
6723     if ($dst$$reg != $src$$reg) {
6724       __ movptr($dst$$Register, $src$$Register);
6725     }
6726   %}
6727   ins_pipe(ialu_reg_reg); // XXX
6728 %}
6729 
6730 
6731 // Convert oop pointer into compressed form
6732 instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
6733   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6734   match(Set dst (EncodeP src));
6735   effect(KILL cr);
6736   format %{ "encode_heap_oop $dst,$src" %}
6737   ins_encode %{
6738     Register s = $src$$Register;
6739     Register d = $dst$$Register;
6740     if (s != d) {
6741       __ movq(d, s);
6742     }
6743     __ encode_heap_oop(d);
6744   %}
6745   ins_pipe(ialu_reg_long);
6746 %}
6747 
6748 instruct encodeHeapOop_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
6749   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6750   match(Set dst (EncodeP src));
6751   effect(KILL cr);
6752   format %{ "encode_heap_oop_not_null $dst,$src" %}
6753   ins_encode %{
6754     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
6755   %}
6756   ins_pipe(ialu_reg_long);
6757 %}
6758 
6759 instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
6760   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6761             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6762   match(Set dst (DecodeN src));
6763   effect(KILL cr);
6764   format %{ "decode_heap_oop $dst,$src" %}
6765   ins_encode %{
6766     Register s = $src$$Register;
6767     Register d = $dst$$Register;
6768     if (s != d) {
6769       __ movq(d, s);
6770     }
6771     __ decode_heap_oop(d);
6772   %}
6773   ins_pipe(ialu_reg_long);
6774 %}
6775 
6776 instruct decodeHeapOop_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
6777   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6778             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6779   match(Set dst (DecodeN src));
6780   effect(KILL cr);
6781   format %{ "decode_heap_oop_not_null $dst,$src" %}
6782   ins_encode %{
6783     Register s = $src$$Register;
6784     Register d = $dst$$Register;
6785     if (s != d) {
6786       __ decode_heap_oop_not_null(d, s);
6787     } else {
6788       __ decode_heap_oop_not_null(d);
6789     }
6790   %}
6791   ins_pipe(ialu_reg_long);
6792 %}
6793 
6794 
6795 //----------Conditional Move---------------------------------------------------
6796 // Jump
6797 // dummy instruction for generating temp registers
6798 instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
6799   match(Jump (LShiftL switch_val shift));
6800   ins_cost(350);
6801   predicate(false);
6802   effect(TEMP dest);
6803 
6804   format %{ "leaq    $dest, [$constantaddress]\n\t"
6805             "jmp     [$dest + $switch_val << $shift]\n\t" %}
6806   ins_encode %{
6807     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6808     // to do that and the compiler is using that register as one it can allocate.
6809     // So we build it all by hand.
6810     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
6811     // ArrayAddress dispatch(table, index);
6812     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant);
6813     __ lea($dest$$Register, $constantaddress);
6814     __ jmp(dispatch);
6815   %}
6816   ins_pipe(pipe_jmp);
6817 %}
6818 
6819 instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
6820   match(Jump (AddL (LShiftL switch_val shift) offset));
6821   ins_cost(350);
6822   effect(TEMP dest);
6823 
6824   format %{ "leaq    $dest, [$constantaddress]\n\t"
6825             "jmp     [$dest + $switch_val << $shift + $offset]\n\t" %}
6826   ins_encode %{
6827     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6828     // to do that and the compiler is using that register as one it can allocate.
6829     // So we build it all by hand.
6830     // Address index(noreg, switch_reg, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6831     // ArrayAddress dispatch(table, index);
6832     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6833     __ lea($dest$$Register, $constantaddress);
6834     __ jmp(dispatch);
6835   %}
6836   ins_pipe(pipe_jmp);
6837 %}
6838 
6839 instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
6840   match(Jump switch_val);
6841   ins_cost(350);
6842   effect(TEMP dest);
6843 
6844   format %{ "leaq    $dest, [$constantaddress]\n\t"
6845             "jmp     [$dest + $switch_val]\n\t" %}
6846   ins_encode %{
6847     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6848     // to do that and the compiler is using that register as one it can allocate.
6849     // So we build it all by hand.
6850     // Address index(noreg, switch_reg, Address::times_1);
6851     // ArrayAddress dispatch(table, index);
6852     Address dispatch($dest$$Register, $switch_val$$Register, Address::times_1);
6853     __ lea($dest$$Register, $constantaddress);
6854     __ jmp(dispatch);
6855   %}
6856   ins_pipe(pipe_jmp);
6857 %}
6858 
6859 // Conditional move
6860 instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
6861 %{
6862   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6863 
6864   ins_cost(200); // XXX
6865   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6866   opcode(0x0F, 0x40);
6867   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6868   ins_pipe(pipe_cmov_reg);
6869 %}
6870 
6871 instruct cmovI_regU(cmpOpU cop, rFlagsRegU cr, rRegI dst, rRegI src) %{
6872   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6873 
6874   ins_cost(200); // XXX
6875   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6876   opcode(0x0F, 0x40);
6877   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6878   ins_pipe(pipe_cmov_reg);
6879 %}
6880 
6881 instruct cmovI_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, rRegI src) %{
6882   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6883   ins_cost(200);
6884   expand %{
6885     cmovI_regU(cop, cr, dst, src);
6886   %}
6887 %}
6888 
6889 // Conditional move
6890 instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src) %{
6891   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6892 
6893   ins_cost(250); // XXX
6894   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6895   opcode(0x0F, 0x40);
6896   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6897   ins_pipe(pipe_cmov_mem);
6898 %}
6899 
6900 // Conditional move
6901 instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
6902 %{
6903   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6904 
6905   ins_cost(250); // XXX
6906   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6907   opcode(0x0F, 0x40);
6908   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6909   ins_pipe(pipe_cmov_mem);
6910 %}
6911 
6912 instruct cmovI_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, memory src) %{
6913   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6914   ins_cost(250);
6915   expand %{
6916     cmovI_memU(cop, cr, dst, src);
6917   %}
6918 %}
6919 
6920 // Conditional move
6921 instruct cmovN_reg(rRegN dst, rRegN src, rFlagsReg cr, cmpOp cop)
6922 %{
6923   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6924 
6925   ins_cost(200); // XXX
6926   format %{ "cmovl$cop $dst, $src\t# signed, compressed ptr" %}
6927   opcode(0x0F, 0x40);
6928   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6929   ins_pipe(pipe_cmov_reg);
6930 %}
6931 
6932 // Conditional move
6933 instruct cmovN_regU(cmpOpU cop, rFlagsRegU cr, rRegN dst, rRegN src)
6934 %{
6935   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6936 
6937   ins_cost(200); // XXX
6938   format %{ "cmovl$cop $dst, $src\t# unsigned, compressed ptr" %}
6939   opcode(0x0F, 0x40);
6940   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6941   ins_pipe(pipe_cmov_reg);
6942 %}
6943 
6944 instruct cmovN_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegN dst, rRegN src) %{
6945   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6946   ins_cost(200);
6947   expand %{
6948     cmovN_regU(cop, cr, dst, src);
6949   %}
6950 %}
6951 
6952 // Conditional move
6953 instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
6954 %{
6955   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6956 
6957   ins_cost(200); // XXX
6958   format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
6959   opcode(0x0F, 0x40);
6960   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6961   ins_pipe(pipe_cmov_reg);  // XXX
6962 %}
6963 
6964 // Conditional move
6965 instruct cmovP_regU(cmpOpU cop, rFlagsRegU cr, rRegP dst, rRegP src)
6966 %{
6967   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6968 
6969   ins_cost(200); // XXX
6970   format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
6971   opcode(0x0F, 0x40);
6972   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6973   ins_pipe(pipe_cmov_reg); // XXX
6974 %}
6975 
6976 instruct cmovP_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegP dst, rRegP src) %{
6977   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6978   ins_cost(200);
6979   expand %{
6980     cmovP_regU(cop, cr, dst, src);
6981   %}
6982 %}
6983 
6984 // DISABLED: Requires the ADLC to emit a bottom_type call that
6985 // correctly meets the two pointer arguments; one is an incoming
6986 // register but the other is a memory operand.  ALSO appears to
6987 // be buggy with implicit null checks.
6988 //
6989 //// Conditional move
6990 //instruct cmovP_mem(cmpOp cop, rFlagsReg cr, rRegP dst, memory src)
6991 //%{
6992 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6993 //  ins_cost(250);
6994 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
6995 //  opcode(0x0F,0x40);
6996 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
6997 //  ins_pipe( pipe_cmov_mem );
6998 //%}
6999 //
7000 //// Conditional move
7001 //instruct cmovP_memU(cmpOpU cop, rFlagsRegU cr, rRegP dst, memory src)
7002 //%{
7003 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7004 //  ins_cost(250);
7005 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7006 //  opcode(0x0F,0x40);
7007 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
7008 //  ins_pipe( pipe_cmov_mem );
7009 //%}
7010 
7011 instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
7012 %{
7013   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7014 
7015   ins_cost(200); // XXX
7016   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
7017   opcode(0x0F, 0x40);
7018   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
7019   ins_pipe(pipe_cmov_reg);  // XXX
7020 %}
7021 
7022 instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
7023 %{
7024   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7025 
7026   ins_cost(200); // XXX
7027   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
7028   opcode(0x0F, 0x40);
7029   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
7030   ins_pipe(pipe_cmov_mem);  // XXX
7031 %}
7032 
7033 instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
7034 %{
7035   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7036 
7037   ins_cost(200); // XXX
7038   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
7039   opcode(0x0F, 0x40);
7040   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
7041   ins_pipe(pipe_cmov_reg); // XXX
7042 %}
7043 
7044 instruct cmovL_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, rRegL src) %{
7045   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7046   ins_cost(200);
7047   expand %{
7048     cmovL_regU(cop, cr, dst, src);
7049   %}
7050 %}
7051 
7052 instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
7053 %{
7054   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7055 
7056   ins_cost(200); // XXX
7057   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
7058   opcode(0x0F, 0x40);
7059   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
7060   ins_pipe(pipe_cmov_mem); // XXX
7061 %}
7062 
7063 instruct cmovL_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, memory src) %{
7064   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7065   ins_cost(200);
7066   expand %{
7067     cmovL_memU(cop, cr, dst, src);
7068   %}
7069 %}
7070 
7071 instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
7072 %{
7073   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7074 
7075   ins_cost(200); // XXX
7076   format %{ "jn$cop    skip\t# signed cmove float\n\t"
7077             "movss     $dst, $src\n"
7078     "skip:" %}
7079   ins_encode %{
7080     Label Lskip;
7081     // Invert sense of branch from sense of CMOV
7082     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7083     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7084     __ bind(Lskip);
7085   %}
7086   ins_pipe(pipe_slow);
7087 %}
7088 
7089 // instruct cmovF_mem(cmpOp cop, rFlagsReg cr, regF dst, memory src)
7090 // %{
7091 //   match(Set dst (CMoveF (Binary cop cr) (Binary dst (LoadL src))));
7092 
7093 //   ins_cost(200); // XXX
7094 //   format %{ "jn$cop    skip\t# signed cmove float\n\t"
7095 //             "movss     $dst, $src\n"
7096 //     "skip:" %}
7097 //   ins_encode(enc_cmovf_mem_branch(cop, dst, src));
7098 //   ins_pipe(pipe_slow);
7099 // %}
7100 
7101 instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
7102 %{
7103   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7104 
7105   ins_cost(200); // XXX
7106   format %{ "jn$cop    skip\t# unsigned cmove float\n\t"
7107             "movss     $dst, $src\n"
7108     "skip:" %}
7109   ins_encode %{
7110     Label Lskip;
7111     // Invert sense of branch from sense of CMOV
7112     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7113     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7114     __ bind(Lskip);
7115   %}
7116   ins_pipe(pipe_slow);
7117 %}
7118 
7119 instruct cmovF_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regF dst, regF src) %{
7120   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7121   ins_cost(200);
7122   expand %{
7123     cmovF_regU(cop, cr, dst, src);
7124   %}
7125 %}
7126 
7127 instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
7128 %{
7129   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7130 
7131   ins_cost(200); // XXX
7132   format %{ "jn$cop    skip\t# signed cmove double\n\t"
7133             "movsd     $dst, $src\n"
7134     "skip:" %}
7135   ins_encode %{
7136     Label Lskip;
7137     // Invert sense of branch from sense of CMOV
7138     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7139     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7140     __ bind(Lskip);
7141   %}
7142   ins_pipe(pipe_slow);
7143 %}
7144 
7145 instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
7146 %{
7147   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7148 
7149   ins_cost(200); // XXX
7150   format %{ "jn$cop    skip\t# unsigned cmove double\n\t"
7151             "movsd     $dst, $src\n"
7152     "skip:" %}
7153   ins_encode %{
7154     Label Lskip;
7155     // Invert sense of branch from sense of CMOV
7156     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7157     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7158     __ bind(Lskip);
7159   %}
7160   ins_pipe(pipe_slow);
7161 %}
7162 
7163 instruct cmovD_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regD dst, regD src) %{
7164   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7165   ins_cost(200);
7166   expand %{
7167     cmovD_regU(cop, cr, dst, src);
7168   %}
7169 %}
7170 
7171 //----------Arithmetic Instructions--------------------------------------------
7172 //----------Addition Instructions----------------------------------------------
7173 
7174 instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7175 %{
7176   match(Set dst (AddI dst src));
7177   effect(KILL cr);
7178 
7179   format %{ "addl    $dst, $src\t# int" %}
7180   opcode(0x03);
7181   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
7182   ins_pipe(ialu_reg_reg);
7183 %}
7184 
7185 instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
7186 %{
7187   match(Set dst (AddI dst src));
7188   effect(KILL cr);
7189 
7190   format %{ "addl    $dst, $src\t# int" %}
7191   opcode(0x81, 0x00); /* /0 id */
7192   ins_encode(OpcSErm(dst, src), Con8or32(src));
7193   ins_pipe( ialu_reg );
7194 %}
7195 
7196 instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
7197 %{
7198   match(Set dst (AddI dst (LoadI src)));
7199   effect(KILL cr);
7200 
7201   ins_cost(125); // XXX
7202   format %{ "addl    $dst, $src\t# int" %}
7203   opcode(0x03);
7204   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
7205   ins_pipe(ialu_reg_mem);
7206 %}
7207 
7208 instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
7209 %{
7210   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7211   effect(KILL cr);
7212 
7213   ins_cost(150); // XXX
7214   format %{ "addl    $dst, $src\t# int" %}
7215   opcode(0x01); /* Opcode 01 /r */
7216   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
7217   ins_pipe(ialu_mem_reg);
7218 %}
7219 
7220 instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
7221 %{
7222   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7223   effect(KILL cr);
7224 
7225   ins_cost(125); // XXX
7226   format %{ "addl    $dst, $src\t# int" %}
7227   opcode(0x81); /* Opcode 81 /0 id */
7228   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7229   ins_pipe(ialu_mem_imm);
7230 %}
7231 
7232 instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
7233 %{
7234   predicate(UseIncDec);
7235   match(Set dst (AddI dst src));
7236   effect(KILL cr);
7237 
7238   format %{ "incl    $dst\t# int" %}
7239   opcode(0xFF, 0x00); // FF /0
7240   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7241   ins_pipe(ialu_reg);
7242 %}
7243 
7244 instruct incI_mem(memory dst, immI1 src, rFlagsReg cr)
7245 %{
7246   predicate(UseIncDec);
7247   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7248   effect(KILL cr);
7249 
7250   ins_cost(125); // XXX
7251   format %{ "incl    $dst\t# int" %}
7252   opcode(0xFF); /* Opcode FF /0 */
7253   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x00, dst));
7254   ins_pipe(ialu_mem_imm);
7255 %}
7256 
7257 // XXX why does that use AddI
7258 instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
7259 %{
7260   predicate(UseIncDec);
7261   match(Set dst (AddI dst src));
7262   effect(KILL cr);
7263 
7264   format %{ "decl    $dst\t# int" %}
7265   opcode(0xFF, 0x01); // FF /1
7266   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7267   ins_pipe(ialu_reg);
7268 %}
7269 
7270 // XXX why does that use AddI
7271 instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
7272 %{
7273   predicate(UseIncDec);
7274   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7275   effect(KILL cr);
7276 
7277   ins_cost(125); // XXX
7278   format %{ "decl    $dst\t# int" %}
7279   opcode(0xFF); /* Opcode FF /1 */
7280   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x01, dst));
7281   ins_pipe(ialu_mem_imm);
7282 %}
7283 
7284 instruct leaI_rReg_immI(rRegI dst, rRegI src0, immI src1)
7285 %{
7286   match(Set dst (AddI src0 src1));
7287 
7288   ins_cost(110);
7289   format %{ "addr32 leal $dst, [$src0 + $src1]\t# int" %}
7290   opcode(0x8D); /* 0x8D /r */
7291   ins_encode(Opcode(0x67), REX_reg_reg(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7292   ins_pipe(ialu_reg_reg);
7293 %}
7294 
7295 instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7296 %{
7297   match(Set dst (AddL dst src));
7298   effect(KILL cr);
7299 
7300   format %{ "addq    $dst, $src\t# long" %}
7301   opcode(0x03);
7302   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7303   ins_pipe(ialu_reg_reg);
7304 %}
7305 
7306 instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
7307 %{
7308   match(Set dst (AddL dst src));
7309   effect(KILL cr);
7310 
7311   format %{ "addq    $dst, $src\t# long" %}
7312   opcode(0x81, 0x00); /* /0 id */
7313   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7314   ins_pipe( ialu_reg );
7315 %}
7316 
7317 instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
7318 %{
7319   match(Set dst (AddL dst (LoadL src)));
7320   effect(KILL cr);
7321 
7322   ins_cost(125); // XXX
7323   format %{ "addq    $dst, $src\t# long" %}
7324   opcode(0x03);
7325   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
7326   ins_pipe(ialu_reg_mem);
7327 %}
7328 
7329 instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
7330 %{
7331   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7332   effect(KILL cr);
7333 
7334   ins_cost(150); // XXX
7335   format %{ "addq    $dst, $src\t# long" %}
7336   opcode(0x01); /* Opcode 01 /r */
7337   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
7338   ins_pipe(ialu_mem_reg);
7339 %}
7340 
7341 instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
7342 %{
7343   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7344   effect(KILL cr);
7345 
7346   ins_cost(125); // XXX
7347   format %{ "addq    $dst, $src\t# long" %}
7348   opcode(0x81); /* Opcode 81 /0 id */
7349   ins_encode(REX_mem_wide(dst),
7350              OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7351   ins_pipe(ialu_mem_imm);
7352 %}
7353 
7354 instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
7355 %{
7356   predicate(UseIncDec);
7357   match(Set dst (AddL dst src));
7358   effect(KILL cr);
7359 
7360   format %{ "incq    $dst\t# long" %}
7361   opcode(0xFF, 0x00); // FF /0
7362   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7363   ins_pipe(ialu_reg);
7364 %}
7365 
7366 instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
7367 %{
7368   predicate(UseIncDec);
7369   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7370   effect(KILL cr);
7371 
7372   ins_cost(125); // XXX
7373   format %{ "incq    $dst\t# long" %}
7374   opcode(0xFF); /* Opcode FF /0 */
7375   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x00, dst));
7376   ins_pipe(ialu_mem_imm);
7377 %}
7378 
7379 // XXX why does that use AddL
7380 instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
7381 %{
7382   predicate(UseIncDec);
7383   match(Set dst (AddL dst src));
7384   effect(KILL cr);
7385 
7386   format %{ "decq    $dst\t# long" %}
7387   opcode(0xFF, 0x01); // FF /1
7388   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7389   ins_pipe(ialu_reg);
7390 %}
7391 
7392 // XXX why does that use AddL
7393 instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
7394 %{
7395   predicate(UseIncDec);
7396   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7397   effect(KILL cr);
7398 
7399   ins_cost(125); // XXX
7400   format %{ "decq    $dst\t# long" %}
7401   opcode(0xFF); /* Opcode FF /1 */
7402   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x01, dst));
7403   ins_pipe(ialu_mem_imm);
7404 %}
7405 
7406 instruct leaL_rReg_immL(rRegL dst, rRegL src0, immL32 src1)
7407 %{
7408   match(Set dst (AddL src0 src1));
7409 
7410   ins_cost(110);
7411   format %{ "leaq    $dst, [$src0 + $src1]\t# long" %}
7412   opcode(0x8D); /* 0x8D /r */
7413   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7414   ins_pipe(ialu_reg_reg);
7415 %}
7416 
7417 instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
7418 %{
7419   match(Set dst (AddP dst src));
7420   effect(KILL cr);
7421 
7422   format %{ "addq    $dst, $src\t# ptr" %}
7423   opcode(0x03);
7424   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7425   ins_pipe(ialu_reg_reg);
7426 %}
7427 
7428 instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
7429 %{
7430   match(Set dst (AddP dst src));
7431   effect(KILL cr);
7432 
7433   format %{ "addq    $dst, $src\t# ptr" %}
7434   opcode(0x81, 0x00); /* /0 id */
7435   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7436   ins_pipe( ialu_reg );
7437 %}
7438 
7439 // XXX addP mem ops ????
7440 
7441 instruct leaP_rReg_imm(rRegP dst, rRegP src0, immL32 src1)
7442 %{
7443   match(Set dst (AddP src0 src1));
7444 
7445   ins_cost(110);
7446   format %{ "leaq    $dst, [$src0 + $src1]\t# ptr" %}
7447   opcode(0x8D); /* 0x8D /r */
7448   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1));// XXX
7449   ins_pipe(ialu_reg_reg);
7450 %}
7451 
7452 instruct checkCastPP(rRegP dst)
7453 %{
7454   match(Set dst (CheckCastPP dst));
7455 
7456   size(0);
7457   format %{ "# checkcastPP of $dst" %}
7458   ins_encode(/* empty encoding */);
7459   ins_pipe(empty);
7460 %}
7461 
7462 instruct castPP(rRegP dst)
7463 %{
7464   match(Set dst (CastPP dst));
7465 
7466   size(0);
7467   format %{ "# castPP of $dst" %}
7468   ins_encode(/* empty encoding */);
7469   ins_pipe(empty);
7470 %}
7471 
7472 instruct castII(rRegI dst)
7473 %{
7474   match(Set dst (CastII dst));
7475 
7476   size(0);
7477   format %{ "# castII of $dst" %}
7478   ins_encode(/* empty encoding */);
7479   ins_cost(0);
7480   ins_pipe(empty);
7481 %}
7482 
7483 // LoadP-locked same as a regular LoadP when used with compare-swap
7484 instruct loadPLocked(rRegP dst, memory mem)
7485 %{
7486   match(Set dst (LoadPLocked mem));
7487 
7488   ins_cost(125); // XXX
7489   format %{ "movq    $dst, $mem\t# ptr locked" %}
7490   opcode(0x8B);
7491   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
7492   ins_pipe(ialu_reg_mem); // XXX
7493 %}
7494 
7495 // LoadL-locked - same as a regular LoadL when used with compare-swap
7496 instruct loadLLocked(rRegL dst, memory mem)
7497 %{
7498   match(Set dst (LoadLLocked mem));
7499 
7500   ins_cost(125); // XXX
7501   format %{ "movq    $dst, $mem\t# long locked" %}
7502   opcode(0x8B);
7503   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
7504   ins_pipe(ialu_reg_mem); // XXX
7505 %}
7506 
7507 // Conditional-store of the updated heap-top.
7508 // Used during allocation of the shared heap.
7509 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7510 
7511 instruct storePConditional(memory heap_top_ptr,
7512                            rax_RegP oldval, rRegP newval,
7513                            rFlagsReg cr)
7514 %{
7515   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7516 
7517   format %{ "cmpxchgq $heap_top_ptr, $newval\t# (ptr) "
7518             "If rax == $heap_top_ptr then store $newval into $heap_top_ptr" %}
7519   opcode(0x0F, 0xB1);
7520   ins_encode(lock_prefix,
7521              REX_reg_mem_wide(newval, heap_top_ptr),
7522              OpcP, OpcS,
7523              reg_mem(newval, heap_top_ptr));
7524   ins_pipe(pipe_cmpxchg);
7525 %}
7526 
7527 // Conditional-store of an int value.
7528 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7529 instruct storeIConditional(memory mem, rax_RegI oldval, rRegI newval, rFlagsReg cr)
7530 %{
7531   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7532   effect(KILL oldval);
7533 
7534   format %{ "cmpxchgl $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7535   opcode(0x0F, 0xB1);
7536   ins_encode(lock_prefix,
7537              REX_reg_mem(newval, mem),
7538              OpcP, OpcS,
7539              reg_mem(newval, mem));
7540   ins_pipe(pipe_cmpxchg);
7541 %}
7542 
7543 // Conditional-store of a long value.
7544 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7545 instruct storeLConditional(memory mem, rax_RegL oldval, rRegL newval, rFlagsReg cr)
7546 %{
7547   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7548   effect(KILL oldval);
7549 
7550   format %{ "cmpxchgq $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7551   opcode(0x0F, 0xB1);
7552   ins_encode(lock_prefix,
7553              REX_reg_mem_wide(newval, mem),
7554              OpcP, OpcS,
7555              reg_mem(newval, mem));
7556   ins_pipe(pipe_cmpxchg);
7557 %}
7558 
7559 
7560 // XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7561 instruct compareAndSwapP(rRegI res,
7562                          memory mem_ptr,
7563                          rax_RegP oldval, rRegP newval,
7564                          rFlagsReg cr)
7565 %{
7566   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7567   effect(KILL cr, KILL oldval);
7568 
7569   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7570             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7571             "sete    $res\n\t"
7572             "movzbl  $res, $res" %}
7573   opcode(0x0F, 0xB1);
7574   ins_encode(lock_prefix,
7575              REX_reg_mem_wide(newval, mem_ptr),
7576              OpcP, OpcS,
7577              reg_mem(newval, mem_ptr),
7578              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7579              REX_reg_breg(res, res), // movzbl
7580              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7581   ins_pipe( pipe_cmpxchg );
7582 %}
7583 
7584 instruct compareAndSwapL(rRegI res,
7585                          memory mem_ptr,
7586                          rax_RegL oldval, rRegL newval,
7587                          rFlagsReg cr)
7588 %{
7589   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7590   effect(KILL cr, KILL oldval);
7591 
7592   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7593             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7594             "sete    $res\n\t"
7595             "movzbl  $res, $res" %}
7596   opcode(0x0F, 0xB1);
7597   ins_encode(lock_prefix,
7598              REX_reg_mem_wide(newval, mem_ptr),
7599              OpcP, OpcS,
7600              reg_mem(newval, mem_ptr),
7601              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7602              REX_reg_breg(res, res), // movzbl
7603              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7604   ins_pipe( pipe_cmpxchg );
7605 %}
7606 
7607 instruct compareAndSwapI(rRegI res,
7608                          memory mem_ptr,
7609                          rax_RegI oldval, rRegI newval,
7610                          rFlagsReg cr)
7611 %{
7612   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7613   effect(KILL cr, KILL oldval);
7614 
7615   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7616             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7617             "sete    $res\n\t"
7618             "movzbl  $res, $res" %}
7619   opcode(0x0F, 0xB1);
7620   ins_encode(lock_prefix,
7621              REX_reg_mem(newval, mem_ptr),
7622              OpcP, OpcS,
7623              reg_mem(newval, mem_ptr),
7624              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7625              REX_reg_breg(res, res), // movzbl
7626              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7627   ins_pipe( pipe_cmpxchg );
7628 %}
7629 
7630 
7631 instruct compareAndSwapN(rRegI res,
7632                           memory mem_ptr,
7633                           rax_RegN oldval, rRegN newval,
7634                           rFlagsReg cr) %{
7635   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7636   effect(KILL cr, KILL oldval);
7637 
7638   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7639             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7640             "sete    $res\n\t"
7641             "movzbl  $res, $res" %}
7642   opcode(0x0F, 0xB1);
7643   ins_encode(lock_prefix,
7644              REX_reg_mem(newval, mem_ptr),
7645              OpcP, OpcS,
7646              reg_mem(newval, mem_ptr),
7647              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7648              REX_reg_breg(res, res), // movzbl
7649              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7650   ins_pipe( pipe_cmpxchg );
7651 %}
7652 
7653 //----------Subtraction Instructions-------------------------------------------
7654 
7655 // Integer Subtraction Instructions
7656 instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7657 %{
7658   match(Set dst (SubI dst src));
7659   effect(KILL cr);
7660 
7661   format %{ "subl    $dst, $src\t# int" %}
7662   opcode(0x2B);
7663   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
7664   ins_pipe(ialu_reg_reg);
7665 %}
7666 
7667 instruct subI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
7668 %{
7669   match(Set dst (SubI dst src));
7670   effect(KILL cr);
7671 
7672   format %{ "subl    $dst, $src\t# int" %}
7673   opcode(0x81, 0x05);  /* Opcode 81 /5 */
7674   ins_encode(OpcSErm(dst, src), Con8or32(src));
7675   ins_pipe(ialu_reg);
7676 %}
7677 
7678 instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
7679 %{
7680   match(Set dst (SubI dst (LoadI src)));
7681   effect(KILL cr);
7682 
7683   ins_cost(125);
7684   format %{ "subl    $dst, $src\t# int" %}
7685   opcode(0x2B);
7686   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
7687   ins_pipe(ialu_reg_mem);
7688 %}
7689 
7690 instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
7691 %{
7692   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7693   effect(KILL cr);
7694 
7695   ins_cost(150);
7696   format %{ "subl    $dst, $src\t# int" %}
7697   opcode(0x29); /* Opcode 29 /r */
7698   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
7699   ins_pipe(ialu_mem_reg);
7700 %}
7701 
7702 instruct subI_mem_imm(memory dst, immI src, rFlagsReg cr)
7703 %{
7704   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7705   effect(KILL cr);
7706 
7707   ins_cost(125); // XXX
7708   format %{ "subl    $dst, $src\t# int" %}
7709   opcode(0x81); /* Opcode 81 /5 id */
7710   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
7711   ins_pipe(ialu_mem_imm);
7712 %}
7713 
7714 instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7715 %{
7716   match(Set dst (SubL dst src));
7717   effect(KILL cr);
7718 
7719   format %{ "subq    $dst, $src\t# long" %}
7720   opcode(0x2B);
7721   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7722   ins_pipe(ialu_reg_reg);
7723 %}
7724 
7725 instruct subL_rReg_imm(rRegI dst, immL32 src, rFlagsReg cr)
7726 %{
7727   match(Set dst (SubL dst src));
7728   effect(KILL cr);
7729 
7730   format %{ "subq    $dst, $src\t# long" %}
7731   opcode(0x81, 0x05);  /* Opcode 81 /5 */
7732   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7733   ins_pipe(ialu_reg);
7734 %}
7735 
7736 instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
7737 %{
7738   match(Set dst (SubL dst (LoadL src)));
7739   effect(KILL cr);
7740 
7741   ins_cost(125);
7742   format %{ "subq    $dst, $src\t# long" %}
7743   opcode(0x2B);
7744   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
7745   ins_pipe(ialu_reg_mem);
7746 %}
7747 
7748 instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
7749 %{
7750   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
7751   effect(KILL cr);
7752 
7753   ins_cost(150);
7754   format %{ "subq    $dst, $src\t# long" %}
7755   opcode(0x29); /* Opcode 29 /r */
7756   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
7757   ins_pipe(ialu_mem_reg);
7758 %}
7759 
7760 instruct subL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
7761 %{
7762   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
7763   effect(KILL cr);
7764 
7765   ins_cost(125); // XXX
7766   format %{ "subq    $dst, $src\t# long" %}
7767   opcode(0x81); /* Opcode 81 /5 id */
7768   ins_encode(REX_mem_wide(dst),
7769              OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
7770   ins_pipe(ialu_mem_imm);
7771 %}
7772 
7773 // Subtract from a pointer
7774 // XXX hmpf???
7775 instruct subP_rReg(rRegP dst, rRegI src, immI0 zero, rFlagsReg cr)
7776 %{
7777   match(Set dst (AddP dst (SubI zero src)));
7778   effect(KILL cr);
7779 
7780   format %{ "subq    $dst, $src\t# ptr - int" %}
7781   opcode(0x2B);
7782   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7783   ins_pipe(ialu_reg_reg);
7784 %}
7785 
7786 instruct negI_rReg(rRegI dst, immI0 zero, rFlagsReg cr)
7787 %{
7788   match(Set dst (SubI zero dst));
7789   effect(KILL cr);
7790 
7791   format %{ "negl    $dst\t# int" %}
7792   opcode(0xF7, 0x03);  // Opcode F7 /3
7793   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7794   ins_pipe(ialu_reg);
7795 %}
7796 
7797 instruct negI_mem(memory dst, immI0 zero, rFlagsReg cr)
7798 %{
7799   match(Set dst (StoreI dst (SubI zero (LoadI dst))));
7800   effect(KILL cr);
7801 
7802   format %{ "negl    $dst\t# int" %}
7803   opcode(0xF7, 0x03);  // Opcode F7 /3
7804   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
7805   ins_pipe(ialu_reg);
7806 %}
7807 
7808 instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
7809 %{
7810   match(Set dst (SubL zero dst));
7811   effect(KILL cr);
7812 
7813   format %{ "negq    $dst\t# long" %}
7814   opcode(0xF7, 0x03);  // Opcode F7 /3
7815   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7816   ins_pipe(ialu_reg);
7817 %}
7818 
7819 instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
7820 %{
7821   match(Set dst (StoreL dst (SubL zero (LoadL dst))));
7822   effect(KILL cr);
7823 
7824   format %{ "negq    $dst\t# long" %}
7825   opcode(0xF7, 0x03);  // Opcode F7 /3
7826   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
7827   ins_pipe(ialu_reg);
7828 %}
7829 
7830 
7831 //----------Multiplication/Division Instructions-------------------------------
7832 // Integer Multiplication Instructions
7833 // Multiply Register
7834 
7835 instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7836 %{
7837   match(Set dst (MulI dst src));
7838   effect(KILL cr);
7839 
7840   ins_cost(300);
7841   format %{ "imull   $dst, $src\t# int" %}
7842   opcode(0x0F, 0xAF);
7843   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
7844   ins_pipe(ialu_reg_reg_alu0);
7845 %}
7846 
7847 instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
7848 %{
7849   match(Set dst (MulI src imm));
7850   effect(KILL cr);
7851 
7852   ins_cost(300);
7853   format %{ "imull   $dst, $src, $imm\t# int" %}
7854   opcode(0x69); /* 69 /r id */
7855   ins_encode(REX_reg_reg(dst, src),
7856              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
7857   ins_pipe(ialu_reg_reg_alu0);
7858 %}
7859 
7860 instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
7861 %{
7862   match(Set dst (MulI dst (LoadI src)));
7863   effect(KILL cr);
7864 
7865   ins_cost(350);
7866   format %{ "imull   $dst, $src\t# int" %}
7867   opcode(0x0F, 0xAF);
7868   ins_encode(REX_reg_mem(dst, src), OpcP, OpcS, reg_mem(dst, src));
7869   ins_pipe(ialu_reg_mem_alu0);
7870 %}
7871 
7872 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
7873 %{
7874   match(Set dst (MulI (LoadI src) imm));
7875   effect(KILL cr);
7876 
7877   ins_cost(300);
7878   format %{ "imull   $dst, $src, $imm\t# int" %}
7879   opcode(0x69); /* 69 /r id */
7880   ins_encode(REX_reg_mem(dst, src),
7881              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
7882   ins_pipe(ialu_reg_mem_alu0);
7883 %}
7884 
7885 instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7886 %{
7887   match(Set dst (MulL dst src));
7888   effect(KILL cr);
7889 
7890   ins_cost(300);
7891   format %{ "imulq   $dst, $src\t# long" %}
7892   opcode(0x0F, 0xAF);
7893   ins_encode(REX_reg_reg_wide(dst, src), OpcP, OpcS, reg_reg(dst, src));
7894   ins_pipe(ialu_reg_reg_alu0);
7895 %}
7896 
7897 instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
7898 %{
7899   match(Set dst (MulL src imm));
7900   effect(KILL cr);
7901 
7902   ins_cost(300);
7903   format %{ "imulq   $dst, $src, $imm\t# long" %}
7904   opcode(0x69); /* 69 /r id */
7905   ins_encode(REX_reg_reg_wide(dst, src),
7906              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
7907   ins_pipe(ialu_reg_reg_alu0);
7908 %}
7909 
7910 instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
7911 %{
7912   match(Set dst (MulL dst (LoadL src)));
7913   effect(KILL cr);
7914 
7915   ins_cost(350);
7916   format %{ "imulq   $dst, $src\t# long" %}
7917   opcode(0x0F, 0xAF);
7918   ins_encode(REX_reg_mem_wide(dst, src), OpcP, OpcS, reg_mem(dst, src));
7919   ins_pipe(ialu_reg_mem_alu0);
7920 %}
7921 
7922 instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
7923 %{
7924   match(Set dst (MulL (LoadL src) imm));
7925   effect(KILL cr);
7926 
7927   ins_cost(300);
7928   format %{ "imulq   $dst, $src, $imm\t# long" %}
7929   opcode(0x69); /* 69 /r id */
7930   ins_encode(REX_reg_mem_wide(dst, src),
7931              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
7932   ins_pipe(ialu_reg_mem_alu0);
7933 %}
7934 
7935 instruct mulHiL_rReg(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
7936 %{
7937   match(Set dst (MulHiL src rax));
7938   effect(USE_KILL rax, KILL cr);
7939 
7940   ins_cost(300);
7941   format %{ "imulq   RDX:RAX, RAX, $src\t# mulhi" %}
7942   opcode(0xF7, 0x5); /* Opcode F7 /5 */
7943   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
7944   ins_pipe(ialu_reg_reg_alu0);
7945 %}
7946 
7947 instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
7948                    rFlagsReg cr)
7949 %{
7950   match(Set rax (DivI rax div));
7951   effect(KILL rdx, KILL cr);
7952 
7953   ins_cost(30*100+10*100); // XXX
7954   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
7955             "jne,s   normal\n\t"
7956             "xorl    rdx, rdx\n\t"
7957             "cmpl    $div, -1\n\t"
7958             "je,s    done\n"
7959     "normal: cdql\n\t"
7960             "idivl   $div\n"
7961     "done:"        %}
7962   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7963   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
7964   ins_pipe(ialu_reg_reg_alu0);
7965 %}
7966 
7967 instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
7968                    rFlagsReg cr)
7969 %{
7970   match(Set rax (DivL rax div));
7971   effect(KILL rdx, KILL cr);
7972 
7973   ins_cost(30*100+10*100); // XXX
7974   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
7975             "cmpq    rax, rdx\n\t"
7976             "jne,s   normal\n\t"
7977             "xorl    rdx, rdx\n\t"
7978             "cmpq    $div, -1\n\t"
7979             "je,s    done\n"
7980     "normal: cdqq\n\t"
7981             "idivq   $div\n"
7982     "done:"        %}
7983   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7984   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
7985   ins_pipe(ialu_reg_reg_alu0);
7986 %}
7987 
7988 // Integer DIVMOD with Register, both quotient and mod results
7989 instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
7990                              rFlagsReg cr)
7991 %{
7992   match(DivModI rax div);
7993   effect(KILL cr);
7994 
7995   ins_cost(30*100+10*100); // XXX
7996   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
7997             "jne,s   normal\n\t"
7998             "xorl    rdx, rdx\n\t"
7999             "cmpl    $div, -1\n\t"
8000             "je,s    done\n"
8001     "normal: cdql\n\t"
8002             "idivl   $div\n"
8003     "done:"        %}
8004   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8005   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8006   ins_pipe(pipe_slow);
8007 %}
8008 
8009 // Long DIVMOD with Register, both quotient and mod results
8010 instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
8011                              rFlagsReg cr)
8012 %{
8013   match(DivModL rax div);
8014   effect(KILL cr);
8015 
8016   ins_cost(30*100+10*100); // XXX
8017   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
8018             "cmpq    rax, rdx\n\t"
8019             "jne,s   normal\n\t"
8020             "xorl    rdx, rdx\n\t"
8021             "cmpq    $div, -1\n\t"
8022             "je,s    done\n"
8023     "normal: cdqq\n\t"
8024             "idivq   $div\n"
8025     "done:"        %}
8026   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8027   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8028   ins_pipe(pipe_slow);
8029 %}
8030 
8031 //----------- DivL-By-Constant-Expansions--------------------------------------
8032 // DivI cases are handled by the compiler
8033 
8034 // Magic constant, reciprocal of 10
8035 instruct loadConL_0x6666666666666667(rRegL dst)
8036 %{
8037   effect(DEF dst);
8038 
8039   format %{ "movq    $dst, #0x666666666666667\t# Used in div-by-10" %}
8040   ins_encode(load_immL(dst, 0x6666666666666667));
8041   ins_pipe(ialu_reg);
8042 %}
8043 
8044 instruct mul_hi(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
8045 %{
8046   effect(DEF dst, USE src, USE_KILL rax, KILL cr);
8047 
8048   format %{ "imulq   rdx:rax, rax, $src\t# Used in div-by-10" %}
8049   opcode(0xF7, 0x5); /* Opcode F7 /5 */
8050   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
8051   ins_pipe(ialu_reg_reg_alu0);
8052 %}
8053 
8054 instruct sarL_rReg_63(rRegL dst, rFlagsReg cr)
8055 %{
8056   effect(USE_DEF dst, KILL cr);
8057 
8058   format %{ "sarq    $dst, #63\t# Used in div-by-10" %}
8059   opcode(0xC1, 0x7); /* C1 /7 ib */
8060   ins_encode(reg_opc_imm_wide(dst, 0x3F));
8061   ins_pipe(ialu_reg);
8062 %}
8063 
8064 instruct sarL_rReg_2(rRegL dst, rFlagsReg cr)
8065 %{
8066   effect(USE_DEF dst, KILL cr);
8067 
8068   format %{ "sarq    $dst, #2\t# Used in div-by-10" %}
8069   opcode(0xC1, 0x7); /* C1 /7 ib */
8070   ins_encode(reg_opc_imm_wide(dst, 0x2));
8071   ins_pipe(ialu_reg);
8072 %}
8073 
8074 instruct divL_10(rdx_RegL dst, no_rax_RegL src, immL10 div)
8075 %{
8076   match(Set dst (DivL src div));
8077 
8078   ins_cost((5+8)*100);
8079   expand %{
8080     rax_RegL rax;                     // Killed temp
8081     rFlagsReg cr;                     // Killed
8082     loadConL_0x6666666666666667(rax); // movq  rax, 0x6666666666666667
8083     mul_hi(dst, src, rax, cr);        // mulq  rdx:rax <= rax * $src
8084     sarL_rReg_63(src, cr);            // sarq  src, 63
8085     sarL_rReg_2(dst, cr);             // sarq  rdx, 2
8086     subL_rReg(dst, src, cr);          // subl  rdx, src
8087   %}
8088 %}
8089 
8090 //-----------------------------------------------------------------------------
8091 
8092 instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
8093                    rFlagsReg cr)
8094 %{
8095   match(Set rdx (ModI rax div));
8096   effect(KILL rax, KILL cr);
8097 
8098   ins_cost(300); // XXX
8099   format %{ "cmpl    rax, 0x80000000\t# irem\n\t"
8100             "jne,s   normal\n\t"
8101             "xorl    rdx, rdx\n\t"
8102             "cmpl    $div, -1\n\t"
8103             "je,s    done\n"
8104     "normal: cdql\n\t"
8105             "idivl   $div\n"
8106     "done:"        %}
8107   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8108   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8109   ins_pipe(ialu_reg_reg_alu0);
8110 %}
8111 
8112 instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
8113                    rFlagsReg cr)
8114 %{
8115   match(Set rdx (ModL rax div));
8116   effect(KILL rax, KILL cr);
8117 
8118   ins_cost(300); // XXX
8119   format %{ "movq    rdx, 0x8000000000000000\t# lrem\n\t"
8120             "cmpq    rax, rdx\n\t"
8121             "jne,s   normal\n\t"
8122             "xorl    rdx, rdx\n\t"
8123             "cmpq    $div, -1\n\t"
8124             "je,s    done\n"
8125     "normal: cdqq\n\t"
8126             "idivq   $div\n"
8127     "done:"        %}
8128   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8129   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8130   ins_pipe(ialu_reg_reg_alu0);
8131 %}
8132 
8133 // Integer Shift Instructions
8134 // Shift Left by one
8135 instruct salI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8136 %{
8137   match(Set dst (LShiftI dst shift));
8138   effect(KILL cr);
8139 
8140   format %{ "sall    $dst, $shift" %}
8141   opcode(0xD1, 0x4); /* D1 /4 */
8142   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8143   ins_pipe(ialu_reg);
8144 %}
8145 
8146 // Shift Left by one
8147 instruct salI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8148 %{
8149   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8150   effect(KILL cr);
8151 
8152   format %{ "sall    $dst, $shift\t" %}
8153   opcode(0xD1, 0x4); /* D1 /4 */
8154   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8155   ins_pipe(ialu_mem_imm);
8156 %}
8157 
8158 // Shift Left by 8-bit immediate
8159 instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8160 %{
8161   match(Set dst (LShiftI dst shift));
8162   effect(KILL cr);
8163 
8164   format %{ "sall    $dst, $shift" %}
8165   opcode(0xC1, 0x4); /* C1 /4 ib */
8166   ins_encode(reg_opc_imm(dst, shift));
8167   ins_pipe(ialu_reg);
8168 %}
8169 
8170 // Shift Left by 8-bit immediate
8171 instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8172 %{
8173   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8174   effect(KILL cr);
8175 
8176   format %{ "sall    $dst, $shift" %}
8177   opcode(0xC1, 0x4); /* C1 /4 ib */
8178   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8179   ins_pipe(ialu_mem_imm);
8180 %}
8181 
8182 // Shift Left by variable
8183 instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8184 %{
8185   match(Set dst (LShiftI dst shift));
8186   effect(KILL cr);
8187 
8188   format %{ "sall    $dst, $shift" %}
8189   opcode(0xD3, 0x4); /* D3 /4 */
8190   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8191   ins_pipe(ialu_reg_reg);
8192 %}
8193 
8194 // Shift Left by variable
8195 instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8196 %{
8197   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8198   effect(KILL cr);
8199 
8200   format %{ "sall    $dst, $shift" %}
8201   opcode(0xD3, 0x4); /* D3 /4 */
8202   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8203   ins_pipe(ialu_mem_reg);
8204 %}
8205 
8206 // Arithmetic shift right by one
8207 instruct sarI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8208 %{
8209   match(Set dst (RShiftI dst shift));
8210   effect(KILL cr);
8211 
8212   format %{ "sarl    $dst, $shift" %}
8213   opcode(0xD1, 0x7); /* D1 /7 */
8214   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8215   ins_pipe(ialu_reg);
8216 %}
8217 
8218 // Arithmetic shift right by one
8219 instruct sarI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8220 %{
8221   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8222   effect(KILL cr);
8223 
8224   format %{ "sarl    $dst, $shift" %}
8225   opcode(0xD1, 0x7); /* D1 /7 */
8226   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8227   ins_pipe(ialu_mem_imm);
8228 %}
8229 
8230 // Arithmetic Shift Right by 8-bit immediate
8231 instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8232 %{
8233   match(Set dst (RShiftI dst shift));
8234   effect(KILL cr);
8235 
8236   format %{ "sarl    $dst, $shift" %}
8237   opcode(0xC1, 0x7); /* C1 /7 ib */
8238   ins_encode(reg_opc_imm(dst, shift));
8239   ins_pipe(ialu_mem_imm);
8240 %}
8241 
8242 // Arithmetic Shift Right by 8-bit immediate
8243 instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8244 %{
8245   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8246   effect(KILL cr);
8247 
8248   format %{ "sarl    $dst, $shift" %}
8249   opcode(0xC1, 0x7); /* C1 /7 ib */
8250   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8251   ins_pipe(ialu_mem_imm);
8252 %}
8253 
8254 // Arithmetic Shift Right by variable
8255 instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8256 %{
8257   match(Set dst (RShiftI dst shift));
8258   effect(KILL cr);
8259 
8260   format %{ "sarl    $dst, $shift" %}
8261   opcode(0xD3, 0x7); /* D3 /7 */
8262   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8263   ins_pipe(ialu_reg_reg);
8264 %}
8265 
8266 // Arithmetic Shift Right by variable
8267 instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8268 %{
8269   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8270   effect(KILL cr);
8271 
8272   format %{ "sarl    $dst, $shift" %}
8273   opcode(0xD3, 0x7); /* D3 /7 */
8274   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8275   ins_pipe(ialu_mem_reg);
8276 %}
8277 
8278 // Logical shift right by one
8279 instruct shrI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8280 %{
8281   match(Set dst (URShiftI dst shift));
8282   effect(KILL cr);
8283 
8284   format %{ "shrl    $dst, $shift" %}
8285   opcode(0xD1, 0x5); /* D1 /5 */
8286   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8287   ins_pipe(ialu_reg);
8288 %}
8289 
8290 // Logical shift right by one
8291 instruct shrI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8292 %{
8293   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8294   effect(KILL cr);
8295 
8296   format %{ "shrl    $dst, $shift" %}
8297   opcode(0xD1, 0x5); /* D1 /5 */
8298   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8299   ins_pipe(ialu_mem_imm);
8300 %}
8301 
8302 // Logical Shift Right by 8-bit immediate
8303 instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8304 %{
8305   match(Set dst (URShiftI dst shift));
8306   effect(KILL cr);
8307 
8308   format %{ "shrl    $dst, $shift" %}
8309   opcode(0xC1, 0x5); /* C1 /5 ib */
8310   ins_encode(reg_opc_imm(dst, shift));
8311   ins_pipe(ialu_reg);
8312 %}
8313 
8314 // Logical Shift Right by 8-bit immediate
8315 instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8316 %{
8317   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8318   effect(KILL cr);
8319 
8320   format %{ "shrl    $dst, $shift" %}
8321   opcode(0xC1, 0x5); /* C1 /5 ib */
8322   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8323   ins_pipe(ialu_mem_imm);
8324 %}
8325 
8326 // Logical Shift Right by variable
8327 instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8328 %{
8329   match(Set dst (URShiftI dst shift));
8330   effect(KILL cr);
8331 
8332   format %{ "shrl    $dst, $shift" %}
8333   opcode(0xD3, 0x5); /* D3 /5 */
8334   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8335   ins_pipe(ialu_reg_reg);
8336 %}
8337 
8338 // Logical Shift Right by variable
8339 instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8340 %{
8341   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8342   effect(KILL cr);
8343 
8344   format %{ "shrl    $dst, $shift" %}
8345   opcode(0xD3, 0x5); /* D3 /5 */
8346   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8347   ins_pipe(ialu_mem_reg);
8348 %}
8349 
8350 // Long Shift Instructions
8351 // Shift Left by one
8352 instruct salL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8353 %{
8354   match(Set dst (LShiftL dst shift));
8355   effect(KILL cr);
8356 
8357   format %{ "salq    $dst, $shift" %}
8358   opcode(0xD1, 0x4); /* D1 /4 */
8359   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8360   ins_pipe(ialu_reg);
8361 %}
8362 
8363 // Shift Left by one
8364 instruct salL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8365 %{
8366   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8367   effect(KILL cr);
8368 
8369   format %{ "salq    $dst, $shift" %}
8370   opcode(0xD1, 0x4); /* D1 /4 */
8371   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8372   ins_pipe(ialu_mem_imm);
8373 %}
8374 
8375 // Shift Left by 8-bit immediate
8376 instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8377 %{
8378   match(Set dst (LShiftL dst shift));
8379   effect(KILL cr);
8380 
8381   format %{ "salq    $dst, $shift" %}
8382   opcode(0xC1, 0x4); /* C1 /4 ib */
8383   ins_encode(reg_opc_imm_wide(dst, shift));
8384   ins_pipe(ialu_reg);
8385 %}
8386 
8387 // Shift Left by 8-bit immediate
8388 instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8389 %{
8390   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8391   effect(KILL cr);
8392 
8393   format %{ "salq    $dst, $shift" %}
8394   opcode(0xC1, 0x4); /* C1 /4 ib */
8395   ins_encode(REX_mem_wide(dst), OpcP,
8396              RM_opc_mem(secondary, dst), Con8or32(shift));
8397   ins_pipe(ialu_mem_imm);
8398 %}
8399 
8400 // Shift Left by variable
8401 instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8402 %{
8403   match(Set dst (LShiftL dst shift));
8404   effect(KILL cr);
8405 
8406   format %{ "salq    $dst, $shift" %}
8407   opcode(0xD3, 0x4); /* D3 /4 */
8408   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8409   ins_pipe(ialu_reg_reg);
8410 %}
8411 
8412 // Shift Left by variable
8413 instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8414 %{
8415   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8416   effect(KILL cr);
8417 
8418   format %{ "salq    $dst, $shift" %}
8419   opcode(0xD3, 0x4); /* D3 /4 */
8420   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8421   ins_pipe(ialu_mem_reg);
8422 %}
8423 
8424 // Arithmetic shift right by one
8425 instruct sarL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8426 %{
8427   match(Set dst (RShiftL dst shift));
8428   effect(KILL cr);
8429 
8430   format %{ "sarq    $dst, $shift" %}
8431   opcode(0xD1, 0x7); /* D1 /7 */
8432   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8433   ins_pipe(ialu_reg);
8434 %}
8435 
8436 // Arithmetic shift right by one
8437 instruct sarL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8438 %{
8439   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8440   effect(KILL cr);
8441 
8442   format %{ "sarq    $dst, $shift" %}
8443   opcode(0xD1, 0x7); /* D1 /7 */
8444   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8445   ins_pipe(ialu_mem_imm);
8446 %}
8447 
8448 // Arithmetic Shift Right by 8-bit immediate
8449 instruct sarL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8450 %{
8451   match(Set dst (RShiftL dst shift));
8452   effect(KILL cr);
8453 
8454   format %{ "sarq    $dst, $shift" %}
8455   opcode(0xC1, 0x7); /* C1 /7 ib */
8456   ins_encode(reg_opc_imm_wide(dst, shift));
8457   ins_pipe(ialu_mem_imm);
8458 %}
8459 
8460 // Arithmetic Shift Right by 8-bit immediate
8461 instruct sarL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8462 %{
8463   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8464   effect(KILL cr);
8465 
8466   format %{ "sarq    $dst, $shift" %}
8467   opcode(0xC1, 0x7); /* C1 /7 ib */
8468   ins_encode(REX_mem_wide(dst), OpcP,
8469              RM_opc_mem(secondary, dst), Con8or32(shift));
8470   ins_pipe(ialu_mem_imm);
8471 %}
8472 
8473 // Arithmetic Shift Right by variable
8474 instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8475 %{
8476   match(Set dst (RShiftL dst shift));
8477   effect(KILL cr);
8478 
8479   format %{ "sarq    $dst, $shift" %}
8480   opcode(0xD3, 0x7); /* D3 /7 */
8481   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8482   ins_pipe(ialu_reg_reg);
8483 %}
8484 
8485 // Arithmetic Shift Right by variable
8486 instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8487 %{
8488   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8489   effect(KILL cr);
8490 
8491   format %{ "sarq    $dst, $shift" %}
8492   opcode(0xD3, 0x7); /* D3 /7 */
8493   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8494   ins_pipe(ialu_mem_reg);
8495 %}
8496 
8497 // Logical shift right by one
8498 instruct shrL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8499 %{
8500   match(Set dst (URShiftL dst shift));
8501   effect(KILL cr);
8502 
8503   format %{ "shrq    $dst, $shift" %}
8504   opcode(0xD1, 0x5); /* D1 /5 */
8505   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst ));
8506   ins_pipe(ialu_reg);
8507 %}
8508 
8509 // Logical shift right by one
8510 instruct shrL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8511 %{
8512   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8513   effect(KILL cr);
8514 
8515   format %{ "shrq    $dst, $shift" %}
8516   opcode(0xD1, 0x5); /* D1 /5 */
8517   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8518   ins_pipe(ialu_mem_imm);
8519 %}
8520 
8521 // Logical Shift Right by 8-bit immediate
8522 instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8523 %{
8524   match(Set dst (URShiftL dst shift));
8525   effect(KILL cr);
8526 
8527   format %{ "shrq    $dst, $shift" %}
8528   opcode(0xC1, 0x5); /* C1 /5 ib */
8529   ins_encode(reg_opc_imm_wide(dst, shift));
8530   ins_pipe(ialu_reg);
8531 %}
8532 
8533 
8534 // Logical Shift Right by 8-bit immediate
8535 instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8536 %{
8537   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8538   effect(KILL cr);
8539 
8540   format %{ "shrq    $dst, $shift" %}
8541   opcode(0xC1, 0x5); /* C1 /5 ib */
8542   ins_encode(REX_mem_wide(dst), OpcP,
8543              RM_opc_mem(secondary, dst), Con8or32(shift));
8544   ins_pipe(ialu_mem_imm);
8545 %}
8546 
8547 // Logical Shift Right by variable
8548 instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8549 %{
8550   match(Set dst (URShiftL dst shift));
8551   effect(KILL cr);
8552 
8553   format %{ "shrq    $dst, $shift" %}
8554   opcode(0xD3, 0x5); /* D3 /5 */
8555   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8556   ins_pipe(ialu_reg_reg);
8557 %}
8558 
8559 // Logical Shift Right by variable
8560 instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8561 %{
8562   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8563   effect(KILL cr);
8564 
8565   format %{ "shrq    $dst, $shift" %}
8566   opcode(0xD3, 0x5); /* D3 /5 */
8567   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8568   ins_pipe(ialu_mem_reg);
8569 %}
8570 
8571 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8572 // This idiom is used by the compiler for the i2b bytecode.
8573 instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
8574 %{
8575   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8576 
8577   format %{ "movsbl  $dst, $src\t# i2b" %}
8578   opcode(0x0F, 0xBE);
8579   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8580   ins_pipe(ialu_reg_reg);
8581 %}
8582 
8583 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8584 // This idiom is used by the compiler the i2s bytecode.
8585 instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
8586 %{
8587   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8588 
8589   format %{ "movswl  $dst, $src\t# i2s" %}
8590   opcode(0x0F, 0xBF);
8591   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8592   ins_pipe(ialu_reg_reg);
8593 %}
8594 
8595 // ROL/ROR instructions
8596 
8597 // ROL expand
8598 instruct rolI_rReg_imm1(rRegI dst, rFlagsReg cr) %{
8599   effect(KILL cr, USE_DEF dst);
8600 
8601   format %{ "roll    $dst" %}
8602   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
8603   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8604   ins_pipe(ialu_reg);
8605 %}
8606 
8607 instruct rolI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr) %{
8608   effect(USE_DEF dst, USE shift, KILL cr);
8609 
8610   format %{ "roll    $dst, $shift" %}
8611   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
8612   ins_encode( reg_opc_imm(dst, shift) );
8613   ins_pipe(ialu_reg);
8614 %}
8615 
8616 instruct rolI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
8617 %{
8618   effect(USE_DEF dst, USE shift, KILL cr);
8619 
8620   format %{ "roll    $dst, $shift" %}
8621   opcode(0xD3, 0x0); /* Opcode D3 /0 */
8622   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8623   ins_pipe(ialu_reg_reg);
8624 %}
8625 // end of ROL expand
8626 
8627 // Rotate Left by one
8628 instruct rolI_rReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
8629 %{
8630   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8631 
8632   expand %{
8633     rolI_rReg_imm1(dst, cr);
8634   %}
8635 %}
8636 
8637 // Rotate Left by 8-bit immediate
8638 instruct rolI_rReg_i8(rRegI dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
8639 %{
8640   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8641   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8642 
8643   expand %{
8644     rolI_rReg_imm8(dst, lshift, cr);
8645   %}
8646 %}
8647 
8648 // Rotate Left by variable
8649 instruct rolI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8650 %{
8651   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8652 
8653   expand %{
8654     rolI_rReg_CL(dst, shift, cr);
8655   %}
8656 %}
8657 
8658 // Rotate Left by variable
8659 instruct rolI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
8660 %{
8661   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8662 
8663   expand %{
8664     rolI_rReg_CL(dst, shift, cr);
8665   %}
8666 %}
8667 
8668 // ROR expand
8669 instruct rorI_rReg_imm1(rRegI dst, rFlagsReg cr)
8670 %{
8671   effect(USE_DEF dst, KILL cr);
8672 
8673   format %{ "rorl    $dst" %}
8674   opcode(0xD1, 0x1); /* D1 /1 */
8675   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8676   ins_pipe(ialu_reg);
8677 %}
8678 
8679 instruct rorI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr)
8680 %{
8681   effect(USE_DEF dst, USE shift, KILL cr);
8682 
8683   format %{ "rorl    $dst, $shift" %}
8684   opcode(0xC1, 0x1); /* C1 /1 ib */
8685   ins_encode(reg_opc_imm(dst, shift));
8686   ins_pipe(ialu_reg);
8687 %}
8688 
8689 instruct rorI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
8690 %{
8691   effect(USE_DEF dst, USE shift, KILL cr);
8692 
8693   format %{ "rorl    $dst, $shift" %}
8694   opcode(0xD3, 0x1); /* D3 /1 */
8695   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8696   ins_pipe(ialu_reg_reg);
8697 %}
8698 // end of ROR expand
8699 
8700 // Rotate Right by one
8701 instruct rorI_rReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
8702 %{
8703   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8704 
8705   expand %{
8706     rorI_rReg_imm1(dst, cr);
8707   %}
8708 %}
8709 
8710 // Rotate Right by 8-bit immediate
8711 instruct rorI_rReg_i8(rRegI dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
8712 %{
8713   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8714   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8715 
8716   expand %{
8717     rorI_rReg_imm8(dst, rshift, cr);
8718   %}
8719 %}
8720 
8721 // Rotate Right by variable
8722 instruct rorI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8723 %{
8724   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8725 
8726   expand %{
8727     rorI_rReg_CL(dst, shift, cr);
8728   %}
8729 %}
8730 
8731 // Rotate Right by variable
8732 instruct rorI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
8733 %{
8734   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8735 
8736   expand %{
8737     rorI_rReg_CL(dst, shift, cr);
8738   %}
8739 %}
8740 
8741 // for long rotate
8742 // ROL expand
8743 instruct rolL_rReg_imm1(rRegL dst, rFlagsReg cr) %{
8744   effect(USE_DEF dst, KILL cr);
8745 
8746   format %{ "rolq    $dst" %}
8747   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
8748   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8749   ins_pipe(ialu_reg);
8750 %}
8751 
8752 instruct rolL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr) %{
8753   effect(USE_DEF dst, USE shift, KILL cr);
8754 
8755   format %{ "rolq    $dst, $shift" %}
8756   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
8757   ins_encode( reg_opc_imm_wide(dst, shift) );
8758   ins_pipe(ialu_reg);
8759 %}
8760 
8761 instruct rolL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
8762 %{
8763   effect(USE_DEF dst, USE shift, KILL cr);
8764 
8765   format %{ "rolq    $dst, $shift" %}
8766   opcode(0xD3, 0x0); /* Opcode D3 /0 */
8767   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8768   ins_pipe(ialu_reg_reg);
8769 %}
8770 // end of ROL expand
8771 
8772 // Rotate Left by one
8773 instruct rolL_rReg_i1(rRegL dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
8774 %{
8775   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
8776 
8777   expand %{
8778     rolL_rReg_imm1(dst, cr);
8779   %}
8780 %}
8781 
8782 // Rotate Left by 8-bit immediate
8783 instruct rolL_rReg_i8(rRegL dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
8784 %{
8785   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
8786   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
8787 
8788   expand %{
8789     rolL_rReg_imm8(dst, lshift, cr);
8790   %}
8791 %}
8792 
8793 // Rotate Left by variable
8794 instruct rolL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8795 %{
8796   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI zero shift))));
8797 
8798   expand %{
8799     rolL_rReg_CL(dst, shift, cr);
8800   %}
8801 %}
8802 
8803 // Rotate Left by variable
8804 instruct rolL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
8805 %{
8806   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI c64 shift))));
8807 
8808   expand %{
8809     rolL_rReg_CL(dst, shift, cr);
8810   %}
8811 %}
8812 
8813 // ROR expand
8814 instruct rorL_rReg_imm1(rRegL dst, rFlagsReg cr)
8815 %{
8816   effect(USE_DEF dst, KILL cr);
8817 
8818   format %{ "rorq    $dst" %}
8819   opcode(0xD1, 0x1); /* D1 /1 */
8820   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8821   ins_pipe(ialu_reg);
8822 %}
8823 
8824 instruct rorL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr)
8825 %{
8826   effect(USE_DEF dst, USE shift, KILL cr);
8827 
8828   format %{ "rorq    $dst, $shift" %}
8829   opcode(0xC1, 0x1); /* C1 /1 ib */
8830   ins_encode(reg_opc_imm_wide(dst, shift));
8831   ins_pipe(ialu_reg);
8832 %}
8833 
8834 instruct rorL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
8835 %{
8836   effect(USE_DEF dst, USE shift, KILL cr);
8837 
8838   format %{ "rorq    $dst, $shift" %}
8839   opcode(0xD3, 0x1); /* D3 /1 */
8840   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8841   ins_pipe(ialu_reg_reg);
8842 %}
8843 // end of ROR expand
8844 
8845 // Rotate Right by one
8846 instruct rorL_rReg_i1(rRegL dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
8847 %{
8848   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
8849 
8850   expand %{
8851     rorL_rReg_imm1(dst, cr);
8852   %}
8853 %}
8854 
8855 // Rotate Right by 8-bit immediate
8856 instruct rorL_rReg_i8(rRegL dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
8857 %{
8858   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
8859   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
8860 
8861   expand %{
8862     rorL_rReg_imm8(dst, rshift, cr);
8863   %}
8864 %}
8865 
8866 // Rotate Right by variable
8867 instruct rorL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8868 %{
8869   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI zero shift))));
8870 
8871   expand %{
8872     rorL_rReg_CL(dst, shift, cr);
8873   %}
8874 %}
8875 
8876 // Rotate Right by variable
8877 instruct rorL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
8878 %{
8879   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI c64 shift))));
8880 
8881   expand %{
8882     rorL_rReg_CL(dst, shift, cr);
8883   %}
8884 %}
8885 
8886 // Logical Instructions
8887 
8888 // Integer Logical Instructions
8889 
8890 // And Instructions
8891 // And Register with Register
8892 instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8893 %{
8894   match(Set dst (AndI dst src));
8895   effect(KILL cr);
8896 
8897   format %{ "andl    $dst, $src\t# int" %}
8898   opcode(0x23);
8899   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
8900   ins_pipe(ialu_reg_reg);
8901 %}
8902 
8903 // And Register with Immediate 255
8904 instruct andI_rReg_imm255(rRegI dst, immI_255 src)
8905 %{
8906   match(Set dst (AndI dst src));
8907 
8908   format %{ "movzbl  $dst, $dst\t# int & 0xFF" %}
8909   opcode(0x0F, 0xB6);
8910   ins_encode(REX_reg_breg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
8911   ins_pipe(ialu_reg);
8912 %}
8913 
8914 // And Register with Immediate 255 and promote to long
8915 instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
8916 %{
8917   match(Set dst (ConvI2L (AndI src mask)));
8918 
8919   format %{ "movzbl  $dst, $src\t# int & 0xFF -> long" %}
8920   opcode(0x0F, 0xB6);
8921   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8922   ins_pipe(ialu_reg);
8923 %}
8924 
8925 // And Register with Immediate 65535
8926 instruct andI_rReg_imm65535(rRegI dst, immI_65535 src)
8927 %{
8928   match(Set dst (AndI dst src));
8929 
8930   format %{ "movzwl  $dst, $dst\t# int & 0xFFFF" %}
8931   opcode(0x0F, 0xB7);
8932   ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
8933   ins_pipe(ialu_reg);
8934 %}
8935 
8936 // And Register with Immediate 65535 and promote to long
8937 instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
8938 %{
8939   match(Set dst (ConvI2L (AndI src mask)));
8940 
8941   format %{ "movzwl  $dst, $src\t# int & 0xFFFF -> long" %}
8942   opcode(0x0F, 0xB7);
8943   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8944   ins_pipe(ialu_reg);
8945 %}
8946 
8947 // And Register with Immediate
8948 instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
8949 %{
8950   match(Set dst (AndI dst src));
8951   effect(KILL cr);
8952 
8953   format %{ "andl    $dst, $src\t# int" %}
8954   opcode(0x81, 0x04); /* Opcode 81 /4 */
8955   ins_encode(OpcSErm(dst, src), Con8or32(src));
8956   ins_pipe(ialu_reg);
8957 %}
8958 
8959 // And Register with Memory
8960 instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
8961 %{
8962   match(Set dst (AndI dst (LoadI src)));
8963   effect(KILL cr);
8964 
8965   ins_cost(125);
8966   format %{ "andl    $dst, $src\t# int" %}
8967   opcode(0x23);
8968   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
8969   ins_pipe(ialu_reg_mem);
8970 %}
8971 
8972 // And Memory with Register
8973 instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
8974 %{
8975   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8976   effect(KILL cr);
8977 
8978   ins_cost(150);
8979   format %{ "andl    $dst, $src\t# int" %}
8980   opcode(0x21); /* Opcode 21 /r */
8981   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
8982   ins_pipe(ialu_mem_reg);
8983 %}
8984 
8985 // And Memory with Immediate
8986 instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
8987 %{
8988   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8989   effect(KILL cr);
8990 
8991   ins_cost(125);
8992   format %{ "andl    $dst, $src\t# int" %}
8993   opcode(0x81, 0x4); /* Opcode 81 /4 id */
8994   ins_encode(REX_mem(dst), OpcSE(src),
8995              RM_opc_mem(secondary, dst), Con8or32(src));
8996   ins_pipe(ialu_mem_imm);
8997 %}
8998 
8999 // Or Instructions
9000 // Or Register with Register
9001 instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9002 %{
9003   match(Set dst (OrI dst src));
9004   effect(KILL cr);
9005 
9006   format %{ "orl     $dst, $src\t# int" %}
9007   opcode(0x0B);
9008   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9009   ins_pipe(ialu_reg_reg);
9010 %}
9011 
9012 // Or Register with Immediate
9013 instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9014 %{
9015   match(Set dst (OrI dst src));
9016   effect(KILL cr);
9017 
9018   format %{ "orl     $dst, $src\t# int" %}
9019   opcode(0x81, 0x01); /* Opcode 81 /1 id */
9020   ins_encode(OpcSErm(dst, src), Con8or32(src));
9021   ins_pipe(ialu_reg);
9022 %}
9023 
9024 // Or Register with Memory
9025 instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9026 %{
9027   match(Set dst (OrI dst (LoadI src)));
9028   effect(KILL cr);
9029 
9030   ins_cost(125);
9031   format %{ "orl     $dst, $src\t# int" %}
9032   opcode(0x0B);
9033   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9034   ins_pipe(ialu_reg_mem);
9035 %}
9036 
9037 // Or Memory with Register
9038 instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9039 %{
9040   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9041   effect(KILL cr);
9042 
9043   ins_cost(150);
9044   format %{ "orl     $dst, $src\t# int" %}
9045   opcode(0x09); /* Opcode 09 /r */
9046   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9047   ins_pipe(ialu_mem_reg);
9048 %}
9049 
9050 // Or Memory with Immediate
9051 instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
9052 %{
9053   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9054   effect(KILL cr);
9055 
9056   ins_cost(125);
9057   format %{ "orl     $dst, $src\t# int" %}
9058   opcode(0x81, 0x1); /* Opcode 81 /1 id */
9059   ins_encode(REX_mem(dst), OpcSE(src),
9060              RM_opc_mem(secondary, dst), Con8or32(src));
9061   ins_pipe(ialu_mem_imm);
9062 %}
9063 
9064 // Xor Instructions
9065 // Xor Register with Register
9066 instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9067 %{
9068   match(Set dst (XorI dst src));
9069   effect(KILL cr);
9070 
9071   format %{ "xorl    $dst, $src\t# int" %}
9072   opcode(0x33);
9073   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9074   ins_pipe(ialu_reg_reg);
9075 %}
9076 
9077 // Xor Register with Immediate -1
9078 instruct xorI_rReg_im1(rRegI dst, immI_M1 imm) %{
9079   match(Set dst (XorI dst imm));
9080 
9081   format %{ "not    $dst" %}
9082   ins_encode %{
9083      __ notl($dst$$Register);
9084   %}
9085   ins_pipe(ialu_reg);
9086 %}
9087 
9088 // Xor Register with Immediate
9089 instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9090 %{
9091   match(Set dst (XorI dst src));
9092   effect(KILL cr);
9093 
9094   format %{ "xorl    $dst, $src\t# int" %}
9095   opcode(0x81, 0x06); /* Opcode 81 /6 id */
9096   ins_encode(OpcSErm(dst, src), Con8or32(src));
9097   ins_pipe(ialu_reg);
9098 %}
9099 
9100 // Xor Register with Memory
9101 instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9102 %{
9103   match(Set dst (XorI dst (LoadI src)));
9104   effect(KILL cr);
9105 
9106   ins_cost(125);
9107   format %{ "xorl    $dst, $src\t# int" %}
9108   opcode(0x33);
9109   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9110   ins_pipe(ialu_reg_mem);
9111 %}
9112 
9113 // Xor Memory with Register
9114 instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9115 %{
9116   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9117   effect(KILL cr);
9118 
9119   ins_cost(150);
9120   format %{ "xorl    $dst, $src\t# int" %}
9121   opcode(0x31); /* Opcode 31 /r */
9122   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9123   ins_pipe(ialu_mem_reg);
9124 %}
9125 
9126 // Xor Memory with Immediate
9127 instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
9128 %{
9129   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9130   effect(KILL cr);
9131 
9132   ins_cost(125);
9133   format %{ "xorl    $dst, $src\t# int" %}
9134   opcode(0x81, 0x6); /* Opcode 81 /6 id */
9135   ins_encode(REX_mem(dst), OpcSE(src),
9136              RM_opc_mem(secondary, dst), Con8or32(src));
9137   ins_pipe(ialu_mem_imm);
9138 %}
9139 
9140 
9141 // Long Logical Instructions
9142 
9143 // And Instructions
9144 // And Register with Register
9145 instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9146 %{
9147   match(Set dst (AndL dst src));
9148   effect(KILL cr);
9149 
9150   format %{ "andq    $dst, $src\t# long" %}
9151   opcode(0x23);
9152   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9153   ins_pipe(ialu_reg_reg);
9154 %}
9155 
9156 // And Register with Immediate 255
9157 instruct andL_rReg_imm255(rRegL dst, immL_255 src)
9158 %{
9159   match(Set dst (AndL dst src));
9160 
9161   format %{ "movzbq  $dst, $dst\t# long & 0xFF" %}
9162   opcode(0x0F, 0xB6);
9163   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9164   ins_pipe(ialu_reg);
9165 %}
9166 
9167 // And Register with Immediate 65535
9168 instruct andL_rReg_imm65535(rRegL dst, immL_65535 src)
9169 %{
9170   match(Set dst (AndL dst src));
9171 
9172   format %{ "movzwq  $dst, $dst\t# long & 0xFFFF" %}
9173   opcode(0x0F, 0xB7);
9174   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9175   ins_pipe(ialu_reg);
9176 %}
9177 
9178 // And Register with Immediate
9179 instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9180 %{
9181   match(Set dst (AndL dst src));
9182   effect(KILL cr);
9183 
9184   format %{ "andq    $dst, $src\t# long" %}
9185   opcode(0x81, 0x04); /* Opcode 81 /4 */
9186   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9187   ins_pipe(ialu_reg);
9188 %}
9189 
9190 // And Register with Memory
9191 instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9192 %{
9193   match(Set dst (AndL dst (LoadL src)));
9194   effect(KILL cr);
9195 
9196   ins_cost(125);
9197   format %{ "andq    $dst, $src\t# long" %}
9198   opcode(0x23);
9199   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9200   ins_pipe(ialu_reg_mem);
9201 %}
9202 
9203 // And Memory with Register
9204 instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9205 %{
9206   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9207   effect(KILL cr);
9208 
9209   ins_cost(150);
9210   format %{ "andq    $dst, $src\t# long" %}
9211   opcode(0x21); /* Opcode 21 /r */
9212   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9213   ins_pipe(ialu_mem_reg);
9214 %}
9215 
9216 // And Memory with Immediate
9217 instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9218 %{
9219   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9220   effect(KILL cr);
9221 
9222   ins_cost(125);
9223   format %{ "andq    $dst, $src\t# long" %}
9224   opcode(0x81, 0x4); /* Opcode 81 /4 id */
9225   ins_encode(REX_mem_wide(dst), OpcSE(src),
9226              RM_opc_mem(secondary, dst), Con8or32(src));
9227   ins_pipe(ialu_mem_imm);
9228 %}
9229 
9230 // Or Instructions
9231 // Or Register with Register
9232 instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9233 %{
9234   match(Set dst (OrL dst src));
9235   effect(KILL cr);
9236 
9237   format %{ "orq     $dst, $src\t# long" %}
9238   opcode(0x0B);
9239   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9240   ins_pipe(ialu_reg_reg);
9241 %}
9242 
9243 // Use any_RegP to match R15 (TLS register) without spilling.
9244 instruct orL_rReg_castP2X(rRegL dst, any_RegP src, rFlagsReg cr) %{
9245   match(Set dst (OrL dst (CastP2X src)));
9246   effect(KILL cr);
9247 
9248   format %{ "orq     $dst, $src\t# long" %}
9249   opcode(0x0B);
9250   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9251   ins_pipe(ialu_reg_reg);
9252 %}
9253 
9254 
9255 // Or Register with Immediate
9256 instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9257 %{
9258   match(Set dst (OrL dst src));
9259   effect(KILL cr);
9260 
9261   format %{ "orq     $dst, $src\t# long" %}
9262   opcode(0x81, 0x01); /* Opcode 81 /1 id */
9263   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9264   ins_pipe(ialu_reg);
9265 %}
9266 
9267 // Or Register with Memory
9268 instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9269 %{
9270   match(Set dst (OrL dst (LoadL src)));
9271   effect(KILL cr);
9272 
9273   ins_cost(125);
9274   format %{ "orq     $dst, $src\t# long" %}
9275   opcode(0x0B);
9276   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9277   ins_pipe(ialu_reg_mem);
9278 %}
9279 
9280 // Or Memory with Register
9281 instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9282 %{
9283   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9284   effect(KILL cr);
9285 
9286   ins_cost(150);
9287   format %{ "orq     $dst, $src\t# long" %}
9288   opcode(0x09); /* Opcode 09 /r */
9289   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9290   ins_pipe(ialu_mem_reg);
9291 %}
9292 
9293 // Or Memory with Immediate
9294 instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9295 %{
9296   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9297   effect(KILL cr);
9298 
9299   ins_cost(125);
9300   format %{ "orq     $dst, $src\t# long" %}
9301   opcode(0x81, 0x1); /* Opcode 81 /1 id */
9302   ins_encode(REX_mem_wide(dst), OpcSE(src),
9303              RM_opc_mem(secondary, dst), Con8or32(src));
9304   ins_pipe(ialu_mem_imm);
9305 %}
9306 
9307 // Xor Instructions
9308 // Xor Register with Register
9309 instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9310 %{
9311   match(Set dst (XorL dst src));
9312   effect(KILL cr);
9313 
9314   format %{ "xorq    $dst, $src\t# long" %}
9315   opcode(0x33);
9316   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9317   ins_pipe(ialu_reg_reg);
9318 %}
9319 
9320 // Xor Register with Immediate -1
9321 instruct xorL_rReg_im1(rRegL dst, immL_M1 imm) %{
9322   match(Set dst (XorL dst imm));
9323 
9324   format %{ "notq   $dst" %}
9325   ins_encode %{
9326      __ notq($dst$$Register);
9327   %}
9328   ins_pipe(ialu_reg);
9329 %}
9330 
9331 // Xor Register with Immediate
9332 instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9333 %{
9334   match(Set dst (XorL dst src));
9335   effect(KILL cr);
9336 
9337   format %{ "xorq    $dst, $src\t# long" %}
9338   opcode(0x81, 0x06); /* Opcode 81 /6 id */
9339   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9340   ins_pipe(ialu_reg);
9341 %}
9342 
9343 // Xor Register with Memory
9344 instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9345 %{
9346   match(Set dst (XorL dst (LoadL src)));
9347   effect(KILL cr);
9348 
9349   ins_cost(125);
9350   format %{ "xorq    $dst, $src\t# long" %}
9351   opcode(0x33);
9352   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9353   ins_pipe(ialu_reg_mem);
9354 %}
9355 
9356 // Xor Memory with Register
9357 instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9358 %{
9359   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
9360   effect(KILL cr);
9361 
9362   ins_cost(150);
9363   format %{ "xorq    $dst, $src\t# long" %}
9364   opcode(0x31); /* Opcode 31 /r */
9365   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9366   ins_pipe(ialu_mem_reg);
9367 %}
9368 
9369 // Xor Memory with Immediate
9370 instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9371 %{
9372   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
9373   effect(KILL cr);
9374 
9375   ins_cost(125);
9376   format %{ "xorq    $dst, $src\t# long" %}
9377   opcode(0x81, 0x6); /* Opcode 81 /6 id */
9378   ins_encode(REX_mem_wide(dst), OpcSE(src),
9379              RM_opc_mem(secondary, dst), Con8or32(src));
9380   ins_pipe(ialu_mem_imm);
9381 %}
9382 
9383 // Convert Int to Boolean
9384 instruct convI2B(rRegI dst, rRegI src, rFlagsReg cr)
9385 %{
9386   match(Set dst (Conv2B src));
9387   effect(KILL cr);
9388 
9389   format %{ "testl   $src, $src\t# ci2b\n\t"
9390             "setnz   $dst\n\t"
9391             "movzbl  $dst, $dst" %}
9392   ins_encode(REX_reg_reg(src, src), opc_reg_reg(0x85, src, src), // testl
9393              setNZ_reg(dst),
9394              REX_reg_breg(dst, dst), // movzbl
9395              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
9396   ins_pipe(pipe_slow); // XXX
9397 %}
9398 
9399 // Convert Pointer to Boolean
9400 instruct convP2B(rRegI dst, rRegP src, rFlagsReg cr)
9401 %{
9402   match(Set dst (Conv2B src));
9403   effect(KILL cr);
9404 
9405   format %{ "testq   $src, $src\t# cp2b\n\t"
9406             "setnz   $dst\n\t"
9407             "movzbl  $dst, $dst" %}
9408   ins_encode(REX_reg_reg_wide(src, src), opc_reg_reg(0x85, src, src), // testq
9409              setNZ_reg(dst),
9410              REX_reg_breg(dst, dst), // movzbl
9411              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
9412   ins_pipe(pipe_slow); // XXX
9413 %}
9414 
9415 instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
9416 %{
9417   match(Set dst (CmpLTMask p q));
9418   effect(KILL cr);
9419 
9420   ins_cost(400); // XXX
9421   format %{ "cmpl    $p, $q\t# cmpLTMask\n\t"
9422             "setlt   $dst\n\t"
9423             "movzbl  $dst, $dst\n\t"
9424             "negl    $dst" %}
9425   ins_encode(REX_reg_reg(p, q), opc_reg_reg(0x3B, p, q), // cmpl
9426              setLT_reg(dst),
9427              REX_reg_breg(dst, dst), // movzbl
9428              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst),
9429              neg_reg(dst));
9430   ins_pipe(pipe_slow);
9431 %}
9432 
9433 instruct cmpLTMask0(rRegI dst, immI0 zero, rFlagsReg cr)
9434 %{
9435   match(Set dst (CmpLTMask dst zero));
9436   effect(KILL cr);
9437 
9438   ins_cost(100); // XXX
9439   format %{ "sarl    $dst, #31\t# cmpLTMask0" %}
9440   opcode(0xC1, 0x7);  /* C1 /7 ib */
9441   ins_encode(reg_opc_imm(dst, 0x1F));
9442   ins_pipe(ialu_reg);
9443 %}
9444 
9445 
9446 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, rRegI tmp, rFlagsReg cr)
9447 %{
9448   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
9449   effect(TEMP tmp, KILL cr);
9450 
9451   ins_cost(400); // XXX
9452   format %{ "subl    $p, $q\t# cadd_cmpLTMask1\n\t"
9453             "sbbl    $tmp, $tmp\n\t"
9454             "andl    $tmp, $y\n\t"
9455             "addl    $p, $tmp" %}
9456   ins_encode %{
9457     Register Rp = $p$$Register;
9458     Register Rq = $q$$Register;
9459     Register Ry = $y$$Register;
9460     Register Rt = $tmp$$Register;
9461     __ subl(Rp, Rq);
9462     __ sbbl(Rt, Rt);
9463     __ andl(Rt, Ry);
9464     __ addl(Rp, Rt);
9465   %}
9466   ins_pipe(pipe_cmplt);
9467 %}
9468 
9469 //---------- FP Instructions------------------------------------------------
9470 
9471 instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
9472 %{
9473   match(Set cr (CmpF src1 src2));
9474 
9475   ins_cost(145);
9476   format %{ "ucomiss $src1, $src2\n\t"
9477             "jnp,s   exit\n\t"
9478             "pushfq\t# saw NaN, set CF\n\t"
9479             "andq    [rsp], #0xffffff2b\n\t"
9480             "popfq\n"
9481     "exit:" %}
9482   ins_encode %{
9483     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
9484     emit_cmpfp_fixup(_masm);
9485   %}
9486   ins_pipe(pipe_slow);
9487 %}
9488 
9489 instruct cmpF_cc_reg_CF(rFlagsRegUCF cr, regF src1, regF src2) %{
9490   match(Set cr (CmpF src1 src2));
9491 
9492   ins_cost(100);
9493   format %{ "ucomiss $src1, $src2" %}
9494   ins_encode %{
9495     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
9496   %}
9497   ins_pipe(pipe_slow);
9498 %}
9499 
9500 instruct cmpF_cc_mem(rFlagsRegU cr, regF src1, memory src2)
9501 %{
9502   match(Set cr (CmpF src1 (LoadF src2)));
9503 
9504   ins_cost(145);
9505   format %{ "ucomiss $src1, $src2\n\t"
9506             "jnp,s   exit\n\t"
9507             "pushfq\t# saw NaN, set CF\n\t"
9508             "andq    [rsp], #0xffffff2b\n\t"
9509             "popfq\n"
9510     "exit:" %}
9511   ins_encode %{
9512     __ ucomiss($src1$$XMMRegister, $src2$$Address);
9513     emit_cmpfp_fixup(_masm);
9514   %}
9515   ins_pipe(pipe_slow);
9516 %}
9517 
9518 instruct cmpF_cc_memCF(rFlagsRegUCF cr, regF src1, memory src2) %{
9519   match(Set cr (CmpF src1 (LoadF src2)));
9520 
9521   ins_cost(100);
9522   format %{ "ucomiss $src1, $src2" %}
9523   ins_encode %{
9524     __ ucomiss($src1$$XMMRegister, $src2$$Address);
9525   %}
9526   ins_pipe(pipe_slow);
9527 %}
9528 
9529 instruct cmpF_cc_imm(rFlagsRegU cr, regF src, immF con) %{
9530   match(Set cr (CmpF src con));
9531 
9532   ins_cost(145);
9533   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
9534             "jnp,s   exit\n\t"
9535             "pushfq\t# saw NaN, set CF\n\t"
9536             "andq    [rsp], #0xffffff2b\n\t"
9537             "popfq\n"
9538     "exit:" %}
9539   ins_encode %{
9540     __ ucomiss($src$$XMMRegister, $constantaddress($con));
9541     emit_cmpfp_fixup(_masm);
9542   %}
9543   ins_pipe(pipe_slow);
9544 %}
9545 
9546 instruct cmpF_cc_immCF(rFlagsRegUCF cr, regF src, immF con) %{
9547   match(Set cr (CmpF src con));
9548   ins_cost(100);
9549   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con" %}
9550   ins_encode %{
9551     __ ucomiss($src$$XMMRegister, $constantaddress($con));
9552   %}
9553   ins_pipe(pipe_slow);
9554 %}
9555 
9556 instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
9557 %{
9558   match(Set cr (CmpD src1 src2));
9559 
9560   ins_cost(145);
9561   format %{ "ucomisd $src1, $src2\n\t"
9562             "jnp,s   exit\n\t"
9563             "pushfq\t# saw NaN, set CF\n\t"
9564             "andq    [rsp], #0xffffff2b\n\t"
9565             "popfq\n"
9566     "exit:" %}
9567   ins_encode %{
9568     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9569     emit_cmpfp_fixup(_masm);
9570   %}
9571   ins_pipe(pipe_slow);
9572 %}
9573 
9574 instruct cmpD_cc_reg_CF(rFlagsRegUCF cr, regD src1, regD src2) %{
9575   match(Set cr (CmpD src1 src2));
9576 
9577   ins_cost(100);
9578   format %{ "ucomisd $src1, $src2 test" %}
9579   ins_encode %{
9580     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9581   %}
9582   ins_pipe(pipe_slow);
9583 %}
9584 
9585 instruct cmpD_cc_mem(rFlagsRegU cr, regD src1, memory src2)
9586 %{
9587   match(Set cr (CmpD src1 (LoadD src2)));
9588 
9589   ins_cost(145);
9590   format %{ "ucomisd $src1, $src2\n\t"
9591             "jnp,s   exit\n\t"
9592             "pushfq\t# saw NaN, set CF\n\t"
9593             "andq    [rsp], #0xffffff2b\n\t"
9594             "popfq\n"
9595     "exit:" %}
9596   ins_encode %{
9597     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9598     emit_cmpfp_fixup(_masm);
9599   %}
9600   ins_pipe(pipe_slow);
9601 %}
9602 
9603 instruct cmpD_cc_memCF(rFlagsRegUCF cr, regD src1, memory src2) %{
9604   match(Set cr (CmpD src1 (LoadD src2)));
9605 
9606   ins_cost(100);
9607   format %{ "ucomisd $src1, $src2" %}
9608   ins_encode %{
9609     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9610   %}
9611   ins_pipe(pipe_slow);
9612 %}
9613 
9614 instruct cmpD_cc_imm(rFlagsRegU cr, regD src, immD con) %{
9615   match(Set cr (CmpD src con));
9616 
9617   ins_cost(145);
9618   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
9619             "jnp,s   exit\n\t"
9620             "pushfq\t# saw NaN, set CF\n\t"
9621             "andq    [rsp], #0xffffff2b\n\t"
9622             "popfq\n"
9623     "exit:" %}
9624   ins_encode %{
9625     __ ucomisd($src$$XMMRegister, $constantaddress($con));
9626     emit_cmpfp_fixup(_masm);
9627   %}
9628   ins_pipe(pipe_slow);
9629 %}
9630 
9631 instruct cmpD_cc_immCF(rFlagsRegUCF cr, regD src, immD con) %{
9632   match(Set cr (CmpD src con));
9633   ins_cost(100);
9634   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con" %}
9635   ins_encode %{
9636     __ ucomisd($src$$XMMRegister, $constantaddress($con));
9637   %}
9638   ins_pipe(pipe_slow);
9639 %}
9640 
9641 // Compare into -1,0,1
9642 instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
9643 %{
9644   match(Set dst (CmpF3 src1 src2));
9645   effect(KILL cr);
9646 
9647   ins_cost(275);
9648   format %{ "ucomiss $src1, $src2\n\t"
9649             "movl    $dst, #-1\n\t"
9650             "jp,s    done\n\t"
9651             "jb,s    done\n\t"
9652             "setne   $dst\n\t"
9653             "movzbl  $dst, $dst\n"
9654     "done:" %}
9655   ins_encode %{
9656     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
9657     emit_cmpfp3(_masm, $dst$$Register);
9658   %}
9659   ins_pipe(pipe_slow);
9660 %}
9661 
9662 // Compare into -1,0,1
9663 instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
9664 %{
9665   match(Set dst (CmpF3 src1 (LoadF src2)));
9666   effect(KILL cr);
9667 
9668   ins_cost(275);
9669   format %{ "ucomiss $src1, $src2\n\t"
9670             "movl    $dst, #-1\n\t"
9671             "jp,s    done\n\t"
9672             "jb,s    done\n\t"
9673             "setne   $dst\n\t"
9674             "movzbl  $dst, $dst\n"
9675     "done:" %}
9676   ins_encode %{
9677     __ ucomiss($src1$$XMMRegister, $src2$$Address);
9678     emit_cmpfp3(_masm, $dst$$Register);
9679   %}
9680   ins_pipe(pipe_slow);
9681 %}
9682 
9683 // Compare into -1,0,1
9684 instruct cmpF_imm(rRegI dst, regF src, immF con, rFlagsReg cr) %{
9685   match(Set dst (CmpF3 src con));
9686   effect(KILL cr);
9687 
9688   ins_cost(275);
9689   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
9690             "movl    $dst, #-1\n\t"
9691             "jp,s    done\n\t"
9692             "jb,s    done\n\t"
9693             "setne   $dst\n\t"
9694             "movzbl  $dst, $dst\n"
9695     "done:" %}
9696   ins_encode %{
9697     __ ucomiss($src$$XMMRegister, $constantaddress($con));
9698     emit_cmpfp3(_masm, $dst$$Register);
9699   %}
9700   ins_pipe(pipe_slow);
9701 %}
9702 
9703 // Compare into -1,0,1
9704 instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
9705 %{
9706   match(Set dst (CmpD3 src1 src2));
9707   effect(KILL cr);
9708 
9709   ins_cost(275);
9710   format %{ "ucomisd $src1, $src2\n\t"
9711             "movl    $dst, #-1\n\t"
9712             "jp,s    done\n\t"
9713             "jb,s    done\n\t"
9714             "setne   $dst\n\t"
9715             "movzbl  $dst, $dst\n"
9716     "done:" %}
9717   ins_encode %{
9718     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9719     emit_cmpfp3(_masm, $dst$$Register);
9720   %}
9721   ins_pipe(pipe_slow);
9722 %}
9723 
9724 // Compare into -1,0,1
9725 instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
9726 %{
9727   match(Set dst (CmpD3 src1 (LoadD src2)));
9728   effect(KILL cr);
9729 
9730   ins_cost(275);
9731   format %{ "ucomisd $src1, $src2\n\t"
9732             "movl    $dst, #-1\n\t"
9733             "jp,s    done\n\t"
9734             "jb,s    done\n\t"
9735             "setne   $dst\n\t"
9736             "movzbl  $dst, $dst\n"
9737     "done:" %}
9738   ins_encode %{
9739     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9740     emit_cmpfp3(_masm, $dst$$Register);
9741   %}
9742   ins_pipe(pipe_slow);
9743 %}
9744 
9745 // Compare into -1,0,1
9746 instruct cmpD_imm(rRegI dst, regD src, immD con, rFlagsReg cr) %{
9747   match(Set dst (CmpD3 src con));
9748   effect(KILL cr);
9749 
9750   ins_cost(275);
9751   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
9752             "movl    $dst, #-1\n\t"
9753             "jp,s    done\n\t"
9754             "jb,s    done\n\t"
9755             "setne   $dst\n\t"
9756             "movzbl  $dst, $dst\n"
9757     "done:" %}
9758   ins_encode %{
9759     __ ucomisd($src$$XMMRegister, $constantaddress($con));
9760     emit_cmpfp3(_masm, $dst$$Register);
9761   %}
9762   ins_pipe(pipe_slow);
9763 %}
9764 
9765 // -----------Trig and Trancendental Instructions------------------------------
9766 instruct cosD_reg(regD dst) %{
9767   match(Set dst (CosD dst));
9768 
9769   format %{ "dcos   $dst\n\t" %}
9770   opcode(0xD9, 0xFF);
9771   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
9772   ins_pipe( pipe_slow );
9773 %}
9774 
9775 instruct sinD_reg(regD dst) %{
9776   match(Set dst (SinD dst));
9777 
9778   format %{ "dsin   $dst\n\t" %}
9779   opcode(0xD9, 0xFE);
9780   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
9781   ins_pipe( pipe_slow );
9782 %}
9783 
9784 instruct tanD_reg(regD dst) %{
9785   match(Set dst (TanD dst));
9786 
9787   format %{ "dtan   $dst\n\t" %}
9788   ins_encode( Push_SrcXD(dst),
9789               Opcode(0xD9), Opcode(0xF2),   //fptan
9790               Opcode(0xDD), Opcode(0xD8),   //fstp st
9791               Push_ResultXD(dst) );
9792   ins_pipe( pipe_slow );
9793 %}
9794 
9795 instruct log10D_reg(regD dst) %{
9796   // The source and result Double operands in XMM registers
9797   match(Set dst (Log10D dst));
9798   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
9799   // fyl2x        ; compute log_10(2) * log_2(x)
9800   format %{ "fldlg2\t\t\t#Log10\n\t"
9801             "fyl2x\t\t\t# Q=Log10*Log_2(x)\n\t"
9802          %}
9803    ins_encode(Opcode(0xD9), Opcode(0xEC),   // fldlg2
9804               Push_SrcXD(dst),
9805               Opcode(0xD9), Opcode(0xF1),   // fyl2x
9806               Push_ResultXD(dst));
9807 
9808   ins_pipe( pipe_slow );
9809 %}
9810 
9811 instruct logD_reg(regD dst) %{
9812   // The source and result Double operands in XMM registers
9813   match(Set dst (LogD dst));
9814   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
9815   // fyl2x        ; compute log_e(2) * log_2(x)
9816   format %{ "fldln2\t\t\t#Log_e\n\t"
9817             "fyl2x\t\t\t# Q=Log_e*Log_2(x)\n\t"
9818          %}
9819   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
9820               Push_SrcXD(dst),
9821               Opcode(0xD9), Opcode(0xF1),   // fyl2x
9822               Push_ResultXD(dst));
9823   ins_pipe( pipe_slow );
9824 %}
9825 
9826 
9827 
9828 //----------Arithmetic Conversion Instructions---------------------------------
9829 
9830 instruct roundFloat_nop(regF dst)
9831 %{
9832   match(Set dst (RoundFloat dst));
9833 
9834   ins_cost(0);
9835   ins_encode();
9836   ins_pipe(empty);
9837 %}
9838 
9839 instruct roundDouble_nop(regD dst)
9840 %{
9841   match(Set dst (RoundDouble dst));
9842 
9843   ins_cost(0);
9844   ins_encode();
9845   ins_pipe(empty);
9846 %}
9847 
9848 instruct convF2D_reg_reg(regD dst, regF src)
9849 %{
9850   match(Set dst (ConvF2D src));
9851 
9852   format %{ "cvtss2sd $dst, $src" %}
9853   ins_encode %{
9854     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
9855   %}
9856   ins_pipe(pipe_slow); // XXX
9857 %}
9858 
9859 instruct convF2D_reg_mem(regD dst, memory src)
9860 %{
9861   match(Set dst (ConvF2D (LoadF src)));
9862 
9863   format %{ "cvtss2sd $dst, $src" %}
9864   ins_encode %{
9865     __ cvtss2sd ($dst$$XMMRegister, $src$$Address);
9866   %}
9867   ins_pipe(pipe_slow); // XXX
9868 %}
9869 
9870 instruct convD2F_reg_reg(regF dst, regD src)
9871 %{
9872   match(Set dst (ConvD2F src));
9873 
9874   format %{ "cvtsd2ss $dst, $src" %}
9875   ins_encode %{
9876     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
9877   %}
9878   ins_pipe(pipe_slow); // XXX
9879 %}
9880 
9881 instruct convD2F_reg_mem(regF dst, memory src)
9882 %{
9883   match(Set dst (ConvD2F (LoadD src)));
9884 
9885   format %{ "cvtsd2ss $dst, $src" %}
9886   ins_encode %{
9887     __ cvtsd2ss ($dst$$XMMRegister, $src$$Address);
9888   %}
9889   ins_pipe(pipe_slow); // XXX
9890 %}
9891 
9892 // XXX do mem variants
9893 instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
9894 %{
9895   match(Set dst (ConvF2I src));
9896   effect(KILL cr);
9897 
9898   format %{ "cvttss2sil $dst, $src\t# f2i\n\t"
9899             "cmpl    $dst, #0x80000000\n\t"
9900             "jne,s   done\n\t"
9901             "subq    rsp, #8\n\t"
9902             "movss   [rsp], $src\n\t"
9903             "call    f2i_fixup\n\t"
9904             "popq    $dst\n"
9905     "done:   "%}
9906   ins_encode %{
9907     Label done;
9908     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
9909     __ cmpl($dst$$Register, 0x80000000);
9910     __ jccb(Assembler::notEqual, done);
9911     __ subptr(rsp, 8);
9912     __ movflt(Address(rsp, 0), $src$$XMMRegister);
9913     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup())));
9914     __ pop($dst$$Register);
9915     __ bind(done);
9916   %}
9917   ins_pipe(pipe_slow);
9918 %}
9919 
9920 instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
9921 %{
9922   match(Set dst (ConvF2L src));
9923   effect(KILL cr);
9924 
9925   format %{ "cvttss2siq $dst, $src\t# f2l\n\t"
9926             "cmpq    $dst, [0x8000000000000000]\n\t"
9927             "jne,s   done\n\t"
9928             "subq    rsp, #8\n\t"
9929             "movss   [rsp], $src\n\t"
9930             "call    f2l_fixup\n\t"
9931             "popq    $dst\n"
9932     "done:   "%}
9933   ins_encode %{
9934     Label done;
9935     __ cvttss2siq($dst$$Register, $src$$XMMRegister);
9936     __ cmp64($dst$$Register,
9937              ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
9938     __ jccb(Assembler::notEqual, done);
9939     __ subptr(rsp, 8);
9940     __ movflt(Address(rsp, 0), $src$$XMMRegister);
9941     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup())));
9942     __ pop($dst$$Register);
9943     __ bind(done);
9944   %}
9945   ins_pipe(pipe_slow);
9946 %}
9947 
9948 instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
9949 %{
9950   match(Set dst (ConvD2I src));
9951   effect(KILL cr);
9952 
9953   format %{ "cvttsd2sil $dst, $src\t# d2i\n\t"
9954             "cmpl    $dst, #0x80000000\n\t"
9955             "jne,s   done\n\t"
9956             "subq    rsp, #8\n\t"
9957             "movsd   [rsp], $src\n\t"
9958             "call    d2i_fixup\n\t"
9959             "popq    $dst\n"
9960     "done:   "%}
9961   ins_encode %{
9962     Label done;
9963     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
9964     __ cmpl($dst$$Register, 0x80000000);
9965     __ jccb(Assembler::notEqual, done);
9966     __ subptr(rsp, 8);
9967     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
9968     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup())));
9969     __ pop($dst$$Register);
9970     __ bind(done);
9971   %}
9972   ins_pipe(pipe_slow);
9973 %}
9974 
9975 instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
9976 %{
9977   match(Set dst (ConvD2L src));
9978   effect(KILL cr);
9979 
9980   format %{ "cvttsd2siq $dst, $src\t# d2l\n\t"
9981             "cmpq    $dst, [0x8000000000000000]\n\t"
9982             "jne,s   done\n\t"
9983             "subq    rsp, #8\n\t"
9984             "movsd   [rsp], $src\n\t"
9985             "call    d2l_fixup\n\t"
9986             "popq    $dst\n"
9987     "done:   "%}
9988   ins_encode %{
9989     Label done;
9990     __ cvttsd2siq($dst$$Register, $src$$XMMRegister);
9991     __ cmp64($dst$$Register,
9992              ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
9993     __ jccb(Assembler::notEqual, done);
9994     __ subptr(rsp, 8);
9995     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
9996     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup())));
9997     __ pop($dst$$Register);
9998     __ bind(done);
9999   %}
10000   ins_pipe(pipe_slow);
10001 %}
10002 
10003 instruct convI2F_reg_reg(regF dst, rRegI src)
10004 %{
10005   predicate(!UseXmmI2F);
10006   match(Set dst (ConvI2F src));
10007 
10008   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10009   ins_encode %{
10010     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
10011   %}
10012   ins_pipe(pipe_slow); // XXX
10013 %}
10014 
10015 instruct convI2F_reg_mem(regF dst, memory src)
10016 %{
10017   match(Set dst (ConvI2F (LoadI src)));
10018 
10019   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10020   ins_encode %{
10021     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Address);
10022   %}
10023   ins_pipe(pipe_slow); // XXX
10024 %}
10025 
10026 instruct convI2D_reg_reg(regD dst, rRegI src)
10027 %{
10028   predicate(!UseXmmI2D);
10029   match(Set dst (ConvI2D src));
10030 
10031   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10032   ins_encode %{
10033     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
10034   %}
10035   ins_pipe(pipe_slow); // XXX
10036 %}
10037 
10038 instruct convI2D_reg_mem(regD dst, memory src)
10039 %{
10040   match(Set dst (ConvI2D (LoadI src)));
10041 
10042   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10043   ins_encode %{
10044     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Address);
10045   %}
10046   ins_pipe(pipe_slow); // XXX
10047 %}
10048 
10049 instruct convXI2F_reg(regF dst, rRegI src)
10050 %{
10051   predicate(UseXmmI2F);
10052   match(Set dst (ConvI2F src));
10053 
10054   format %{ "movdl $dst, $src\n\t"
10055             "cvtdq2psl $dst, $dst\t# i2f" %}
10056   ins_encode %{
10057     __ movdl($dst$$XMMRegister, $src$$Register);
10058     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
10059   %}
10060   ins_pipe(pipe_slow); // XXX
10061 %}
10062 
10063 instruct convXI2D_reg(regD dst, rRegI src)
10064 %{
10065   predicate(UseXmmI2D);
10066   match(Set dst (ConvI2D src));
10067 
10068   format %{ "movdl $dst, $src\n\t"
10069             "cvtdq2pdl $dst, $dst\t# i2d" %}
10070   ins_encode %{
10071     __ movdl($dst$$XMMRegister, $src$$Register);
10072     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
10073   %}
10074   ins_pipe(pipe_slow); // XXX
10075 %}
10076 
10077 instruct convL2F_reg_reg(regF dst, rRegL src)
10078 %{
10079   match(Set dst (ConvL2F src));
10080 
10081   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10082   ins_encode %{
10083     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Register);
10084   %}
10085   ins_pipe(pipe_slow); // XXX
10086 %}
10087 
10088 instruct convL2F_reg_mem(regF dst, memory src)
10089 %{
10090   match(Set dst (ConvL2F (LoadL src)));
10091 
10092   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10093   ins_encode %{
10094     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Address);
10095   %}
10096   ins_pipe(pipe_slow); // XXX
10097 %}
10098 
10099 instruct convL2D_reg_reg(regD dst, rRegL src)
10100 %{
10101   match(Set dst (ConvL2D src));
10102 
10103   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10104   ins_encode %{
10105     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Register);
10106   %}
10107   ins_pipe(pipe_slow); // XXX
10108 %}
10109 
10110 instruct convL2D_reg_mem(regD dst, memory src)
10111 %{
10112   match(Set dst (ConvL2D (LoadL src)));
10113 
10114   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10115   ins_encode %{
10116     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Address);
10117   %}
10118   ins_pipe(pipe_slow); // XXX
10119 %}
10120 
10121 instruct convI2L_reg_reg(rRegL dst, rRegI src)
10122 %{
10123   match(Set dst (ConvI2L src));
10124 
10125   ins_cost(125);
10126   format %{ "movslq  $dst, $src\t# i2l" %}
10127   ins_encode %{
10128     __ movslq($dst$$Register, $src$$Register);
10129   %}
10130   ins_pipe(ialu_reg_reg);
10131 %}
10132 
10133 // instruct convI2L_reg_reg_foo(rRegL dst, rRegI src)
10134 // %{
10135 //   match(Set dst (ConvI2L src));
10136 // //   predicate(_kids[0]->_leaf->as_Type()->type()->is_int()->_lo >= 0 &&
10137 // //             _kids[0]->_leaf->as_Type()->type()->is_int()->_hi >= 0);
10138 //   predicate(((const TypeNode*) n)->type()->is_long()->_hi ==
10139 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_hi &&
10140 //             ((const TypeNode*) n)->type()->is_long()->_lo ==
10141 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_lo);
10142 
10143 //   format %{ "movl    $dst, $src\t# unsigned i2l" %}
10144 //   ins_encode(enc_copy(dst, src));
10145 // //   opcode(0x63); // needs REX.W
10146 // //   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
10147 //   ins_pipe(ialu_reg_reg);
10148 // %}
10149 
10150 // Zero-extend convert int to long
10151 instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
10152 %{
10153   match(Set dst (AndL (ConvI2L src) mask));
10154 
10155   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10156   ins_encode %{
10157     if ($dst$$reg != $src$$reg) {
10158       __ movl($dst$$Register, $src$$Register);
10159     }
10160   %}
10161   ins_pipe(ialu_reg_reg);
10162 %}
10163 
10164 // Zero-extend convert int to long
10165 instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
10166 %{
10167   match(Set dst (AndL (ConvI2L (LoadI src)) mask));
10168 
10169   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10170   ins_encode %{
10171     __ movl($dst$$Register, $src$$Address);
10172   %}
10173   ins_pipe(ialu_reg_mem);
10174 %}
10175 
10176 instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
10177 %{
10178   match(Set dst (AndL src mask));
10179 
10180   format %{ "movl    $dst, $src\t# zero-extend long" %}
10181   ins_encode %{
10182     __ movl($dst$$Register, $src$$Register);
10183   %}
10184   ins_pipe(ialu_reg_reg);
10185 %}
10186 
10187 instruct convL2I_reg_reg(rRegI dst, rRegL src)
10188 %{
10189   match(Set dst (ConvL2I src));
10190 
10191   format %{ "movl    $dst, $src\t# l2i" %}
10192   ins_encode %{
10193     __ movl($dst$$Register, $src$$Register);
10194   %}
10195   ins_pipe(ialu_reg_reg);
10196 %}
10197 
10198 
10199 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
10200   match(Set dst (MoveF2I src));
10201   effect(DEF dst, USE src);
10202 
10203   ins_cost(125);
10204   format %{ "movl    $dst, $src\t# MoveF2I_stack_reg" %}
10205   ins_encode %{
10206     __ movl($dst$$Register, Address(rsp, $src$$disp));
10207   %}
10208   ins_pipe(ialu_reg_mem);
10209 %}
10210 
10211 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
10212   match(Set dst (MoveI2F src));
10213   effect(DEF dst, USE src);
10214 
10215   ins_cost(125);
10216   format %{ "movss   $dst, $src\t# MoveI2F_stack_reg" %}
10217   ins_encode %{
10218     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
10219   %}
10220   ins_pipe(pipe_slow);
10221 %}
10222 
10223 instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
10224   match(Set dst (MoveD2L src));
10225   effect(DEF dst, USE src);
10226 
10227   ins_cost(125);
10228   format %{ "movq    $dst, $src\t# MoveD2L_stack_reg" %}
10229   ins_encode %{
10230     __ movq($dst$$Register, Address(rsp, $src$$disp));
10231   %}
10232   ins_pipe(ialu_reg_mem);
10233 %}
10234 
10235 instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
10236   predicate(!UseXmmLoadAndClearUpper);
10237   match(Set dst (MoveL2D src));
10238   effect(DEF dst, USE src);
10239 
10240   ins_cost(125);
10241   format %{ "movlpd  $dst, $src\t# MoveL2D_stack_reg" %}
10242   ins_encode %{
10243     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10244   %}
10245   ins_pipe(pipe_slow);
10246 %}
10247 
10248 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
10249   predicate(UseXmmLoadAndClearUpper);
10250   match(Set dst (MoveL2D src));
10251   effect(DEF dst, USE src);
10252 
10253   ins_cost(125);
10254   format %{ "movsd   $dst, $src\t# MoveL2D_stack_reg" %}
10255   ins_encode %{
10256     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10257   %}
10258   ins_pipe(pipe_slow);
10259 %}
10260 
10261 
10262 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
10263   match(Set dst (MoveF2I src));
10264   effect(DEF dst, USE src);
10265 
10266   ins_cost(95); // XXX
10267   format %{ "movss   $dst, $src\t# MoveF2I_reg_stack" %}
10268   ins_encode %{
10269     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
10270   %}
10271   ins_pipe(pipe_slow);
10272 %}
10273 
10274 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
10275   match(Set dst (MoveI2F src));
10276   effect(DEF dst, USE src);
10277 
10278   ins_cost(100);
10279   format %{ "movl    $dst, $src\t# MoveI2F_reg_stack" %}
10280   ins_encode %{
10281     __ movl(Address(rsp, $dst$$disp), $src$$Register);
10282   %}
10283   ins_pipe( ialu_mem_reg );
10284 %}
10285 
10286 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
10287   match(Set dst (MoveD2L src));
10288   effect(DEF dst, USE src);
10289 
10290   ins_cost(95); // XXX
10291   format %{ "movsd   $dst, $src\t# MoveL2D_reg_stack" %}
10292   ins_encode %{
10293     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
10294   %}
10295   ins_pipe(pipe_slow);
10296 %}
10297 
10298 instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
10299   match(Set dst (MoveL2D src));
10300   effect(DEF dst, USE src);
10301 
10302   ins_cost(100);
10303   format %{ "movq    $dst, $src\t# MoveL2D_reg_stack" %}
10304   ins_encode %{
10305     __ movq(Address(rsp, $dst$$disp), $src$$Register);
10306   %}
10307   ins_pipe(ialu_mem_reg);
10308 %}
10309 
10310 instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
10311   match(Set dst (MoveF2I src));
10312   effect(DEF dst, USE src);
10313   ins_cost(85);
10314   format %{ "movd    $dst,$src\t# MoveF2I" %}
10315   ins_encode %{
10316     __ movdl($dst$$Register, $src$$XMMRegister);
10317   %}
10318   ins_pipe( pipe_slow );
10319 %}
10320 
10321 instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
10322   match(Set dst (MoveD2L src));
10323   effect(DEF dst, USE src);
10324   ins_cost(85);
10325   format %{ "movd    $dst,$src\t# MoveD2L" %}
10326   ins_encode %{
10327     __ movdq($dst$$Register, $src$$XMMRegister);
10328   %}
10329   ins_pipe( pipe_slow );
10330 %}
10331 
10332 // The next instructions have long latency and use Int unit. Set high cost.
10333 instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
10334   match(Set dst (MoveI2F src));
10335   effect(DEF dst, USE src);
10336   ins_cost(300);
10337   format %{ "movd    $dst,$src\t# MoveI2F" %}
10338   ins_encode %{
10339     __ movdl($dst$$XMMRegister, $src$$Register);
10340   %}
10341   ins_pipe( pipe_slow );
10342 %}
10343 
10344 instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
10345   match(Set dst (MoveL2D src));
10346   effect(DEF dst, USE src);
10347   ins_cost(300);
10348   format %{ "movd    $dst,$src\t# MoveL2D" %}
10349   ins_encode %{
10350      __ movdq($dst$$XMMRegister, $src$$Register);
10351   %}
10352   ins_pipe( pipe_slow );
10353 %}
10354 
10355 // Replicate scalar to packed byte (1 byte) values in xmm
10356 instruct Repl8B_reg(regD dst, regD src) %{
10357   match(Set dst (Replicate8B src));
10358   format %{ "MOVDQA  $dst,$src\n\t"
10359             "PUNPCKLBW $dst,$dst\n\t"
10360             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
10361   ins_encode %{
10362     if ($dst$$reg != $src$$reg) {
10363       __ movdqa($dst$$XMMRegister, $src$$XMMRegister);
10364     }
10365     __ punpcklbw($dst$$XMMRegister, $dst$$XMMRegister);
10366     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
10367   %}
10368   ins_pipe( pipe_slow );
10369 %}
10370 
10371 // Replicate scalar to packed byte (1 byte) values in xmm
10372 instruct Repl8B_rRegI(regD dst, rRegI src) %{
10373   match(Set dst (Replicate8B src));
10374   format %{ "MOVD    $dst,$src\n\t"
10375             "PUNPCKLBW $dst,$dst\n\t"
10376             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
10377   ins_encode %{
10378     __ movdl($dst$$XMMRegister, $src$$Register);
10379     __ punpcklbw($dst$$XMMRegister, $dst$$XMMRegister);
10380     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
10381   %}
10382   ins_pipe( pipe_slow );
10383 %}
10384 
10385 // Replicate scalar zero to packed byte (1 byte) values in xmm
10386 instruct Repl8B_immI0(regD dst, immI0 zero) %{
10387   match(Set dst (Replicate8B zero));
10388   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
10389   ins_encode %{
10390     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
10391   %}
10392   ins_pipe( fpu_reg_reg );
10393 %}
10394 
10395 // Replicate scalar to packed shore (2 byte) values in xmm
10396 instruct Repl4S_reg(regD dst, regD src) %{
10397   match(Set dst (Replicate4S src));
10398   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
10399   ins_encode %{
10400     __ pshuflw($dst$$XMMRegister, $src$$XMMRegister, 0x00);
10401   %}
10402   ins_pipe( fpu_reg_reg );
10403 %}
10404 
10405 // Replicate scalar to packed shore (2 byte) values in xmm
10406 instruct Repl4S_rRegI(regD dst, rRegI src) %{
10407   match(Set dst (Replicate4S src));
10408   format %{ "MOVD    $dst,$src\n\t"
10409             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
10410   ins_encode %{
10411     __ movdl($dst$$XMMRegister, $src$$Register);
10412     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
10413   %}
10414   ins_pipe( fpu_reg_reg );
10415 %}
10416 
10417 // Replicate scalar zero to packed short (2 byte) values in xmm
10418 instruct Repl4S_immI0(regD dst, immI0 zero) %{
10419   match(Set dst (Replicate4S zero));
10420   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
10421   ins_encode %{
10422     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
10423   %}
10424   ins_pipe( fpu_reg_reg );
10425 %}
10426 
10427 // Replicate scalar to packed char (2 byte) values in xmm
10428 instruct Repl4C_reg(regD dst, regD src) %{
10429   match(Set dst (Replicate4C src));
10430   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
10431   ins_encode %{
10432     __ pshuflw($dst$$XMMRegister, $src$$XMMRegister, 0x00);
10433   %}
10434   ins_pipe( fpu_reg_reg );
10435 %}
10436 
10437 // Replicate scalar to packed char (2 byte) values in xmm
10438 instruct Repl4C_rRegI(regD dst, rRegI src) %{
10439   match(Set dst (Replicate4C src));
10440   format %{ "MOVD    $dst,$src\n\t"
10441             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
10442   ins_encode %{
10443     __ movdl($dst$$XMMRegister, $src$$Register);
10444     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
10445   %}
10446   ins_pipe( fpu_reg_reg );
10447 %}
10448 
10449 // Replicate scalar zero to packed char (2 byte) values in xmm
10450 instruct Repl4C_immI0(regD dst, immI0 zero) %{
10451   match(Set dst (Replicate4C zero));
10452   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
10453   ins_encode %{
10454     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
10455   %}
10456   ins_pipe( fpu_reg_reg );
10457 %}
10458 
10459 // Replicate scalar to packed integer (4 byte) values in xmm
10460 instruct Repl2I_reg(regD dst, regD src) %{
10461   match(Set dst (Replicate2I src));
10462   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
10463   ins_encode %{
10464     __ pshufd($dst$$XMMRegister, $src$$XMMRegister, 0x00);
10465   %}
10466   ins_pipe( fpu_reg_reg );
10467 %}
10468 
10469 // Replicate scalar to packed integer (4 byte) values in xmm
10470 instruct Repl2I_rRegI(regD dst, rRegI src) %{
10471   match(Set dst (Replicate2I src));
10472   format %{ "MOVD   $dst,$src\n\t"
10473             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
10474   ins_encode %{
10475     __ movdl($dst$$XMMRegister, $src$$Register);
10476     __ pshufd($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
10477   %}
10478   ins_pipe( fpu_reg_reg );
10479 %}
10480 
10481 // Replicate scalar zero to packed integer (2 byte) values in xmm
10482 instruct Repl2I_immI0(regD dst, immI0 zero) %{
10483   match(Set dst (Replicate2I zero));
10484   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
10485   ins_encode %{
10486     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
10487   %}
10488   ins_pipe( fpu_reg_reg );
10489 %}
10490 
10491 // Replicate scalar to packed single precision floating point values in xmm
10492 instruct Repl2F_reg(regD dst, regD src) %{
10493   match(Set dst (Replicate2F src));
10494   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
10495   ins_encode %{
10496     __ pshufd($dst$$XMMRegister, $src$$XMMRegister, 0xe0);
10497   %}
10498   ins_pipe( fpu_reg_reg );
10499 %}
10500 
10501 // Replicate scalar to packed single precision floating point values in xmm
10502 instruct Repl2F_regF(regD dst, regF src) %{
10503   match(Set dst (Replicate2F src));
10504   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
10505   ins_encode %{
10506     __ pshufd($dst$$XMMRegister, $src$$XMMRegister, 0xe0);
10507   %}
10508   ins_pipe( fpu_reg_reg );
10509 %}
10510 
10511 // Replicate scalar to packed single precision floating point values in xmm
10512 instruct Repl2F_immF0(regD dst, immF0 zero) %{
10513   match(Set dst (Replicate2F zero));
10514   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
10515   ins_encode %{
10516     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
10517   %}
10518   ins_pipe( fpu_reg_reg );
10519 %}
10520 
10521 
10522 // =======================================================================
10523 // fast clearing of an array
10524 instruct rep_stos(rcx_RegL cnt, rdi_RegP base, rax_RegI zero, Universe dummy,
10525                   rFlagsReg cr)
10526 %{
10527   match(Set dummy (ClearArray cnt base));
10528   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
10529 
10530   format %{ "xorl    rax, rax\t# ClearArray:\n\t"
10531             "rep stosq\t# Store rax to *rdi++ while rcx--" %}
10532   ins_encode(opc_reg_reg(0x33, RAX, RAX), // xorl %eax, %eax
10533              Opcode(0xF3), Opcode(0x48), Opcode(0xAB)); // rep REX_W stos
10534   ins_pipe(pipe_slow);
10535 %}
10536 
10537 instruct string_compare(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
10538                         rax_RegI result, regD tmp1, rFlagsReg cr)
10539 %{
10540   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10541   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10542 
10543   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10544   ins_encode %{
10545     __ string_compare($str1$$Register, $str2$$Register,
10546                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10547                       $tmp1$$XMMRegister);
10548   %}
10549   ins_pipe( pipe_slow );
10550 %}
10551 
10552 // fast search of substring with known size.
10553 instruct string_indexof_con(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
10554                             rbx_RegI result, regD vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
10555 %{
10556   predicate(UseSSE42Intrinsics);
10557   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
10558   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
10559 
10560   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
10561   ins_encode %{
10562     int icnt2 = (int)$int_cnt2$$constant;
10563     if (icnt2 >= 8) {
10564       // IndexOf for constant substrings with size >= 8 elements
10565       // which don't need to be loaded through stack.
10566       __ string_indexofC8($str1$$Register, $str2$$Register,
10567                           $cnt1$$Register, $cnt2$$Register,
10568                           icnt2, $result$$Register,
10569                           $vec$$XMMRegister, $tmp$$Register);
10570     } else {
10571       // Small strings are loaded through stack if they cross page boundary.
10572       __ string_indexof($str1$$Register, $str2$$Register,
10573                         $cnt1$$Register, $cnt2$$Register,
10574                         icnt2, $result$$Register,
10575                         $vec$$XMMRegister, $tmp$$Register);
10576     }
10577   %}
10578   ins_pipe( pipe_slow );
10579 %}
10580 
10581 instruct string_indexof(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
10582                         rbx_RegI result, regD vec, rcx_RegI tmp, rFlagsReg cr)
10583 %{
10584   predicate(UseSSE42Intrinsics);
10585   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
10586   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
10587 
10588   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
10589   ins_encode %{
10590     __ string_indexof($str1$$Register, $str2$$Register,
10591                       $cnt1$$Register, $cnt2$$Register,
10592                       (-1), $result$$Register,
10593                       $vec$$XMMRegister, $tmp$$Register);
10594   %}
10595   ins_pipe( pipe_slow );
10596 %}
10597 
10598 // fast string equals
10599 instruct string_equals(rdi_RegP str1, rsi_RegP str2, rcx_RegI cnt, rax_RegI result,
10600                        regD tmp1, regD tmp2, rbx_RegI tmp3, rFlagsReg cr)
10601 %{
10602   match(Set result (StrEquals (Binary str1 str2) cnt));
10603   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
10604 
10605   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
10606   ins_encode %{
10607     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
10608                           $cnt$$Register, $result$$Register, $tmp3$$Register,
10609                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
10610   %}
10611   ins_pipe( pipe_slow );
10612 %}
10613 
10614 // fast array equals
10615 instruct array_equals(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
10616                       regD tmp1, regD tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
10617 %{
10618   match(Set result (AryEq ary1 ary2));
10619   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
10620   //ins_cost(300);
10621 
10622   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
10623   ins_encode %{
10624     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
10625                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
10626                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
10627   %}
10628   ins_pipe( pipe_slow );
10629 %}
10630 
10631 //----------Control Flow Instructions------------------------------------------
10632 // Signed compare Instructions
10633 
10634 // XXX more variants!!
10635 instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
10636 %{
10637   match(Set cr (CmpI op1 op2));
10638   effect(DEF cr, USE op1, USE op2);
10639 
10640   format %{ "cmpl    $op1, $op2" %}
10641   opcode(0x3B);  /* Opcode 3B /r */
10642   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
10643   ins_pipe(ialu_cr_reg_reg);
10644 %}
10645 
10646 instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
10647 %{
10648   match(Set cr (CmpI op1 op2));
10649 
10650   format %{ "cmpl    $op1, $op2" %}
10651   opcode(0x81, 0x07); /* Opcode 81 /7 */
10652   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
10653   ins_pipe(ialu_cr_reg_imm);
10654 %}
10655 
10656 instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
10657 %{
10658   match(Set cr (CmpI op1 (LoadI op2)));
10659 
10660   ins_cost(500); // XXX
10661   format %{ "cmpl    $op1, $op2" %}
10662   opcode(0x3B); /* Opcode 3B /r */
10663   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
10664   ins_pipe(ialu_cr_reg_mem);
10665 %}
10666 
10667 instruct testI_reg(rFlagsReg cr, rRegI src, immI0 zero)
10668 %{
10669   match(Set cr (CmpI src zero));
10670 
10671   format %{ "testl   $src, $src" %}
10672   opcode(0x85);
10673   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
10674   ins_pipe(ialu_cr_reg_imm);
10675 %}
10676 
10677 instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI0 zero)
10678 %{
10679   match(Set cr (CmpI (AndI src con) zero));
10680 
10681   format %{ "testl   $src, $con" %}
10682   opcode(0xF7, 0x00);
10683   ins_encode(REX_reg(src), OpcP, reg_opc(src), Con32(con));
10684   ins_pipe(ialu_cr_reg_imm);
10685 %}
10686 
10687 instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI0 zero)
10688 %{
10689   match(Set cr (CmpI (AndI src (LoadI mem)) zero));
10690 
10691   format %{ "testl   $src, $mem" %}
10692   opcode(0x85);
10693   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
10694   ins_pipe(ialu_cr_reg_mem);
10695 %}
10696 
10697 // Unsigned compare Instructions; really, same as signed except they
10698 // produce an rFlagsRegU instead of rFlagsReg.
10699 instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
10700 %{
10701   match(Set cr (CmpU op1 op2));
10702 
10703   format %{ "cmpl    $op1, $op2\t# unsigned" %}
10704   opcode(0x3B); /* Opcode 3B /r */
10705   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
10706   ins_pipe(ialu_cr_reg_reg);
10707 %}
10708 
10709 instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
10710 %{
10711   match(Set cr (CmpU op1 op2));
10712 
10713   format %{ "cmpl    $op1, $op2\t# unsigned" %}
10714   opcode(0x81,0x07); /* Opcode 81 /7 */
10715   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
10716   ins_pipe(ialu_cr_reg_imm);
10717 %}
10718 
10719 instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
10720 %{
10721   match(Set cr (CmpU op1 (LoadI op2)));
10722 
10723   ins_cost(500); // XXX
10724   format %{ "cmpl    $op1, $op2\t# unsigned" %}
10725   opcode(0x3B); /* Opcode 3B /r */
10726   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
10727   ins_pipe(ialu_cr_reg_mem);
10728 %}
10729 
10730 // // // Cisc-spilled version of cmpU_rReg
10731 // //instruct compU_mem_rReg(rFlagsRegU cr, memory op1, rRegI op2)
10732 // //%{
10733 // //  match(Set cr (CmpU (LoadI op1) op2));
10734 // //
10735 // //  format %{ "CMPu   $op1,$op2" %}
10736 // //  ins_cost(500);
10737 // //  opcode(0x39);  /* Opcode 39 /r */
10738 // //  ins_encode( OpcP, reg_mem( op1, op2) );
10739 // //%}
10740 
10741 instruct testU_reg(rFlagsRegU cr, rRegI src, immI0 zero)
10742 %{
10743   match(Set cr (CmpU src zero));
10744 
10745   format %{ "testl  $src, $src\t# unsigned" %}
10746   opcode(0x85);
10747   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
10748   ins_pipe(ialu_cr_reg_imm);
10749 %}
10750 
10751 instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
10752 %{
10753   match(Set cr (CmpP op1 op2));
10754 
10755   format %{ "cmpq    $op1, $op2\t# ptr" %}
10756   opcode(0x3B); /* Opcode 3B /r */
10757   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
10758   ins_pipe(ialu_cr_reg_reg);
10759 %}
10760 
10761 instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
10762 %{
10763   match(Set cr (CmpP op1 (LoadP op2)));
10764 
10765   ins_cost(500); // XXX
10766   format %{ "cmpq    $op1, $op2\t# ptr" %}
10767   opcode(0x3B); /* Opcode 3B /r */
10768   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
10769   ins_pipe(ialu_cr_reg_mem);
10770 %}
10771 
10772 // // // Cisc-spilled version of cmpP_rReg
10773 // //instruct compP_mem_rReg(rFlagsRegU cr, memory op1, rRegP op2)
10774 // //%{
10775 // //  match(Set cr (CmpP (LoadP op1) op2));
10776 // //
10777 // //  format %{ "CMPu   $op1,$op2" %}
10778 // //  ins_cost(500);
10779 // //  opcode(0x39);  /* Opcode 39 /r */
10780 // //  ins_encode( OpcP, reg_mem( op1, op2) );
10781 // //%}
10782 
10783 // XXX this is generalized by compP_rReg_mem???
10784 // Compare raw pointer (used in out-of-heap check).
10785 // Only works because non-oop pointers must be raw pointers
10786 // and raw pointers have no anti-dependencies.
10787 instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
10788 %{
10789   predicate(!n->in(2)->in(2)->bottom_type()->isa_oop_ptr());
10790   match(Set cr (CmpP op1 (LoadP op2)));
10791 
10792   format %{ "cmpq    $op1, $op2\t# raw ptr" %}
10793   opcode(0x3B); /* Opcode 3B /r */
10794   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
10795   ins_pipe(ialu_cr_reg_mem);
10796 %}
10797 
10798 // This will generate a signed flags result. This should be OK since
10799 // any compare to a zero should be eq/neq.
10800 instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
10801 %{
10802   match(Set cr (CmpP src zero));
10803 
10804   format %{ "testq   $src, $src\t# ptr" %}
10805   opcode(0x85);
10806   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
10807   ins_pipe(ialu_cr_reg_imm);
10808 %}
10809 
10810 // This will generate a signed flags result. This should be OK since
10811 // any compare to a zero should be eq/neq.
10812 instruct testP_mem(rFlagsReg cr, memory op, immP0 zero)
10813 %{
10814   predicate(!UseCompressedOops || (Universe::narrow_oop_base() != NULL));
10815   match(Set cr (CmpP (LoadP op) zero));
10816 
10817   ins_cost(500); // XXX
10818   format %{ "testq   $op, 0xffffffffffffffff\t# ptr" %}
10819   opcode(0xF7); /* Opcode F7 /0 */
10820   ins_encode(REX_mem_wide(op),
10821              OpcP, RM_opc_mem(0x00, op), Con_d32(0xFFFFFFFF));
10822   ins_pipe(ialu_cr_reg_imm);
10823 %}
10824 
10825 instruct testP_mem_reg0(rFlagsReg cr, memory mem, immP0 zero)
10826 %{
10827   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
10828   match(Set cr (CmpP (LoadP mem) zero));
10829 
10830   format %{ "cmpq    R12, $mem\t# ptr (R12_heapbase==0)" %}
10831   ins_encode %{
10832     __ cmpq(r12, $mem$$Address);
10833   %}
10834   ins_pipe(ialu_cr_reg_mem);
10835 %}
10836 
10837 instruct compN_rReg(rFlagsRegU cr, rRegN op1, rRegN op2)
10838 %{
10839   match(Set cr (CmpN op1 op2));
10840 
10841   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
10842   ins_encode %{ __ cmpl($op1$$Register, $op2$$Register); %}
10843   ins_pipe(ialu_cr_reg_reg);
10844 %}
10845 
10846 instruct compN_rReg_mem(rFlagsRegU cr, rRegN src, memory mem)
10847 %{
10848   match(Set cr (CmpN src (LoadN mem)));
10849 
10850   format %{ "cmpl    $src, $mem\t# compressed ptr" %}
10851   ins_encode %{
10852     __ cmpl($src$$Register, $mem$$Address);
10853   %}
10854   ins_pipe(ialu_cr_reg_mem);
10855 %}
10856 
10857 instruct compN_rReg_imm(rFlagsRegU cr, rRegN op1, immN op2) %{
10858   match(Set cr (CmpN op1 op2));
10859 
10860   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
10861   ins_encode %{
10862     __ cmp_narrow_oop($op1$$Register, (jobject)$op2$$constant);
10863   %}
10864   ins_pipe(ialu_cr_reg_imm);
10865 %}
10866 
10867 instruct compN_mem_imm(rFlagsRegU cr, memory mem, immN src)
10868 %{
10869   match(Set cr (CmpN src (LoadN mem)));
10870 
10871   format %{ "cmpl    $mem, $src\t# compressed ptr" %}
10872   ins_encode %{
10873     __ cmp_narrow_oop($mem$$Address, (jobject)$src$$constant);
10874   %}
10875   ins_pipe(ialu_cr_reg_mem);
10876 %}
10877 
10878 instruct testN_reg(rFlagsReg cr, rRegN src, immN0 zero) %{
10879   match(Set cr (CmpN src zero));
10880 
10881   format %{ "testl   $src, $src\t# compressed ptr" %}
10882   ins_encode %{ __ testl($src$$Register, $src$$Register); %}
10883   ins_pipe(ialu_cr_reg_imm);
10884 %}
10885 
10886 instruct testN_mem(rFlagsReg cr, memory mem, immN0 zero)
10887 %{
10888   predicate(Universe::narrow_oop_base() != NULL);
10889   match(Set cr (CmpN (LoadN mem) zero));
10890 
10891   ins_cost(500); // XXX
10892   format %{ "testl   $mem, 0xffffffff\t# compressed ptr" %}
10893   ins_encode %{
10894     __ cmpl($mem$$Address, (int)0xFFFFFFFF);
10895   %}
10896   ins_pipe(ialu_cr_reg_mem);
10897 %}
10898 
10899 instruct testN_mem_reg0(rFlagsReg cr, memory mem, immN0 zero)
10900 %{
10901   predicate(Universe::narrow_oop_base() == NULL);
10902   match(Set cr (CmpN (LoadN mem) zero));
10903 
10904   format %{ "cmpl    R12, $mem\t# compressed ptr (R12_heapbase==0)" %}
10905   ins_encode %{
10906     __ cmpl(r12, $mem$$Address);
10907   %}
10908   ins_pipe(ialu_cr_reg_mem);
10909 %}
10910 
10911 // Yanked all unsigned pointer compare operations.
10912 // Pointer compares are done with CmpP which is already unsigned.
10913 
10914 instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
10915 %{
10916   match(Set cr (CmpL op1 op2));
10917 
10918   format %{ "cmpq    $op1, $op2" %}
10919   opcode(0x3B);  /* Opcode 3B /r */
10920   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
10921   ins_pipe(ialu_cr_reg_reg);
10922 %}
10923 
10924 instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
10925 %{
10926   match(Set cr (CmpL op1 op2));
10927 
10928   format %{ "cmpq    $op1, $op2" %}
10929   opcode(0x81, 0x07); /* Opcode 81 /7 */
10930   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
10931   ins_pipe(ialu_cr_reg_imm);
10932 %}
10933 
10934 instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
10935 %{
10936   match(Set cr (CmpL op1 (LoadL op2)));
10937 
10938   format %{ "cmpq    $op1, $op2" %}
10939   opcode(0x3B); /* Opcode 3B /r */
10940   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
10941   ins_pipe(ialu_cr_reg_mem);
10942 %}
10943 
10944 instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
10945 %{
10946   match(Set cr (CmpL src zero));
10947 
10948   format %{ "testq   $src, $src" %}
10949   opcode(0x85);
10950   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
10951   ins_pipe(ialu_cr_reg_imm);
10952 %}
10953 
10954 instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
10955 %{
10956   match(Set cr (CmpL (AndL src con) zero));
10957 
10958   format %{ "testq   $src, $con\t# long" %}
10959   opcode(0xF7, 0x00);
10960   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src), Con32(con));
10961   ins_pipe(ialu_cr_reg_imm);
10962 %}
10963 
10964 instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
10965 %{
10966   match(Set cr (CmpL (AndL src (LoadL mem)) zero));
10967 
10968   format %{ "testq   $src, $mem" %}
10969   opcode(0x85);
10970   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
10971   ins_pipe(ialu_cr_reg_mem);
10972 %}
10973 
10974 // Manifest a CmpL result in an integer register.  Very painful.
10975 // This is the test to avoid.
10976 instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
10977 %{
10978   match(Set dst (CmpL3 src1 src2));
10979   effect(KILL flags);
10980 
10981   ins_cost(275); // XXX
10982   format %{ "cmpq    $src1, $src2\t# CmpL3\n\t"
10983             "movl    $dst, -1\n\t"
10984             "jl,s    done\n\t"
10985             "setne   $dst\n\t"
10986             "movzbl  $dst, $dst\n\t"
10987     "done:" %}
10988   ins_encode(cmpl3_flag(src1, src2, dst));
10989   ins_pipe(pipe_slow);
10990 %}
10991 
10992 //----------Max and Min--------------------------------------------------------
10993 // Min Instructions
10994 
10995 instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
10996 %{
10997   effect(USE_DEF dst, USE src, USE cr);
10998 
10999   format %{ "cmovlgt $dst, $src\t# min" %}
11000   opcode(0x0F, 0x4F);
11001   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
11002   ins_pipe(pipe_cmov_reg);
11003 %}
11004 
11005 
11006 instruct minI_rReg(rRegI dst, rRegI src)
11007 %{
11008   match(Set dst (MinI dst src));
11009 
11010   ins_cost(200);
11011   expand %{
11012     rFlagsReg cr;
11013     compI_rReg(cr, dst, src);
11014     cmovI_reg_g(dst, src, cr);
11015   %}
11016 %}
11017 
11018 instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
11019 %{
11020   effect(USE_DEF dst, USE src, USE cr);
11021 
11022   format %{ "cmovllt $dst, $src\t# max" %}
11023   opcode(0x0F, 0x4C);
11024   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
11025   ins_pipe(pipe_cmov_reg);
11026 %}
11027 
11028 
11029 instruct maxI_rReg(rRegI dst, rRegI src)
11030 %{
11031   match(Set dst (MaxI dst src));
11032 
11033   ins_cost(200);
11034   expand %{
11035     rFlagsReg cr;
11036     compI_rReg(cr, dst, src);
11037     cmovI_reg_l(dst, src, cr);
11038   %}
11039 %}
11040 
11041 // ============================================================================
11042 // Branch Instructions
11043 
11044 // Jump Direct - Label defines a relative address from JMP+1
11045 instruct jmpDir(label labl)
11046 %{
11047   match(Goto);
11048   effect(USE labl);
11049 
11050   ins_cost(300);
11051   format %{ "jmp     $labl" %}
11052   size(5);
11053   ins_encode %{
11054     Label* L = $labl$$label;
11055     __ jmp(*L, false); // Always long jump
11056   %}
11057   ins_pipe(pipe_jmp);
11058 %}
11059 
11060 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11061 instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
11062 %{
11063   match(If cop cr);
11064   effect(USE labl);
11065 
11066   ins_cost(300);
11067   format %{ "j$cop     $labl" %}
11068   size(6);
11069   ins_encode %{
11070     Label* L = $labl$$label;
11071     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11072   %}
11073   ins_pipe(pipe_jcc);
11074 %}
11075 
11076 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11077 instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
11078 %{
11079   match(CountedLoopEnd cop cr);
11080   effect(USE labl);
11081 
11082   ins_cost(300);
11083   format %{ "j$cop     $labl\t# loop end" %}
11084   size(6);
11085   ins_encode %{
11086     Label* L = $labl$$label;
11087     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11088   %}
11089   ins_pipe(pipe_jcc);
11090 %}
11091 
11092 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11093 instruct jmpLoopEndU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
11094   match(CountedLoopEnd cop cmp);
11095   effect(USE labl);
11096 
11097   ins_cost(300);
11098   format %{ "j$cop,u   $labl\t# loop end" %}
11099   size(6);
11100   ins_encode %{
11101     Label* L = $labl$$label;
11102     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11103   %}
11104   ins_pipe(pipe_jcc);
11105 %}
11106 
11107 instruct jmpLoopEndUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
11108   match(CountedLoopEnd cop cmp);
11109   effect(USE labl);
11110 
11111   ins_cost(200);
11112   format %{ "j$cop,u   $labl\t# loop end" %}
11113   size(6);
11114   ins_encode %{
11115     Label* L = $labl$$label;
11116     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11117   %}
11118   ins_pipe(pipe_jcc);
11119 %}
11120 
11121 // Jump Direct Conditional - using unsigned comparison
11122 instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
11123   match(If cop cmp);
11124   effect(USE labl);
11125 
11126   ins_cost(300);
11127   format %{ "j$cop,u  $labl" %}
11128   size(6);
11129   ins_encode %{
11130     Label* L = $labl$$label;
11131     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11132   %}
11133   ins_pipe(pipe_jcc);
11134 %}
11135 
11136 instruct jmpConUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
11137   match(If cop cmp);
11138   effect(USE labl);
11139 
11140   ins_cost(200);
11141   format %{ "j$cop,u  $labl" %}
11142   size(6);
11143   ins_encode %{
11144     Label* L = $labl$$label;
11145     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11146   %}
11147   ins_pipe(pipe_jcc);
11148 %}
11149 
11150 instruct jmpConUCF2(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
11151   match(If cop cmp);
11152   effect(USE labl);
11153 
11154   ins_cost(200);
11155   format %{ $$template
11156     if ($cop$$cmpcode == Assembler::notEqual) {
11157       $$emit$$"jp,u   $labl\n\t"
11158       $$emit$$"j$cop,u   $labl"
11159     } else {
11160       $$emit$$"jp,u   done\n\t"
11161       $$emit$$"j$cop,u   $labl\n\t"
11162       $$emit$$"done:"
11163     }
11164   %}
11165   ins_encode %{
11166     Label* l = $labl$$label;
11167     if ($cop$$cmpcode == Assembler::notEqual) {
11168       __ jcc(Assembler::parity, *l, false);
11169       __ jcc(Assembler::notEqual, *l, false);
11170     } else if ($cop$$cmpcode == Assembler::equal) {
11171       Label done;
11172       __ jccb(Assembler::parity, done);
11173       __ jcc(Assembler::equal, *l, false);
11174       __ bind(done);
11175     } else {
11176        ShouldNotReachHere();
11177     }
11178   %}
11179   ins_pipe(pipe_jcc);
11180 %}
11181 
11182 // ============================================================================
11183 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary
11184 // superklass array for an instance of the superklass.  Set a hidden
11185 // internal cache on a hit (cache is checked with exposed code in
11186 // gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
11187 // encoding ALSO sets flags.
11188 
11189 instruct partialSubtypeCheck(rdi_RegP result,
11190                              rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
11191                              rFlagsReg cr)
11192 %{
11193   match(Set result (PartialSubtypeCheck sub super));
11194   effect(KILL rcx, KILL cr);
11195 
11196   ins_cost(1100);  // slightly larger than the next version
11197   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
11198             "movl    rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
11199             "addq    rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
11200             "repne   scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
11201             "jne,s   miss\t\t# Missed: rdi not-zero\n\t"
11202             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
11203             "xorq    $result, $result\t\t Hit: rdi zero\n\t"
11204     "miss:\t" %}
11205 
11206   opcode(0x1); // Force a XOR of RDI
11207   ins_encode(enc_PartialSubtypeCheck());
11208   ins_pipe(pipe_slow);
11209 %}
11210 
11211 instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
11212                                      rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
11213                                      immP0 zero,
11214                                      rdi_RegP result)
11215 %{
11216   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
11217   effect(KILL rcx, KILL result);
11218 
11219   ins_cost(1000);
11220   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
11221             "movl    rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
11222             "addq    rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
11223             "repne   scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
11224             "jne,s   miss\t\t# Missed: flags nz\n\t"
11225             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
11226     "miss:\t" %}
11227 
11228   opcode(0x0); // No need to XOR RDI
11229   ins_encode(enc_PartialSubtypeCheck());
11230   ins_pipe(pipe_slow);
11231 %}
11232 
11233 // ============================================================================
11234 // Branch Instructions -- short offset versions
11235 //
11236 // These instructions are used to replace jumps of a long offset (the default
11237 // match) with jumps of a shorter offset.  These instructions are all tagged
11238 // with the ins_short_branch attribute, which causes the ADLC to suppress the
11239 // match rules in general matching.  Instead, the ADLC generates a conversion
11240 // method in the MachNode which can be used to do in-place replacement of the
11241 // long variant with the shorter variant.  The compiler will determine if a
11242 // branch can be taken by the is_short_branch_offset() predicate in the machine
11243 // specific code section of the file.
11244 
11245 // Jump Direct - Label defines a relative address from JMP+1
11246 instruct jmpDir_short(label labl) %{
11247   match(Goto);
11248   effect(USE labl);
11249 
11250   ins_cost(300);
11251   format %{ "jmp,s   $labl" %}
11252   size(2);
11253   ins_encode %{
11254     Label* L = $labl$$label;
11255     __ jmpb(*L);
11256   %}
11257   ins_pipe(pipe_jmp);
11258   ins_short_branch(1);
11259 %}
11260 
11261 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11262 instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl) %{
11263   match(If cop cr);
11264   effect(USE labl);
11265 
11266   ins_cost(300);
11267   format %{ "j$cop,s   $labl" %}
11268   size(2);
11269   ins_encode %{
11270     Label* L = $labl$$label;
11271     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
11272   %}
11273   ins_pipe(pipe_jcc);
11274   ins_short_branch(1);
11275 %}
11276 
11277 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11278 instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl) %{
11279   match(CountedLoopEnd cop cr);
11280   effect(USE labl);
11281 
11282   ins_cost(300);
11283   format %{ "j$cop,s   $labl\t# loop end" %}
11284   size(2);
11285   ins_encode %{
11286     Label* L = $labl$$label;
11287     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
11288   %}
11289   ins_pipe(pipe_jcc);
11290   ins_short_branch(1);
11291 %}
11292 
11293 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11294 instruct jmpLoopEndU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
11295   match(CountedLoopEnd cop cmp);
11296   effect(USE labl);
11297 
11298   ins_cost(300);
11299   format %{ "j$cop,us  $labl\t# loop end" %}
11300   size(2);
11301   ins_encode %{
11302     Label* L = $labl$$label;
11303     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
11304   %}
11305   ins_pipe(pipe_jcc);
11306   ins_short_branch(1);
11307 %}
11308 
11309 instruct jmpLoopEndUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
11310   match(CountedLoopEnd cop cmp);
11311   effect(USE labl);
11312 
11313   ins_cost(300);
11314   format %{ "j$cop,us  $labl\t# loop end" %}
11315   size(2);
11316   ins_encode %{
11317     Label* L = $labl$$label;
11318     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
11319   %}
11320   ins_pipe(pipe_jcc);
11321   ins_short_branch(1);
11322 %}
11323 
11324 // Jump Direct Conditional - using unsigned comparison
11325 instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
11326   match(If cop cmp);
11327   effect(USE labl);
11328 
11329   ins_cost(300);
11330   format %{ "j$cop,us  $labl" %}
11331   size(2);
11332   ins_encode %{
11333     Label* L = $labl$$label;
11334     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
11335   %}
11336   ins_pipe(pipe_jcc);
11337   ins_short_branch(1);
11338 %}
11339 
11340 instruct jmpConUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
11341   match(If cop cmp);
11342   effect(USE labl);
11343 
11344   ins_cost(300);
11345   format %{ "j$cop,us  $labl" %}
11346   size(2);
11347   ins_encode %{
11348     Label* L = $labl$$label;
11349     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
11350   %}
11351   ins_pipe(pipe_jcc);
11352   ins_short_branch(1);
11353 %}
11354 
11355 instruct jmpConUCF2_short(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
11356   match(If cop cmp);
11357   effect(USE labl);
11358 
11359   ins_cost(300);
11360   format %{ $$template
11361     if ($cop$$cmpcode == Assembler::notEqual) {
11362       $$emit$$"jp,u,s   $labl\n\t"
11363       $$emit$$"j$cop,u,s   $labl"
11364     } else {
11365       $$emit$$"jp,u,s   done\n\t"
11366       $$emit$$"j$cop,u,s  $labl\n\t"
11367       $$emit$$"done:"
11368     }
11369   %}
11370   size(4);
11371   ins_encode %{
11372     Label* l = $labl$$label;
11373     if ($cop$$cmpcode == Assembler::notEqual) {
11374       __ jccb(Assembler::parity, *l);
11375       __ jccb(Assembler::notEqual, *l);
11376     } else if ($cop$$cmpcode == Assembler::equal) {
11377       Label done;
11378       __ jccb(Assembler::parity, done);
11379       __ jccb(Assembler::equal, *l);
11380       __ bind(done);
11381     } else {
11382        ShouldNotReachHere();
11383     }
11384   %}
11385   ins_pipe(pipe_jcc);
11386   ins_short_branch(1);
11387 %}
11388 
11389 // ============================================================================
11390 // inlined locking and unlocking
11391 
11392 instruct cmpFastLock(rFlagsReg cr,
11393                      rRegP object, rbx_RegP box, rax_RegI tmp, rRegP scr)
11394 %{
11395   match(Set cr (FastLock object box));
11396   effect(TEMP tmp, TEMP scr, USE_KILL box);
11397 
11398   ins_cost(300);
11399   format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr" %}
11400   ins_encode(Fast_Lock(object, box, tmp, scr));
11401   ins_pipe(pipe_slow);
11402 %}
11403 
11404 instruct cmpFastUnlock(rFlagsReg cr,
11405                        rRegP object, rax_RegP box, rRegP tmp)
11406 %{
11407   match(Set cr (FastUnlock object box));
11408   effect(TEMP tmp, USE_KILL box);
11409 
11410   ins_cost(300);
11411   format %{ "fastunlock $object,$box\t! kills $box,$tmp" %}
11412   ins_encode(Fast_Unlock(object, box, tmp));
11413   ins_pipe(pipe_slow);
11414 %}
11415 
11416 
11417 // ============================================================================
11418 // Safepoint Instructions
11419 instruct safePoint_poll(rFlagsReg cr)
11420 %{
11421   predicate(!Assembler::is_polling_page_far());
11422   match(SafePoint);
11423   effect(KILL cr);
11424 
11425   format %{ "testl  rax, [rip + #offset_to_poll_page]\t"
11426             "# Safepoint: poll for GC" %}
11427   ins_cost(125);
11428   ins_encode %{
11429     AddressLiteral addr(os::get_polling_page(), relocInfo::poll_type);
11430     __ testl(rax, addr);
11431   %}
11432   ins_pipe(ialu_reg_mem);
11433 %}
11434 
11435 instruct safePoint_poll_far(rFlagsReg cr, rRegP poll)
11436 %{
11437   predicate(Assembler::is_polling_page_far());
11438   match(SafePoint poll);
11439   effect(KILL cr, USE poll);
11440 
11441   format %{ "testl  rax, [$poll]\t"
11442             "# Safepoint: poll for GC" %}
11443   ins_cost(125);
11444   ins_encode %{
11445     __ relocate(relocInfo::poll_type);
11446     __ testl(rax, Address($poll$$Register, 0));
11447   %}
11448   ins_pipe(ialu_reg_mem);
11449 %}
11450 
11451 // ============================================================================
11452 // Procedure Call/Return Instructions
11453 // Call Java Static Instruction
11454 // Note: If this code changes, the corresponding ret_addr_offset() and
11455 //       compute_padding() functions will have to be adjusted.
11456 instruct CallStaticJavaDirect(method meth) %{
11457   match(CallStaticJava);
11458   predicate(!((CallStaticJavaNode*) n)->is_method_handle_invoke());
11459   effect(USE meth);
11460 
11461   ins_cost(300);
11462   format %{ "call,static " %}
11463   opcode(0xE8); /* E8 cd */
11464   ins_encode(Java_Static_Call(meth), call_epilog);
11465   ins_pipe(pipe_slow);
11466   ins_alignment(4);
11467 %}
11468 
11469 // Call Java Static Instruction (method handle version)
11470 // Note: If this code changes, the corresponding ret_addr_offset() and
11471 //       compute_padding() functions will have to be adjusted.
11472 instruct CallStaticJavaHandle(method meth, rbp_RegP rbp_mh_SP_save) %{
11473   match(CallStaticJava);
11474   predicate(((CallStaticJavaNode*) n)->is_method_handle_invoke());
11475   effect(USE meth);
11476   // RBP is saved by all callees (for interpreter stack correction).
11477   // We use it here for a similar purpose, in {preserve,restore}_SP.
11478 
11479   ins_cost(300);
11480   format %{ "call,static/MethodHandle " %}
11481   opcode(0xE8); /* E8 cd */
11482   ins_encode(preserve_SP,
11483              Java_Static_Call(meth),
11484              restore_SP,
11485              call_epilog);
11486   ins_pipe(pipe_slow);
11487   ins_alignment(4);
11488 %}
11489 
11490 // Call Java Dynamic Instruction
11491 // Note: If this code changes, the corresponding ret_addr_offset() and
11492 //       compute_padding() functions will have to be adjusted.
11493 instruct CallDynamicJavaDirect(method meth)
11494 %{
11495   match(CallDynamicJava);
11496   effect(USE meth);
11497 
11498   ins_cost(300);
11499   format %{ "movq    rax, #Universe::non_oop_word()\n\t"
11500             "call,dynamic " %}
11501   opcode(0xE8); /* E8 cd */
11502   ins_encode(Java_Dynamic_Call(meth), call_epilog);
11503   ins_pipe(pipe_slow);
11504   ins_alignment(4);
11505 %}
11506 
11507 // Call Runtime Instruction
11508 instruct CallRuntimeDirect(method meth)
11509 %{
11510   match(CallRuntime);
11511   effect(USE meth);
11512 
11513   ins_cost(300);
11514   format %{ "call,runtime " %}
11515   opcode(0xE8); /* E8 cd */
11516   ins_encode(Java_To_Runtime(meth));
11517   ins_pipe(pipe_slow);
11518 %}
11519 
11520 // Call runtime without safepoint
11521 instruct CallLeafDirect(method meth)
11522 %{
11523   match(CallLeaf);
11524   effect(USE meth);
11525 
11526   ins_cost(300);
11527   format %{ "call_leaf,runtime " %}
11528   opcode(0xE8); /* E8 cd */
11529   ins_encode(Java_To_Runtime(meth));
11530   ins_pipe(pipe_slow);
11531 %}
11532 
11533 // Call runtime without safepoint
11534 instruct CallLeafNoFPDirect(method meth)
11535 %{
11536   match(CallLeafNoFP);
11537   effect(USE meth);
11538 
11539   ins_cost(300);
11540   format %{ "call_leaf_nofp,runtime " %}
11541   opcode(0xE8); /* E8 cd */
11542   ins_encode(Java_To_Runtime(meth));
11543   ins_pipe(pipe_slow);
11544 %}
11545 
11546 // Return Instruction
11547 // Remove the return address & jump to it.
11548 // Notice: We always emit a nop after a ret to make sure there is room
11549 // for safepoint patching
11550 instruct Ret()
11551 %{
11552   match(Return);
11553 
11554   format %{ "ret" %}
11555   opcode(0xC3);
11556   ins_encode(OpcP);
11557   ins_pipe(pipe_jmp);
11558 %}
11559 
11560 // Tail Call; Jump from runtime stub to Java code.
11561 // Also known as an 'interprocedural jump'.
11562 // Target of jump will eventually return to caller.
11563 // TailJump below removes the return address.
11564 instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_oop)
11565 %{
11566   match(TailCall jump_target method_oop);
11567 
11568   ins_cost(300);
11569   format %{ "jmp     $jump_target\t# rbx holds method oop" %}
11570   opcode(0xFF, 0x4); /* Opcode FF /4 */
11571   ins_encode(REX_reg(jump_target), OpcP, reg_opc(jump_target));
11572   ins_pipe(pipe_jmp);
11573 %}
11574 
11575 // Tail Jump; remove the return address; jump to target.
11576 // TailCall above leaves the return address around.
11577 instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
11578 %{
11579   match(TailJump jump_target ex_oop);
11580 
11581   ins_cost(300);
11582   format %{ "popq    rdx\t# pop return address\n\t"
11583             "jmp     $jump_target" %}
11584   opcode(0xFF, 0x4); /* Opcode FF /4 */
11585   ins_encode(Opcode(0x5a), // popq rdx
11586              REX_reg(jump_target), OpcP, reg_opc(jump_target));
11587   ins_pipe(pipe_jmp);
11588 %}
11589 
11590 // Create exception oop: created by stack-crawling runtime code.
11591 // Created exception is now available to this handler, and is setup
11592 // just prior to jumping to this handler.  No code emitted.
11593 instruct CreateException(rax_RegP ex_oop)
11594 %{
11595   match(Set ex_oop (CreateEx));
11596 
11597   size(0);
11598   // use the following format syntax
11599   format %{ "# exception oop is in rax; no code emitted" %}
11600   ins_encode();
11601   ins_pipe(empty);
11602 %}
11603 
11604 // Rethrow exception:
11605 // The exception oop will come in the first argument position.
11606 // Then JUMP (not call) to the rethrow stub code.
11607 instruct RethrowException()
11608 %{
11609   match(Rethrow);
11610 
11611   // use the following format syntax
11612   format %{ "jmp     rethrow_stub" %}
11613   ins_encode(enc_rethrow);
11614   ins_pipe(pipe_jmp);
11615 %}
11616 
11617 
11618 // ============================================================================
11619 // This name is KNOWN by the ADLC and cannot be changed.
11620 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
11621 // for this guy.
11622 instruct tlsLoadP(r15_RegP dst) %{
11623   match(Set dst (ThreadLocal));
11624   effect(DEF dst);
11625 
11626   size(0);
11627   format %{ "# TLS is in R15" %}
11628   ins_encode( /*empty encoding*/ );
11629   ins_pipe(ialu_reg_reg);
11630 %}
11631 
11632 
11633 //----------PEEPHOLE RULES-----------------------------------------------------
11634 // These must follow all instruction definitions as they use the names
11635 // defined in the instructions definitions.
11636 //
11637 // peepmatch ( root_instr_name [preceding_instruction]* );
11638 //
11639 // peepconstraint %{
11640 // (instruction_number.operand_name relational_op instruction_number.operand_name
11641 //  [, ...] );
11642 // // instruction numbers are zero-based using left to right order in peepmatch
11643 //
11644 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
11645 // // provide an instruction_number.operand_name for each operand that appears
11646 // // in the replacement instruction's match rule
11647 //
11648 // ---------VM FLAGS---------------------------------------------------------
11649 //
11650 // All peephole optimizations can be turned off using -XX:-OptoPeephole
11651 //
11652 // Each peephole rule is given an identifying number starting with zero and
11653 // increasing by one in the order seen by the parser.  An individual peephole
11654 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
11655 // on the command-line.
11656 //
11657 // ---------CURRENT LIMITATIONS----------------------------------------------
11658 //
11659 // Only match adjacent instructions in same basic block
11660 // Only equality constraints
11661 // Only constraints between operands, not (0.dest_reg == RAX_enc)
11662 // Only one replacement instruction
11663 //
11664 // ---------EXAMPLE----------------------------------------------------------
11665 //
11666 // // pertinent parts of existing instructions in architecture description
11667 // instruct movI(rRegI dst, rRegI src)
11668 // %{
11669 //   match(Set dst (CopyI src));
11670 // %}
11671 //
11672 // instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
11673 // %{
11674 //   match(Set dst (AddI dst src));
11675 //   effect(KILL cr);
11676 // %}
11677 //
11678 // // Change (inc mov) to lea
11679 // peephole %{
11680 //   // increment preceeded by register-register move
11681 //   peepmatch ( incI_rReg movI );
11682 //   // require that the destination register of the increment
11683 //   // match the destination register of the move
11684 //   peepconstraint ( 0.dst == 1.dst );
11685 //   // construct a replacement instruction that sets
11686 //   // the destination to ( move's source register + one )
11687 //   peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
11688 // %}
11689 //
11690 
11691 // Implementation no longer uses movX instructions since
11692 // machine-independent system no longer uses CopyX nodes.
11693 //
11694 // peephole
11695 // %{
11696 //   peepmatch (incI_rReg movI);
11697 //   peepconstraint (0.dst == 1.dst);
11698 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
11699 // %}
11700 
11701 // peephole
11702 // %{
11703 //   peepmatch (decI_rReg movI);
11704 //   peepconstraint (0.dst == 1.dst);
11705 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
11706 // %}
11707 
11708 // peephole
11709 // %{
11710 //   peepmatch (addI_rReg_imm movI);
11711 //   peepconstraint (0.dst == 1.dst);
11712 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
11713 // %}
11714 
11715 // peephole
11716 // %{
11717 //   peepmatch (incL_rReg movL);
11718 //   peepconstraint (0.dst == 1.dst);
11719 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
11720 // %}
11721 
11722 // peephole
11723 // %{
11724 //   peepmatch (decL_rReg movL);
11725 //   peepconstraint (0.dst == 1.dst);
11726 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
11727 // %}
11728 
11729 // peephole
11730 // %{
11731 //   peepmatch (addL_rReg_imm movL);
11732 //   peepconstraint (0.dst == 1.dst);
11733 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
11734 // %}
11735 
11736 // peephole
11737 // %{
11738 //   peepmatch (addP_rReg_imm movP);
11739 //   peepconstraint (0.dst == 1.dst);
11740 //   peepreplace (leaP_rReg_imm(0.dst 1.src 0.src));
11741 // %}
11742 
11743 // // Change load of spilled value to only a spill
11744 // instruct storeI(memory mem, rRegI src)
11745 // %{
11746 //   match(Set mem (StoreI mem src));
11747 // %}
11748 //
11749 // instruct loadI(rRegI dst, memory mem)
11750 // %{
11751 //   match(Set dst (LoadI mem));
11752 // %}
11753 //
11754 
11755 peephole
11756 %{
11757   peepmatch (loadI storeI);
11758   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
11759   peepreplace (storeI(1.mem 1.mem 1.src));
11760 %}
11761 
11762 peephole
11763 %{
11764   peepmatch (loadL storeL);
11765   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
11766   peepreplace (storeL(1.mem 1.mem 1.src));
11767 %}
11768 
11769 //----------SMARTSPILL RULES---------------------------------------------------
11770 // These must follow all instruction definitions as they use the names
11771 // defined in the instructions definitions.