1 /*
   2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_CARDTABLEMODREFBS_HPP
  26 #define SHARE_VM_MEMORY_CARDTABLEMODREFBS_HPP
  27 
  28 #include "memory/modRefBarrierSet.hpp"
  29 #include "oops/oop.hpp"
  30 #include "oops/oop.inline2.hpp"
  31 
  32 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
  33 // enumerate ref fields that have been modified (since the last
  34 // enumeration.)
  35 
  36 // As it currently stands, this barrier is *imprecise*: when a ref field in
  37 // an object "o" is modified, the card table entry for the card containing
  38 // the head of "o" is dirtied, not necessarily the card containing the
  39 // modified field itself.  For object arrays, however, the barrier *is*
  40 // precise; only the card containing the modified element is dirtied.
  41 // Any MemRegionClosures used to scan dirty cards should take these
  42 // considerations into account.
  43 
  44 class Generation;
  45 class OopsInGenClosure;
  46 class DirtyCardToOopClosure;
  47 class ClearNoncleanCardWrapper;
  48 
  49 class CardTableModRefBS: public ModRefBarrierSet {
  50   // Some classes get to look at some private stuff.
  51   friend class BytecodeInterpreter;
  52   friend class VMStructs;
  53   friend class CardTableRS;
  54   friend class CheckForUnmarkedOops; // Needs access to raw card bytes.
  55   friend class SharkBuilder;
  56 #ifndef PRODUCT
  57   // For debugging.
  58   friend class GuaranteeNotModClosure;
  59 #endif
  60  protected:
  61 
  62   enum CardValues {
  63     clean_card                  = -1,
  64     // The mask contains zeros in places for all other values.
  65     clean_card_mask             = clean_card - 31,
  66 
  67     dirty_card                  =  0,
  68     precleaned_card             =  1,
  69     claimed_card                =  2,
  70     deferred_card               =  4,
  71     last_card                   =  8,
  72     CT_MR_BS_last_reserved      = 16
  73   };
  74 
  75   // a word's worth (row) of clean card values
  76   static const intptr_t clean_card_row = (intptr_t)(-1);
  77 
  78   // dirty and precleaned are equivalent wrt younger_refs_iter.
  79   static bool card_is_dirty_wrt_gen_iter(jbyte cv) {
  80     return cv == dirty_card || cv == precleaned_card;
  81   }
  82 
  83   // Returns "true" iff the value "cv" will cause the card containing it
  84   // to be scanned in the current traversal.  May be overridden by
  85   // subtypes.
  86   virtual bool card_will_be_scanned(jbyte cv) {
  87     return CardTableModRefBS::card_is_dirty_wrt_gen_iter(cv);
  88   }
  89 
  90   // Returns "true" iff the value "cv" may have represented a dirty card at
  91   // some point.
  92   virtual bool card_may_have_been_dirty(jbyte cv) {
  93     return card_is_dirty_wrt_gen_iter(cv);
  94   }
  95 
  96   // The declaration order of these const fields is important; see the
  97   // constructor before changing.
  98   const MemRegion _whole_heap;       // the region covered by the card table
  99   const size_t    _guard_index;      // index of very last element in the card
 100                                      // table; it is set to a guard value
 101                                      // (last_card) and should never be modified
 102   const size_t    _last_valid_index; // index of the last valid element
 103   const size_t    _page_size;        // page size used when mapping _byte_map
 104   const size_t    _byte_map_size;    // in bytes
 105   jbyte*          _byte_map;         // the card marking array
 106 
 107   int _cur_covered_regions;
 108   // The covered regions should be in address order.
 109   MemRegion* _covered;
 110   // The committed regions correspond one-to-one to the covered regions.
 111   // They represent the card-table memory that has been committed to service
 112   // the corresponding covered region.  It may be that committed region for
 113   // one covered region corresponds to a larger region because of page-size
 114   // roundings.  Thus, a committed region for one covered region may
 115   // actually extend onto the card-table space for the next covered region.
 116   MemRegion* _committed;
 117 
 118   // The last card is a guard card, and we commit the page for it so
 119   // we can use the card for verification purposes. We make sure we never
 120   // uncommit the MemRegion for that page.
 121   MemRegion _guard_region;
 122 
 123  protected:
 124   // Initialization utilities; covered_words is the size of the covered region
 125   // in, um, words.
 126   inline size_t cards_required(size_t covered_words);
 127   inline size_t compute_byte_map_size();
 128 
 129   // Finds and return the index of the region, if any, to which the given
 130   // region would be contiguous.  If none exists, assign a new region and
 131   // returns its index.  Requires that no more than the maximum number of
 132   // covered regions defined in the constructor are ever in use.
 133   int find_covering_region_by_base(HeapWord* base);
 134 
 135   // Same as above, but finds the region containing the given address
 136   // instead of starting at a given base address.
 137   int find_covering_region_containing(HeapWord* addr);
 138 
 139   // Resize one of the regions covered by the remembered set.
 140   void resize_covered_region(MemRegion new_region);
 141 
 142   // Returns the leftmost end of a committed region corresponding to a
 143   // covered region before covered region "ind", or else "NULL" if "ind" is
 144   // the first covered region.
 145   HeapWord* largest_prev_committed_end(int ind) const;
 146 
 147   // Returns the part of the region mr that doesn't intersect with
 148   // any committed region other than self.  Used to prevent uncommitting
 149   // regions that are also committed by other regions.  Also protects
 150   // against uncommitting the guard region.
 151   MemRegion committed_unique_to_self(int self, MemRegion mr) const;
 152 
 153   // Mapping from address to card marking array entry
 154   jbyte* byte_for(const void* p) const {
 155     assert(_whole_heap.contains(p),
 156            err_msg("Attempt to access p = "PTR_FORMAT" out of bounds of "
 157                    " card marking array's _whole_heap = ["PTR_FORMAT","PTR_FORMAT")",
 158                    p, _whole_heap.start(), _whole_heap.end()));
 159     jbyte* result = &byte_map_base[uintptr_t(p) >> card_shift];
 160     assert(result >= _byte_map && result < _byte_map + _byte_map_size,
 161            "out of bounds accessor for card marking array");
 162     return result;
 163   }
 164 
 165   // The card table byte one after the card marking array
 166   // entry for argument address. Typically used for higher bounds
 167   // for loops iterating through the card table.
 168   jbyte* byte_after(const void* p) const {
 169     return byte_for(p) + 1;
 170   }
 171 
 172   // Iterate over the portion of the card-table which covers the given
 173   // region mr in the given space and apply cl to any dirty sub-regions
 174   // of mr. Dirty cards are _not_ cleared by the iterator method itself,
 175   // but closures may arrange to do so on their own should they so wish.
 176   void non_clean_card_iterate_serial(MemRegion mr, MemRegionClosure* cl);
 177 
 178   // A variant of the above that will operate in a parallel mode if
 179   // worker threads are available, and clear the dirty cards as it
 180   // processes them.
 181   // XXX ??? MemRegionClosure above vs OopsInGenClosure below XXX
 182   // XXX some new_dcto_cl's take OopClosure's, plus as above there are
 183   // some MemRegionClosures. Clean this up everywhere. XXX
 184   void non_clean_card_iterate_possibly_parallel(Space* sp, MemRegion mr,
 185                                                 OopsInGenClosure* cl, CardTableRS* ct);
 186 
 187  private:
 188   // Work method used to implement non_clean_card_iterate_possibly_parallel()
 189   // above in the parallel case.
 190   void non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
 191                                             OopsInGenClosure* cl, CardTableRS* ct,
 192                                             int n_threads);
 193 
 194  protected:
 195   // Dirty the bytes corresponding to "mr" (not all of which must be
 196   // covered.)
 197   void dirty_MemRegion(MemRegion mr);
 198 
 199   // Clear (to clean_card) the bytes entirely contained within "mr" (not
 200   // all of which must be covered.)
 201   void clear_MemRegion(MemRegion mr);
 202 
 203   // *** Support for parallel card scanning.
 204 
 205   // This is an array, one element per covered region of the card table.
 206   // Each entry is itself an array, with one element per chunk in the
 207   // covered region.  Each entry of these arrays is the lowest non-clean
 208   // card of the corresponding chunk containing part of an object from the
 209   // previous chunk, or else NULL.
 210   typedef jbyte*  CardPtr;
 211   typedef CardPtr* CardArr;
 212   CardArr* _lowest_non_clean;
 213   size_t*  _lowest_non_clean_chunk_size;
 214   uintptr_t* _lowest_non_clean_base_chunk_index;
 215   int* _last_LNC_resizing_collection;
 216 
 217   // Initializes "lowest_non_clean" to point to the array for the region
 218   // covering "sp", and "lowest_non_clean_base_chunk_index" to the chunk
 219   // index of the corresponding to the first element of that array.
 220   // Ensures that these arrays are of sufficient size, allocating if necessary.
 221   // May be called by several threads concurrently.
 222   void get_LNC_array_for_space(Space* sp,
 223                                jbyte**& lowest_non_clean,
 224                                uintptr_t& lowest_non_clean_base_chunk_index,
 225                                size_t& lowest_non_clean_chunk_size);
 226 
 227   // Returns the number of chunks necessary to cover "mr".
 228   size_t chunks_to_cover(MemRegion mr) {
 229     return (size_t)(addr_to_chunk_index(mr.last()) -
 230                     addr_to_chunk_index(mr.start()) + 1);
 231   }
 232 
 233   // Returns the index of the chunk in a stride which
 234   // covers the given address.
 235   uintptr_t addr_to_chunk_index(const void* addr) {
 236     uintptr_t card = (uintptr_t) byte_for(addr);
 237     return card / ParGCCardsPerStrideChunk;
 238   }
 239 
 240   // Apply cl, which must either itself apply dcto_cl or be dcto_cl,
 241   // to the cards in the stride (of n_strides) within the given space.
 242   void process_stride(Space* sp,
 243                       MemRegion used,
 244                       jint stride, int n_strides,
 245                       OopsInGenClosure* cl,
 246                       CardTableRS* ct,
 247                       jbyte** lowest_non_clean,
 248                       uintptr_t lowest_non_clean_base_chunk_index,
 249                       size_t lowest_non_clean_chunk_size);
 250 
 251   // Makes sure that chunk boundaries are handled appropriately, by
 252   // adjusting the min_done of dcto_cl, and by using a special card-table
 253   // value to indicate how min_done should be set.
 254   void process_chunk_boundaries(Space* sp,
 255                                 DirtyCardToOopClosure* dcto_cl,
 256                                 MemRegion chunk_mr,
 257                                 MemRegion used,
 258                                 jbyte** lowest_non_clean,
 259                                 uintptr_t lowest_non_clean_base_chunk_index,
 260                                 size_t    lowest_non_clean_chunk_size);
 261 
 262 public:
 263   // Constants
 264   enum SomePublicConstants {
 265     card_shift                  = 9,
 266     card_size                   = 1 << card_shift,
 267     card_size_in_words          = card_size / sizeof(HeapWord)
 268   };
 269 
 270   static int clean_card_val()      { return clean_card; }
 271   static int clean_card_mask_val() { return clean_card_mask; }
 272   static int dirty_card_val()      { return dirty_card; }
 273   static int claimed_card_val()    { return claimed_card; }
 274   static int precleaned_card_val() { return precleaned_card; }
 275   static int deferred_card_val()   { return deferred_card; }
 276 
 277   // For RTTI simulation.
 278   bool is_a(BarrierSet::Name bsn) {
 279     return bsn == BarrierSet::CardTableModRef || ModRefBarrierSet::is_a(bsn);
 280   }
 281 
 282   CardTableModRefBS(MemRegion whole_heap, int max_covered_regions);
 283 
 284   // *** Barrier set functions.
 285 
 286   bool has_write_ref_pre_barrier() { return false; }
 287 
 288   inline bool write_ref_needs_barrier(void* field, oop new_val) {
 289     // Note that this assumes the perm gen is the highest generation
 290     // in the address space
 291     return new_val != NULL && !new_val->is_perm();
 292   }
 293 
 294   // Record a reference update. Note that these versions are precise!
 295   // The scanning code has to handle the fact that the write barrier may be
 296   // either precise or imprecise. We make non-virtual inline variants of
 297   // these functions here for performance.
 298 protected:
 299   void write_ref_field_work(oop obj, size_t offset, oop newVal);
 300   virtual void write_ref_field_work(void* field, oop newVal);
 301 public:
 302 
 303   bool has_write_ref_array_opt() { return true; }
 304   bool has_write_region_opt() { return true; }
 305 
 306   inline void inline_write_region(MemRegion mr) {
 307     dirty_MemRegion(mr);
 308   }
 309 protected:
 310   void write_region_work(MemRegion mr) {
 311     inline_write_region(mr);
 312   }
 313 public:
 314 
 315   inline void inline_write_ref_array(MemRegion mr) {
 316     dirty_MemRegion(mr);
 317   }
 318 protected:
 319   void write_ref_array_work(MemRegion mr) {
 320     inline_write_ref_array(mr);
 321   }
 322 public:
 323 
 324   bool is_aligned(HeapWord* addr) {
 325     return is_card_aligned(addr);
 326   }
 327 
 328   // *** Card-table-barrier-specific things.
 329 
 330   template <class T> inline void inline_write_ref_field_pre(T* field, oop newVal) {}
 331 
 332   template <class T> inline void inline_write_ref_field(T* field, oop newVal) {
 333     jbyte* byte = byte_for((void*)field);
 334     *byte = dirty_card;
 335   }
 336 
 337   // These are used by G1, when it uses the card table as a temporary data
 338   // structure for card claiming.
 339   bool is_card_dirty(size_t card_index) {
 340     return _byte_map[card_index] == dirty_card_val();
 341   }
 342 
 343   void mark_card_dirty(size_t card_index) {
 344     _byte_map[card_index] = dirty_card_val();
 345   }
 346 
 347   bool is_card_claimed(size_t card_index) {
 348     jbyte val = _byte_map[card_index];
 349     return (val & (clean_card_mask_val() | claimed_card_val())) == claimed_card_val();
 350   }
 351 
 352   void set_card_claimed(size_t card_index) {
 353       jbyte val = _byte_map[card_index];
 354       if (val == clean_card_val()) {
 355         val = (jbyte)claimed_card_val();
 356       } else {
 357         val |= (jbyte)claimed_card_val();
 358       }
 359       _byte_map[card_index] = val;
 360   }
 361 
 362   bool claim_card(size_t card_index);
 363 
 364   bool is_card_clean(size_t card_index) {
 365     return _byte_map[card_index] == clean_card_val();
 366   }
 367 
 368   bool is_card_deferred(size_t card_index) {
 369     jbyte val = _byte_map[card_index];
 370     return (val & (clean_card_mask_val() | deferred_card_val())) == deferred_card_val();
 371   }
 372 
 373   bool mark_card_deferred(size_t card_index);
 374 
 375   // Card marking array base (adjusted for heap low boundary)
 376   // This would be the 0th element of _byte_map, if the heap started at 0x0.
 377   // But since the heap starts at some higher address, this points to somewhere
 378   // before the beginning of the actual _byte_map.
 379   jbyte* byte_map_base;
 380 
 381   // Return true if "p" is at the start of a card.
 382   bool is_card_aligned(HeapWord* p) {
 383     jbyte* pcard = byte_for(p);
 384     return (addr_for(pcard) == p);
 385   }
 386 
 387   HeapWord* align_to_card_boundary(HeapWord* p) {
 388     jbyte* pcard = byte_for(p + card_size_in_words - 1);
 389     return addr_for(pcard);
 390   }
 391 
 392   // The kinds of precision a CardTableModRefBS may offer.
 393   enum PrecisionStyle {
 394     Precise,
 395     ObjHeadPreciseArray
 396   };
 397 
 398   // Tells what style of precision this card table offers.
 399   PrecisionStyle precision() {
 400     return ObjHeadPreciseArray; // Only one supported for now.
 401   }
 402 
 403   // ModRefBS functions.
 404   virtual void invalidate(MemRegion mr, bool whole_heap = false);
 405   void clear(MemRegion mr);
 406   void dirty(MemRegion mr);
 407 
 408   // *** Card-table-RemSet-specific things.
 409 
 410   // Invoke "cl.do_MemRegion" on a set of MemRegions that collectively
 411   // includes all the modified cards (expressing each card as a
 412   // MemRegion).  Thus, several modified cards may be lumped into one
 413   // region.  The regions are non-overlapping, and are visited in
 414   // *decreasing* address order.  (This order aids with imprecise card
 415   // marking, where a dirty card may cause scanning, and summarization
 416   // marking, of objects that extend onto subsequent cards.)
 417   void mod_card_iterate(MemRegionClosure* cl) {
 418     non_clean_card_iterate_serial(_whole_heap, cl);
 419   }
 420 
 421   // Like the "mod_cards_iterate" above, except only invokes the closure
 422   // for cards within the MemRegion "mr" (which is required to be
 423   // card-aligned and sized.)
 424   void mod_card_iterate(MemRegion mr, MemRegionClosure* cl) {
 425     non_clean_card_iterate_serial(mr, cl);
 426   }
 427 
 428   static uintx ct_max_alignment_constraint();
 429 
 430   // Apply closure "cl" to the dirty cards containing some part of
 431   // MemRegion "mr".
 432   void dirty_card_iterate(MemRegion mr, MemRegionClosure* cl);
 433 
 434   // Return the MemRegion corresponding to the first maximal run
 435   // of dirty cards lying completely within MemRegion mr.
 436   // If reset is "true", then sets those card table entries to the given
 437   // value.
 438   MemRegion dirty_card_range_after_reset(MemRegion mr, bool reset,
 439                                          int reset_val);
 440 
 441   // Provide read-only access to the card table array.
 442   const jbyte* byte_for_const(const void* p) const {
 443     return byte_for(p);
 444   }
 445   const jbyte* byte_after_const(const void* p) const {
 446     return byte_after(p);
 447   }
 448 
 449   // Mapping from card marking array entry to address of first word
 450   HeapWord* addr_for(const jbyte* p) const {
 451     assert(p >= _byte_map && p < _byte_map + _byte_map_size,
 452            "out of bounds access to card marking array");
 453     size_t delta = pointer_delta(p, byte_map_base, sizeof(jbyte));
 454     HeapWord* result = (HeapWord*) (delta << card_shift);
 455     assert(_whole_heap.contains(result),
 456            err_msg("Returning result = "PTR_FORMAT" out of bounds of "
 457                    " card marking array's _whole_heap = ["PTR_FORMAT","PTR_FORMAT")",
 458                    result, _whole_heap.start(), _whole_heap.end()));
 459     return result;
 460   }
 461 
 462   // Mapping from address to card marking array index.
 463   size_t index_for(void* p) {
 464     assert(_whole_heap.contains(p),
 465            err_msg("Attempt to access p = "PTR_FORMAT" out of bounds of "
 466                    " card marking array's _whole_heap = ["PTR_FORMAT","PTR_FORMAT")",
 467                    p, _whole_heap.start(), _whole_heap.end()));
 468     return byte_for(p) - _byte_map;
 469   }
 470 
 471   const jbyte* byte_for_index(const size_t card_index) const {
 472     return _byte_map + card_index;
 473   }
 474 
 475   void verify();
 476   void verify_guard();
 477 
 478   // val_equals -> it will check that all cards covered by mr equal val
 479   // !val_equals -> it will check that all cards covered by mr do not equal val
 480   void verify_region(MemRegion mr, jbyte val, bool val_equals) PRODUCT_RETURN;
 481   void verify_not_dirty_region(MemRegion mr) PRODUCT_RETURN;
 482   void verify_dirty_region(MemRegion mr) PRODUCT_RETURN;
 483 
 484   static size_t par_chunk_heapword_alignment() {
 485     return ParGCCardsPerStrideChunk * card_size_in_words;
 486   }
 487 
 488 };
 489 
 490 class CardTableRS;
 491 
 492 // A specialization for the CardTableRS gen rem set.
 493 class CardTableModRefBSForCTRS: public CardTableModRefBS {
 494   CardTableRS* _rs;
 495 protected:
 496   bool card_will_be_scanned(jbyte cv);
 497   bool card_may_have_been_dirty(jbyte cv);
 498 public:
 499   CardTableModRefBSForCTRS(MemRegion whole_heap,
 500                            int max_covered_regions) :
 501     CardTableModRefBS(whole_heap, max_covered_regions) {}
 502 
 503   void set_CTRS(CardTableRS* rs) { _rs = rs; }
 504 };
 505 
 506 
 507 #endif // SHARE_VM_MEMORY_CARDTABLEMODREFBS_HPP