1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/klass.hpp"
  50 #include "oops/method.inline.hpp"
  51 #include "oops/objArrayKlass.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "prims/forte.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/methodHandles.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/compilationPolicy.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/init.hpp"
  64 #include "runtime/interfaceSupport.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/vframe.inline.hpp"
  70 #include "runtime/vframeArray.hpp"
  71 #include "utilities/copy.hpp"
  72 #include "utilities/dtrace.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/hashtable.inline.hpp"
  75 #include "utilities/macros.hpp"
  76 #include "utilities/xmlstream.hpp"
  77 #ifdef COMPILER1
  78 #include "c1/c1_Runtime1.hpp"
  79 #endif
  80 
  81 // Shared stub locations
  82 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  83 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  84 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  85 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  88 address             SharedRuntime::_resolve_static_call_entry;
  89 
  90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  91 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  92 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  94 
  95 #ifdef COMPILER2
  96 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  97 #endif // COMPILER2
  98 
  99 
 100 //----------------------------generate_stubs-----------------------------------
 101 void SharedRuntime::generate_stubs() {
 102   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 103   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 108   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 109 
 110 #if COMPILER2_OR_JVMCI
 111   // Vectors are generated only by C2 and JVMCI.
 112   bool support_wide = is_wide_vector(MaxVectorSize);
 113   if (support_wide) {
 114     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 115   }
 116 #endif // COMPILER2_OR_JVMCI
 117   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 118   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 119 
 120   generate_deopt_blob();
 121 
 122 #ifdef COMPILER2
 123   generate_uncommon_trap_blob();
 124 #endif // COMPILER2
 125 }
 126 
 127 #include <math.h>
 128 
 129 // Implementation of SharedRuntime
 130 
 131 #ifndef PRODUCT
 132 // For statistics
 133 int SharedRuntime::_ic_miss_ctr = 0;
 134 int SharedRuntime::_wrong_method_ctr = 0;
 135 int SharedRuntime::_resolve_static_ctr = 0;
 136 int SharedRuntime::_resolve_virtual_ctr = 0;
 137 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 138 int SharedRuntime::_implicit_null_throws = 0;
 139 int SharedRuntime::_implicit_div0_throws = 0;
 140 int SharedRuntime::_throw_null_ctr = 0;
 141 
 142 int SharedRuntime::_nof_normal_calls = 0;
 143 int SharedRuntime::_nof_optimized_calls = 0;
 144 int SharedRuntime::_nof_inlined_calls = 0;
 145 int SharedRuntime::_nof_megamorphic_calls = 0;
 146 int SharedRuntime::_nof_static_calls = 0;
 147 int SharedRuntime::_nof_inlined_static_calls = 0;
 148 int SharedRuntime::_nof_interface_calls = 0;
 149 int SharedRuntime::_nof_optimized_interface_calls = 0;
 150 int SharedRuntime::_nof_inlined_interface_calls = 0;
 151 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 152 int SharedRuntime::_nof_removable_exceptions = 0;
 153 
 154 int SharedRuntime::_new_instance_ctr=0;
 155 int SharedRuntime::_new_array_ctr=0;
 156 int SharedRuntime::_multi1_ctr=0;
 157 int SharedRuntime::_multi2_ctr=0;
 158 int SharedRuntime::_multi3_ctr=0;
 159 int SharedRuntime::_multi4_ctr=0;
 160 int SharedRuntime::_multi5_ctr=0;
 161 int SharedRuntime::_mon_enter_stub_ctr=0;
 162 int SharedRuntime::_mon_exit_stub_ctr=0;
 163 int SharedRuntime::_mon_enter_ctr=0;
 164 int SharedRuntime::_mon_exit_ctr=0;
 165 int SharedRuntime::_partial_subtype_ctr=0;
 166 int SharedRuntime::_jbyte_array_copy_ctr=0;
 167 int SharedRuntime::_jshort_array_copy_ctr=0;
 168 int SharedRuntime::_jint_array_copy_ctr=0;
 169 int SharedRuntime::_jlong_array_copy_ctr=0;
 170 int SharedRuntime::_oop_array_copy_ctr=0;
 171 int SharedRuntime::_checkcast_array_copy_ctr=0;
 172 int SharedRuntime::_unsafe_array_copy_ctr=0;
 173 int SharedRuntime::_generic_array_copy_ctr=0;
 174 int SharedRuntime::_slow_array_copy_ctr=0;
 175 int SharedRuntime::_find_handler_ctr=0;
 176 int SharedRuntime::_rethrow_ctr=0;
 177 
 178 int     SharedRuntime::_ICmiss_index                    = 0;
 179 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 180 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 181 
 182 
 183 void SharedRuntime::trace_ic_miss(address at) {
 184   for (int i = 0; i < _ICmiss_index; i++) {
 185     if (_ICmiss_at[i] == at) {
 186       _ICmiss_count[i]++;
 187       return;
 188     }
 189   }
 190   int index = _ICmiss_index++;
 191   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 192   _ICmiss_at[index] = at;
 193   _ICmiss_count[index] = 1;
 194 }
 195 
 196 void SharedRuntime::print_ic_miss_histogram() {
 197   if (ICMissHistogram) {
 198     tty->print_cr("IC Miss Histogram:");
 199     int tot_misses = 0;
 200     for (int i = 0; i < _ICmiss_index; i++) {
 201       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 202       tot_misses += _ICmiss_count[i];
 203     }
 204     tty->print_cr("Total IC misses: %7d", tot_misses);
 205   }
 206 }
 207 #endif // PRODUCT
 208 
 209 
 210 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 211   return x * y;
 212 JRT_END
 213 
 214 
 215 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 216   if (x == min_jlong && y == CONST64(-1)) {
 217     return x;
 218   } else {
 219     return x / y;
 220   }
 221 JRT_END
 222 
 223 
 224 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 225   if (x == min_jlong && y == CONST64(-1)) {
 226     return 0;
 227   } else {
 228     return x % y;
 229   }
 230 JRT_END
 231 
 232 
 233 const juint  float_sign_mask  = 0x7FFFFFFF;
 234 const juint  float_infinity   = 0x7F800000;
 235 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 236 const julong double_infinity  = CONST64(0x7FF0000000000000);
 237 
 238 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 239 #ifdef _WIN64
 240   // 64-bit Windows on amd64 returns the wrong values for
 241   // infinity operands.
 242   union { jfloat f; juint i; } xbits, ybits;
 243   xbits.f = x;
 244   ybits.f = y;
 245   // x Mod Infinity == x unless x is infinity
 246   if (((xbits.i & float_sign_mask) != float_infinity) &&
 247        ((ybits.i & float_sign_mask) == float_infinity) ) {
 248     return x;
 249   }
 250   return ((jfloat)fmod_winx64((double)x, (double)y));
 251 #else
 252   return ((jfloat)fmod((double)x,(double)y));
 253 #endif
 254 JRT_END
 255 
 256 
 257 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 258 #ifdef _WIN64
 259   union { jdouble d; julong l; } xbits, ybits;
 260   xbits.d = x;
 261   ybits.d = y;
 262   // x Mod Infinity == x unless x is infinity
 263   if (((xbits.l & double_sign_mask) != double_infinity) &&
 264        ((ybits.l & double_sign_mask) == double_infinity) ) {
 265     return x;
 266   }
 267   return ((jdouble)fmod_winx64((double)x, (double)y));
 268 #else
 269   return ((jdouble)fmod((double)x,(double)y));
 270 #endif
 271 JRT_END
 272 
 273 #ifdef __SOFTFP__
 274 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 275   return x + y;
 276 JRT_END
 277 
 278 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 279   return x - y;
 280 JRT_END
 281 
 282 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 283   return x * y;
 284 JRT_END
 285 
 286 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 287   return x / y;
 288 JRT_END
 289 
 290 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 291   return x + y;
 292 JRT_END
 293 
 294 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 295   return x - y;
 296 JRT_END
 297 
 298 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 299   return x * y;
 300 JRT_END
 301 
 302 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 303   return x / y;
 304 JRT_END
 305 
 306 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 307   return (jfloat)x;
 308 JRT_END
 309 
 310 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 311   return (jdouble)x;
 312 JRT_END
 313 
 314 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 315   return (jdouble)x;
 316 JRT_END
 317 
 318 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 319   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 320 JRT_END
 321 
 322 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 323   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 324 JRT_END
 325 
 326 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 327   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 328 JRT_END
 329 
 330 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 331   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 332 JRT_END
 333 
 334 // Functions to return the opposite of the aeabi functions for nan.
 335 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 336   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 337 JRT_END
 338 
 339 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 340   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 341 JRT_END
 342 
 343 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 344   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 345 JRT_END
 346 
 347 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 348   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 349 JRT_END
 350 
 351 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 352   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 353 JRT_END
 354 
 355 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 356   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 357 JRT_END
 358 
 359 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 360   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 361 JRT_END
 362 
 363 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 364   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 365 JRT_END
 366 
 367 // Intrinsics make gcc generate code for these.
 368 float  SharedRuntime::fneg(float f)   {
 369   return -f;
 370 }
 371 
 372 double SharedRuntime::dneg(double f)  {
 373   return -f;
 374 }
 375 
 376 #endif // __SOFTFP__
 377 
 378 #if defined(__SOFTFP__) || defined(E500V2)
 379 // Intrinsics make gcc generate code for these.
 380 double SharedRuntime::dabs(double f)  {
 381   return (f <= (double)0.0) ? (double)0.0 - f : f;
 382 }
 383 
 384 #endif
 385 
 386 #if defined(__SOFTFP__) || defined(PPC)
 387 double SharedRuntime::dsqrt(double f) {
 388   return sqrt(f);
 389 }
 390 #endif
 391 
 392 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 393   if (g_isnan(x))
 394     return 0;
 395   if (x >= (jfloat) max_jint)
 396     return max_jint;
 397   if (x <= (jfloat) min_jint)
 398     return min_jint;
 399   return (jint) x;
 400 JRT_END
 401 
 402 
 403 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 404   if (g_isnan(x))
 405     return 0;
 406   if (x >= (jfloat) max_jlong)
 407     return max_jlong;
 408   if (x <= (jfloat) min_jlong)
 409     return min_jlong;
 410   return (jlong) x;
 411 JRT_END
 412 
 413 
 414 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 415   if (g_isnan(x))
 416     return 0;
 417   if (x >= (jdouble) max_jint)
 418     return max_jint;
 419   if (x <= (jdouble) min_jint)
 420     return min_jint;
 421   return (jint) x;
 422 JRT_END
 423 
 424 
 425 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 426   if (g_isnan(x))
 427     return 0;
 428   if (x >= (jdouble) max_jlong)
 429     return max_jlong;
 430   if (x <= (jdouble) min_jlong)
 431     return min_jlong;
 432   return (jlong) x;
 433 JRT_END
 434 
 435 
 436 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 437   return (jfloat)x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 442   return (jfloat)x;
 443 JRT_END
 444 
 445 
 446 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 447   return (jdouble)x;
 448 JRT_END
 449 
 450 // Exception handling across interpreter/compiler boundaries
 451 //
 452 // exception_handler_for_return_address(...) returns the continuation address.
 453 // The continuation address is the entry point of the exception handler of the
 454 // previous frame depending on the return address.
 455 
 456 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 457   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 458   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 459 
 460   // Reset method handle flag.
 461   thread->set_is_method_handle_return(false);
 462 
 463 #if INCLUDE_JVMCI
 464   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 465   // and other exception handler continuations do not read it
 466   thread->set_exception_pc(NULL);
 467 #endif // INCLUDE_JVMCI
 468 
 469   // The fastest case first
 470   CodeBlob* blob = CodeCache::find_blob(return_address);
 471   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 472   if (nm != NULL) {
 473     // Set flag if return address is a method handle call site.
 474     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 475     // native nmethods don't have exception handlers
 476     assert(!nm->is_native_method(), "no exception handler");
 477     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 478     if (nm->is_deopt_pc(return_address)) {
 479       // If we come here because of a stack overflow, the stack may be
 480       // unguarded. Reguard the stack otherwise if we return to the
 481       // deopt blob and the stack bang causes a stack overflow we
 482       // crash.
 483       bool guard_pages_enabled = thread->stack_guards_enabled();
 484       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 485       if (thread->reserved_stack_activation() != thread->stack_base()) {
 486         thread->set_reserved_stack_activation(thread->stack_base());
 487       }
 488       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 489       return SharedRuntime::deopt_blob()->unpack_with_exception();
 490     } else {
 491       return nm->exception_begin();
 492     }
 493   }
 494 
 495   // Entry code
 496   if (StubRoutines::returns_to_call_stub(return_address)) {
 497     return StubRoutines::catch_exception_entry();
 498   }
 499   // Interpreted code
 500   if (Interpreter::contains(return_address)) {
 501     return Interpreter::rethrow_exception_entry();
 502   }
 503 
 504   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 505   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 506 
 507 #ifndef PRODUCT
 508   { ResourceMark rm;
 509     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 510     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 511     tty->print_cr("b) other problem");
 512   }
 513 #endif // PRODUCT
 514 
 515   ShouldNotReachHere();
 516   return NULL;
 517 }
 518 
 519 
 520 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 521   return raw_exception_handler_for_return_address(thread, return_address);
 522 JRT_END
 523 
 524 
 525 address SharedRuntime::get_poll_stub(address pc) {
 526   address stub;
 527   // Look up the code blob
 528   CodeBlob *cb = CodeCache::find_blob(pc);
 529 
 530   // Should be an nmethod
 531   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 532 
 533   // Look up the relocation information
 534   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 535     "safepoint polling: type must be poll");
 536 
 537 #ifdef ASSERT
 538   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 539     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 540     Disassembler::decode(cb);
 541     fatal("Only polling locations are used for safepoint");
 542   }
 543 #endif
 544 
 545   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 546   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 547   if (at_poll_return) {
 548     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 549            "polling page return stub not created yet");
 550     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 551   } else if (has_wide_vectors) {
 552     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 553            "polling page vectors safepoint stub not created yet");
 554     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 555   } else {
 556     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 557            "polling page safepoint stub not created yet");
 558     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 559   }
 560   log_debug(safepoint)("... found polling page %s exception at pc = "
 561                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 562                        at_poll_return ? "return" : "loop",
 563                        (intptr_t)pc, (intptr_t)stub);
 564   return stub;
 565 }
 566 
 567 
 568 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 569   assert(caller.is_interpreted_frame(), "");
 570   int args_size = ArgumentSizeComputer(sig).size() + 1;
 571   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 572   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 573   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 574   return result;
 575 }
 576 
 577 
 578 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 579   if (JvmtiExport::can_post_on_exceptions()) {
 580     vframeStream vfst(thread, true);
 581     methodHandle method = methodHandle(thread, vfst.method());
 582     address bcp = method()->bcp_from(vfst.bci());
 583     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 584   }
 585   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 586 }
 587 
 588 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 589   Handle h_exception = Exceptions::new_exception(thread, name, message);
 590   throw_and_post_jvmti_exception(thread, h_exception);
 591 }
 592 
 593 // The interpreter code to call this tracing function is only
 594 // called/generated when UL is on for redefine, class and has the right level
 595 // and tags. Since obsolete methods are never compiled, we don't have
 596 // to modify the compilers to generate calls to this function.
 597 //
 598 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 599     JavaThread* thread, Method* method))
 600   if (method->is_obsolete()) {
 601     // We are calling an obsolete method, but this is not necessarily
 602     // an error. Our method could have been redefined just after we
 603     // fetched the Method* from the constant pool.
 604     ResourceMark rm;
 605     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 606   }
 607   return 0;
 608 JRT_END
 609 
 610 // ret_pc points into caller; we are returning caller's exception handler
 611 // for given exception
 612 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 613                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 614   assert(cm != NULL, "must exist");
 615   ResourceMark rm;
 616 
 617 #if INCLUDE_JVMCI
 618   if (cm->is_compiled_by_jvmci()) {
 619     // lookup exception handler for this pc
 620     int catch_pco = ret_pc - cm->code_begin();
 621     ExceptionHandlerTable table(cm);
 622     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 623     if (t != NULL) {
 624       return cm->code_begin() + t->pco();
 625     } else {
 626       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 627     }
 628   }
 629 #endif // INCLUDE_JVMCI
 630 
 631   nmethod* nm = cm->as_nmethod();
 632   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 633   // determine handler bci, if any
 634   EXCEPTION_MARK;
 635 
 636   int handler_bci = -1;
 637   int scope_depth = 0;
 638   if (!force_unwind) {
 639     int bci = sd->bci();
 640     bool recursive_exception = false;
 641     do {
 642       bool skip_scope_increment = false;
 643       // exception handler lookup
 644       Klass* ek = exception->klass();
 645       methodHandle mh(THREAD, sd->method());
 646       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 647       if (HAS_PENDING_EXCEPTION) {
 648         recursive_exception = true;
 649         // We threw an exception while trying to find the exception handler.
 650         // Transfer the new exception to the exception handle which will
 651         // be set into thread local storage, and do another lookup for an
 652         // exception handler for this exception, this time starting at the
 653         // BCI of the exception handler which caused the exception to be
 654         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 655         // argument to ensure that the correct exception is thrown (4870175).
 656         recursive_exception_occurred = true;
 657         exception = Handle(THREAD, PENDING_EXCEPTION);
 658         CLEAR_PENDING_EXCEPTION;
 659         if (handler_bci >= 0) {
 660           bci = handler_bci;
 661           handler_bci = -1;
 662           skip_scope_increment = true;
 663         }
 664       }
 665       else {
 666         recursive_exception = false;
 667       }
 668       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 669         sd = sd->sender();
 670         if (sd != NULL) {
 671           bci = sd->bci();
 672         }
 673         ++scope_depth;
 674       }
 675     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 676   }
 677 
 678   // found handling method => lookup exception handler
 679   int catch_pco = ret_pc - nm->code_begin();
 680 
 681   ExceptionHandlerTable table(nm);
 682   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 683   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 684     // Allow abbreviated catch tables.  The idea is to allow a method
 685     // to materialize its exceptions without committing to the exact
 686     // routing of exceptions.  In particular this is needed for adding
 687     // a synthetic handler to unlock monitors when inlining
 688     // synchronized methods since the unlock path isn't represented in
 689     // the bytecodes.
 690     t = table.entry_for(catch_pco, -1, 0);
 691   }
 692 
 693 #ifdef COMPILER1
 694   if (t == NULL && nm->is_compiled_by_c1()) {
 695     assert(nm->unwind_handler_begin() != NULL, "");
 696     return nm->unwind_handler_begin();
 697   }
 698 #endif
 699 
 700   if (t == NULL) {
 701     ttyLocker ttyl;
 702     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 703     tty->print_cr("   Exception:");
 704     exception->print();
 705     tty->cr();
 706     tty->print_cr(" Compiled exception table :");
 707     table.print();
 708     nm->print_code();
 709     guarantee(false, "missing exception handler");
 710     return NULL;
 711   }
 712 
 713   return nm->code_begin() + t->pco();
 714 }
 715 
 716 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 717   // These errors occur only at call sites
 718   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 719 JRT_END
 720 
 721 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 722   // These errors occur only at call sites
 723   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 724 JRT_END
 725 
 726 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 727   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 728 JRT_END
 729 
 730 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 731   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 732 JRT_END
 733 
 734 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 735   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 736   // cache sites (when the callee activation is not yet set up) so we are at a call site
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 741   throw_StackOverflowError_common(thread, false);
 742 JRT_END
 743 
 744 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 745   throw_StackOverflowError_common(thread, true);
 746 JRT_END
 747 
 748 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 749   // We avoid using the normal exception construction in this case because
 750   // it performs an upcall to Java, and we're already out of stack space.
 751   Thread* THREAD = thread;
 752   Klass* k = SystemDictionary::StackOverflowError_klass();
 753   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 754   if (delayed) {
 755     java_lang_Throwable::set_message(exception_oop,
 756                                      Universe::delayed_stack_overflow_error_message());
 757   }
 758   Handle exception (thread, exception_oop);
 759   if (StackTraceInThrowable) {
 760     java_lang_Throwable::fill_in_stack_trace(exception);
 761   }
 762   // Increment counter for hs_err file reporting
 763   Atomic::inc(&Exceptions::_stack_overflow_errors);
 764   throw_and_post_jvmti_exception(thread, exception);
 765 }
 766 
 767 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 768                                                            address pc,
 769                                                            ImplicitExceptionKind exception_kind)
 770 {
 771   address target_pc = NULL;
 772 
 773   if (Interpreter::contains(pc)) {
 774 #ifdef CC_INTERP
 775     // C++ interpreter doesn't throw implicit exceptions
 776     ShouldNotReachHere();
 777 #else
 778     switch (exception_kind) {
 779       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 780       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 781       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 782       default:                      ShouldNotReachHere();
 783     }
 784 #endif // !CC_INTERP
 785   } else {
 786     switch (exception_kind) {
 787       case STACK_OVERFLOW: {
 788         // Stack overflow only occurs upon frame setup; the callee is
 789         // going to be unwound. Dispatch to a shared runtime stub
 790         // which will cause the StackOverflowError to be fabricated
 791         // and processed.
 792         // Stack overflow should never occur during deoptimization:
 793         // the compiled method bangs the stack by as much as the
 794         // interpreter would need in case of a deoptimization. The
 795         // deoptimization blob and uncommon trap blob bang the stack
 796         // in a debug VM to verify the correctness of the compiled
 797         // method stack banging.
 798         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 799         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 800         return StubRoutines::throw_StackOverflowError_entry();
 801       }
 802 
 803       case IMPLICIT_NULL: {
 804         if (VtableStubs::contains(pc)) {
 805           // We haven't yet entered the callee frame. Fabricate an
 806           // exception and begin dispatching it in the caller. Since
 807           // the caller was at a call site, it's safe to destroy all
 808           // caller-saved registers, as these entry points do.
 809           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 810 
 811           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 812           if (vt_stub == NULL) return NULL;
 813 
 814           if (vt_stub->is_abstract_method_error(pc)) {
 815             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 816             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 817             // Instead of throwing the abstract method error here directly, we re-resolve
 818             // and will throw the AbstractMethodError during resolve. As a result, we'll
 819             // get a more detailed error message.
 820             return SharedRuntime::get_handle_wrong_method_stub();
 821           } else {
 822             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 823             // Assert that the signal comes from the expected location in stub code.
 824             assert(vt_stub->is_null_pointer_exception(pc),
 825                    "obtained signal from unexpected location in stub code");
 826             return StubRoutines::throw_NullPointerException_at_call_entry();
 827           }
 828         } else {
 829           CodeBlob* cb = CodeCache::find_blob(pc);
 830 
 831           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 832           if (cb == NULL) return NULL;
 833 
 834           // Exception happened in CodeCache. Must be either:
 835           // 1. Inline-cache check in C2I handler blob,
 836           // 2. Inline-cache check in nmethod, or
 837           // 3. Implicit null exception in nmethod
 838 
 839           if (!cb->is_compiled()) {
 840             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 841             if (!is_in_blob) {
 842               // Allow normal crash reporting to handle this
 843               return NULL;
 844             }
 845             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 846             // There is no handler here, so we will simply unwind.
 847             return StubRoutines::throw_NullPointerException_at_call_entry();
 848           }
 849 
 850           // Otherwise, it's a compiled method.  Consult its exception handlers.
 851           CompiledMethod* cm = (CompiledMethod*)cb;
 852           if (cm->inlinecache_check_contains(pc)) {
 853             // exception happened inside inline-cache check code
 854             // => the nmethod is not yet active (i.e., the frame
 855             // is not set up yet) => use return address pushed by
 856             // caller => don't push another return address
 857             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 858             return StubRoutines::throw_NullPointerException_at_call_entry();
 859           }
 860 
 861           if (cm->method()->is_method_handle_intrinsic()) {
 862             // exception happened inside MH dispatch code, similar to a vtable stub
 863             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 864             return StubRoutines::throw_NullPointerException_at_call_entry();
 865           }
 866 
 867 #ifndef PRODUCT
 868           _implicit_null_throws++;
 869 #endif
 870           target_pc = cm->continuation_for_implicit_null_exception(pc);
 871           // If there's an unexpected fault, target_pc might be NULL,
 872           // in which case we want to fall through into the normal
 873           // error handling code.
 874         }
 875 
 876         break; // fall through
 877       }
 878 
 879 
 880       case IMPLICIT_DIVIDE_BY_ZERO: {
 881         CompiledMethod* cm = CodeCache::find_compiled(pc);
 882         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 883 #ifndef PRODUCT
 884         _implicit_div0_throws++;
 885 #endif
 886         target_pc = cm->continuation_for_implicit_div0_exception(pc);
 887         // If there's an unexpected fault, target_pc might be NULL,
 888         // in which case we want to fall through into the normal
 889         // error handling code.
 890         break; // fall through
 891       }
 892 
 893       default: ShouldNotReachHere();
 894     }
 895 
 896     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 897 
 898     if (exception_kind == IMPLICIT_NULL) {
 899 #ifndef PRODUCT
 900       // for AbortVMOnException flag
 901       Exceptions::debug_check_abort("java.lang.NullPointerException");
 902 #endif //PRODUCT
 903       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 904     } else {
 905 #ifndef PRODUCT
 906       // for AbortVMOnException flag
 907       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 908 #endif //PRODUCT
 909       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 910     }
 911     return target_pc;
 912   }
 913 
 914   ShouldNotReachHere();
 915   return NULL;
 916 }
 917 
 918 
 919 /**
 920  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 921  * installed in the native function entry of all native Java methods before
 922  * they get linked to their actual native methods.
 923  *
 924  * \note
 925  * This method actually never gets called!  The reason is because
 926  * the interpreter's native entries call NativeLookup::lookup() which
 927  * throws the exception when the lookup fails.  The exception is then
 928  * caught and forwarded on the return from NativeLookup::lookup() call
 929  * before the call to the native function.  This might change in the future.
 930  */
 931 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 932 {
 933   // We return a bad value here to make sure that the exception is
 934   // forwarded before we look at the return value.
 935   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 936 }
 937 JNI_END
 938 
 939 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 940   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 941 }
 942 
 943 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 944 #if INCLUDE_JVMCI
 945   if (!obj->klass()->has_finalizer()) {
 946     return;
 947   }
 948 #endif // INCLUDE_JVMCI
 949   assert(oopDesc::is_oop(obj), "must be a valid oop");
 950   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 951   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 952 JRT_END
 953 
 954 
 955 jlong SharedRuntime::get_java_tid(Thread* thread) {
 956   if (thread != NULL) {
 957     if (thread->is_Java_thread()) {
 958       oop obj = ((JavaThread*)thread)->threadObj();
 959       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 960     }
 961   }
 962   return 0;
 963 }
 964 
 965 /**
 966  * This function ought to be a void function, but cannot be because
 967  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 968  * 6254741.  Once that is fixed we can remove the dummy return value.
 969  */
 970 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 971   return dtrace_object_alloc_base(Thread::current(), o, size);
 972 }
 973 
 974 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 975   assert(DTraceAllocProbes, "wrong call");
 976   Klass* klass = o->klass();
 977   Symbol* name = klass->name();
 978   HOTSPOT_OBJECT_ALLOC(
 979                    get_java_tid(thread),
 980                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 981   return 0;
 982 }
 983 
 984 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 985     JavaThread* thread, Method* method))
 986   assert(DTraceMethodProbes, "wrong call");
 987   Symbol* kname = method->klass_name();
 988   Symbol* name = method->name();
 989   Symbol* sig = method->signature();
 990   HOTSPOT_METHOD_ENTRY(
 991       get_java_tid(thread),
 992       (char *) kname->bytes(), kname->utf8_length(),
 993       (char *) name->bytes(), name->utf8_length(),
 994       (char *) sig->bytes(), sig->utf8_length());
 995   return 0;
 996 JRT_END
 997 
 998 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 999     JavaThread* thread, Method* method))
1000   assert(DTraceMethodProbes, "wrong call");
1001   Symbol* kname = method->klass_name();
1002   Symbol* name = method->name();
1003   Symbol* sig = method->signature();
1004   HOTSPOT_METHOD_RETURN(
1005       get_java_tid(thread),
1006       (char *) kname->bytes(), kname->utf8_length(),
1007       (char *) name->bytes(), name->utf8_length(),
1008       (char *) sig->bytes(), sig->utf8_length());
1009   return 0;
1010 JRT_END
1011 
1012 
1013 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1014 // for a call current in progress, i.e., arguments has been pushed on stack
1015 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1016 // vtable updates, etc.  Caller frame must be compiled.
1017 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1018   ResourceMark rm(THREAD);
1019 
1020   // last java frame on stack (which includes native call frames)
1021   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1022 
1023   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1024 }
1025 
1026 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1027   CompiledMethod* caller = vfst.nm();
1028 
1029   nmethodLocker caller_lock(caller);
1030 
1031   address pc = vfst.frame_pc();
1032   { // Get call instruction under lock because another thread may be busy patching it.
1033     CompiledICLocker ic_locker(caller);
1034     return caller->attached_method_before_pc(pc);
1035   }
1036   return NULL;
1037 }
1038 
1039 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1040 // for a call current in progress, i.e., arguments has been pushed on stack
1041 // but callee has not been invoked yet.  Caller frame must be compiled.
1042 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1043                                               vframeStream& vfst,
1044                                               Bytecodes::Code& bc,
1045                                               CallInfo& callinfo, TRAPS) {
1046   Handle receiver;
1047   Handle nullHandle;  //create a handy null handle for exception returns
1048 
1049   assert(!vfst.at_end(), "Java frame must exist");
1050 
1051   // Find caller and bci from vframe
1052   methodHandle caller(THREAD, vfst.method());
1053   int          bci   = vfst.bci();
1054 
1055   Bytecode_invoke bytecode(caller, bci);
1056   int bytecode_index = bytecode.index();
1057   bc = bytecode.invoke_code();
1058 
1059   methodHandle attached_method = extract_attached_method(vfst);
1060   if (attached_method.not_null()) {
1061     methodHandle callee = bytecode.static_target(CHECK_NH);
1062     vmIntrinsics::ID id = callee->intrinsic_id();
1063     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1064     // it attaches statically resolved method to the call site.
1065     if (MethodHandles::is_signature_polymorphic(id) &&
1066         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1067       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1068 
1069       // Adjust invocation mode according to the attached method.
1070       switch (bc) {
1071         case Bytecodes::_invokevirtual:
1072           if (attached_method->method_holder()->is_interface()) {
1073             bc = Bytecodes::_invokeinterface;
1074           }
1075           break;
1076         case Bytecodes::_invokeinterface:
1077           if (!attached_method->method_holder()->is_interface()) {
1078             bc = Bytecodes::_invokevirtual;
1079           }
1080           break;
1081         case Bytecodes::_invokehandle:
1082           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1083             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1084                                               : Bytecodes::_invokevirtual;
1085           }
1086           break;
1087         default:
1088           break;
1089       }
1090     }
1091   }
1092 
1093   assert(bc != Bytecodes::_illegal, "not initialized");
1094 
1095   bool has_receiver = bc != Bytecodes::_invokestatic &&
1096                       bc != Bytecodes::_invokedynamic &&
1097                       bc != Bytecodes::_invokehandle;
1098 
1099   // Find receiver for non-static call
1100   if (has_receiver) {
1101     // This register map must be update since we need to find the receiver for
1102     // compiled frames. The receiver might be in a register.
1103     RegisterMap reg_map2(thread);
1104     frame stubFrame   = thread->last_frame();
1105     // Caller-frame is a compiled frame
1106     frame callerFrame = stubFrame.sender(&reg_map2);
1107 
1108     if (attached_method.is_null()) {
1109       methodHandle callee = bytecode.static_target(CHECK_NH);
1110       if (callee.is_null()) {
1111         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1112       }
1113     }
1114 
1115     // Retrieve from a compiled argument list
1116     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1117 
1118     if (receiver.is_null()) {
1119       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1120     }
1121   }
1122 
1123   // Resolve method
1124   if (attached_method.not_null()) {
1125     // Parameterized by attached method.
1126     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1127   } else {
1128     // Parameterized by bytecode.
1129     constantPoolHandle constants(THREAD, caller->constants());
1130     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1131   }
1132 
1133 #ifdef ASSERT
1134   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1135   if (has_receiver) {
1136     assert(receiver.not_null(), "should have thrown exception");
1137     Klass* receiver_klass = receiver->klass();
1138     Klass* rk = NULL;
1139     if (attached_method.not_null()) {
1140       // In case there's resolved method attached, use its holder during the check.
1141       rk = attached_method->method_holder();
1142     } else {
1143       // Klass is already loaded.
1144       constantPoolHandle constants(THREAD, caller->constants());
1145       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1146     }
1147     Klass* static_receiver_klass = rk;
1148     methodHandle callee = callinfo.selected_method();
1149     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1150            "actual receiver must be subclass of static receiver klass");
1151     if (receiver_klass->is_instance_klass()) {
1152       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1153         tty->print_cr("ERROR: Klass not yet initialized!!");
1154         receiver_klass->print();
1155       }
1156       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1157     }
1158   }
1159 #endif
1160 
1161   return receiver;
1162 }
1163 
1164 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1165   ResourceMark rm(THREAD);
1166   // We need first to check if any Java activations (compiled, interpreted)
1167   // exist on the stack since last JavaCall.  If not, we need
1168   // to get the target method from the JavaCall wrapper.
1169   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1170   methodHandle callee_method;
1171   if (vfst.at_end()) {
1172     // No Java frames were found on stack since we did the JavaCall.
1173     // Hence the stack can only contain an entry_frame.  We need to
1174     // find the target method from the stub frame.
1175     RegisterMap reg_map(thread, false);
1176     frame fr = thread->last_frame();
1177     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1178     fr = fr.sender(&reg_map);
1179     assert(fr.is_entry_frame(), "must be");
1180     // fr is now pointing to the entry frame.
1181     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1182   } else {
1183     Bytecodes::Code bc;
1184     CallInfo callinfo;
1185     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1186     callee_method = callinfo.selected_method();
1187   }
1188   assert(callee_method()->is_method(), "must be");
1189   return callee_method;
1190 }
1191 
1192 // Resolves a call.
1193 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1194                                            bool is_virtual,
1195                                            bool is_optimized, TRAPS) {
1196   methodHandle callee_method;
1197   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1198   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1199     int retry_count = 0;
1200     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1201            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1202       // If has a pending exception then there is no need to re-try to
1203       // resolve this method.
1204       // If the method has been redefined, we need to try again.
1205       // Hack: we have no way to update the vtables of arrays, so don't
1206       // require that java.lang.Object has been updated.
1207 
1208       // It is very unlikely that method is redefined more than 100 times
1209       // in the middle of resolve. If it is looping here more than 100 times
1210       // means then there could be a bug here.
1211       guarantee((retry_count++ < 100),
1212                 "Could not resolve to latest version of redefined method");
1213       // method is redefined in the middle of resolve so re-try.
1214       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1215     }
1216   }
1217   return callee_method;
1218 }
1219 
1220 // This fails if resolution required refilling of IC stubs
1221 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1222                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1223                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1224   StaticCallInfo static_call_info;
1225   CompiledICInfo virtual_call_info;
1226 
1227   // Make sure the callee nmethod does not get deoptimized and removed before
1228   // we are done patching the code.
1229   CompiledMethod* callee = callee_method->code();
1230 
1231   if (callee != NULL) {
1232     assert(callee->is_compiled(), "must be nmethod for patching");
1233   }
1234 
1235   if (callee != NULL && !callee->is_in_use()) {
1236     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1237     callee = NULL;
1238   }
1239   nmethodLocker nl_callee(callee);
1240 #ifdef ASSERT
1241   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1242 #endif
1243 
1244   bool is_nmethod = caller_nm->is_nmethod();
1245 
1246   if (is_virtual) {
1247     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1248     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1249     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1250     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1251                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1252                      CHECK_false);
1253   } else {
1254     // static call
1255     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1256   }
1257 
1258   // grab lock, check for deoptimization and potentially patch caller
1259   {
1260     CompiledICLocker ml(caller_nm);
1261 
1262     // Lock blocks for safepoint during which both nmethods can change state.
1263 
1264     // Now that we are ready to patch if the Method* was redefined then
1265     // don't update call site and let the caller retry.
1266     // Don't update call site if callee nmethod was unloaded or deoptimized.
1267     // Don't update call site if callee nmethod was replaced by an other nmethod
1268     // which may happen when multiply alive nmethod (tiered compilation)
1269     // will be supported.
1270     if (!callee_method->is_old() &&
1271         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1272 #ifdef ASSERT
1273       // We must not try to patch to jump to an already unloaded method.
1274       if (dest_entry_point != 0) {
1275         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1276         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1277                "should not call unloaded nmethod");
1278       }
1279 #endif
1280       if (is_virtual) {
1281         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1282         if (inline_cache->is_clean()) {
1283           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1284             return false;
1285           }
1286         }
1287       } else {
1288         if (VM_Version::supports_fast_class_init_checks() &&
1289             invoke_code == Bytecodes::_invokestatic &&
1290             callee_method->needs_clinit_barrier() &&
1291             callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) {
1292           return true; // skip patching for JVMCI or AOT code
1293         }
1294         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1295         if (ssc->is_clean()) ssc->set(static_call_info);
1296       }
1297     }
1298   } // unlock CompiledICLocker
1299   return true;
1300 }
1301 
1302 // Resolves a call.  The compilers generate code for calls that go here
1303 // and are patched with the real destination of the call.
1304 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1305                                                bool is_virtual,
1306                                                bool is_optimized, TRAPS) {
1307 
1308   ResourceMark rm(thread);
1309   RegisterMap cbl_map(thread, false);
1310   frame caller_frame = thread->last_frame().sender(&cbl_map);
1311 
1312   CodeBlob* caller_cb = caller_frame.cb();
1313   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1314   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1315 
1316   // make sure caller is not getting deoptimized
1317   // and removed before we are done with it.
1318   // CLEANUP - with lazy deopt shouldn't need this lock
1319   nmethodLocker caller_lock(caller_nm);
1320 
1321   // determine call info & receiver
1322   // note: a) receiver is NULL for static calls
1323   //       b) an exception is thrown if receiver is NULL for non-static calls
1324   CallInfo call_info;
1325   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1326   Handle receiver = find_callee_info(thread, invoke_code,
1327                                      call_info, CHECK_(methodHandle()));
1328   methodHandle callee_method = call_info.selected_method();
1329 
1330   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1331          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1332          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1333          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1334          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1335 
1336   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1337 
1338 #ifndef PRODUCT
1339   // tracing/debugging/statistics
1340   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1341                 (is_virtual) ? (&_resolve_virtual_ctr) :
1342                                (&_resolve_static_ctr);
1343   Atomic::inc(addr);
1344 
1345   if (TraceCallFixup) {
1346     ResourceMark rm(thread);
1347     tty->print("resolving %s%s (%s) call to",
1348       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1349       Bytecodes::name(invoke_code));
1350     callee_method->print_short_name(tty);
1351     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1352                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1353   }
1354 #endif
1355 
1356   if (invoke_code == Bytecodes::_invokestatic) {
1357     assert(callee_method->method_holder()->is_initialized() ||
1358            callee_method->method_holder()->is_reentrant_initialization(thread),
1359            "invalid class initialization state for invoke_static");
1360     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1361       // In order to keep class initialization check, do not patch call
1362       // site for static call when the class is not fully initialized.
1363       // Proper check is enforced by call site re-resolution on every invocation.
1364       //
1365       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1366       // explicit class initialization check is put in nmethod entry (VEP).
1367       assert(callee_method->method_holder()->is_linked(), "must be");
1368       return callee_method;
1369     }
1370   }
1371 
1372   // JSR 292 key invariant:
1373   // If the resolved method is a MethodHandle invoke target, the call
1374   // site must be a MethodHandle call site, because the lambda form might tail-call
1375   // leaving the stack in a state unknown to either caller or callee
1376   // TODO detune for now but we might need it again
1377 //  assert(!callee_method->is_compiled_lambda_form() ||
1378 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1379 
1380   // Compute entry points. This might require generation of C2I converter
1381   // frames, so we cannot be holding any locks here. Furthermore, the
1382   // computation of the entry points is independent of patching the call.  We
1383   // always return the entry-point, but we only patch the stub if the call has
1384   // not been deoptimized.  Return values: For a virtual call this is an
1385   // (cached_oop, destination address) pair. For a static call/optimized
1386   // virtual this is just a destination address.
1387 
1388   // Patching IC caches may fail if we run out if transition stubs.
1389   // We refill the ic stubs then and try again.
1390   for (;;) {
1391     ICRefillVerifier ic_refill_verifier;
1392     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1393                                                   is_virtual, is_optimized, receiver,
1394                                                   call_info, invoke_code, CHECK_(methodHandle()));
1395     if (successful) {
1396       return callee_method;
1397     } else {
1398       InlineCacheBuffer::refill_ic_stubs();
1399     }
1400   }
1401 
1402 }
1403 
1404 
1405 // Inline caches exist only in compiled code
1406 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1407 #ifdef ASSERT
1408   RegisterMap reg_map(thread, false);
1409   frame stub_frame = thread->last_frame();
1410   assert(stub_frame.is_runtime_frame(), "sanity check");
1411   frame caller_frame = stub_frame.sender(&reg_map);
1412   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1413 #endif /* ASSERT */
1414 
1415   methodHandle callee_method;
1416   JRT_BLOCK
1417     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1418     // Return Method* through TLS
1419     thread->set_vm_result_2(callee_method());
1420   JRT_BLOCK_END
1421   // return compiled code entry point after potential safepoints
1422   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1423   return callee_method->verified_code_entry();
1424 JRT_END
1425 
1426 
1427 // Handle call site that has been made non-entrant
1428 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1429   // 6243940 We might end up in here if the callee is deoptimized
1430   // as we race to call it.  We don't want to take a safepoint if
1431   // the caller was interpreted because the caller frame will look
1432   // interpreted to the stack walkers and arguments are now
1433   // "compiled" so it is much better to make this transition
1434   // invisible to the stack walking code. The i2c path will
1435   // place the callee method in the callee_target. It is stashed
1436   // there because if we try and find the callee by normal means a
1437   // safepoint is possible and have trouble gc'ing the compiled args.
1438   RegisterMap reg_map(thread, false);
1439   frame stub_frame = thread->last_frame();
1440   assert(stub_frame.is_runtime_frame(), "sanity check");
1441   frame caller_frame = stub_frame.sender(&reg_map);
1442 
1443   if (caller_frame.is_interpreted_frame() ||
1444       caller_frame.is_entry_frame()) {
1445     Method* callee = thread->callee_target();
1446     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1447     thread->set_vm_result_2(callee);
1448     thread->set_callee_target(NULL);
1449     return callee->get_c2i_entry();
1450   }
1451 
1452   // Must be compiled to compiled path which is safe to stackwalk
1453   methodHandle callee_method;
1454   JRT_BLOCK
1455     // Force resolving of caller (if we called from compiled frame)
1456     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1457     thread->set_vm_result_2(callee_method());
1458   JRT_BLOCK_END
1459   // return compiled code entry point after potential safepoints
1460   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1461   return callee_method->verified_code_entry();
1462 JRT_END
1463 
1464 // Handle abstract method call
1465 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1466   // Verbose error message for AbstractMethodError.
1467   // Get the called method from the invoke bytecode.
1468   vframeStream vfst(thread, true);
1469   assert(!vfst.at_end(), "Java frame must exist");
1470   methodHandle caller(vfst.method());
1471   Bytecode_invoke invoke(caller, vfst.bci());
1472   DEBUG_ONLY( invoke.verify(); )
1473 
1474   // Find the compiled caller frame.
1475   RegisterMap reg_map(thread);
1476   frame stubFrame = thread->last_frame();
1477   assert(stubFrame.is_runtime_frame(), "must be");
1478   frame callerFrame = stubFrame.sender(&reg_map);
1479   assert(callerFrame.is_compiled_frame(), "must be");
1480 
1481   // Install exception and return forward entry.
1482   address res = StubRoutines::throw_AbstractMethodError_entry();
1483   JRT_BLOCK
1484     methodHandle callee = invoke.static_target(thread);
1485     if (!callee.is_null()) {
1486       oop recv = callerFrame.retrieve_receiver(&reg_map);
1487       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1488       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1489       res = StubRoutines::forward_exception_entry();
1490     }
1491   JRT_BLOCK_END
1492   return res;
1493 JRT_END
1494 
1495 
1496 // resolve a static call and patch code
1497 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1498   methodHandle callee_method;
1499   JRT_BLOCK
1500     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1501     thread->set_vm_result_2(callee_method());
1502   JRT_BLOCK_END
1503   // return compiled code entry point after potential safepoints
1504   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1505   return callee_method->verified_code_entry();
1506 JRT_END
1507 
1508 
1509 // resolve virtual call and update inline cache to monomorphic
1510 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1511   methodHandle callee_method;
1512   JRT_BLOCK
1513     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1514     thread->set_vm_result_2(callee_method());
1515   JRT_BLOCK_END
1516   // return compiled code entry point after potential safepoints
1517   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1518   return callee_method->verified_code_entry();
1519 JRT_END
1520 
1521 
1522 // Resolve a virtual call that can be statically bound (e.g., always
1523 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1524 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1525   methodHandle callee_method;
1526   JRT_BLOCK
1527     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1528     thread->set_vm_result_2(callee_method());
1529   JRT_BLOCK_END
1530   // return compiled code entry point after potential safepoints
1531   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1532   return callee_method->verified_code_entry();
1533 JRT_END
1534 
1535 // The handle_ic_miss_helper_internal function returns false if it failed due
1536 // to either running out of vtable stubs or ic stubs due to IC transitions
1537 // to transitional states. The needs_ic_stub_refill value will be set if
1538 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1539 // refills the IC stubs and tries again.
1540 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1541                                                    const frame& caller_frame, methodHandle callee_method,
1542                                                    Bytecodes::Code bc, CallInfo& call_info,
1543                                                    bool& needs_ic_stub_refill, TRAPS) {
1544   CompiledICLocker ml(caller_nm);
1545   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1546   bool should_be_mono = false;
1547   if (inline_cache->is_optimized()) {
1548     if (TraceCallFixup) {
1549       ResourceMark rm(THREAD);
1550       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1551       callee_method->print_short_name(tty);
1552       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1553     }
1554     should_be_mono = true;
1555   } else if (inline_cache->is_icholder_call()) {
1556     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1557     if (ic_oop != NULL) {
1558       if (!ic_oop->is_loader_alive()) {
1559         // Deferred IC cleaning due to concurrent class unloading
1560         if (!inline_cache->set_to_clean()) {
1561           needs_ic_stub_refill = true;
1562           return false;
1563         }
1564       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1565         // This isn't a real miss. We must have seen that compiled code
1566         // is now available and we want the call site converted to a
1567         // monomorphic compiled call site.
1568         // We can't assert for callee_method->code() != NULL because it
1569         // could have been deoptimized in the meantime
1570         if (TraceCallFixup) {
1571           ResourceMark rm(THREAD);
1572           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1573           callee_method->print_short_name(tty);
1574           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1575         }
1576         should_be_mono = true;
1577       }
1578     }
1579   }
1580 
1581   if (should_be_mono) {
1582     // We have a path that was monomorphic but was going interpreted
1583     // and now we have (or had) a compiled entry. We correct the IC
1584     // by using a new icBuffer.
1585     CompiledICInfo info;
1586     Klass* receiver_klass = receiver()->klass();
1587     inline_cache->compute_monomorphic_entry(callee_method,
1588                                             receiver_klass,
1589                                             inline_cache->is_optimized(),
1590                                             false, caller_nm->is_nmethod(),
1591                                             info, CHECK_false);
1592     if (!inline_cache->set_to_monomorphic(info)) {
1593       needs_ic_stub_refill = true;
1594       return false;
1595     }
1596   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1597     // Potential change to megamorphic
1598 
1599     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1600     if (needs_ic_stub_refill) {
1601       return false;
1602     }
1603     if (!successful) {
1604       if (!inline_cache->set_to_clean()) {
1605         needs_ic_stub_refill = true;
1606         return false;
1607       }
1608     }
1609   } else {
1610     // Either clean or megamorphic
1611   }
1612   return true;
1613 }
1614 
1615 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1616   ResourceMark rm(thread);
1617   CallInfo call_info;
1618   Bytecodes::Code bc;
1619 
1620   // receiver is NULL for static calls. An exception is thrown for NULL
1621   // receivers for non-static calls
1622   Handle receiver = find_callee_info(thread, bc, call_info,
1623                                      CHECK_(methodHandle()));
1624   // Compiler1 can produce virtual call sites that can actually be statically bound
1625   // If we fell thru to below we would think that the site was going megamorphic
1626   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1627   // we'd try and do a vtable dispatch however methods that can be statically bound
1628   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1629   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1630   // plain ic_miss) and the site will be converted to an optimized virtual call site
1631   // never to miss again. I don't believe C2 will produce code like this but if it
1632   // did this would still be the correct thing to do for it too, hence no ifdef.
1633   //
1634   if (call_info.resolved_method()->can_be_statically_bound()) {
1635     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1636     if (TraceCallFixup) {
1637       RegisterMap reg_map(thread, false);
1638       frame caller_frame = thread->last_frame().sender(&reg_map);
1639       ResourceMark rm(thread);
1640       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1641       callee_method->print_short_name(tty);
1642       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1643       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1644     }
1645     return callee_method;
1646   }
1647 
1648   methodHandle callee_method = call_info.selected_method();
1649 
1650 #ifndef PRODUCT
1651   Atomic::inc(&_ic_miss_ctr);
1652 
1653   // Statistics & Tracing
1654   if (TraceCallFixup) {
1655     ResourceMark rm(thread);
1656     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1657     callee_method->print_short_name(tty);
1658     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1659   }
1660 
1661   if (ICMissHistogram) {
1662     MutexLocker m(VMStatistic_lock);
1663     RegisterMap reg_map(thread, false);
1664     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1665     // produce statistics under the lock
1666     trace_ic_miss(f.pc());
1667   }
1668 #endif
1669 
1670   // install an event collector so that when a vtable stub is created the
1671   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1672   // event can't be posted when the stub is created as locks are held
1673   // - instead the event will be deferred until the event collector goes
1674   // out of scope.
1675   JvmtiDynamicCodeEventCollector event_collector;
1676 
1677   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1678   // Transitioning IC caches may require transition stubs. If we run out
1679   // of transition stubs, we have to drop locks and perform a safepoint
1680   // that refills them.
1681   RegisterMap reg_map(thread, false);
1682   frame caller_frame = thread->last_frame().sender(&reg_map);
1683   CodeBlob* cb = caller_frame.cb();
1684   CompiledMethod* caller_nm = cb->as_compiled_method();
1685 
1686   for (;;) {
1687     ICRefillVerifier ic_refill_verifier;
1688     bool needs_ic_stub_refill = false;
1689     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1690                                                      bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1691     if (successful || !needs_ic_stub_refill) {
1692       return callee_method;
1693     } else {
1694       InlineCacheBuffer::refill_ic_stubs();
1695     }
1696   }
1697 }
1698 
1699 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1700   CompiledICLocker ml(caller_nm);
1701   if (is_static_call) {
1702     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1703     if (!ssc->is_clean()) {
1704       return ssc->set_to_clean();
1705     }
1706   } else {
1707     // compiled, dispatched call (which used to call an interpreted method)
1708     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1709     if (!inline_cache->is_clean()) {
1710       return inline_cache->set_to_clean();
1711     }
1712   }
1713   return true;
1714 }
1715 
1716 //
1717 // Resets a call-site in compiled code so it will get resolved again.
1718 // This routines handles both virtual call sites, optimized virtual call
1719 // sites, and static call sites. Typically used to change a call sites
1720 // destination from compiled to interpreted.
1721 //
1722 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1723   ResourceMark rm(thread);
1724   RegisterMap reg_map(thread, false);
1725   frame stub_frame = thread->last_frame();
1726   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1727   frame caller = stub_frame.sender(&reg_map);
1728 
1729   // Do nothing if the frame isn't a live compiled frame.
1730   // nmethod could be deoptimized by the time we get here
1731   // so no update to the caller is needed.
1732 
1733   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1734 
1735     address pc = caller.pc();
1736 
1737     // Check for static or virtual call
1738     bool is_static_call = false;
1739     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1740 
1741     // Default call_addr is the location of the "basic" call.
1742     // Determine the address of the call we a reresolving. With
1743     // Inline Caches we will always find a recognizable call.
1744     // With Inline Caches disabled we may or may not find a
1745     // recognizable call. We will always find a call for static
1746     // calls and for optimized virtual calls. For vanilla virtual
1747     // calls it depends on the state of the UseInlineCaches switch.
1748     //
1749     // With Inline Caches disabled we can get here for a virtual call
1750     // for two reasons:
1751     //   1 - calling an abstract method. The vtable for abstract methods
1752     //       will run us thru handle_wrong_method and we will eventually
1753     //       end up in the interpreter to throw the ame.
1754     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1755     //       call and between the time we fetch the entry address and
1756     //       we jump to it the target gets deoptimized. Similar to 1
1757     //       we will wind up in the interprter (thru a c2i with c2).
1758     //
1759     address call_addr = NULL;
1760     {
1761       // Get call instruction under lock because another thread may be
1762       // busy patching it.
1763       CompiledICLocker ml(caller_nm);
1764       // Location of call instruction
1765       call_addr = caller_nm->call_instruction_address(pc);
1766     }
1767     // Make sure nmethod doesn't get deoptimized and removed until
1768     // this is done with it.
1769     // CLEANUP - with lazy deopt shouldn't need this lock
1770     nmethodLocker nmlock(caller_nm);
1771 
1772     if (call_addr != NULL) {
1773       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1774       int ret = iter.next(); // Get item
1775       if (ret) {
1776         assert(iter.addr() == call_addr, "must find call");
1777         if (iter.type() == relocInfo::static_call_type) {
1778           is_static_call = true;
1779         } else {
1780           assert(iter.type() == relocInfo::virtual_call_type ||
1781                  iter.type() == relocInfo::opt_virtual_call_type
1782                 , "unexpected relocInfo. type");
1783         }
1784       } else {
1785         assert(!UseInlineCaches, "relocation info. must exist for this address");
1786       }
1787 
1788       // Cleaning the inline cache will force a new resolve. This is more robust
1789       // than directly setting it to the new destination, since resolving of calls
1790       // is always done through the same code path. (experience shows that it
1791       // leads to very hard to track down bugs, if an inline cache gets updated
1792       // to a wrong method). It should not be performance critical, since the
1793       // resolve is only done once.
1794 
1795       for (;;) {
1796         ICRefillVerifier ic_refill_verifier;
1797         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1798           InlineCacheBuffer::refill_ic_stubs();
1799         } else {
1800           break;
1801         }
1802       }
1803     }
1804   }
1805 
1806   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1807 
1808 
1809 #ifndef PRODUCT
1810   Atomic::inc(&_wrong_method_ctr);
1811 
1812   if (TraceCallFixup) {
1813     ResourceMark rm(thread);
1814     tty->print("handle_wrong_method reresolving call to");
1815     callee_method->print_short_name(tty);
1816     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1817   }
1818 #endif
1819 
1820   return callee_method;
1821 }
1822 
1823 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1824   // The faulting unsafe accesses should be changed to throw the error
1825   // synchronously instead. Meanwhile the faulting instruction will be
1826   // skipped over (effectively turning it into a no-op) and an
1827   // asynchronous exception will be raised which the thread will
1828   // handle at a later point. If the instruction is a load it will
1829   // return garbage.
1830 
1831   // Request an async exception.
1832   thread->set_pending_unsafe_access_error();
1833 
1834   // Return address of next instruction to execute.
1835   return next_pc;
1836 }
1837 
1838 #ifdef ASSERT
1839 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1840                                                                 const BasicType* sig_bt,
1841                                                                 const VMRegPair* regs) {
1842   ResourceMark rm;
1843   const int total_args_passed = method->size_of_parameters();
1844   const VMRegPair*    regs_with_member_name = regs;
1845         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1846 
1847   const int member_arg_pos = total_args_passed - 1;
1848   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1849   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1850 
1851   const bool is_outgoing = method->is_method_handle_intrinsic();
1852   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1853 
1854   for (int i = 0; i < member_arg_pos; i++) {
1855     VMReg a =    regs_with_member_name[i].first();
1856     VMReg b = regs_without_member_name[i].first();
1857     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1858   }
1859   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1860 }
1861 #endif
1862 
1863 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1864   if (destination != entry_point) {
1865     CodeBlob* callee = CodeCache::find_blob(destination);
1866     // callee == cb seems weird. It means calling interpreter thru stub.
1867     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1868       // static call or optimized virtual
1869       if (TraceCallFixup) {
1870         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1871         moop->print_short_name(tty);
1872         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1873       }
1874       return true;
1875     } else {
1876       if (TraceCallFixup) {
1877         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1878         moop->print_short_name(tty);
1879         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1880       }
1881       // assert is too strong could also be resolve destinations.
1882       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1883     }
1884   } else {
1885     if (TraceCallFixup) {
1886       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1887       moop->print_short_name(tty);
1888       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1889     }
1890   }
1891   return false;
1892 }
1893 
1894 // ---------------------------------------------------------------------------
1895 // We are calling the interpreter via a c2i. Normally this would mean that
1896 // we were called by a compiled method. However we could have lost a race
1897 // where we went int -> i2c -> c2i and so the caller could in fact be
1898 // interpreted. If the caller is compiled we attempt to patch the caller
1899 // so he no longer calls into the interpreter.
1900 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1901   Method* moop(method);
1902 
1903   address entry_point = moop->from_compiled_entry_no_trampoline();
1904 
1905   // It's possible that deoptimization can occur at a call site which hasn't
1906   // been resolved yet, in which case this function will be called from
1907   // an nmethod that has been patched for deopt and we can ignore the
1908   // request for a fixup.
1909   // Also it is possible that we lost a race in that from_compiled_entry
1910   // is now back to the i2c in that case we don't need to patch and if
1911   // we did we'd leap into space because the callsite needs to use
1912   // "to interpreter" stub in order to load up the Method*. Don't
1913   // ask me how I know this...
1914 
1915   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1916   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1917     return;
1918   }
1919 
1920   // The check above makes sure this is a nmethod.
1921   CompiledMethod* nm = cb->as_compiled_method_or_null();
1922   assert(nm, "must be");
1923 
1924   // Get the return PC for the passed caller PC.
1925   address return_pc = caller_pc + frame::pc_return_offset;
1926 
1927   // There is a benign race here. We could be attempting to patch to a compiled
1928   // entry point at the same time the callee is being deoptimized. If that is
1929   // the case then entry_point may in fact point to a c2i and we'd patch the
1930   // call site with the same old data. clear_code will set code() to NULL
1931   // at the end of it. If we happen to see that NULL then we can skip trying
1932   // to patch. If we hit the window where the callee has a c2i in the
1933   // from_compiled_entry and the NULL isn't present yet then we lose the race
1934   // and patch the code with the same old data. Asi es la vida.
1935 
1936   if (moop->code() == NULL) return;
1937 
1938   if (nm->is_in_use()) {
1939     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1940     CompiledICLocker ic_locker(nm);
1941     if (NativeCall::is_call_before(return_pc)) {
1942       ResourceMark mark;
1943       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1944       //
1945       // bug 6281185. We might get here after resolving a call site to a vanilla
1946       // virtual call. Because the resolvee uses the verified entry it may then
1947       // see compiled code and attempt to patch the site by calling us. This would
1948       // then incorrectly convert the call site to optimized and its downhill from
1949       // there. If you're lucky you'll get the assert in the bugid, if not you've
1950       // just made a call site that could be megamorphic into a monomorphic site
1951       // for the rest of its life! Just another racing bug in the life of
1952       // fixup_callers_callsite ...
1953       //
1954       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1955       iter.next();
1956       assert(iter.has_current(), "must have a reloc at java call site");
1957       relocInfo::relocType typ = iter.reloc()->type();
1958       if (typ != relocInfo::static_call_type &&
1959            typ != relocInfo::opt_virtual_call_type &&
1960            typ != relocInfo::static_stub_type) {
1961         return;
1962       }
1963       address destination = call->destination();
1964       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1965         call->set_destination_mt_safe(entry_point);
1966       }
1967     }
1968   }
1969 JRT_END
1970 
1971 
1972 // same as JVM_Arraycopy, but called directly from compiled code
1973 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1974                                                 oopDesc* dest, jint dest_pos,
1975                                                 jint length,
1976                                                 JavaThread* thread)) {
1977 #ifndef PRODUCT
1978   _slow_array_copy_ctr++;
1979 #endif
1980   // Check if we have null pointers
1981   if (src == NULL || dest == NULL) {
1982     THROW(vmSymbols::java_lang_NullPointerException());
1983   }
1984   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1985   // even though the copy_array API also performs dynamic checks to ensure
1986   // that src and dest are truly arrays (and are conformable).
1987   // The copy_array mechanism is awkward and could be removed, but
1988   // the compilers don't call this function except as a last resort,
1989   // so it probably doesn't matter.
1990   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1991                                         (arrayOopDesc*)dest, dest_pos,
1992                                         length, thread);
1993 }
1994 JRT_END
1995 
1996 // The caller of generate_class_cast_message() (or one of its callers)
1997 // must use a ResourceMark in order to correctly free the result.
1998 char* SharedRuntime::generate_class_cast_message(
1999     JavaThread* thread, Klass* caster_klass) {
2000 
2001   // Get target class name from the checkcast instruction
2002   vframeStream vfst(thread, true);
2003   assert(!vfst.at_end(), "Java frame must exist");
2004   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2005   constantPoolHandle cpool(thread, vfst.method()->constants());
2006   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2007   Symbol* target_klass_name = NULL;
2008   if (target_klass == NULL) {
2009     // This klass should be resolved, but just in case, get the name in the klass slot.
2010     target_klass_name = cpool->klass_name_at(cc.index());
2011   }
2012   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2013 }
2014 
2015 
2016 // The caller of generate_class_cast_message() (or one of its callers)
2017 // must use a ResourceMark in order to correctly free the result.
2018 char* SharedRuntime::generate_class_cast_message(
2019     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2020   const char* caster_name = caster_klass->external_name();
2021 
2022   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2023   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
2024                                                    target_klass->external_name();
2025 
2026   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2027 
2028   const char* caster_klass_description = "";
2029   const char* target_klass_description = "";
2030   const char* klass_separator = "";
2031   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2032     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2033   } else {
2034     caster_klass_description = caster_klass->class_in_module_of_loader();
2035     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2036     klass_separator = (target_klass != NULL) ? "; " : "";
2037   }
2038 
2039   // add 3 for parenthesis and preceeding space
2040   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2041 
2042   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2043   if (message == NULL) {
2044     // Shouldn't happen, but don't cause even more problems if it does
2045     message = const_cast<char*>(caster_klass->external_name());
2046   } else {
2047     jio_snprintf(message,
2048                  msglen,
2049                  "class %s cannot be cast to class %s (%s%s%s)",
2050                  caster_name,
2051                  target_name,
2052                  caster_klass_description,
2053                  klass_separator,
2054                  target_klass_description
2055                  );
2056   }
2057   return message;
2058 }
2059 
2060 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2061   (void) JavaThread::current()->reguard_stack();
2062 JRT_END
2063 
2064 
2065 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2066 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2067   if (!SafepointSynchronize::is_synchronizing()) {
2068     // Only try quick_enter() if we're not trying to reach a safepoint
2069     // so that the calling thread reaches the safepoint more quickly.
2070     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2071   }
2072   // NO_ASYNC required because an async exception on the state transition destructor
2073   // would leave you with the lock held and it would never be released.
2074   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2075   // and the model is that an exception implies the method failed.
2076   JRT_BLOCK_NO_ASYNC
2077   oop obj(_obj);
2078   if (PrintBiasedLockingStatistics) {
2079     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2080   }
2081   Handle h_obj(THREAD, obj);
2082   if (UseBiasedLocking) {
2083     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2084     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2085   } else {
2086     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2087   }
2088   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2089   JRT_BLOCK_END
2090 JRT_END
2091 
2092 // Handles the uncommon cases of monitor unlocking in compiled code
2093 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2094    oop obj(_obj);
2095   assert(JavaThread::current() == THREAD, "invariant");
2096   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2097   // testing was unable to ever fire the assert that guarded it so I have removed it.
2098   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2099 #undef MIGHT_HAVE_PENDING
2100 #ifdef MIGHT_HAVE_PENDING
2101   // Save and restore any pending_exception around the exception mark.
2102   // While the slow_exit must not throw an exception, we could come into
2103   // this routine with one set.
2104   oop pending_excep = NULL;
2105   const char* pending_file;
2106   int pending_line;
2107   if (HAS_PENDING_EXCEPTION) {
2108     pending_excep = PENDING_EXCEPTION;
2109     pending_file  = THREAD->exception_file();
2110     pending_line  = THREAD->exception_line();
2111     CLEAR_PENDING_EXCEPTION;
2112   }
2113 #endif /* MIGHT_HAVE_PENDING */
2114 
2115   {
2116     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2117     EXCEPTION_MARK;
2118     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2119   }
2120 
2121 #ifdef MIGHT_HAVE_PENDING
2122   if (pending_excep != NULL) {
2123     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2124   }
2125 #endif /* MIGHT_HAVE_PENDING */
2126 JRT_END
2127 
2128 #ifndef PRODUCT
2129 
2130 void SharedRuntime::print_statistics() {
2131   ttyLocker ttyl;
2132   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2133 
2134   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2135 
2136   SharedRuntime::print_ic_miss_histogram();
2137 
2138   if (CountRemovableExceptions) {
2139     if (_nof_removable_exceptions > 0) {
2140       Unimplemented(); // this counter is not yet incremented
2141       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2142     }
2143   }
2144 
2145   // Dump the JRT_ENTRY counters
2146   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2147   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2148   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2149   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2150   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2151   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2152   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2153 
2154   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2155   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2156   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2157   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2158   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2159 
2160   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2161   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2162   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2163   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2164   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2165   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2166   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2167   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2168   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2169   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2170   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2171   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2172   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2173   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2174   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2175   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2176 
2177   AdapterHandlerLibrary::print_statistics();
2178 
2179   if (xtty != NULL)  xtty->tail("statistics");
2180 }
2181 
2182 inline double percent(int x, int y) {
2183   return 100.0 * x / MAX2(y, 1);
2184 }
2185 
2186 class MethodArityHistogram {
2187  public:
2188   enum { MAX_ARITY = 256 };
2189  private:
2190   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2191   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2192   static int _max_arity;                      // max. arity seen
2193   static int _max_size;                       // max. arg size seen
2194 
2195   static void add_method_to_histogram(nmethod* nm) {
2196     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2197       Method* method = nm->method();
2198       ArgumentCount args(method->signature());
2199       int arity   = args.size() + (method->is_static() ? 0 : 1);
2200       int argsize = method->size_of_parameters();
2201       arity   = MIN2(arity, MAX_ARITY-1);
2202       argsize = MIN2(argsize, MAX_ARITY-1);
2203       int count = method->compiled_invocation_count();
2204       _arity_histogram[arity]  += count;
2205       _size_histogram[argsize] += count;
2206       _max_arity = MAX2(_max_arity, arity);
2207       _max_size  = MAX2(_max_size, argsize);
2208     }
2209   }
2210 
2211   void print_histogram_helper(int n, int* histo, const char* name) {
2212     const int N = MIN2(5, n);
2213     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2214     double sum = 0;
2215     double weighted_sum = 0;
2216     int i;
2217     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2218     double rest = sum;
2219     double percent = sum / 100;
2220     for (i = 0; i <= N; i++) {
2221       rest -= histo[i];
2222       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2223     }
2224     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2225     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2226   }
2227 
2228   void print_histogram() {
2229     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2230     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2231     tty->print_cr("\nSame for parameter size (in words):");
2232     print_histogram_helper(_max_size, _size_histogram, "size");
2233     tty->cr();
2234   }
2235 
2236  public:
2237   MethodArityHistogram() {
2238     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2239     _max_arity = _max_size = 0;
2240     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2241     CodeCache::nmethods_do(add_method_to_histogram);
2242     print_histogram();
2243   }
2244 };
2245 
2246 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2247 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2248 int MethodArityHistogram::_max_arity;
2249 int MethodArityHistogram::_max_size;
2250 
2251 void SharedRuntime::print_call_statistics(int comp_total) {
2252   tty->print_cr("Calls from compiled code:");
2253   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2254   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2255   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2256   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2257   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2258   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2259   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2260   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2261   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2262   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2263   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2264   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2265   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2266   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2267   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2268   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2269   tty->cr();
2270   tty->print_cr("Note 1: counter updates are not MT-safe.");
2271   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2272   tty->print_cr("        %% in nested categories are relative to their category");
2273   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2274   tty->cr();
2275 
2276   MethodArityHistogram h;
2277 }
2278 #endif
2279 
2280 
2281 // A simple wrapper class around the calling convention information
2282 // that allows sharing of adapters for the same calling convention.
2283 class AdapterFingerPrint : public CHeapObj<mtCode> {
2284  private:
2285   enum {
2286     _basic_type_bits = 4,
2287     _basic_type_mask = right_n_bits(_basic_type_bits),
2288     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2289     _compact_int_count = 3
2290   };
2291   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2292   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2293 
2294   union {
2295     int  _compact[_compact_int_count];
2296     int* _fingerprint;
2297   } _value;
2298   int _length; // A negative length indicates the fingerprint is in the compact form,
2299                // Otherwise _value._fingerprint is the array.
2300 
2301   // Remap BasicTypes that are handled equivalently by the adapters.
2302   // These are correct for the current system but someday it might be
2303   // necessary to make this mapping platform dependent.
2304   static int adapter_encoding(BasicType in) {
2305     switch (in) {
2306       case T_BOOLEAN:
2307       case T_BYTE:
2308       case T_SHORT:
2309       case T_CHAR:
2310         // There are all promoted to T_INT in the calling convention
2311         return T_INT;
2312 
2313       case T_OBJECT:
2314       case T_ARRAY:
2315         // In other words, we assume that any register good enough for
2316         // an int or long is good enough for a managed pointer.
2317 #ifdef _LP64
2318         return T_LONG;
2319 #else
2320         return T_INT;
2321 #endif
2322 
2323       case T_INT:
2324       case T_LONG:
2325       case T_FLOAT:
2326       case T_DOUBLE:
2327       case T_VOID:
2328         return in;
2329 
2330       default:
2331         ShouldNotReachHere();
2332         return T_CONFLICT;
2333     }
2334   }
2335 
2336  public:
2337   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2338     // The fingerprint is based on the BasicType signature encoded
2339     // into an array of ints with eight entries per int.
2340     int* ptr;
2341     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2342     if (len <= _compact_int_count) {
2343       assert(_compact_int_count == 3, "else change next line");
2344       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2345       // Storing the signature encoded as signed chars hits about 98%
2346       // of the time.
2347       _length = -len;
2348       ptr = _value._compact;
2349     } else {
2350       _length = len;
2351       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2352       ptr = _value._fingerprint;
2353     }
2354 
2355     // Now pack the BasicTypes with 8 per int
2356     int sig_index = 0;
2357     for (int index = 0; index < len; index++) {
2358       int value = 0;
2359       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2360         int bt = ((sig_index < total_args_passed)
2361                   ? adapter_encoding(sig_bt[sig_index++])
2362                   : 0);
2363         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2364         value = (value << _basic_type_bits) | bt;
2365       }
2366       ptr[index] = value;
2367     }
2368   }
2369 
2370   ~AdapterFingerPrint() {
2371     if (_length > 0) {
2372       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2373     }
2374   }
2375 
2376   int value(int index) {
2377     if (_length < 0) {
2378       return _value._compact[index];
2379     }
2380     return _value._fingerprint[index];
2381   }
2382   int length() {
2383     if (_length < 0) return -_length;
2384     return _length;
2385   }
2386 
2387   bool is_compact() {
2388     return _length <= 0;
2389   }
2390 
2391   unsigned int compute_hash() {
2392     int hash = 0;
2393     for (int i = 0; i < length(); i++) {
2394       int v = value(i);
2395       hash = (hash << 8) ^ v ^ (hash >> 5);
2396     }
2397     return (unsigned int)hash;
2398   }
2399 
2400   const char* as_string() {
2401     stringStream st;
2402     st.print("0x");
2403     for (int i = 0; i < length(); i++) {
2404       st.print("%08x", value(i));
2405     }
2406     return st.as_string();
2407   }
2408 
2409   bool equals(AdapterFingerPrint* other) {
2410     if (other->_length != _length) {
2411       return false;
2412     }
2413     if (_length < 0) {
2414       assert(_compact_int_count == 3, "else change next line");
2415       return _value._compact[0] == other->_value._compact[0] &&
2416              _value._compact[1] == other->_value._compact[1] &&
2417              _value._compact[2] == other->_value._compact[2];
2418     } else {
2419       for (int i = 0; i < _length; i++) {
2420         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2421           return false;
2422         }
2423       }
2424     }
2425     return true;
2426   }
2427 };
2428 
2429 
2430 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2431 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2432   friend class AdapterHandlerTableIterator;
2433 
2434  private:
2435 
2436 #ifndef PRODUCT
2437   static int _lookups; // number of calls to lookup
2438   static int _buckets; // number of buckets checked
2439   static int _equals;  // number of buckets checked with matching hash
2440   static int _hits;    // number of successful lookups
2441   static int _compact; // number of equals calls with compact signature
2442 #endif
2443 
2444   AdapterHandlerEntry* bucket(int i) {
2445     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2446   }
2447 
2448  public:
2449   AdapterHandlerTable()
2450     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2451 
2452   // Create a new entry suitable for insertion in the table
2453   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2454     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2455     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2456     if (DumpSharedSpaces) {
2457       ((CDSAdapterHandlerEntry*)entry)->init();
2458     }
2459     return entry;
2460   }
2461 
2462   // Insert an entry into the table
2463   void add(AdapterHandlerEntry* entry) {
2464     int index = hash_to_index(entry->hash());
2465     add_entry(index, entry);
2466   }
2467 
2468   void free_entry(AdapterHandlerEntry* entry) {
2469     entry->deallocate();
2470     BasicHashtable<mtCode>::free_entry(entry);
2471   }
2472 
2473   // Find a entry with the same fingerprint if it exists
2474   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2475     NOT_PRODUCT(_lookups++);
2476     AdapterFingerPrint fp(total_args_passed, sig_bt);
2477     unsigned int hash = fp.compute_hash();
2478     int index = hash_to_index(hash);
2479     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2480       NOT_PRODUCT(_buckets++);
2481       if (e->hash() == hash) {
2482         NOT_PRODUCT(_equals++);
2483         if (fp.equals(e->fingerprint())) {
2484 #ifndef PRODUCT
2485           if (fp.is_compact()) _compact++;
2486           _hits++;
2487 #endif
2488           return e;
2489         }
2490       }
2491     }
2492     return NULL;
2493   }
2494 
2495 #ifndef PRODUCT
2496   void print_statistics() {
2497     ResourceMark rm;
2498     int longest = 0;
2499     int empty = 0;
2500     int total = 0;
2501     int nonempty = 0;
2502     for (int index = 0; index < table_size(); index++) {
2503       int count = 0;
2504       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2505         count++;
2506       }
2507       if (count != 0) nonempty++;
2508       if (count == 0) empty++;
2509       if (count > longest) longest = count;
2510       total += count;
2511     }
2512     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2513                   empty, longest, total, total / (double)nonempty);
2514     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2515                   _lookups, _buckets, _equals, _hits, _compact);
2516   }
2517 #endif
2518 };
2519 
2520 
2521 #ifndef PRODUCT
2522 
2523 int AdapterHandlerTable::_lookups;
2524 int AdapterHandlerTable::_buckets;
2525 int AdapterHandlerTable::_equals;
2526 int AdapterHandlerTable::_hits;
2527 int AdapterHandlerTable::_compact;
2528 
2529 #endif
2530 
2531 class AdapterHandlerTableIterator : public StackObj {
2532  private:
2533   AdapterHandlerTable* _table;
2534   int _index;
2535   AdapterHandlerEntry* _current;
2536 
2537   void scan() {
2538     while (_index < _table->table_size()) {
2539       AdapterHandlerEntry* a = _table->bucket(_index);
2540       _index++;
2541       if (a != NULL) {
2542         _current = a;
2543         return;
2544       }
2545     }
2546   }
2547 
2548  public:
2549   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2550     scan();
2551   }
2552   bool has_next() {
2553     return _current != NULL;
2554   }
2555   AdapterHandlerEntry* next() {
2556     if (_current != NULL) {
2557       AdapterHandlerEntry* result = _current;
2558       _current = _current->next();
2559       if (_current == NULL) scan();
2560       return result;
2561     } else {
2562       return NULL;
2563     }
2564   }
2565 };
2566 
2567 
2568 // ---------------------------------------------------------------------------
2569 // Implementation of AdapterHandlerLibrary
2570 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2571 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2572 const int AdapterHandlerLibrary_size = 16*K;
2573 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2574 
2575 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2576   // Should be called only when AdapterHandlerLibrary_lock is active.
2577   if (_buffer == NULL) // Initialize lazily
2578       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2579   return _buffer;
2580 }
2581 
2582 extern "C" void unexpected_adapter_call() {
2583   ShouldNotCallThis();
2584 }
2585 
2586 void AdapterHandlerLibrary::initialize() {
2587   if (_adapters != NULL) return;
2588   _adapters = new AdapterHandlerTable();
2589 
2590   // Create a special handler for abstract methods.  Abstract methods
2591   // are never compiled so an i2c entry is somewhat meaningless, but
2592   // throw AbstractMethodError just in case.
2593   // Pass wrong_method_abstract for the c2i transitions to return
2594   // AbstractMethodError for invalid invocations.
2595   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2596   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2597                                                               StubRoutines::throw_AbstractMethodError_entry(),
2598                                                               wrong_method_abstract, wrong_method_abstract);
2599 }
2600 
2601 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2602                                                       address i2c_entry,
2603                                                       address c2i_entry,
2604                                                       address c2i_unverified_entry) {
2605   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2606 }
2607 
2608 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2609   AdapterHandlerEntry* entry = get_adapter0(method);
2610   if (method->is_shared()) {
2611     // See comments around Method::link_method()
2612     MutexLocker mu(AdapterHandlerLibrary_lock);
2613     if (method->adapter() == NULL) {
2614       method->update_adapter_trampoline(entry);
2615     }
2616     address trampoline = method->from_compiled_entry();
2617     if (*(int*)trampoline == 0) {
2618       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2619       MacroAssembler _masm(&buffer);
2620       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2621       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2622 
2623       if (PrintInterpreter) {
2624         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2625       }
2626     }
2627   }
2628 
2629   return entry;
2630 }
2631 
2632 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2633   // Use customized signature handler.  Need to lock around updates to
2634   // the AdapterHandlerTable (it is not safe for concurrent readers
2635   // and a single writer: this could be fixed if it becomes a
2636   // problem).
2637 
2638   ResourceMark rm;
2639 
2640   NOT_PRODUCT(int insts_size);
2641   AdapterBlob* new_adapter = NULL;
2642   AdapterHandlerEntry* entry = NULL;
2643   AdapterFingerPrint* fingerprint = NULL;
2644   {
2645     MutexLocker mu(AdapterHandlerLibrary_lock);
2646     // make sure data structure is initialized
2647     initialize();
2648 
2649     if (method->is_abstract()) {
2650       return _abstract_method_handler;
2651     }
2652 
2653     // Fill in the signature array, for the calling-convention call.
2654     int total_args_passed = method->size_of_parameters(); // All args on stack
2655 
2656     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2657     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2658     int i = 0;
2659     if (!method->is_static())  // Pass in receiver first
2660       sig_bt[i++] = T_OBJECT;
2661     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2662       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2663       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2664         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2665     }
2666     assert(i == total_args_passed, "");
2667 
2668     // Lookup method signature's fingerprint
2669     entry = _adapters->lookup(total_args_passed, sig_bt);
2670 
2671 #ifdef ASSERT
2672     AdapterHandlerEntry* shared_entry = NULL;
2673     // Start adapter sharing verification only after the VM is booted.
2674     if (VerifyAdapterSharing && (entry != NULL)) {
2675       shared_entry = entry;
2676       entry = NULL;
2677     }
2678 #endif
2679 
2680     if (entry != NULL) {
2681       return entry;
2682     }
2683 
2684     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2685     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2686 
2687     // Make a C heap allocated version of the fingerprint to store in the adapter
2688     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2689 
2690     // StubRoutines::code2() is initialized after this function can be called. As a result,
2691     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2692     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2693     // stub that ensure that an I2C stub is called from an interpreter frame.
2694     bool contains_all_checks = StubRoutines::code2() != NULL;
2695 
2696     // Create I2C & C2I handlers
2697     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2698     if (buf != NULL) {
2699       CodeBuffer buffer(buf);
2700       short buffer_locs[20];
2701       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2702                                              sizeof(buffer_locs)/sizeof(relocInfo));
2703 
2704       MacroAssembler _masm(&buffer);
2705       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2706                                                      total_args_passed,
2707                                                      comp_args_on_stack,
2708                                                      sig_bt,
2709                                                      regs,
2710                                                      fingerprint);
2711 #ifdef ASSERT
2712       if (VerifyAdapterSharing) {
2713         if (shared_entry != NULL) {
2714           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2715           // Release the one just created and return the original
2716           _adapters->free_entry(entry);
2717           return shared_entry;
2718         } else  {
2719           entry->save_code(buf->code_begin(), buffer.insts_size());
2720         }
2721       }
2722 #endif
2723 
2724       new_adapter = AdapterBlob::create(&buffer);
2725       NOT_PRODUCT(insts_size = buffer.insts_size());
2726     }
2727     if (new_adapter == NULL) {
2728       // CodeCache is full, disable compilation
2729       // Ought to log this but compile log is only per compile thread
2730       // and we're some non descript Java thread.
2731       return NULL; // Out of CodeCache space
2732     }
2733     entry->relocate(new_adapter->content_begin());
2734 #ifndef PRODUCT
2735     // debugging suppport
2736     if (PrintAdapterHandlers || PrintStubCode) {
2737       ttyLocker ttyl;
2738       entry->print_adapter_on(tty);
2739       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2740                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2741                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2742       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2743       if (Verbose || PrintStubCode) {
2744         address first_pc = entry->base_address();
2745         if (first_pc != NULL) {
2746           Disassembler::decode(first_pc, first_pc + insts_size);
2747           tty->cr();
2748         }
2749       }
2750     }
2751 #endif
2752     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2753     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2754     if (contains_all_checks || !VerifyAdapterCalls) {
2755       _adapters->add(entry);
2756     }
2757   }
2758   // Outside of the lock
2759   if (new_adapter != NULL) {
2760     char blob_id[256];
2761     jio_snprintf(blob_id,
2762                  sizeof(blob_id),
2763                  "%s(%s)@" PTR_FORMAT,
2764                  new_adapter->name(),
2765                  fingerprint->as_string(),
2766                  new_adapter->content_begin());
2767     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2768 
2769     if (JvmtiExport::should_post_dynamic_code_generated()) {
2770       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2771     }
2772   }
2773   return entry;
2774 }
2775 
2776 address AdapterHandlerEntry::base_address() {
2777   address base = _i2c_entry;
2778   if (base == NULL)  base = _c2i_entry;
2779   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2780   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2781   return base;
2782 }
2783 
2784 void AdapterHandlerEntry::relocate(address new_base) {
2785   address old_base = base_address();
2786   assert(old_base != NULL, "");
2787   ptrdiff_t delta = new_base - old_base;
2788   if (_i2c_entry != NULL)
2789     _i2c_entry += delta;
2790   if (_c2i_entry != NULL)
2791     _c2i_entry += delta;
2792   if (_c2i_unverified_entry != NULL)
2793     _c2i_unverified_entry += delta;
2794   assert(base_address() == new_base, "");
2795 }
2796 
2797 
2798 void AdapterHandlerEntry::deallocate() {
2799   delete _fingerprint;
2800 #ifdef ASSERT
2801   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2802 #endif
2803 }
2804 
2805 
2806 #ifdef ASSERT
2807 // Capture the code before relocation so that it can be compared
2808 // against other versions.  If the code is captured after relocation
2809 // then relative instructions won't be equivalent.
2810 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2811   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2812   _saved_code_length = length;
2813   memcpy(_saved_code, buffer, length);
2814 }
2815 
2816 
2817 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2818   if (length != _saved_code_length) {
2819     return false;
2820   }
2821 
2822   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2823 }
2824 #endif
2825 
2826 
2827 /**
2828  * Create a native wrapper for this native method.  The wrapper converts the
2829  * Java-compiled calling convention to the native convention, handles
2830  * arguments, and transitions to native.  On return from the native we transition
2831  * back to java blocking if a safepoint is in progress.
2832  */
2833 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2834   ResourceMark rm;
2835   nmethod* nm = NULL;
2836 
2837   assert(method->is_native(), "must be native");
2838   assert(method->is_method_handle_intrinsic() ||
2839          method->has_native_function(), "must have something valid to call!");
2840 
2841   {
2842     // Perform the work while holding the lock, but perform any printing outside the lock
2843     MutexLocker mu(AdapterHandlerLibrary_lock);
2844     // See if somebody beat us to it
2845     if (method->code() != NULL) {
2846       return;
2847     }
2848 
2849     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2850     assert(compile_id > 0, "Must generate native wrapper");
2851 
2852 
2853     ResourceMark rm;
2854     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2855     if (buf != NULL) {
2856       CodeBuffer buffer(buf);
2857       double locs_buf[20];
2858       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2859       MacroAssembler _masm(&buffer);
2860 
2861       // Fill in the signature array, for the calling-convention call.
2862       const int total_args_passed = method->size_of_parameters();
2863 
2864       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2865       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2866       int i=0;
2867       if (!method->is_static())  // Pass in receiver first
2868         sig_bt[i++] = T_OBJECT;
2869       SignatureStream ss(method->signature());
2870       for (; !ss.at_return_type(); ss.next()) {
2871         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2872         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2873           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2874       }
2875       assert(i == total_args_passed, "");
2876       BasicType ret_type = ss.type();
2877 
2878       // Now get the compiled-Java layout as input (or output) arguments.
2879       // NOTE: Stubs for compiled entry points of method handle intrinsics
2880       // are just trampolines so the argument registers must be outgoing ones.
2881       const bool is_outgoing = method->is_method_handle_intrinsic();
2882       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2883 
2884       // Generate the compiled-to-native wrapper code
2885       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2886 
2887       if (nm != NULL) {
2888         method->set_code(method, nm);
2889 
2890         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2891         if (directive->PrintAssemblyOption) {
2892           nm->print_code();
2893         }
2894         DirectivesStack::release(directive);
2895       }
2896     }
2897   } // Unlock AdapterHandlerLibrary_lock
2898 
2899 
2900   // Install the generated code.
2901   if (nm != NULL) {
2902     const char *msg = method->is_static() ? "(static)" : "";
2903     CompileTask::print_ul(nm, msg);
2904     if (PrintCompilation) {
2905       ttyLocker ttyl;
2906       CompileTask::print(tty, nm, msg);
2907     }
2908     nm->post_compiled_method_load_event();
2909   }
2910 }
2911 
2912 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2913   assert(thread == JavaThread::current(), "must be");
2914   // The code is about to enter a JNI lazy critical native method and
2915   // _needs_gc is true, so if this thread is already in a critical
2916   // section then just return, otherwise this thread should block
2917   // until needs_gc has been cleared.
2918   if (thread->in_critical()) {
2919     return;
2920   }
2921   // Lock and unlock a critical section to give the system a chance to block
2922   GCLocker::lock_critical(thread);
2923   GCLocker::unlock_critical(thread);
2924 JRT_END
2925 
2926 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2927   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2928   assert(obj != NULL, "Should not be null");
2929   oop o(obj);
2930   o = Universe::heap()->pin_object(thread, o);
2931   assert(o != NULL, "Should not be null");
2932   return o;
2933 JRT_END
2934 
2935 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2936   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2937   assert(obj != NULL, "Should not be null");
2938   oop o(obj);
2939   Universe::heap()->unpin_object(thread, o);
2940 JRT_END
2941 
2942 // -------------------------------------------------------------------------
2943 // Java-Java calling convention
2944 // (what you use when Java calls Java)
2945 
2946 //------------------------------name_for_receiver----------------------------------
2947 // For a given signature, return the VMReg for parameter 0.
2948 VMReg SharedRuntime::name_for_receiver() {
2949   VMRegPair regs;
2950   BasicType sig_bt = T_OBJECT;
2951   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2952   // Return argument 0 register.  In the LP64 build pointers
2953   // take 2 registers, but the VM wants only the 'main' name.
2954   return regs.first();
2955 }
2956 
2957 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2958   // This method is returning a data structure allocating as a
2959   // ResourceObject, so do not put any ResourceMarks in here.
2960   char *s = sig->as_C_string();
2961   int len = (int)strlen(s);
2962   s++; len--;                   // Skip opening paren
2963 
2964   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2965   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2966   int cnt = 0;
2967   if (has_receiver) {
2968     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2969   }
2970 
2971   while (*s != ')') {          // Find closing right paren
2972     switch (*s++) {            // Switch on signature character
2973     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2974     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2975     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2976     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2977     case 'I': sig_bt[cnt++] = T_INT;     break;
2978     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2979     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2980     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2981     case 'V': sig_bt[cnt++] = T_VOID;    break;
2982     case 'L':                   // Oop
2983       while (*s++ != ';');   // Skip signature
2984       sig_bt[cnt++] = T_OBJECT;
2985       break;
2986     case '[': {                 // Array
2987       do {                      // Skip optional size
2988         while (*s >= '0' && *s <= '9') s++;
2989       } while (*s++ == '[');   // Nested arrays?
2990       // Skip element type
2991       if (s[-1] == 'L')
2992         while (*s++ != ';'); // Skip signature
2993       sig_bt[cnt++] = T_ARRAY;
2994       break;
2995     }
2996     default : ShouldNotReachHere();
2997     }
2998   }
2999 
3000   if (has_appendix) {
3001     sig_bt[cnt++] = T_OBJECT;
3002   }
3003 
3004   assert(cnt < 256, "grow table size");
3005 
3006   int comp_args_on_stack;
3007   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3008 
3009   // the calling convention doesn't count out_preserve_stack_slots so
3010   // we must add that in to get "true" stack offsets.
3011 
3012   if (comp_args_on_stack) {
3013     for (int i = 0; i < cnt; i++) {
3014       VMReg reg1 = regs[i].first();
3015       if (reg1->is_stack()) {
3016         // Yuck
3017         reg1 = reg1->bias(out_preserve_stack_slots());
3018       }
3019       VMReg reg2 = regs[i].second();
3020       if (reg2->is_stack()) {
3021         // Yuck
3022         reg2 = reg2->bias(out_preserve_stack_slots());
3023       }
3024       regs[i].set_pair(reg2, reg1);
3025     }
3026   }
3027 
3028   // results
3029   *arg_size = cnt;
3030   return regs;
3031 }
3032 
3033 // OSR Migration Code
3034 //
3035 // This code is used convert interpreter frames into compiled frames.  It is
3036 // called from very start of a compiled OSR nmethod.  A temp array is
3037 // allocated to hold the interesting bits of the interpreter frame.  All
3038 // active locks are inflated to allow them to move.  The displaced headers and
3039 // active interpreter locals are copied into the temp buffer.  Then we return
3040 // back to the compiled code.  The compiled code then pops the current
3041 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3042 // copies the interpreter locals and displaced headers where it wants.
3043 // Finally it calls back to free the temp buffer.
3044 //
3045 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3046 
3047 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3048 
3049   //
3050   // This code is dependent on the memory layout of the interpreter local
3051   // array and the monitors. On all of our platforms the layout is identical
3052   // so this code is shared. If some platform lays the their arrays out
3053   // differently then this code could move to platform specific code or
3054   // the code here could be modified to copy items one at a time using
3055   // frame accessor methods and be platform independent.
3056 
3057   frame fr = thread->last_frame();
3058   assert(fr.is_interpreted_frame(), "");
3059   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3060 
3061   // Figure out how many monitors are active.
3062   int active_monitor_count = 0;
3063   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3064        kptr < fr.interpreter_frame_monitor_begin();
3065        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3066     if (kptr->obj() != NULL) active_monitor_count++;
3067   }
3068 
3069   // QQQ we could place number of active monitors in the array so that compiled code
3070   // could double check it.
3071 
3072   Method* moop = fr.interpreter_frame_method();
3073   int max_locals = moop->max_locals();
3074   // Allocate temp buffer, 1 word per local & 2 per active monitor
3075   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3076   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3077 
3078   // Copy the locals.  Order is preserved so that loading of longs works.
3079   // Since there's no GC I can copy the oops blindly.
3080   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3081   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3082                        (HeapWord*)&buf[0],
3083                        max_locals);
3084 
3085   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3086   int i = max_locals;
3087   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3088        kptr2 < fr.interpreter_frame_monitor_begin();
3089        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3090     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3091       BasicLock *lock = kptr2->lock();
3092       // Inflate so the displaced header becomes position-independent
3093       if (lock->displaced_header()->is_unlocked())
3094         ObjectSynchronizer::inflate_helper(kptr2->obj());
3095       // Now the displaced header is free to move
3096       buf[i++] = (intptr_t)lock->displaced_header();
3097       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3098     }
3099   }
3100   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3101 
3102   return buf;
3103 JRT_END
3104 
3105 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3106   FREE_C_HEAP_ARRAY(intptr_t, buf);
3107 JRT_END
3108 
3109 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3110   AdapterHandlerTableIterator iter(_adapters);
3111   while (iter.has_next()) {
3112     AdapterHandlerEntry* a = iter.next();
3113     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3114   }
3115   return false;
3116 }
3117 
3118 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3119   AdapterHandlerTableIterator iter(_adapters);
3120   while (iter.has_next()) {
3121     AdapterHandlerEntry* a = iter.next();
3122     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3123       st->print("Adapter for signature: ");
3124       a->print_adapter_on(tty);
3125       return;
3126     }
3127   }
3128   assert(false, "Should have found handler");
3129 }
3130 
3131 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3132   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3133                p2i(this), fingerprint()->as_string(),
3134                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3135 
3136 }
3137 
3138 #if INCLUDE_CDS
3139 
3140 void CDSAdapterHandlerEntry::init() {
3141   assert(DumpSharedSpaces, "used during dump time only");
3142   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3143   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3144 };
3145 
3146 #endif // INCLUDE_CDS
3147 
3148 
3149 #ifndef PRODUCT
3150 
3151 void AdapterHandlerLibrary::print_statistics() {
3152   _adapters->print_statistics();
3153 }
3154 
3155 #endif /* PRODUCT */
3156 
3157 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3158   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3159   if (thread->stack_reserved_zone_disabled()) {
3160   thread->enable_stack_reserved_zone();
3161   }
3162   thread->set_reserved_stack_activation(thread->stack_base());
3163 JRT_END
3164 
3165 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3166   ResourceMark rm(thread);
3167   frame activation;
3168   CompiledMethod* nm = NULL;
3169   int count = 1;
3170 
3171   assert(fr.is_java_frame(), "Must start on Java frame");
3172 
3173   while (true) {
3174     Method* method = NULL;
3175     bool found = false;
3176     if (fr.is_interpreted_frame()) {
3177       method = fr.interpreter_frame_method();
3178       if (method != NULL && method->has_reserved_stack_access()) {
3179         found = true;
3180       }
3181     } else {
3182       CodeBlob* cb = fr.cb();
3183       if (cb != NULL && cb->is_compiled()) {
3184         nm = cb->as_compiled_method();
3185         method = nm->method();
3186         // scope_desc_near() must be used, instead of scope_desc_at() because on
3187         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3188         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3189           method = sd->method();
3190           if (method != NULL && method->has_reserved_stack_access()) {
3191             found = true;
3192       }
3193     }
3194       }
3195     }
3196     if (found) {
3197       activation = fr;
3198       warning("Potentially dangerous stack overflow in "
3199               "ReservedStackAccess annotated method %s [%d]",
3200               method->name_and_sig_as_C_string(), count++);
3201       EventReservedStackActivation event;
3202       if (event.should_commit()) {
3203         event.set_method(method);
3204         event.commit();
3205       }
3206     }
3207     if (fr.is_first_java_frame()) {
3208       break;
3209     } else {
3210       fr = fr.java_sender();
3211     }
3212   }
3213   return activation;
3214 }
3215 
3216 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3217   // After any safepoint, just before going back to compiled code,
3218   // we inform the GC that we will be doing initializing writes to
3219   // this object in the future without emitting card-marks, so
3220   // GC may take any compensating steps.
3221 
3222   oop new_obj = thread->vm_result();
3223   if (new_obj == NULL) return;
3224 
3225   BarrierSet *bs = BarrierSet::barrier_set();
3226   bs->on_slowpath_allocation_exit(thread, new_obj);
3227 }