1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/oopMap.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/escape.hpp"
  30 #include "opto/locknode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/parse.hpp"
  34 #include "opto/regalloc.hpp"
  35 #include "opto/regmask.hpp"
  36 #include "opto/rootnode.hpp"
  37 #include "opto/runtime.hpp"
  38 
  39 // Portions of code courtesy of Clifford Click
  40 
  41 // Optimization - Graph Style
  42 
  43 //=============================================================================
  44 uint StartNode::size_of() const { return sizeof(*this); }
  45 uint StartNode::cmp( const Node &n ) const
  46 { return _domain == ((StartNode&)n)._domain; }
  47 const Type *StartNode::bottom_type() const { return _domain; }
  48 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
  49 #ifndef PRODUCT
  50 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  51 #endif
  52 
  53 //------------------------------Ideal------------------------------------------
  54 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  55   return remove_dead_region(phase, can_reshape) ? this : NULL;
  56 }
  57 
  58 //------------------------------calling_convention-----------------------------
  59 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
  60   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
  61 }
  62 
  63 //------------------------------Registers--------------------------------------
  64 const RegMask &StartNode::in_RegMask(uint) const {
  65   return RegMask::Empty;
  66 }
  67 
  68 //------------------------------match------------------------------------------
  69 // Construct projections for incoming parameters, and their RegMask info
  70 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
  71   switch (proj->_con) {
  72   case TypeFunc::Control:
  73   case TypeFunc::I_O:
  74   case TypeFunc::Memory:
  75     return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  76   case TypeFunc::FramePtr:
  77     return new (match->C, 1) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  78   case TypeFunc::ReturnAdr:
  79     return new (match->C, 1) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  80   case TypeFunc::Parms:
  81   default: {
  82       uint parm_num = proj->_con - TypeFunc::Parms;
  83       const Type *t = _domain->field_at(proj->_con);
  84       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  85         return new (match->C, 1) ConNode(Type::TOP);
  86       uint ideal_reg = Matcher::base2reg[t->base()];
  87       RegMask &rm = match->_calling_convention_mask[parm_num];
  88       return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
  89     }
  90   }
  91   return NULL;
  92 }
  93 
  94 //------------------------------StartOSRNode----------------------------------
  95 // The method start node for an on stack replacement adapter
  96 
  97 //------------------------------osr_domain-----------------------------
  98 const TypeTuple *StartOSRNode::osr_domain() {
  99   const Type **fields = TypeTuple::fields(2);
 100   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
 101 
 102   return TypeTuple::make(TypeFunc::Parms+1, fields);
 103 }
 104 
 105 //=============================================================================
 106 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 107   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 108 };
 109 
 110 #ifndef PRODUCT
 111 void ParmNode::dump_spec(outputStream *st) const {
 112   if( _con < TypeFunc::Parms ) {
 113     st->print(names[_con]);
 114   } else {
 115     st->print("Parm%d: ",_con-TypeFunc::Parms);
 116     // Verbose and WizardMode dump bottom_type for all nodes
 117     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 118   }
 119 }
 120 #endif
 121 
 122 uint ParmNode::ideal_reg() const {
 123   switch( _con ) {
 124   case TypeFunc::Control  : // fall through
 125   case TypeFunc::I_O      : // fall through
 126   case TypeFunc::Memory   : return 0;
 127   case TypeFunc::FramePtr : // fall through
 128   case TypeFunc::ReturnAdr: return Op_RegP;
 129   default                 : assert( _con > TypeFunc::Parms, "" );
 130     // fall through
 131   case TypeFunc::Parms    : {
 132     // Type of argument being passed
 133     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
 134     return Matcher::base2reg[t->base()];
 135   }
 136   }
 137   ShouldNotReachHere();
 138   return 0;
 139 }
 140 
 141 //=============================================================================
 142 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
 143   init_req(TypeFunc::Control,cntrl);
 144   init_req(TypeFunc::I_O,i_o);
 145   init_req(TypeFunc::Memory,memory);
 146   init_req(TypeFunc::FramePtr,frameptr);
 147   init_req(TypeFunc::ReturnAdr,retadr);
 148 }
 149 
 150 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
 151   return remove_dead_region(phase, can_reshape) ? this : NULL;
 152 }
 153 
 154 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
 155   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
 156     ? Type::TOP
 157     : Type::BOTTOM;
 158 }
 159 
 160 // Do we Match on this edge index or not?  No edges on return nodes
 161 uint ReturnNode::match_edge(uint idx) const {
 162   return 0;
 163 }
 164 
 165 
 166 #ifndef PRODUCT
 167 void ReturnNode::dump_req() const {
 168   // Dump the required inputs, enclosed in '(' and ')'
 169   uint i;                       // Exit value of loop
 170   for( i=0; i<req(); i++ ) {    // For all required inputs
 171     if( i == TypeFunc::Parms ) tty->print("returns");
 172     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 173     else tty->print("_ ");
 174   }
 175 }
 176 #endif
 177 
 178 //=============================================================================
 179 RethrowNode::RethrowNode(
 180   Node* cntrl,
 181   Node* i_o,
 182   Node* memory,
 183   Node* frameptr,
 184   Node* ret_adr,
 185   Node* exception
 186 ) : Node(TypeFunc::Parms + 1) {
 187   init_req(TypeFunc::Control  , cntrl    );
 188   init_req(TypeFunc::I_O      , i_o      );
 189   init_req(TypeFunc::Memory   , memory   );
 190   init_req(TypeFunc::FramePtr , frameptr );
 191   init_req(TypeFunc::ReturnAdr, ret_adr);
 192   init_req(TypeFunc::Parms    , exception);
 193 }
 194 
 195 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
 196   return remove_dead_region(phase, can_reshape) ? this : NULL;
 197 }
 198 
 199 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
 200   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
 201     ? Type::TOP
 202     : Type::BOTTOM;
 203 }
 204 
 205 uint RethrowNode::match_edge(uint idx) const {
 206   return 0;
 207 }
 208 
 209 #ifndef PRODUCT
 210 void RethrowNode::dump_req() const {
 211   // Dump the required inputs, enclosed in '(' and ')'
 212   uint i;                       // Exit value of loop
 213   for( i=0; i<req(); i++ ) {    // For all required inputs
 214     if( i == TypeFunc::Parms ) tty->print("exception");
 215     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 216     else tty->print("_ ");
 217   }
 218 }
 219 #endif
 220 
 221 //=============================================================================
 222 // Do we Match on this edge index or not?  Match only target address & method
 223 uint TailCallNode::match_edge(uint idx) const {
 224   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 225 }
 226 
 227 //=============================================================================
 228 // Do we Match on this edge index or not?  Match only target address & oop
 229 uint TailJumpNode::match_edge(uint idx) const {
 230   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 231 }
 232 
 233 //=============================================================================
 234 JVMState::JVMState(ciMethod* method, JVMState* caller) {
 235   assert(method != NULL, "must be valid call site");
 236   _method = method;
 237   _reexecute = Reexecute_Undefined;
 238   debug_only(_bci = -99);  // random garbage value
 239   debug_only(_map = (SafePointNode*)-1);
 240   _caller = caller;
 241   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
 242   _locoff = TypeFunc::Parms;
 243   _stkoff = _locoff + _method->max_locals();
 244   _monoff = _stkoff + _method->max_stack();
 245   _scloff = _monoff;
 246   _endoff = _monoff;
 247   _sp = 0;
 248 }
 249 JVMState::JVMState(int stack_size) {
 250   _method = NULL;
 251   _bci = InvocationEntryBci;
 252   _reexecute = Reexecute_Undefined;
 253   debug_only(_map = (SafePointNode*)-1);
 254   _caller = NULL;
 255   _depth  = 1;
 256   _locoff = TypeFunc::Parms;
 257   _stkoff = _locoff;
 258   _monoff = _stkoff + stack_size;
 259   _scloff = _monoff;
 260   _endoff = _monoff;
 261   _sp = 0;
 262 }
 263 
 264 //--------------------------------of_depth-------------------------------------
 265 JVMState* JVMState::of_depth(int d) const {
 266   const JVMState* jvmp = this;
 267   assert(0 < d && (uint)d <= depth(), "oob");
 268   for (int skip = depth() - d; skip > 0; skip--) {
 269     jvmp = jvmp->caller();
 270   }
 271   assert(jvmp->depth() == (uint)d, "found the right one");
 272   return (JVMState*)jvmp;
 273 }
 274 
 275 //-----------------------------same_calls_as-----------------------------------
 276 bool JVMState::same_calls_as(const JVMState* that) const {
 277   if (this == that)                    return true;
 278   if (this->depth() != that->depth())  return false;
 279   const JVMState* p = this;
 280   const JVMState* q = that;
 281   for (;;) {
 282     if (p->_method != q->_method)    return false;
 283     if (p->_method == NULL)          return true;   // bci is irrelevant
 284     if (p->_bci    != q->_bci)       return false;
 285     if (p->_reexecute != q->_reexecute)  return false;
 286     p = p->caller();
 287     q = q->caller();
 288     if (p == q)                      return true;
 289     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
 290   }
 291 }
 292 
 293 //------------------------------debug_start------------------------------------
 294 uint JVMState::debug_start()  const {
 295   debug_only(JVMState* jvmroot = of_depth(1));
 296   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
 297   return of_depth(1)->locoff();
 298 }
 299 
 300 //-------------------------------debug_end-------------------------------------
 301 uint JVMState::debug_end() const {
 302   debug_only(JVMState* jvmroot = of_depth(1));
 303   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
 304   return endoff();
 305 }
 306 
 307 //------------------------------debug_depth------------------------------------
 308 uint JVMState::debug_depth() const {
 309   uint total = 0;
 310   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
 311     total += jvmp->debug_size();
 312   }
 313   return total;
 314 }
 315 
 316 #ifndef PRODUCT
 317 
 318 //------------------------------format_helper----------------------------------
 319 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
 320 // any defined value or not.  If it does, print out the register or constant.
 321 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
 322   if (n == NULL) { st->print(" NULL"); return; }
 323   if (n->is_SafePointScalarObject()) {
 324     // Scalar replacement.
 325     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
 326     scobjs->append_if_missing(spobj);
 327     int sco_n = scobjs->find(spobj);
 328     assert(sco_n >= 0, "");
 329     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
 330     return;
 331   }
 332   if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
 333     char buf[50];
 334     regalloc->dump_register(n,buf);
 335     st->print(" %s%d]=%s",msg,i,buf);
 336   } else {                      // No register, but might be constant
 337     const Type *t = n->bottom_type();
 338     switch (t->base()) {
 339     case Type::Int:
 340       st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
 341       break;
 342     case Type::AnyPtr:
 343       assert( t == TypePtr::NULL_PTR, "" );
 344       st->print(" %s%d]=#NULL",msg,i);
 345       break;
 346     case Type::AryPtr:
 347     case Type::KlassPtr:
 348     case Type::InstPtr:
 349       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
 350       break;
 351     case Type::NarrowOop:
 352       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_oopptr()->const_oop());
 353       break;
 354     case Type::RawPtr:
 355       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
 356       break;
 357     case Type::DoubleCon:
 358       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
 359       break;
 360     case Type::FloatCon:
 361       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
 362       break;
 363     case Type::Long:
 364       st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
 365       break;
 366     case Type::Half:
 367     case Type::Top:
 368       st->print(" %s%d]=_",msg,i);
 369       break;
 370     default: ShouldNotReachHere();
 371     }
 372   }
 373 }
 374 
 375 //------------------------------format-----------------------------------------
 376 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
 377   st->print("        #");
 378   if( _method ) {
 379     _method->print_short_name(st);
 380     st->print(" @ bci:%d ",_bci);
 381   } else {
 382     st->print_cr(" runtime stub ");
 383     return;
 384   }
 385   if (n->is_MachSafePoint()) {
 386     GrowableArray<SafePointScalarObjectNode*> scobjs;
 387     MachSafePointNode *mcall = n->as_MachSafePoint();
 388     uint i;
 389     // Print locals
 390     for( i = 0; i < (uint)loc_size(); i++ )
 391       format_helper( regalloc, st, mcall->local(this, i), "L[", i, &scobjs );
 392     // Print stack
 393     for (i = 0; i < (uint)stk_size(); i++) {
 394       if ((uint)(_stkoff + i) >= mcall->len())
 395         st->print(" oob ");
 396       else
 397        format_helper( regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs );
 398     }
 399     for (i = 0; (int)i < nof_monitors(); i++) {
 400       Node *box = mcall->monitor_box(this, i);
 401       Node *obj = mcall->monitor_obj(this, i);
 402       if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
 403         while( !box->is_BoxLock() )  box = box->in(1);
 404         format_helper( regalloc, st, box, "MON-BOX[", i, &scobjs );
 405       } else {
 406         OptoReg::Name box_reg = BoxLockNode::stack_slot(box);
 407         st->print(" MON-BOX%d=%s+%d",
 408                    i,
 409                    OptoReg::regname(OptoReg::c_frame_pointer),
 410                    regalloc->reg2offset(box_reg));
 411       }
 412       const char* obj_msg = "MON-OBJ[";
 413       if (EliminateLocks) {
 414         while( !box->is_BoxLock() )  box = box->in(1);
 415         if (box->as_BoxLock()->is_eliminated())
 416           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
 417       }
 418       format_helper( regalloc, st, obj, obj_msg, i, &scobjs );
 419     }
 420 
 421     for (i = 0; i < (uint)scobjs.length(); i++) {
 422       // Scalar replaced objects.
 423       st->print_cr("");
 424       st->print("        # ScObj" INT32_FORMAT " ", i);
 425       SafePointScalarObjectNode* spobj = scobjs.at(i);
 426       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
 427       assert(cik->is_instance_klass() ||
 428              cik->is_array_klass(), "Not supported allocation.");
 429       ciInstanceKlass *iklass = NULL;
 430       if (cik->is_instance_klass()) {
 431         cik->print_name_on(st);
 432         iklass = cik->as_instance_klass();
 433       } else if (cik->is_type_array_klass()) {
 434         cik->as_array_klass()->base_element_type()->print_name_on(st);
 435         st->print("[%d]", spobj->n_fields());
 436       } else if (cik->is_obj_array_klass()) {
 437         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 438         if (cie->is_instance_klass()) {
 439           cie->print_name_on(st);
 440         } else if (cie->is_type_array_klass()) {
 441           cie->as_array_klass()->base_element_type()->print_name_on(st);
 442         } else {
 443           ShouldNotReachHere();
 444         }
 445         st->print("[%d]", spobj->n_fields());
 446         int ndim = cik->as_array_klass()->dimension() - 1;
 447         while (ndim-- > 0) {
 448           st->print("[]");
 449         }
 450       }
 451       st->print("={");
 452       uint nf = spobj->n_fields();
 453       if (nf > 0) {
 454         uint first_ind = spobj->first_index();
 455         Node* fld_node = mcall->in(first_ind);
 456         ciField* cifield;
 457         if (iklass != NULL) {
 458           st->print(" [");
 459           cifield = iklass->nonstatic_field_at(0);
 460           cifield->print_name_on(st);
 461           format_helper( regalloc, st, fld_node, ":", 0, &scobjs );
 462         } else {
 463           format_helper( regalloc, st, fld_node, "[", 0, &scobjs );
 464         }
 465         for (uint j = 1; j < nf; j++) {
 466           fld_node = mcall->in(first_ind+j);
 467           if (iklass != NULL) {
 468             st->print(", [");
 469             cifield = iklass->nonstatic_field_at(j);
 470             cifield->print_name_on(st);
 471             format_helper( regalloc, st, fld_node, ":", j, &scobjs );
 472           } else {
 473             format_helper( regalloc, st, fld_node, ", [", j, &scobjs );
 474           }
 475         }
 476       }
 477       st->print(" }");
 478     }
 479   }
 480   st->print_cr("");
 481   if (caller() != NULL)  caller()->format(regalloc, n, st);
 482 }
 483 
 484 
 485 void JVMState::dump_spec(outputStream *st) const {
 486   if (_method != NULL) {
 487     bool printed = false;
 488     if (!Verbose) {
 489       // The JVMS dumps make really, really long lines.
 490       // Take out the most boring parts, which are the package prefixes.
 491       char buf[500];
 492       stringStream namest(buf, sizeof(buf));
 493       _method->print_short_name(&namest);
 494       if (namest.count() < sizeof(buf)) {
 495         const char* name = namest.base();
 496         if (name[0] == ' ')  ++name;
 497         const char* endcn = strchr(name, ':');  // end of class name
 498         if (endcn == NULL)  endcn = strchr(name, '(');
 499         if (endcn == NULL)  endcn = name + strlen(name);
 500         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
 501           --endcn;
 502         st->print(" %s", endcn);
 503         printed = true;
 504       }
 505     }
 506     if (!printed)
 507       _method->print_short_name(st);
 508     st->print(" @ bci:%d",_bci);
 509     if(_reexecute == Reexecute_True)
 510       st->print(" reexecute");
 511   } else {
 512     st->print(" runtime stub");
 513   }
 514   if (caller() != NULL)  caller()->dump_spec(st);
 515 }
 516 
 517 
 518 void JVMState::dump_on(outputStream* st) const {
 519   if (_map && !((uintptr_t)_map & 1)) {
 520     if (_map->len() > _map->req()) {  // _map->has_exceptions()
 521       Node* ex = _map->in(_map->req());  // _map->next_exception()
 522       // skip the first one; it's already being printed
 523       while (ex != NULL && ex->len() > ex->req()) {
 524         ex = ex->in(ex->req());  // ex->next_exception()
 525         ex->dump(1);
 526       }
 527     }
 528     _map->dump(2);
 529   }
 530   st->print("JVMS depth=%d loc=%d stk=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
 531              depth(), locoff(), stkoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
 532   if (_method == NULL) {
 533     st->print_cr("(none)");
 534   } else {
 535     _method->print_name(st);
 536     st->cr();
 537     if (bci() >= 0 && bci() < _method->code_size()) {
 538       st->print("    bc: ");
 539       _method->print_codes_on(bci(), bci()+1, st);
 540     }
 541   }
 542   if (caller() != NULL) {
 543     caller()->dump_on(st);
 544   }
 545 }
 546 
 547 // Extra way to dump a jvms from the debugger,
 548 // to avoid a bug with C++ member function calls.
 549 void dump_jvms(JVMState* jvms) {
 550   jvms->dump();
 551 }
 552 #endif
 553 
 554 //--------------------------clone_shallow--------------------------------------
 555 JVMState* JVMState::clone_shallow(Compile* C) const {
 556   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
 557   n->set_bci(_bci);
 558   n->_reexecute = _reexecute;
 559   n->set_locoff(_locoff);
 560   n->set_stkoff(_stkoff);
 561   n->set_monoff(_monoff);
 562   n->set_scloff(_scloff);
 563   n->set_endoff(_endoff);
 564   n->set_sp(_sp);
 565   n->set_map(_map);
 566   return n;
 567 }
 568 
 569 //---------------------------clone_deep----------------------------------------
 570 JVMState* JVMState::clone_deep(Compile* C) const {
 571   JVMState* n = clone_shallow(C);
 572   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
 573     p->_caller = p->_caller->clone_shallow(C);
 574   }
 575   assert(n->depth() == depth(), "sanity");
 576   assert(n->debug_depth() == debug_depth(), "sanity");
 577   return n;
 578 }
 579 
 580 //=============================================================================
 581 uint CallNode::cmp( const Node &n ) const
 582 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
 583 #ifndef PRODUCT
 584 void CallNode::dump_req() const {
 585   // Dump the required inputs, enclosed in '(' and ')'
 586   uint i;                       // Exit value of loop
 587   for( i=0; i<req(); i++ ) {    // For all required inputs
 588     if( i == TypeFunc::Parms ) tty->print("(");
 589     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 590     else tty->print("_ ");
 591   }
 592   tty->print(")");
 593 }
 594 
 595 void CallNode::dump_spec(outputStream *st) const {
 596   st->print(" ");
 597   tf()->dump_on(st);
 598   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 599   if (jvms() != NULL)  jvms()->dump_spec(st);
 600 }
 601 #endif
 602 
 603 const Type *CallNode::bottom_type() const { return tf()->range(); }
 604 const Type *CallNode::Value(PhaseTransform *phase) const {
 605   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
 606   return tf()->range();
 607 }
 608 
 609 //------------------------------calling_convention-----------------------------
 610 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 611   // Use the standard compiler calling convention
 612   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
 613 }
 614 
 615 
 616 //------------------------------match------------------------------------------
 617 // Construct projections for control, I/O, memory-fields, ..., and
 618 // return result(s) along with their RegMask info
 619 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
 620   switch (proj->_con) {
 621   case TypeFunc::Control:
 622   case TypeFunc::I_O:
 623   case TypeFunc::Memory:
 624     return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
 625 
 626   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
 627     assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 628     // 2nd half of doubles and longs
 629     return new (match->C, 1) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
 630 
 631   case TypeFunc::Parms: {       // Normal returns
 632     uint ideal_reg = Matcher::base2reg[tf()->range()->field_at(TypeFunc::Parms)->base()];
 633     OptoRegPair regs = is_CallRuntime()
 634       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
 635       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
 636     RegMask rm = RegMask(regs.first());
 637     if( OptoReg::is_valid(regs.second()) )
 638       rm.Insert( regs.second() );
 639     return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
 640   }
 641 
 642   case TypeFunc::ReturnAdr:
 643   case TypeFunc::FramePtr:
 644   default:
 645     ShouldNotReachHere();
 646   }
 647   return NULL;
 648 }
 649 
 650 // Do we Match on this edge index or not?  Match no edges
 651 uint CallNode::match_edge(uint idx) const {
 652   return 0;
 653 }
 654 
 655 //
 656 // Determine whether the call could modify the field of the specified
 657 // instance at the specified offset.
 658 //
 659 bool CallNode::may_modify(const TypePtr *addr_t, PhaseTransform *phase) {
 660   const TypeOopPtr *adrInst_t  = addr_t->isa_oopptr();
 661 
 662   // If not an OopPtr or not an instance type, assume the worst.
 663   // Note: currently this method is called only for instance types.
 664   if (adrInst_t == NULL || !adrInst_t->is_known_instance()) {
 665     return true;
 666   }
 667   // The instance_id is set only for scalar-replaceable allocations which
 668   // are not passed as arguments according to Escape Analysis.
 669   return false;
 670 }
 671 
 672 // Does this call have a direct reference to n other than debug information?
 673 bool CallNode::has_non_debug_use(Node *n) {
 674   const TypeTuple * d = tf()->domain();
 675   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 676     Node *arg = in(i);
 677     if (arg == n) {
 678       return true;
 679     }
 680   }
 681   return false;
 682 }
 683 
 684 // Returns the unique CheckCastPP of a call
 685 // or 'this' if there are several CheckCastPP
 686 // or returns NULL if there is no one.
 687 Node *CallNode::result_cast() {
 688   Node *cast = NULL;
 689 
 690   Node *p = proj_out(TypeFunc::Parms);
 691   if (p == NULL)
 692     return NULL;
 693 
 694   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 695     Node *use = p->fast_out(i);
 696     if (use->is_CheckCastPP()) {
 697       if (cast != NULL) {
 698         return this;  // more than 1 CheckCastPP
 699       }
 700       cast = use;
 701     }
 702   }
 703   return cast;
 704 }
 705 
 706 
 707 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
 708   projs->fallthrough_proj      = NULL;
 709   projs->fallthrough_catchproj = NULL;
 710   projs->fallthrough_ioproj    = NULL;
 711   projs->catchall_ioproj       = NULL;
 712   projs->catchall_catchproj    = NULL;
 713   projs->fallthrough_memproj   = NULL;
 714   projs->catchall_memproj      = NULL;
 715   projs->resproj               = NULL;
 716   projs->exobj                 = NULL;
 717 
 718   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 719     ProjNode *pn = fast_out(i)->as_Proj();
 720     if (pn->outcnt() == 0) continue;
 721     switch (pn->_con) {
 722     case TypeFunc::Control:
 723       {
 724         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 725         projs->fallthrough_proj = pn;
 726         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 727         const Node *cn = pn->fast_out(j);
 728         if (cn->is_Catch()) {
 729           ProjNode *cpn = NULL;
 730           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 731             cpn = cn->fast_out(k)->as_Proj();
 732             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 733             if (cpn->_con == CatchProjNode::fall_through_index)
 734               projs->fallthrough_catchproj = cpn;
 735             else {
 736               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 737               projs->catchall_catchproj = cpn;
 738             }
 739           }
 740         }
 741         break;
 742       }
 743     case TypeFunc::I_O:
 744       if (pn->_is_io_use)
 745         projs->catchall_ioproj = pn;
 746       else
 747         projs->fallthrough_ioproj = pn;
 748       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
 749         Node* e = pn->out(j);
 750         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj()) {
 751           assert(projs->exobj == NULL, "only one");
 752           projs->exobj = e;
 753         }
 754       }
 755       break;
 756     case TypeFunc::Memory:
 757       if (pn->_is_io_use)
 758         projs->catchall_memproj = pn;
 759       else
 760         projs->fallthrough_memproj = pn;
 761       break;
 762     case TypeFunc::Parms:
 763       projs->resproj = pn;
 764       break;
 765     default:
 766       assert(false, "unexpected projection from allocation node.");
 767     }
 768   }
 769 
 770   // The resproj may not exist because the result couuld be ignored
 771   // and the exception object may not exist if an exception handler
 772   // swallows the exception but all the other must exist and be found.
 773   assert(projs->fallthrough_proj      != NULL, "must be found");
 774   assert(projs->fallthrough_catchproj != NULL, "must be found");
 775   assert(projs->fallthrough_memproj   != NULL, "must be found");
 776   assert(projs->fallthrough_ioproj    != NULL, "must be found");
 777   assert(projs->catchall_catchproj    != NULL, "must be found");
 778   if (separate_io_proj) {
 779     assert(projs->catchall_memproj      != NULL, "must be found");
 780     assert(projs->catchall_ioproj       != NULL, "must be found");
 781   }
 782 }
 783 
 784 
 785 //=============================================================================
 786 uint CallJavaNode::size_of() const { return sizeof(*this); }
 787 uint CallJavaNode::cmp( const Node &n ) const {
 788   CallJavaNode &call = (CallJavaNode&)n;
 789   return CallNode::cmp(call) && _method == call._method;
 790 }
 791 #ifndef PRODUCT
 792 void CallJavaNode::dump_spec(outputStream *st) const {
 793   if( _method ) _method->print_short_name(st);
 794   CallNode::dump_spec(st);
 795 }
 796 #endif
 797 
 798 //=============================================================================
 799 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
 800 uint CallStaticJavaNode::cmp( const Node &n ) const {
 801   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
 802   return CallJavaNode::cmp(call);
 803 }
 804 
 805 //----------------------------uncommon_trap_request----------------------------
 806 // If this is an uncommon trap, return the request code, else zero.
 807 int CallStaticJavaNode::uncommon_trap_request() const {
 808   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
 809     return extract_uncommon_trap_request(this);
 810   }
 811   return 0;
 812 }
 813 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
 814 #ifndef PRODUCT
 815   if (!(call->req() > TypeFunc::Parms &&
 816         call->in(TypeFunc::Parms) != NULL &&
 817         call->in(TypeFunc::Parms)->is_Con())) {
 818     assert(_in_dump_cnt != 0, "OK if dumping");
 819     tty->print("[bad uncommon trap]");
 820     return 0;
 821   }
 822 #endif
 823   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
 824 }
 825 
 826 #ifndef PRODUCT
 827 void CallStaticJavaNode::dump_spec(outputStream *st) const {
 828   st->print("# Static ");
 829   if (_name != NULL) {
 830     st->print("%s", _name);
 831     int trap_req = uncommon_trap_request();
 832     if (trap_req != 0) {
 833       char buf[100];
 834       st->print("(%s)",
 835                  Deoptimization::format_trap_request(buf, sizeof(buf),
 836                                                      trap_req));
 837     }
 838     st->print(" ");
 839   }
 840   CallJavaNode::dump_spec(st);
 841 }
 842 #endif
 843 
 844 //=============================================================================
 845 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
 846 uint CallDynamicJavaNode::cmp( const Node &n ) const {
 847   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
 848   return CallJavaNode::cmp(call);
 849 }
 850 #ifndef PRODUCT
 851 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
 852   st->print("# Dynamic ");
 853   CallJavaNode::dump_spec(st);
 854 }
 855 #endif
 856 
 857 //=============================================================================
 858 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
 859 uint CallRuntimeNode::cmp( const Node &n ) const {
 860   CallRuntimeNode &call = (CallRuntimeNode&)n;
 861   return CallNode::cmp(call) && !strcmp(_name,call._name);
 862 }
 863 #ifndef PRODUCT
 864 void CallRuntimeNode::dump_spec(outputStream *st) const {
 865   st->print("# ");
 866   st->print(_name);
 867   CallNode::dump_spec(st);
 868 }
 869 #endif
 870 
 871 //------------------------------calling_convention-----------------------------
 872 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 873   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
 874 }
 875 
 876 //=============================================================================
 877 //------------------------------calling_convention-----------------------------
 878 
 879 
 880 //=============================================================================
 881 #ifndef PRODUCT
 882 void CallLeafNode::dump_spec(outputStream *st) const {
 883   st->print("# ");
 884   st->print(_name);
 885   CallNode::dump_spec(st);
 886 }
 887 #endif
 888 
 889 //=============================================================================
 890 
 891 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
 892   assert(verify_jvms(jvms), "jvms must match");
 893   int loc = jvms->locoff() + idx;
 894   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
 895     // If current local idx is top then local idx - 1 could
 896     // be a long/double that needs to be killed since top could
 897     // represent the 2nd half ofthe long/double.
 898     uint ideal = in(loc -1)->ideal_reg();
 899     if (ideal == Op_RegD || ideal == Op_RegL) {
 900       // set other (low index) half to top
 901       set_req(loc - 1, in(loc));
 902     }
 903   }
 904   set_req(loc, c);
 905 }
 906 
 907 uint SafePointNode::size_of() const { return sizeof(*this); }
 908 uint SafePointNode::cmp( const Node &n ) const {
 909   return (&n == this);          // Always fail except on self
 910 }
 911 
 912 //-------------------------set_next_exception----------------------------------
 913 void SafePointNode::set_next_exception(SafePointNode* n) {
 914   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
 915   if (len() == req()) {
 916     if (n != NULL)  add_prec(n);
 917   } else {
 918     set_prec(req(), n);
 919   }
 920 }
 921 
 922 
 923 //----------------------------next_exception-----------------------------------
 924 SafePointNode* SafePointNode::next_exception() const {
 925   if (len() == req()) {
 926     return NULL;
 927   } else {
 928     Node* n = in(req());
 929     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
 930     return (SafePointNode*) n;
 931   }
 932 }
 933 
 934 
 935 //------------------------------Ideal------------------------------------------
 936 // Skip over any collapsed Regions
 937 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 938   return remove_dead_region(phase, can_reshape) ? this : NULL;
 939 }
 940 
 941 //------------------------------Identity---------------------------------------
 942 // Remove obviously duplicate safepoints
 943 Node *SafePointNode::Identity( PhaseTransform *phase ) {
 944 
 945   // If you have back to back safepoints, remove one
 946   if( in(TypeFunc::Control)->is_SafePoint() )
 947     return in(TypeFunc::Control);
 948 
 949   if( in(0)->is_Proj() ) {
 950     Node *n0 = in(0)->in(0);
 951     // Check if he is a call projection (except Leaf Call)
 952     if( n0->is_Catch() ) {
 953       n0 = n0->in(0)->in(0);
 954       assert( n0->is_Call(), "expect a call here" );
 955     }
 956     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
 957       // Useless Safepoint, so remove it
 958       return in(TypeFunc::Control);
 959     }
 960   }
 961 
 962   return this;
 963 }
 964 
 965 //------------------------------Value------------------------------------------
 966 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
 967   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
 968   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
 969   return Type::CONTROL;
 970 }
 971 
 972 #ifndef PRODUCT
 973 void SafePointNode::dump_spec(outputStream *st) const {
 974   st->print(" SafePoint ");
 975 }
 976 #endif
 977 
 978 const RegMask &SafePointNode::in_RegMask(uint idx) const {
 979   if( idx < TypeFunc::Parms ) return RegMask::Empty;
 980   // Values outside the domain represent debug info
 981   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
 982 }
 983 const RegMask &SafePointNode::out_RegMask() const {
 984   return RegMask::Empty;
 985 }
 986 
 987 
 988 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
 989   assert((int)grow_by > 0, "sanity");
 990   int monoff = jvms->monoff();
 991   int scloff = jvms->scloff();
 992   int endoff = jvms->endoff();
 993   assert(endoff == (int)req(), "no other states or debug info after me");
 994   Node* top = Compile::current()->top();
 995   for (uint i = 0; i < grow_by; i++) {
 996     ins_req(monoff, top);
 997   }
 998   jvms->set_monoff(monoff + grow_by);
 999   jvms->set_scloff(scloff + grow_by);
1000   jvms->set_endoff(endoff + grow_by);
1001 }
1002 
1003 void SafePointNode::push_monitor(const FastLockNode *lock) {
1004   // Add a LockNode, which points to both the original BoxLockNode (the
1005   // stack space for the monitor) and the Object being locked.
1006   const int MonitorEdges = 2;
1007   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1008   assert(req() == jvms()->endoff(), "correct sizing");
1009   int nextmon = jvms()->scloff();
1010   if (GenerateSynchronizationCode) {
1011     add_req(lock->box_node());
1012     add_req(lock->obj_node());
1013   } else {
1014     Node* top = Compile::current()->top();
1015     add_req(top);
1016     add_req(top);
1017   }
1018   jvms()->set_scloff(nextmon+MonitorEdges);
1019   jvms()->set_endoff(req());
1020 }
1021 
1022 void SafePointNode::pop_monitor() {
1023   // Delete last monitor from debug info
1024   debug_only(int num_before_pop = jvms()->nof_monitors());
1025   const int MonitorEdges = (1<<JVMState::logMonitorEdges);
1026   int scloff = jvms()->scloff();
1027   int endoff = jvms()->endoff();
1028   int new_scloff = scloff - MonitorEdges;
1029   int new_endoff = endoff - MonitorEdges;
1030   jvms()->set_scloff(new_scloff);
1031   jvms()->set_endoff(new_endoff);
1032   while (scloff > new_scloff)  del_req(--scloff);
1033   assert(jvms()->nof_monitors() == num_before_pop-1, "");
1034 }
1035 
1036 Node *SafePointNode::peek_monitor_box() const {
1037   int mon = jvms()->nof_monitors() - 1;
1038   assert(mon >= 0, "most have a monitor");
1039   return monitor_box(jvms(), mon);
1040 }
1041 
1042 Node *SafePointNode::peek_monitor_obj() const {
1043   int mon = jvms()->nof_monitors() - 1;
1044   assert(mon >= 0, "most have a monitor");
1045   return monitor_obj(jvms(), mon);
1046 }
1047 
1048 // Do we Match on this edge index or not?  Match no edges
1049 uint SafePointNode::match_edge(uint idx) const {
1050   if( !needs_polling_address_input() )
1051     return 0;
1052 
1053   return (TypeFunc::Parms == idx);
1054 }
1055 
1056 //==============  SafePointScalarObjectNode  ==============
1057 
1058 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1059 #ifdef ASSERT
1060                                                      AllocateNode* alloc,
1061 #endif
1062                                                      uint first_index,
1063                                                      uint n_fields) :
1064   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1065 #ifdef ASSERT
1066   _alloc(alloc),
1067 #endif
1068   _first_index(first_index),
1069   _n_fields(n_fields)
1070 {
1071   init_class_id(Class_SafePointScalarObject);
1072 }
1073 
1074 bool SafePointScalarObjectNode::pinned() const { return true; }
1075 bool SafePointScalarObjectNode::depends_only_on_test() const { return false; }
1076 
1077 uint SafePointScalarObjectNode::ideal_reg() const {
1078   return 0; // No matching to machine instruction
1079 }
1080 
1081 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1082   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1083 }
1084 
1085 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1086   return RegMask::Empty;
1087 }
1088 
1089 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1090   return 0;
1091 }
1092 
1093 SafePointScalarObjectNode*
1094 SafePointScalarObjectNode::clone(int jvms_adj, Dict* sosn_map) const {
1095   void* cached = (*sosn_map)[(void*)this];
1096   if (cached != NULL) {
1097     return (SafePointScalarObjectNode*)cached;
1098   }
1099   Compile* C = Compile::current();
1100   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1101   res->_first_index += jvms_adj;
1102   sosn_map->Insert((void*)this, (void*)res);
1103   return res;
1104 }
1105 
1106 
1107 #ifndef PRODUCT
1108 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1109   st->print(" # fields@[%d..%d]", first_index(),
1110              first_index() + n_fields() - 1);
1111 }
1112 
1113 #endif
1114 
1115 //=============================================================================
1116 uint AllocateNode::size_of() const { return sizeof(*this); }
1117 
1118 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1119                            Node *ctrl, Node *mem, Node *abio,
1120                            Node *size, Node *klass_node, Node *initial_test)
1121   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1122 {
1123   init_class_id(Class_Allocate);
1124   init_flags(Flag_is_macro);
1125   _is_scalar_replaceable = false;
1126   Node *topnode = C->top();
1127 
1128   init_req( TypeFunc::Control  , ctrl );
1129   init_req( TypeFunc::I_O      , abio );
1130   init_req( TypeFunc::Memory   , mem );
1131   init_req( TypeFunc::ReturnAdr, topnode );
1132   init_req( TypeFunc::FramePtr , topnode );
1133   init_req( AllocSize          , size);
1134   init_req( KlassNode          , klass_node);
1135   init_req( InitialTest        , initial_test);
1136   init_req( ALength            , topnode);
1137   C->add_macro_node(this);
1138 }
1139 
1140 //=============================================================================
1141 uint AllocateArrayNode::size_of() const { return sizeof(*this); }
1142 
1143 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1144   if (remove_dead_region(phase, can_reshape))  return this;
1145 
1146   const Type* type = phase->type(Ideal_length());
1147   if (type->isa_int() && type->is_int()->_hi < 0) {
1148     if (can_reshape) {
1149       PhaseIterGVN *igvn = phase->is_IterGVN();
1150       // Unreachable fall through path (negative array length),
1151       // the allocation can only throw so disconnect it.
1152       Node* proj = proj_out(TypeFunc::Control);
1153       Node* catchproj = NULL;
1154       if (proj != NULL) {
1155         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
1156           Node *cn = proj->fast_out(i);
1157           if (cn->is_Catch()) {
1158             catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
1159             break;
1160           }
1161         }
1162       }
1163       if (catchproj != NULL && catchproj->outcnt() > 0 &&
1164           (catchproj->outcnt() > 1 ||
1165            catchproj->unique_out()->Opcode() != Op_Halt)) {
1166         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
1167         Node* nproj = catchproj->clone();
1168         igvn->register_new_node_with_optimizer(nproj);
1169 
1170         Node *frame = new (phase->C, 1) ParmNode( phase->C->start(), TypeFunc::FramePtr );
1171         frame = phase->transform(frame);
1172         // Halt & Catch Fire
1173         Node *halt = new (phase->C, TypeFunc::Parms) HaltNode( nproj, frame );
1174         phase->C->root()->add_req(halt);
1175         phase->transform(halt);
1176 
1177         igvn->replace_node(catchproj, phase->C->top());
1178         return this;
1179       }
1180     } else {
1181       // Can't correct it during regular GVN so register for IGVN
1182       phase->C->record_for_igvn(this);
1183     }
1184   }
1185   return NULL;
1186 }
1187 
1188 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1189 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1190 // a CastII is appropriate, return NULL.
1191 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1192   Node *length = in(AllocateNode::ALength);
1193   assert(length != NULL, "length is not null");
1194 
1195   const TypeInt* length_type = phase->find_int_type(length);
1196   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1197 
1198   if (ary_type != NULL && length_type != NULL) {
1199     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1200     if (narrow_length_type != length_type) {
1201       // Assert one of:
1202       //   - the narrow_length is 0
1203       //   - the narrow_length is not wider than length
1204       assert(narrow_length_type == TypeInt::ZERO ||
1205              (narrow_length_type->_hi <= length_type->_hi &&
1206               narrow_length_type->_lo >= length_type->_lo),
1207              "narrow type must be narrower than length type");
1208 
1209       // Return NULL if new nodes are not allowed
1210       if (!allow_new_nodes) return NULL;
1211       // Create a cast which is control dependent on the initialization to
1212       // propagate the fact that the array length must be positive.
1213       length = new (phase->C, 2) CastIINode(length, narrow_length_type);
1214       length->set_req(0, initialization()->proj_out(0));
1215     }
1216   }
1217 
1218   return length;
1219 }
1220 
1221 //=============================================================================
1222 uint LockNode::size_of() const { return sizeof(*this); }
1223 
1224 // Redundant lock elimination
1225 //
1226 // There are various patterns of locking where we release and
1227 // immediately reacquire a lock in a piece of code where no operations
1228 // occur in between that would be observable.  In those cases we can
1229 // skip releasing and reacquiring the lock without violating any
1230 // fairness requirements.  Doing this around a loop could cause a lock
1231 // to be held for a very long time so we concentrate on non-looping
1232 // control flow.  We also require that the operations are fully
1233 // redundant meaning that we don't introduce new lock operations on
1234 // some paths so to be able to eliminate it on others ala PRE.  This
1235 // would probably require some more extensive graph manipulation to
1236 // guarantee that the memory edges were all handled correctly.
1237 //
1238 // Assuming p is a simple predicate which can't trap in any way and s
1239 // is a synchronized method consider this code:
1240 //
1241 //   s();
1242 //   if (p)
1243 //     s();
1244 //   else
1245 //     s();
1246 //   s();
1247 //
1248 // 1. The unlocks of the first call to s can be eliminated if the
1249 // locks inside the then and else branches are eliminated.
1250 //
1251 // 2. The unlocks of the then and else branches can be eliminated if
1252 // the lock of the final call to s is eliminated.
1253 //
1254 // Either of these cases subsumes the simple case of sequential control flow
1255 //
1256 // Addtionally we can eliminate versions without the else case:
1257 //
1258 //   s();
1259 //   if (p)
1260 //     s();
1261 //   s();
1262 //
1263 // 3. In this case we eliminate the unlock of the first s, the lock
1264 // and unlock in the then case and the lock in the final s.
1265 //
1266 // Note also that in all these cases the then/else pieces don't have
1267 // to be trivial as long as they begin and end with synchronization
1268 // operations.
1269 //
1270 //   s();
1271 //   if (p)
1272 //     s();
1273 //     f();
1274 //     s();
1275 //   s();
1276 //
1277 // The code will work properly for this case, leaving in the unlock
1278 // before the call to f and the relock after it.
1279 //
1280 // A potentially interesting case which isn't handled here is when the
1281 // locking is partially redundant.
1282 //
1283 //   s();
1284 //   if (p)
1285 //     s();
1286 //
1287 // This could be eliminated putting unlocking on the else case and
1288 // eliminating the first unlock and the lock in the then side.
1289 // Alternatively the unlock could be moved out of the then side so it
1290 // was after the merge and the first unlock and second lock
1291 // eliminated.  This might require less manipulation of the memory
1292 // state to get correct.
1293 //
1294 // Additionally we might allow work between a unlock and lock before
1295 // giving up eliminating the locks.  The current code disallows any
1296 // conditional control flow between these operations.  A formulation
1297 // similar to partial redundancy elimination computing the
1298 // availability of unlocking and the anticipatability of locking at a
1299 // program point would allow detection of fully redundant locking with
1300 // some amount of work in between.  I'm not sure how often I really
1301 // think that would occur though.  Most of the cases I've seen
1302 // indicate it's likely non-trivial work would occur in between.
1303 // There may be other more complicated constructs where we could
1304 // eliminate locking but I haven't seen any others appear as hot or
1305 // interesting.
1306 //
1307 // Locking and unlocking have a canonical form in ideal that looks
1308 // roughly like this:
1309 //
1310 //              <obj>
1311 //                | \\------+
1312 //                |  \       \
1313 //                | BoxLock   \
1314 //                |  |   |     \
1315 //                |  |    \     \
1316 //                |  |   FastLock
1317 //                |  |   /
1318 //                |  |  /
1319 //                |  |  |
1320 //
1321 //               Lock
1322 //                |
1323 //            Proj #0
1324 //                |
1325 //            MembarAcquire
1326 //                |
1327 //            Proj #0
1328 //
1329 //            MembarRelease
1330 //                |
1331 //            Proj #0
1332 //                |
1333 //              Unlock
1334 //                |
1335 //            Proj #0
1336 //
1337 //
1338 // This code proceeds by processing Lock nodes during PhaseIterGVN
1339 // and searching back through its control for the proper code
1340 // patterns.  Once it finds a set of lock and unlock operations to
1341 // eliminate they are marked as eliminatable which causes the
1342 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
1343 //
1344 //=============================================================================
1345 
1346 //
1347 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
1348 //   - copy regions.  (These may not have been optimized away yet.)
1349 //   - eliminated locking nodes
1350 //
1351 static Node *next_control(Node *ctrl) {
1352   if (ctrl == NULL)
1353     return NULL;
1354   while (1) {
1355     if (ctrl->is_Region()) {
1356       RegionNode *r = ctrl->as_Region();
1357       Node *n = r->is_copy();
1358       if (n == NULL)
1359         break;  // hit a region, return it
1360       else
1361         ctrl = n;
1362     } else if (ctrl->is_Proj()) {
1363       Node *in0 = ctrl->in(0);
1364       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1365         ctrl = in0->in(0);
1366       } else {
1367         break;
1368       }
1369     } else {
1370       break; // found an interesting control
1371     }
1372   }
1373   return ctrl;
1374 }
1375 //
1376 // Given a control, see if it's the control projection of an Unlock which
1377 // operating on the same object as lock.
1378 //
1379 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1380                                             GrowableArray<AbstractLockNode*> &lock_ops) {
1381   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1382   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1383     Node *n = ctrl_proj->in(0);
1384     if (n != NULL && n->is_Unlock()) {
1385       UnlockNode *unlock = n->as_Unlock();
1386       if ((lock->obj_node() == unlock->obj_node()) &&
1387           (lock->box_node() == unlock->box_node()) && !unlock->is_eliminated()) {
1388         lock_ops.append(unlock);
1389         return true;
1390       }
1391     }
1392   }
1393   return false;
1394 }
1395 
1396 //
1397 // Find the lock matching an unlock.  Returns null if a safepoint
1398 // or complicated control is encountered first.
1399 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1400   LockNode *lock_result = NULL;
1401   // find the matching lock, or an intervening safepoint
1402   Node *ctrl = next_control(unlock->in(0));
1403   while (1) {
1404     assert(ctrl != NULL, "invalid control graph");
1405     assert(!ctrl->is_Start(), "missing lock for unlock");
1406     if (ctrl->is_top()) break;  // dead control path
1407     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1408     if (ctrl->is_SafePoint()) {
1409         break;  // found a safepoint (may be the lock we are searching for)
1410     } else if (ctrl->is_Region()) {
1411       // Check for a simple diamond pattern.  Punt on anything more complicated
1412       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1413         Node *in1 = next_control(ctrl->in(1));
1414         Node *in2 = next_control(ctrl->in(2));
1415         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1416              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1417           ctrl = next_control(in1->in(0)->in(0));
1418         } else {
1419           break;
1420         }
1421       } else {
1422         break;
1423       }
1424     } else {
1425       ctrl = next_control(ctrl->in(0));  // keep searching
1426     }
1427   }
1428   if (ctrl->is_Lock()) {
1429     LockNode *lock = ctrl->as_Lock();
1430     if ((lock->obj_node() == unlock->obj_node()) &&
1431             (lock->box_node() == unlock->box_node())) {
1432       lock_result = lock;
1433     }
1434   }
1435   return lock_result;
1436 }
1437 
1438 // This code corresponds to case 3 above.
1439 
1440 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1441                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
1442   Node* if_node = node->in(0);
1443   bool  if_true = node->is_IfTrue();
1444 
1445   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1446     Node *lock_ctrl = next_control(if_node->in(0));
1447     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1448       Node* lock1_node = NULL;
1449       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1450       if (if_true) {
1451         if (proj->is_IfFalse() && proj->outcnt() == 1) {
1452           lock1_node = proj->unique_out();
1453         }
1454       } else {
1455         if (proj->is_IfTrue() && proj->outcnt() == 1) {
1456           lock1_node = proj->unique_out();
1457         }
1458       }
1459       if (lock1_node != NULL && lock1_node->is_Lock()) {
1460         LockNode *lock1 = lock1_node->as_Lock();
1461         if ((lock->obj_node() == lock1->obj_node()) &&
1462             (lock->box_node() == lock1->box_node()) && !lock1->is_eliminated()) {
1463           lock_ops.append(lock1);
1464           return true;
1465         }
1466       }
1467     }
1468   }
1469 
1470   lock_ops.trunc_to(0);
1471   return false;
1472 }
1473 
1474 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1475                                GrowableArray<AbstractLockNode*> &lock_ops) {
1476   // check each control merging at this point for a matching unlock.
1477   // in(0) should be self edge so skip it.
1478   for (int i = 1; i < (int)region->req(); i++) {
1479     Node *in_node = next_control(region->in(i));
1480     if (in_node != NULL) {
1481       if (find_matching_unlock(in_node, lock, lock_ops)) {
1482         // found a match so keep on checking.
1483         continue;
1484       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1485         continue;
1486       }
1487 
1488       // If we fall through to here then it was some kind of node we
1489       // don't understand or there wasn't a matching unlock, so give
1490       // up trying to merge locks.
1491       lock_ops.trunc_to(0);
1492       return false;
1493     }
1494   }
1495   return true;
1496 
1497 }
1498 
1499 #ifndef PRODUCT
1500 //
1501 // Create a counter which counts the number of times this lock is acquired
1502 //
1503 void AbstractLockNode::create_lock_counter(JVMState* state) {
1504   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1505 }
1506 #endif
1507 
1508 void AbstractLockNode::set_eliminated() {
1509   _eliminate = true;
1510 #ifndef PRODUCT
1511   if (_counter) {
1512     // Update the counter to indicate that this lock was eliminated.
1513     // The counter update code will stay around even though the
1514     // optimizer will eliminate the lock operation itself.
1515     _counter->set_tag(NamedCounter::EliminatedLockCounter);
1516   }
1517 #endif
1518 }
1519 
1520 //=============================================================================
1521 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1522 
1523   // perform any generic optimizations first (returns 'this' or NULL)
1524   Node *result = SafePointNode::Ideal(phase, can_reshape);
1525 
1526   // Now see if we can optimize away this lock.  We don't actually
1527   // remove the locking here, we simply set the _eliminate flag which
1528   // prevents macro expansion from expanding the lock.  Since we don't
1529   // modify the graph, the value returned from this function is the
1530   // one computed above.
1531   if (result == NULL && can_reshape && EliminateLocks && !is_eliminated()) {
1532     //
1533     // If we are locking an unescaped object, the lock/unlock is unnecessary
1534     //
1535     ConnectionGraph *cgr = phase->C->congraph();
1536     PointsToNode::EscapeState es = PointsToNode::GlobalEscape;
1537     if (cgr != NULL)
1538       es = cgr->escape_state(obj_node());
1539     if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
1540       // Mark it eliminated to update any counters
1541       this->set_eliminated();
1542       return result;
1543     }
1544 
1545     //
1546     // Try lock coarsening
1547     //
1548     PhaseIterGVN* iter = phase->is_IterGVN();
1549     if (iter != NULL) {
1550 
1551       GrowableArray<AbstractLockNode*>   lock_ops;
1552 
1553       Node *ctrl = next_control(in(0));
1554 
1555       // now search back for a matching Unlock
1556       if (find_matching_unlock(ctrl, this, lock_ops)) {
1557         // found an unlock directly preceding this lock.  This is the
1558         // case of single unlock directly control dependent on a
1559         // single lock which is the trivial version of case 1 or 2.
1560       } else if (ctrl->is_Region() ) {
1561         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1562         // found lock preceded by multiple unlocks along all paths
1563         // joining at this point which is case 3 in description above.
1564         }
1565       } else {
1566         // see if this lock comes from either half of an if and the
1567         // predecessors merges unlocks and the other half of the if
1568         // performs a lock.
1569         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1570           // found unlock splitting to an if with locks on both branches.
1571         }
1572       }
1573 
1574       if (lock_ops.length() > 0) {
1575         // add ourselves to the list of locks to be eliminated.
1576         lock_ops.append(this);
1577 
1578   #ifndef PRODUCT
1579         if (PrintEliminateLocks) {
1580           int locks = 0;
1581           int unlocks = 0;
1582           for (int i = 0; i < lock_ops.length(); i++) {
1583             AbstractLockNode* lock = lock_ops.at(i);
1584             if (lock->Opcode() == Op_Lock)
1585               locks++;
1586             else
1587               unlocks++;
1588             if (Verbose) {
1589               lock->dump(1);
1590             }
1591           }
1592           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1593         }
1594   #endif
1595 
1596         // for each of the identified locks, mark them
1597         // as eliminatable
1598         for (int i = 0; i < lock_ops.length(); i++) {
1599           AbstractLockNode* lock = lock_ops.at(i);
1600 
1601           // Mark it eliminated to update any counters
1602           lock->set_eliminated();
1603           lock->set_coarsened();
1604         }
1605       } else if (result != NULL && ctrl->is_Region() &&
1606                  iter->_worklist.member(ctrl)) {
1607         // We weren't able to find any opportunities but the region this
1608         // lock is control dependent on hasn't been processed yet so put
1609         // this lock back on the worklist so we can check again once any
1610         // region simplification has occurred.
1611         iter->_worklist.push(this);
1612       }
1613     }
1614   }
1615 
1616   return result;
1617 }
1618 
1619 //=============================================================================
1620 uint UnlockNode::size_of() const { return sizeof(*this); }
1621 
1622 //=============================================================================
1623 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1624 
1625   // perform any generic optimizations first (returns 'this' or NULL)
1626   Node * result = SafePointNode::Ideal(phase, can_reshape);
1627 
1628   // Now see if we can optimize away this unlock.  We don't actually
1629   // remove the unlocking here, we simply set the _eliminate flag which
1630   // prevents macro expansion from expanding the unlock.  Since we don't
1631   // modify the graph, the value returned from this function is the
1632   // one computed above.
1633   // Escape state is defined after Parse phase.
1634   if (result == NULL && can_reshape && EliminateLocks && !is_eliminated()) {
1635     //
1636     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
1637     //
1638     ConnectionGraph *cgr = phase->C->congraph();
1639     PointsToNode::EscapeState es = PointsToNode::GlobalEscape;
1640     if (cgr != NULL)
1641       es = cgr->escape_state(obj_node());
1642     if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
1643       // Mark it eliminated to update any counters
1644       this->set_eliminated();
1645     }
1646   }
1647   return result;
1648 }