1 /*
   2  * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 package java.text;
  26 
  27 import java.io.IOException;
  28 import java.io.InvalidObjectException;
  29 import java.io.ObjectInputStream;
  30 import java.math.BigDecimal;
  31 import java.math.BigInteger;
  32 import java.math.RoundingMode;
  33 import java.util.ArrayList;
  34 import java.util.Arrays;
  35 import java.util.List;
  36 import java.util.Locale;
  37 import java.util.Objects;
  38 import java.util.concurrent.atomic.AtomicInteger;
  39 import java.util.concurrent.atomic.AtomicLong;
  40 
  41 
  42 /**
  43  * <p>
  44  * {@code CompactNumberFormat} is a concrete subclass of {@code NumberFormat}
  45  * that formats a decimal number in its compact form.
  46  *
  47  * The compact number formatting is designed for the environment where the space
  48  * is limited, and the formatted string can be displayed in that limited space.
  49  * It is defined by LDML's specification for
  50  * <a href = "http://unicode.org/reports/tr35/tr35-numbers.html#Compact_Number_Formats">
  51  * Compact Number Formats</a>. A compact number formatting refers
  52  * to the representation of a number in a shorter form, based on the patterns
  53  * provided for a given locale.
  54  *
  55  * <p>
  56  * For example:
  57  * <br>In the {@link java.util.Locale#US US locale}, {@code 1000} can be formatted
  58  * as {@code "1K"}, and {@code 1000000} as {@code "1M"}, depending upon the
  59  * <a href = "#compact_number_style" >style</a> used.
  60  * <br>In the {@code "hi_IN"} locale, {@code 1000} can be formatted as
  61  * "1 \u0939\u091C\u093C\u093E\u0930", and {@code 50000000} as "5 \u0915.",
  62  * depending upon the <a href = "#compact_number_style" >style</a> used.
  63  *
  64  * <p>
  65  * To obtain a {@code CompactNumberFormat} for a locale, use one
  66  * of the factory methods given by {@code NumberFormat} for compact number
  67  * formatting. For example,
  68  * {@link NumberFormat#getCompactNumberInstance(Locale, Style)}.
  69  *
  70  * <blockquote><pre>
  71  * NumberFormat fmt = NumberFormat.getCompactNumberInstance(
  72  *                             new Locale("hi", "IN"), NumberFormat.Style.SHORT);
  73  * String result = fmt.format(1000);
  74  * </pre></blockquote>
  75  *
  76  * <h3><a id="compact_number_style">Style</a></h3>
  77  * <p>
  78  * A number can be formatted in the compact forms with two different
  79  * styles, {@link NumberFormat.Style#SHORT SHORT}
  80  * and {@link NumberFormat.Style#LONG LONG}. Use
  81  * {@link NumberFormat#getCompactNumberInstance(Locale, Style)} for formatting and
  82  * parsing a number in {@link NumberFormat.Style#SHORT SHORT} or
  83  * {@link NumberFormat.Style#LONG LONG} compact form,
  84  * where the given {@code Style} parameter requests the desired
  85  * format. A {@link NumberFormat.Style#SHORT SHORT} style
  86  * compact number instance in the {@link java.util.Locale#US US locale} formats
  87  * {@code 10000} as {@code "10K"}. However, a
  88  * {@link NumberFormat.Style#LONG LONG} style instance in same locale
  89  * formats {@code 10000} as {@code "10 thousand"}.
  90  *
  91  * <h3><a id="compact_number_patterns">Compact Number Patterns</a></h3>
  92  * <p>
  93  * The compact number patterns are represented in a series of patterns where each
  94  * pattern is used to format a range of numbers. An example of
  95  * {@link NumberFormat.Style#SHORT SHORT} styled compact number patterns
  96  * for the {@link java.util.Locale#US US locale} is {@code {"", "", "", "0K",
  97  * "00K", "000K", "0M", "00M", "000M", "0B", "00B", "000B", "0T", "00T", "000T"}},
  98  * ranging from {@code 10}<sup>{@code 0}</sup> to {@code 10}<sup>{@code 14}</sup>.
  99  * There can be any number of patterns and they are
 100  * strictly index based starting from the range {@code 10}<sup>{@code 0}</sup>.
 101  * For example, in the above patterns, pattern at index 3
 102  * ({@code "0K"}) is used for formatting {@code number >= 1000 and number < 10000},
 103  * pattern at index 4 ({@code "00K"}) is used for formatting
 104  * {@code number >= 10000 and number < 100000} and so on. In most of the locales,
 105  * patterns with the range
 106  * {@code 10}<sup>{@code 0}</sup>-{@code 10}<sup>{@code 2}</sup> are empty
 107  * strings, which implicitly means a special pattern {@code "0"}.
 108  * A special pattern {@code "0"} is used for any range which does not contain
 109  * a compact pattern. This special pattern can appear explicitly for any specific
 110  * range, or considered as a default pattern for an empty string.
 111  * <p>
 112  * A compact pattern has the following syntax:
 113  * <blockquote><pre>
 114  * <i>Pattern:</i>
 115  *         <i>PositivePattern</i>
 116  *         <i>PositivePattern</i> <i>[; NegativePattern]<sub>optional</sub></i>
 117  * <i>PositivePattern:</i>
 118  *         <i>Prefix<sub>optional</sub></i> <i>MinimumInteger</i> <i>Suffix<sub>optional</sub></i>
 119  * <i>NegativePattern:</i>
 120  *        <i>Prefix<sub>optional</sub></i> <i>MinimumInteger</i> <i>Suffix<sub>optional</sub></i>
 121  * <i>Prefix:</i>
 122  *      Any Unicode characters except \uFFFE, \uFFFF, and
 123  *      <a href = "DecimalFormat.html#special_pattern_character">special characters</a>
 124  * <i>Suffix:</i>
 125  *      Any Unicode characters except \uFFFE, \uFFFF, and
 126  *      <a href = "DecimalFormat.html#special_pattern_character">special characters</a>
 127  * <i>MinimumInteger:</i>
 128  *      0
 129  *      0 <i>MinimumInteger</i>
 130  * </pre></blockquote>
 131  *
 132  * A compact pattern contains a positive and negative subpattern
 133  * separated by a subpattern boundary character {@code ';' (U+003B)},
 134  * for example, {@code "0K;-0K"}. Each subpattern has a prefix,
 135  * minimum integer digits, and suffix. The negative subpattern
 136  * is optional, if absent, then the positive subpattern prefixed with the
 137  * minus sign ({@code '-' U+002D HYPHEN-MINUS}) is used as the negative
 138  * subpattern. That is, {@code "0K"} alone is equivalent to {@code "0K;-0K"}.
 139  * If there is an explicit negative subpattern, it serves only to specify
 140  * the negative prefix and suffix. The number of minimum integer digits,
 141  * and other characteristics are all the same as the positive pattern.
 142  * That means that {@code "0K;-00K"} produces precisely the same behavior
 143  * as {@code "0K;-0K"}.
 144  *
 145  * <p>
 146  * Many characters in a compact pattern are taken literally, they are matched
 147  * during parsing and output unchanged during formatting.
 148  * <a href = "DecimalFormat.html#special_pattern_character">Special characters</a>,
 149  * on the other hand, stand for other characters, strings, or classes of
 150  * characters. They must be quoted, using single quote {@code ' (U+0027)}
 151  * unless noted otherwise, if they are to appear in the prefix or suffix
 152  * as literals. For example, 0\u0915'.'.
 153  *
 154  * <h3>Formatting</h3>
 155  * The default formatting behavior returns a formatted string with no fractional
 156  * digits, however users can use the {@link #setMinimumFractionDigits(int)}
 157  * method to include the fractional part.
 158  * The number {@code 1000.0} or {@code 1000} is formatted as {@code "1K"}
 159  * not {@code "1.00K"} (in the {@link java.util.Locale#US US locale}). For this
 160  * reason, the patterns provided for formatting contain only the minimum
 161  * integer digits, prefix and/or suffix, but no fractional part.
 162  * For example, patterns used are {@code {"", "", "", 0K, 00K, ...}}. If the pattern
 163  * selected for formatting a number is {@code "0"} (special pattern),
 164  * either explicit or defaulted, then the general number formatting provided by
 165  * {@link java.text.DecimalFormat DecimalFormat}
 166  * for the specified locale is used.
 167  *
 168  * <h3>Parsing</h3>
 169  * The default parsing behavior does not allow a grouping separator until
 170  * grouping used is set to {@code true} by using
 171  * {@link #setGroupingUsed(boolean)}. The parsing of the fractional part
 172  * depends on the {@link #isParseIntegerOnly()}. For example, if the
 173  * parse integer only is set to true, then the fractional part is skipped.
 174  *
 175  * <h3>Rounding</h3>
 176  * {@code CompactNumberFormat} provides rounding modes defined in
 177  * {@link java.math.RoundingMode} for formatting.  By default, it uses
 178  * {@link java.math.RoundingMode#HALF_EVEN RoundingMode.HALF_EVEN}.
 179  *
 180  * @see CompactNumberFormat.Style
 181  * @see NumberFormat
 182  * @see DecimalFormat
 183  * @since 12
 184  */
 185 public final class CompactNumberFormat extends NumberFormat {
 186 
 187     private static final long serialVersionUID = 7128367218649234678L;
 188 
 189     /**
 190      * The patterns for compact form of numbers for this
 191      * {@code CompactNumberFormat}. A possible example is
 192      * {@code {"", "", "", "0K", "00K", "000K", "0M", "00M", "000M", "0B",
 193      * "00B", "000B", "0T", "00T", "000T"}} ranging from
 194      * {@code 10}<sup>{@code 0}</sup>-{@code 10}<sup>{@code 14}</sup>,
 195      * where each pattern is used to format a range of numbers.
 196      * For example, {@code "0K"} is used for formatting
 197      * {@code number >= 1000 and number < 10000}, {@code "00K"} is used for
 198      * formatting {@code number >= 10000 and number < 100000} and so on.
 199      * This field must not be {@code null}.
 200      *
 201      * @serial
 202      */
 203     private String[] compactPatterns;
 204 
 205     /**
 206      * List of positive prefix patterns of this formatter's
 207      * compact number patterns.
 208      */
 209     private transient List<String> positivePrefixPatterns;
 210 
 211     /**
 212      * List of negative prefix patterns of this formatter's
 213      * compact number patterns.
 214      */
 215     private transient List<String> negativePrefixPatterns;
 216 
 217     /**
 218      * List of positive suffix patterns of this formatter's
 219      * compact number patterns.
 220      */
 221     private transient List<String> positiveSuffixPatterns;
 222 
 223     /**
 224      * List of negative suffix patterns of this formatter's
 225      * compact number patterns.
 226      */
 227     private transient List<String> negativeSuffixPatterns;
 228 
 229     /**
 230      * List of divisors of this formatter's compact number patterns.
 231      * Divisor can be either Long or BigInteger (if the divisor value goes
 232      * beyond long boundary)
 233      */
 234     private transient List<Number> divisors;
 235 
 236     /**
 237      * The {@code DecimalFormatSymbols} object used by this format.
 238      * It contains the symbols used to format numbers. For example,
 239      * the grouping separator, decimal separator, and so on.
 240      * This field must not be {@code null}.
 241      *
 242      * @serial
 243      * @see DecimalFormatSymbols
 244      */
 245     private DecimalFormatSymbols symbols;
 246 
 247     /**
 248      * The decimal pattern which is used for formatting the numbers
 249      * matching special pattern "0". This field must not be {@code null}.
 250      *
 251      * @serial
 252      * @see DecimalFormat
 253      */
 254     private final String decimalPattern;
 255 
 256     /**
 257      * A {@code DecimalFormat} used by this format for getting corresponding
 258      * general number formatting behavior for compact numbers.
 259      *
 260      */
 261     private transient DecimalFormat decimalFormat;
 262 
 263     /**
 264      * A {@code DecimalFormat} used by this format for getting general number
 265      * formatting behavior for the numbers which can't be represented as compact
 266      * numbers. For example, number matching the special pattern "0" are
 267      * formatted through general number format pattern provided by
 268      * {@link java.text.DecimalFormat DecimalFormat}
 269      * for the specified locale.
 270      *
 271      */
 272     private transient DecimalFormat defaultDecimalFormat;
 273 
 274     /**
 275      * The number of digits between grouping separators in the integer portion
 276      * of a compact number. For the grouping to work while formatting, this
 277      * field needs to be greater than 0 with grouping used set as true.
 278      * This field must not be negative.
 279      *
 280      * @serial
 281      */
 282     private byte groupingSize = 0;
 283 
 284     /**
 285      * Returns whether the {@link #parse(String, ParsePosition)}
 286      * method returns {@code BigDecimal}.
 287      *
 288      * @serial
 289      */
 290     private boolean parseBigDecimal = false;
 291 
 292     /**
 293      * The {@code RoundingMode} used in this compact number format.
 294      * This field must not be {@code null}.
 295      *
 296      * @serial
 297      */
 298     private RoundingMode roundingMode = RoundingMode.HALF_EVEN;
 299 
 300     /**
 301      * Special pattern used for compact numbers
 302      */
 303     private static final String SPECIAL_PATTERN = "0";
 304 
 305     /**
 306      * Multiplier for compact pattern range. In
 307      * the list compact patterns each compact pattern
 308      * specify the range with the multiplication factor of 10
 309      * of its previous compact pattern range.
 310      * For example, 10^0, 10^1, 10^2, 10^3, 10^4...
 311      *
 312      */
 313     private static final int RANGE_MULTIPLIER = 10;
 314 
 315     /**
 316      * Creates a {@code CompactNumberFormat} using the given decimal pattern,
 317      * decimal format symbols and compact patterns.
 318      * To obtain the instance of {@code CompactNumberFormat} with the standard
 319      * compact patterns for a {@code Locale} and {@code Style},
 320      * it is recommended to use the factory methods given by
 321      * {@code NumberFormat} for compact number formatting. For example,
 322      * {@link NumberFormat#getCompactNumberInstance(Locale, Style)}.
 323      *
 324      * @param decimalPattern a decimal pattern for general number formatting
 325      * @param symbols the set of symbols to be used
 326      * @param compactPatterns an array of
 327      *        <a href = "CompactNumberFormat.html#compact_number_patterns">
 328      *        compact number patterns</a>
 329      * @throws NullPointerException if any of the given arguments is
 330      *                                 {@code null}
 331      * @throws IllegalArgumentException if the given {@code decimalPattern} or the
 332      *                     {@code compactPatterns} array contains an invalid pattern
 333      *                     or if a {@code null} appears in the array of compact
 334      *                     patterns
 335      * @see DecimalFormat#DecimalFormat(java.lang.String, DecimalFormatSymbols)
 336      * @see DecimalFormatSymbols
 337      */
 338     public CompactNumberFormat(String decimalPattern,
 339             DecimalFormatSymbols symbols, String[] compactPatterns) {
 340 
 341         Objects.requireNonNull(decimalPattern, "decimalPattern");
 342         Objects.requireNonNull(symbols, "symbols");
 343         Objects.requireNonNull(compactPatterns, "compactPatterns");
 344 
 345         this.symbols = symbols;
 346         // Instantiating the DecimalFormat with "0" pattern; this acts just as a
 347         // basic pattern; the properties (For example, prefix/suffix)
 348         // are later computed based on the compact number formatting process.
 349         decimalFormat = new DecimalFormat(SPECIAL_PATTERN, this.symbols);
 350 
 351         // Initializing the super class state with the decimalFormat values
 352         // to represent this CompactNumberFormat.
 353         // For setting the digits counts, use overridden setXXX methods of this
 354         // CompactNumberFormat, as it performs check with the max range allowed
 355         // for compact number formatting
 356         setMaximumIntegerDigits(decimalFormat.getMaximumIntegerDigits());
 357         setMinimumIntegerDigits(decimalFormat.getMinimumIntegerDigits());
 358         setMaximumFractionDigits(decimalFormat.getMaximumFractionDigits());
 359         setMinimumFractionDigits(decimalFormat.getMinimumFractionDigits());
 360 
 361         super.setGroupingUsed(decimalFormat.isGroupingUsed());
 362         super.setParseIntegerOnly(decimalFormat.isParseIntegerOnly());
 363 
 364         this.compactPatterns = compactPatterns;
 365 
 366         // DecimalFormat used for formatting numbers with special pattern "0".
 367         // Formatting is delegated to the DecimalFormat's number formatting
 368         // with no fraction digits
 369         this.decimalPattern = decimalPattern;
 370         defaultDecimalFormat = new DecimalFormat(this.decimalPattern,
 371                 this.symbols);
 372         defaultDecimalFormat.setMaximumFractionDigits(0);
 373         // Process compact patterns to extract the prefixes, suffixes and
 374         // divisors
 375         processCompactPatterns();
 376     }
 377 
 378     /**
 379      * Formats a number to produce a string representing its compact form.
 380      * The number can be of any subclass of {@link java.lang.Number}.
 381      * @param number     the number to format
 382      * @param toAppendTo the {@code StringBuffer} to which the formatted
 383      *                   text is to be appended
 384      * @param fieldPosition    keeps track on the position of the field within
 385      *                         the returned string. For example, for formatting
 386      *                         a number {@code 123456789} in the
 387      *                         {@link java.util.Locale#US US locale},
 388      *                         if the given {@code fieldPosition} is
 389      *                         {@link NumberFormat#INTEGER_FIELD}, the begin
 390      *                         index and end index of {@code fieldPosition}
 391      *                         will be set to 0 and 3, respectively for the
 392      *                         output string {@code 123M}. Similarly, positions
 393      *                         of the prefix and the suffix fields can be
 394      *                         obtained using {@link NumberFormat.Field#PREFIX}
 395      *                         and {@link NumberFormat.Field#SUFFIX} respectively.
 396      * @return           the {@code StringBuffer} passed in as {@code toAppendTo}
 397      * @throws           IllegalArgumentException if {@code number} is
 398      *                   {@code null} or not an instance of {@code Number}
 399      * @throws           NullPointerException if {@code toAppendTo} or
 400      *                   {@code fieldPosition} is {@code null}
 401      * @throws           ArithmeticException if rounding is needed with rounding
 402      *                   mode being set to {@code RoundingMode.UNNECESSARY}
 403      * @see              FieldPosition
 404      */
 405     @Override
 406     public final StringBuffer format(Object number,
 407             StringBuffer toAppendTo,
 408             FieldPosition fieldPosition) {
 409         if (number instanceof Long || number instanceof Integer
 410                 || number instanceof Short || number instanceof Byte
 411                 || number instanceof AtomicInteger
 412                 || number instanceof AtomicLong
 413                 || (number instanceof BigInteger
 414                 && ((BigInteger) number).bitLength() < 64)) {
 415             return format(((Number) number).longValue(), toAppendTo,
 416                     fieldPosition);
 417         } else if (number instanceof BigDecimal) {
 418             return format((BigDecimal) number, toAppendTo, fieldPosition);
 419         } else if (number instanceof BigInteger) {
 420             return format((BigInteger) number, toAppendTo, fieldPosition);
 421         } else if (number instanceof Number) {
 422             return format(((Number) number).doubleValue(), toAppendTo, fieldPosition);
 423         } else {
 424             throw new IllegalArgumentException("Cannot format "
 425                     + number.getClass().getName() + " as a number");
 426         }
 427     }
 428 
 429     /**
 430      * Formats a double to produce a string representing its compact form.
 431      * @param number    the double number to format
 432      * @param result    where the text is to be appended
 433      * @param fieldPosition    keeps track on the position of the field within
 434      *                         the returned string. For example, to format
 435      *                         a number {@code 1234567.89} in the
 436      *                         {@link java.util.Locale#US US locale}
 437      *                         if the given {@code fieldPosition} is
 438      *                         {@link NumberFormat#INTEGER_FIELD}, the begin
 439      *                         index and end index of {@code fieldPosition}
 440      *                         will be set to 0 and 1, respectively for the
 441      *                         output string {@code 1M}. Similarly, positions
 442      *                         of the prefix and the suffix fields can be
 443      *                         obtained using {@link NumberFormat.Field#PREFIX}
 444      *                         and {@link NumberFormat.Field#SUFFIX} respectively.
 445      * @return    the {@code StringBuffer} passed in as {@code result}
 446      * @throws NullPointerException if {@code result} or
 447      *            {@code fieldPosition} is {@code null}
 448      * @throws ArithmeticException if rounding is needed with rounding
 449      *            mode being set to {@code RoundingMode.UNNECESSARY}
 450      * @see FieldPosition
 451      */
 452     @Override
 453     public StringBuffer format(double number, StringBuffer result,
 454             FieldPosition fieldPosition) {
 455 
 456         fieldPosition.setBeginIndex(0);
 457         fieldPosition.setEndIndex(0);
 458         return format(number, result, fieldPosition.getFieldDelegate());
 459     }
 460 
 461     private StringBuffer format(double number, StringBuffer result,
 462             FieldDelegate delegate) {
 463 
 464         boolean nanOrInfinity = decimalFormat.handleNaN(number, result, delegate);
 465         if (nanOrInfinity) {
 466             return result;
 467         }
 468 
 469         boolean isNegative = ((number < 0.0)
 470                 || (number == 0.0 && 1 / number < 0.0));
 471 
 472         nanOrInfinity = decimalFormat.handleInfinity(number, result, delegate, isNegative);
 473         if (nanOrInfinity) {
 474             return result;
 475         }
 476 
 477         // Round the double value with min fraction digits, the integer
 478         // part of the rounded value is used for matching the compact
 479         // number pattern
 480         // For example, if roundingMode is HALF_UP with min fraction
 481         // digits = 0, the number 999.6 should round up
 482         // to 1000 and outputs 1K/thousand in "en_US" locale
 483         DigitList dList = new DigitList();
 484         dList.setRoundingMode(getRoundingMode());
 485         number = isNegative ? -number : number;
 486         dList.set(isNegative, number, getMinimumFractionDigits());
 487 
 488         double roundedNumber = dList.getDouble();
 489         int compactDataIndex = selectCompactPattern((long) roundedNumber);
 490         if (compactDataIndex != -1) {
 491             String prefix = isNegative ? negativePrefixPatterns.get(compactDataIndex)
 492                     : positivePrefixPatterns.get(compactDataIndex);
 493             String suffix = isNegative ? negativeSuffixPatterns.get(compactDataIndex)
 494                     : positiveSuffixPatterns.get(compactDataIndex);
 495 
 496             if (!prefix.isEmpty() || !suffix.isEmpty()) {
 497                 appendPrefix(result, prefix, delegate);
 498                 long divisor = (Long) divisors.get(compactDataIndex);
 499                 roundedNumber = roundedNumber / divisor;
 500                 decimalFormat.setDigitList(roundedNumber, isNegative, getMaximumFractionDigits());
 501                 decimalFormat.subformatNumber(result, delegate, isNegative,
 502                         false, getMaximumIntegerDigits(), getMinimumIntegerDigits(),
 503                         getMaximumFractionDigits(), getMinimumFractionDigits());
 504                 appendSuffix(result, suffix, delegate);
 505             } else {
 506                 defaultDecimalFormat.doubleSubformat(number, result, delegate, isNegative);
 507             }
 508         } else {
 509             defaultDecimalFormat.doubleSubformat(number, result, delegate, isNegative);
 510         }
 511         return result;
 512     }
 513 
 514     /**
 515      * Formats a long to produce a string representing its compact form.
 516      * @param number    the long number to format
 517      * @param result    where the text is to be appended
 518      * @param fieldPosition    keeps track on the position of the field within
 519      *                         the returned string. For example, to format
 520      *                         a number {@code 123456789} in the
 521      *                         {@link java.util.Locale#US US locale},
 522      *                         if the given {@code fieldPosition} is
 523      *                         {@link NumberFormat#INTEGER_FIELD}, the begin
 524      *                         index and end index of {@code fieldPosition}
 525      *                         will be set to 0 and 3, respectively for the
 526      *                         output string {@code 123M}. Similarly, positions
 527      *                         of the prefix and the suffix fields can be
 528      *                         obtained using {@link NumberFormat.Field#PREFIX}
 529      *                         and {@link NumberFormat.Field#SUFFIX} respectively.
 530      * @return       the {@code StringBuffer} passed in as {@code result}
 531      * @throws       NullPointerException if {@code result} or
 532      *               {@code fieldPosition} is {@code null}
 533      * @throws       ArithmeticException if rounding is needed with rounding
 534      *               mode being set to {@code RoundingMode.UNNECESSARY}
 535      * @see FieldPosition
 536      */
 537     @Override
 538     public StringBuffer format(long number, StringBuffer result,
 539             FieldPosition fieldPosition) {
 540 
 541         fieldPosition.setBeginIndex(0);
 542         fieldPosition.setEndIndex(0);
 543         return format(number, result, fieldPosition.getFieldDelegate());
 544     }
 545 
 546     private StringBuffer format(long number, StringBuffer result, FieldDelegate delegate) {
 547         boolean isNegative = (number < 0);
 548         if (isNegative) {
 549             number = -number;
 550         }
 551 
 552         if (number < 0) { // LONG_MIN
 553             BigInteger bigIntegerValue = BigInteger.valueOf(number);
 554             return format(bigIntegerValue, result, delegate, true);
 555         }
 556 
 557         int compactDataIndex = selectCompactPattern(number);
 558         if (compactDataIndex != -1) {
 559             String prefix = isNegative ? negativePrefixPatterns.get(compactDataIndex)
 560                     : positivePrefixPatterns.get(compactDataIndex);
 561             String suffix = isNegative ? negativeSuffixPatterns.get(compactDataIndex)
 562                     : positiveSuffixPatterns.get(compactDataIndex);
 563             if (!prefix.isEmpty() || !suffix.isEmpty()) {
 564                 appendPrefix(result, prefix, delegate);
 565                 long divisor = (Long) divisors.get(compactDataIndex);
 566                 if ((number % divisor == 0)) {
 567                     number = number / divisor;
 568                     decimalFormat.setDigitList(number, isNegative, 0);
 569                     decimalFormat.subformatNumber(result, delegate,
 570                             isNegative, true, getMaximumIntegerDigits(),
 571                             getMinimumIntegerDigits(), getMaximumFractionDigits(),
 572                             getMinimumFractionDigits());
 573                 } else {
 574                     // To avoid truncation of fractional part store
 575                     // the value in double and follow double path instead of
 576                     // long path
 577                     double dNumber = (double) number / divisor;
 578                     decimalFormat.setDigitList(dNumber, isNegative, getMaximumFractionDigits());
 579                     decimalFormat.subformatNumber(result, delegate,
 580                             isNegative, false, getMaximumIntegerDigits(),
 581                             getMinimumIntegerDigits(), getMaximumFractionDigits(),
 582                             getMinimumFractionDigits());
 583                 }
 584                 appendSuffix(result, suffix, delegate);
 585             } else {
 586                 number = isNegative ? -number : number;
 587                 defaultDecimalFormat.format(number, result, delegate);
 588             }
 589         } else {
 590             number = isNegative ? -number : number;
 591             defaultDecimalFormat.format(number, result, delegate);
 592         }
 593         return result;
 594     }
 595 
 596     /**
 597      * Formats a BigDecimal to produce a string representing its compact form.
 598      * @param number    the BigDecimal number to format
 599      * @param result    where the text is to be appended
 600      * @param fieldPosition    keeps track on the position of the field within
 601      *                         the returned string. For example, to format
 602      *                         a number {@code 1234567.89} in the
 603      *                         {@link java.util.Locale#US US locale},
 604      *                         if the given {@code fieldPosition} is
 605      *                         {@link NumberFormat#INTEGER_FIELD}, the begin
 606      *                         index and end index of {@code fieldPosition}
 607      *                         will be set to 0 and 1, respectively for the
 608      *                         output string {@code 1M}. Similarly, positions
 609      *                         of the prefix and the suffix fields can be
 610      *                         obtained using {@link NumberFormat.Field#PREFIX}
 611      *                         and {@link NumberFormat.Field#SUFFIX} respectively.
 612      * @return        the {@code StringBuffer} passed in as {@code result}
 613      * @throws        ArithmeticException if rounding is needed with rounding
 614      *                mode being set to {@code RoundingMode.UNNECESSARY}
 615      * @throws        NullPointerException if any of the given parameter
 616      *                is {@code null}
 617      * @see FieldPosition
 618      */
 619     private StringBuffer format(BigDecimal number, StringBuffer result,
 620             FieldPosition fieldPosition) {
 621 
 622         Objects.requireNonNull(number);
 623         fieldPosition.setBeginIndex(0);
 624         fieldPosition.setEndIndex(0);
 625         return format(number, result, fieldPosition.getFieldDelegate());
 626     }
 627 
 628     private StringBuffer format(BigDecimal number, StringBuffer result,
 629             FieldDelegate delegate) {
 630 
 631         boolean isNegative = number.signum() == -1;
 632         if (isNegative) {
 633             number = number.negate();
 634         }
 635 
 636         // Round the value with min fraction digits, the integer
 637         // part of the rounded value is used for matching the compact
 638         // number pattern
 639         // For example, If roundingMode is HALF_UP with min fraction digits = 0,
 640         // the number 999.6 should round up
 641         // to 1000 and outputs 1K/thousand in "en_US" locale
 642         number = number.setScale(getMinimumFractionDigits(), getRoundingMode());
 643 
 644         int compactDataIndex;
 645         if (number.toBigInteger().bitLength() < 64) {
 646             compactDataIndex = selectCompactPattern(number.toBigInteger().longValue());
 647         } else {
 648             compactDataIndex = selectCompactPattern(number.toBigInteger());
 649         }
 650 
 651         if (compactDataIndex != -1) {
 652             String prefix = isNegative ? negativePrefixPatterns.get(compactDataIndex)
 653                     : positivePrefixPatterns.get(compactDataIndex);
 654             String suffix = isNegative ? negativeSuffixPatterns.get(compactDataIndex)
 655                     : positiveSuffixPatterns.get(compactDataIndex);
 656             if (!prefix.isEmpty() || !suffix.isEmpty()) {
 657                 appendPrefix(result, prefix, delegate);
 658                 Number divisor = divisors.get(compactDataIndex);
 659                 number = number.divide(new BigDecimal(divisor.toString()), getRoundingMode());
 660                 decimalFormat.setDigitList(number, isNegative, getMaximumFractionDigits());
 661                 decimalFormat.subformatNumber(result, delegate, isNegative,
 662                         false, getMaximumIntegerDigits(), getMinimumIntegerDigits(),
 663                         getMaximumFractionDigits(), getMinimumFractionDigits());
 664                 appendSuffix(result, suffix, delegate);
 665             } else {
 666                 number = isNegative ? number.negate() : number;
 667                 defaultDecimalFormat.format(number, result, delegate);
 668             }
 669         } else {
 670             number = isNegative ? number.negate() : number;
 671             defaultDecimalFormat.format(number, result, delegate);
 672         }
 673         return result;
 674     }
 675 
 676     /**
 677      * Formats a BigInteger to produce a string representing its compact form.
 678      * @param number    the BigInteger number to format
 679      * @param result    where the text is to be appended
 680      * @param fieldPosition    keeps track on the position of the field within
 681      *                         the returned string. For example, to format
 682      *                         a number {@code 123456789} in the
 683      *                         {@link java.util.Locale#US US locale},
 684      *                         if the given {@code fieldPosition} is
 685      *                         {@link NumberFormat#INTEGER_FIELD}, the begin index
 686      *                         and end index of {@code fieldPosition} will be set
 687      *                         to 0 and 3, respectively for the output string
 688      *                         {@code 123M}. Similarly, positions of the
 689      *                         prefix and the suffix fields can be obtained
 690      *                         using {@link NumberFormat.Field#PREFIX} and
 691      *                         {@link NumberFormat.Field#SUFFIX} respectively.
 692      * @return        the {@code StringBuffer} passed in as {@code result}
 693      * @throws        ArithmeticException if rounding is needed with rounding
 694      *                mode being set to {@code RoundingMode.UNNECESSARY}
 695      * @throws        NullPointerException if any of the given parameter
 696      *                is {@code null}
 697      * @see FieldPosition
 698      */
 699     private StringBuffer format(BigInteger number, StringBuffer result,
 700             FieldPosition fieldPosition) {
 701 
 702         Objects.requireNonNull(number);
 703         fieldPosition.setBeginIndex(0);
 704         fieldPosition.setEndIndex(0);
 705         return format(number, result, fieldPosition.getFieldDelegate(), false);
 706     }
 707 
 708     private StringBuffer format(BigInteger number, StringBuffer result,
 709             FieldDelegate delegate, boolean formatLong) {
 710 
 711         boolean isNegative = number.signum() == -1;
 712         if (isNegative) {
 713             number = number.negate();
 714         }
 715 
 716         int compactDataIndex = selectCompactPattern(number);
 717         if (compactDataIndex != -1) {
 718             String prefix = isNegative ? negativePrefixPatterns.get(compactDataIndex)
 719                     : positivePrefixPatterns.get(compactDataIndex);
 720             String suffix = isNegative ? negativeSuffixPatterns.get(compactDataIndex)
 721                     : positiveSuffixPatterns.get(compactDataIndex);
 722             if (!prefix.isEmpty() || !suffix.isEmpty()) {
 723                 appendPrefix(result, prefix, delegate);
 724                 Number divisor = divisors.get(compactDataIndex);
 725                 if (number.mod(new BigInteger(divisor.toString()))
 726                         .compareTo(BigInteger.ZERO) == 0) {
 727                     number = number.divide(new BigInteger(divisor.toString()));
 728 
 729                     decimalFormat.setDigitList(number, isNegative, 0);
 730                     decimalFormat.subformatNumber(result, delegate,
 731                             isNegative, true, getMaximumIntegerDigits(),
 732                             getMinimumIntegerDigits(), getMaximumFractionDigits(),
 733                             getMinimumFractionDigits());
 734                 } else {
 735                     // To avoid truncation of fractional part store the value in
 736                     // BigDecimal and follow BigDecimal path instead of
 737                     // BigInteger path
 738                     BigDecimal nDecimal = new BigDecimal(number)
 739                             .divide(new BigDecimal(divisor.toString()), getRoundingMode());
 740                     decimalFormat.setDigitList(nDecimal, isNegative, getMaximumFractionDigits());
 741                     decimalFormat.subformatNumber(result, delegate,
 742                             isNegative, false, getMaximumIntegerDigits(),
 743                             getMinimumIntegerDigits(), getMaximumFractionDigits(),
 744                             getMinimumFractionDigits());
 745                 }
 746                 appendSuffix(result, suffix, delegate);
 747             } else {
 748                 number = isNegative ? number.negate() : number;
 749                 defaultDecimalFormat.format(number, result, delegate, formatLong);
 750             }
 751         } else {
 752             number = isNegative ? number.negate() : number;
 753             defaultDecimalFormat.format(number, result, delegate, formatLong);
 754         }
 755         return result;
 756     }
 757 
 758     /**
 759      * Appends the {@code prefix} to the {@code result} and also set the
 760      * {@code NumberFormat.Field.SIGN} and {@code NumberFormat.Field.PREFIX}
 761      * field positions.
 762      * @param result the resulting string, where the pefix is to be appended
 763      * @param prefix prefix to append
 764      * @param delegate notified of the locations of
 765      *                 {@code NumberFormat.Field.SIGN} and
 766      *                 {@code NumberFormat.Field.PREFIX} fields
 767      */
 768     private void appendPrefix(StringBuffer result, String prefix,
 769             FieldDelegate delegate) {
 770         append(result, expandAffix(prefix), delegate,
 771                 getFieldPositions(prefix, NumberFormat.Field.PREFIX));
 772     }
 773 
 774     /**
 775      * Appends {@code suffix} to the {@code result} and also set the
 776      * {@code NumberFormat.Field.SIGN} and {@code NumberFormat.Field.SUFFIX}
 777      * field positions.
 778      * @param result the resulting string, where the suffix is to be appended
 779      * @param suffix suffix to append
 780      * @param delegate notified of the locations of
 781      *                 {@code NumberFormat.Field.SIGN} and
 782      *                 {@code NumberFormat.Field.SUFFIX} fields
 783      */
 784     private void appendSuffix(StringBuffer result, String suffix,
 785             FieldDelegate delegate) {
 786         append(result, expandAffix(suffix), delegate,
 787                 getFieldPositions(suffix, NumberFormat.Field.SUFFIX));
 788     }
 789 
 790     /**
 791      * Appends the {@code string} to the {@code result}.
 792      * {@code delegate} is notified of SIGN, PREFIX and/or SUFFIX
 793      * field positions.
 794      * @param result the resulting string, where the text is to be appended
 795      * @param string the text to append
 796      * @param delegate notified of the locations of sub fields
 797      * @param positions a list of {@code FieldPostion} in the given
 798      *                  string
 799      */
 800     private void append(StringBuffer result, String string,
 801             FieldDelegate delegate, List<FieldPosition> positions) {
 802         if (string.length() > 0) {
 803             int start = result.length();
 804             result.append(string);
 805             for (int counter = 0; counter < positions.size(); counter++) {
 806                 FieldPosition fp = positions.get(counter);
 807                 Format.Field attribute = fp.getFieldAttribute();
 808                 delegate.formatted(attribute, attribute,
 809                         start + fp.getBeginIndex(),
 810                         start + fp.getEndIndex(), result);
 811             }
 812         }
 813     }
 814 
 815     /**
 816      * Expands an affix {@code pattern} into a string of literals.
 817      * All characters in the pattern are literals unless prefixed by QUOTE.
 818      * The character prefixed by QUOTE is replaced with its respective
 819      * localized literal.
 820      * @param pattern a compact number pattern affix
 821      * @return an expanded affix
 822      */
 823     private String expandAffix(String pattern) {
 824         // Return if no quoted character exists
 825         if (pattern.indexOf(QUOTE) < 0) {
 826             return pattern;
 827         }
 828         StringBuilder sb = new StringBuilder();
 829         for (int index = 0; index < pattern.length();) {
 830             char ch = pattern.charAt(index++);
 831             if (ch == QUOTE) {
 832                 ch = pattern.charAt(index++);
 833                 if (ch == MINUS_SIGN) {
 834                     ch = symbols.getMinusSign();
 835                 }
 836             }
 837             sb.append(ch);
 838         }
 839         return sb.toString();
 840     }
 841 
 842     /**
 843      * Returns a list of {@code FieldPostion} in the given {@code pattern}.
 844      * @param pattern the pattern to be parsed for {@code FieldPosition}
 845      * @param field whether a PREFIX or SUFFIX field
 846      * @return a list of {@code FieldPostion}
 847      */
 848     private List<FieldPosition> getFieldPositions(String pattern, Field field) {
 849         List<FieldPosition> positions = new ArrayList<>();
 850         StringBuilder affix = new StringBuilder();
 851         int stringIndex = 0;
 852         for (int index = 0; index < pattern.length();) {
 853             char ch = pattern.charAt(index++);
 854             if (ch == QUOTE) {
 855                 ch = pattern.charAt(index++);
 856                 if (ch == MINUS_SIGN) {
 857                     ch = symbols.getMinusSign();
 858                     FieldPosition fp = new FieldPosition(NumberFormat.Field.SIGN);
 859                     fp.setBeginIndex(stringIndex);
 860                     fp.setEndIndex(stringIndex + 1);
 861                     positions.add(fp);
 862                 }
 863             }
 864             stringIndex++;
 865             affix.append(ch);
 866         }
 867         if (affix.length() != 0) {
 868             FieldPosition fp = new FieldPosition(field);
 869             fp.setBeginIndex(0);
 870             fp.setEndIndex(affix.length());
 871             positions.add(fp);
 872         }
 873         return positions;
 874     }
 875 
 876     /**
 877      * Select the index of the matched compact number pattern for
 878      * the given {@code long} {@code number}.
 879      *
 880      * @param number number to be formatted
 881      * @return index of matched compact pattern;
 882      *         -1 if no compact patterns specified
 883      */
 884     private int selectCompactPattern(long number) {
 885 
 886         if (compactPatterns.length == 0) {
 887             return -1;
 888         }
 889 
 890         // Minimum index can be "0", max index can be "size - 1"
 891         int dataIndex = number <= 1 ? 0 : (int) Math.log10(number);
 892         dataIndex = Math.min(dataIndex, compactPatterns.length - 1);
 893         return dataIndex;
 894     }
 895 
 896     /**
 897      * Select the index of the matched compact number
 898      * pattern for the given {@code BigInteger} {@code number}.
 899      *
 900      * @param number number to be formatted
 901      * @return index of matched compact pattern;
 902      *         -1 if no compact patterns specified
 903      */
 904     private int selectCompactPattern(BigInteger number) {
 905 
 906         int matchedIndex = -1;
 907         if (compactPatterns.length == 0) {
 908             return matchedIndex;
 909         }
 910 
 911         BigInteger currentValue = BigInteger.ONE;
 912 
 913         // For formatting a number, the greatest type less than
 914         // or equal to number is used
 915         for (int index = 0; index < compactPatterns.length; index++) {
 916             if (number.compareTo(currentValue) > 0) {
 917                 // Input number is greater than current type; try matching with
 918                 // the next
 919                 matchedIndex = index;
 920                 currentValue = currentValue.multiply(BigInteger.valueOf(RANGE_MULTIPLIER));
 921                 continue;
 922             }
 923             if (number.compareTo(currentValue) < 0) {
 924                 // Current type is greater than the input number;
 925                 // take the previous pattern
 926                 break;
 927             } else {
 928                 // Equal
 929                 matchedIndex = index;
 930                 break;
 931             }
 932         }
 933         return matchedIndex;
 934     }
 935 
 936     /**
 937      * Formats an Object producing an {@code AttributedCharacterIterator}.
 938      * The returned {@code AttributedCharacterIterator} can be used
 939      * to build the resulting string, as well as to determine information
 940      * about the resulting string.
 941      * <p>
 942      * Each attribute key of the {@code AttributedCharacterIterator} will
 943      * be of type {@code NumberFormat.Field}, with the attribute value
 944      * being the same as the attribute key. The prefix and the suffix
 945      * parts of the returned iterator (if present) are represented by
 946      * the attributes {@link NumberFormat.Field#PREFIX} and
 947      * {@link NumberFormat.Field#SUFFIX} respectively.
 948      *
 949      *
 950      * @throws NullPointerException if obj is null
 951      * @throws IllegalArgumentException when the Format cannot format the
 952      *         given object
 953      * @throws ArithmeticException if rounding is needed with rounding
 954      *         mode being set to {@code RoundingMode.UNNECESSARY}
 955      * @param obj The object to format
 956      * @return an {@code AttributedCharacterIterator} describing the
 957      *         formatted value
 958      */
 959     @Override
 960     public AttributedCharacterIterator formatToCharacterIterator(Object obj) {
 961         CharacterIteratorFieldDelegate delegate
 962                 = new CharacterIteratorFieldDelegate();
 963         StringBuffer sb = new StringBuffer();
 964 
 965         if (obj instanceof Double || obj instanceof Float) {
 966             format(((Number) obj).doubleValue(), sb, delegate);
 967         } else if (obj instanceof Long || obj instanceof Integer
 968                 || obj instanceof Short || obj instanceof Byte
 969                 || obj instanceof AtomicInteger || obj instanceof AtomicLong) {
 970             format(((Number) obj).longValue(), sb, delegate);
 971         } else if (obj instanceof BigDecimal) {
 972             format((BigDecimal) obj, sb, delegate);
 973         } else if (obj instanceof BigInteger) {
 974             format((BigInteger) obj, sb, delegate, false);
 975         } else if (obj == null) {
 976             throw new NullPointerException(
 977                     "formatToCharacterIterator must be passed non-null object");
 978         } else {
 979             throw new IllegalArgumentException(
 980                     "Cannot format given Object as a Number");
 981         }
 982         return delegate.getIterator(sb.toString());
 983     }
 984 
 985     /**
 986      * Computes the divisor using minimum integer digits and
 987      * matched pattern index.
 988      * @param minIntDigits string of 0s in compact pattern
 989      * @param patternIndex index of matched compact pattern
 990      * @return divisor value for the number matching the compact
 991      *         pattern at given {@code patternIndex}
 992      */
 993     private Number computeDivisor(String minIntDigits, int patternIndex) {
 994         int count = minIntDigits.length() - 1;
 995         Number matchedValue;
 996         // The divisor value can go above long range, if the compact patterns
 997         // goes above index 18, divisor may need to be stored as BigInteger,
 998         // since long can't store numbers >= 10^19,
 999         if (patternIndex < 19) {
1000             matchedValue = (long) Math.pow(RANGE_MULTIPLIER, patternIndex);
1001         } else {
1002             matchedValue = BigInteger.valueOf(RANGE_MULTIPLIER).pow(patternIndex);
1003         }
1004         Number divisor = matchedValue;
1005         if (count != 0) {
1006             if (matchedValue instanceof BigInteger) {
1007                 BigInteger bigValue = (BigInteger) matchedValue;
1008                 if (bigValue.compareTo(BigInteger.valueOf((long) Math.pow(RANGE_MULTIPLIER, count))) < 0) {
1009                     throw new IllegalArgumentException("Invalid Pattern"
1010                             + " [" + compactPatterns[patternIndex]
1011                             + "]: min integer digits specified exceeds the limit"
1012                             + " for the index " + patternIndex);
1013                 }
1014                 divisor = bigValue.divide(BigInteger.valueOf((long) Math.pow(RANGE_MULTIPLIER, count)));
1015             } else {
1016                 long longValue = (long) matchedValue;
1017                 if (longValue < (long) Math.pow(RANGE_MULTIPLIER, count)) {
1018                     throw new IllegalArgumentException("Invalid Pattern"
1019                             + " [" + compactPatterns[patternIndex]
1020                             + "]: min integer digits specified exceeds the limit"
1021                             + " for the index " + patternIndex);
1022                 }
1023                 divisor = longValue / (long) Math.pow(RANGE_MULTIPLIER, count);
1024             }
1025         }
1026         return divisor;
1027     }
1028 
1029     /**
1030      * Process the series of compact patterns to compute the
1031      * series of prefixes, suffixes and their respective divisor
1032      * value.
1033      *
1034      */
1035     private void processCompactPatterns() {
1036         int size = compactPatterns.length;
1037         positivePrefixPatterns = new ArrayList<>(size);
1038         negativePrefixPatterns = new ArrayList<>(size);
1039         positiveSuffixPatterns = new ArrayList<>(size);
1040         negativeSuffixPatterns = new ArrayList<>(size);
1041         divisors = new ArrayList<>(size);
1042 
1043         for (int index = 0; index < size; index++) {
1044             applyPattern(compactPatterns[index], index);
1045         }
1046     }
1047 
1048     /**
1049      * Process a compact pattern at a specific {@code index}
1050      * @param pattern the compact pattern to be processed
1051      * @param index index in the array of compact patterns
1052      *
1053      */
1054     private void applyPattern(String pattern, int index) {
1055 
1056         int start = 0;
1057         boolean gotNegative = false;
1058 
1059         String positivePrefix = "";
1060         String positiveSuffix = "";
1061         String negativePrefix = "";
1062         String negativeSuffix = "";
1063         String zeros = "";
1064         for (int j = 1; j >= 0 && start < pattern.length(); --j) {
1065 
1066             StringBuffer prefix = new StringBuffer();
1067             StringBuffer suffix = new StringBuffer();
1068             boolean inQuote = false;
1069             // The phase ranges from 0 to 2.  Phase 0 is the prefix.  Phase 1 is
1070             // the section of the pattern with digits. Phase 2 is the suffix.
1071             // The separation of the characters into phases is
1072             // strictly enforced; if phase 1 characters are to appear in the
1073             // suffix, for example, they must be quoted.
1074             int phase = 0;
1075 
1076             // The affix is either the prefix or the suffix.
1077             StringBuffer affix = prefix;
1078 
1079             for (int pos = start; pos < pattern.length(); ++pos) {
1080                 char ch = pattern.charAt(pos);
1081                 switch (phase) {
1082                     case 0:
1083                     case 2:
1084                         // Process the prefix / suffix characters
1085                         if (inQuote) {
1086                             // A quote within quotes indicates either the closing
1087                             // quote or two quotes, which is a quote literal. That
1088                             // is, we have the second quote in 'do' or 'don''t'.
1089                             if (ch == QUOTE) {
1090                                 if ((pos + 1) < pattern.length()
1091                                         && pattern.charAt(pos + 1) == QUOTE) {
1092                                     ++pos;
1093                                     affix.append("''"); // 'don''t'
1094                                 } else {
1095                                     inQuote = false; // 'do'
1096                                 }
1097                                 continue;
1098                             }
1099                         } else {
1100                             // Process unquoted characters seen in prefix or suffix
1101                             // phase.
1102                             switch (ch) {
1103                                 case ZERO_DIGIT:
1104                                     phase = 1;
1105                                     --pos; // Reprocess this character
1106                                     continue;
1107                                 case QUOTE:
1108                                     // A quote outside quotes indicates either the
1109                                     // opening quote or two quotes, which is a quote
1110                                     // literal. That is, we have the first quote in 'do'
1111                                     // or o''clock.
1112                                     if ((pos + 1) < pattern.length()
1113                                             && pattern.charAt(pos + 1) == QUOTE) {
1114                                         ++pos;
1115                                         affix.append("''"); // o''clock
1116                                     } else {
1117                                         inQuote = true; // 'do'
1118                                     }
1119                                     continue;
1120                                 case SEPARATOR:
1121                                     // Don't allow separators before we see digit
1122                                     // characters of phase 1, and don't allow separators
1123                                     // in the second pattern (j == 0).
1124                                     if (phase == 0 || j == 0) {
1125                                         throw new IllegalArgumentException(
1126                                                 "Unquoted special character '"
1127                                                 + ch + "' in pattern \"" + pattern + "\"");
1128                                     }
1129                                     start = pos + 1;
1130                                     pos = pattern.length();
1131                                     continue;
1132                                 case MINUS_SIGN:
1133                                     affix.append("'-");
1134                                     continue;
1135                                 case DECIMAL_SEPARATOR:
1136                                 case GROUPING_SEPARATOR:
1137                                 case DIGIT:
1138                                 case PERCENT:
1139                                 case PER_MILLE:
1140                                 case CURRENCY_SIGN:
1141                                     throw new IllegalArgumentException(
1142                                             "Unquoted special character '" + ch
1143                                             + "' in pattern \"" + pattern + "\"");
1144                                 default:
1145                                     break;
1146                             }
1147                         }
1148                         // Note that if we are within quotes, or if this is an
1149                         // unquoted, non-special character, then we usually fall
1150                         // through to here.
1151                         affix.append(ch);
1152                         break;
1153 
1154                     case 1:
1155                         // The negative subpattern (j = 0) serves only to specify the
1156                         // negative prefix and suffix, so all the phase 1 characters,
1157                         // for example, digits, zeroDigit, groupingSeparator,
1158                         // decimalSeparator, exponent are ignored
1159                         if (j == 0) {
1160                             while (pos < pattern.length()) {
1161                                 char negPatternChar = pattern.charAt(pos);
1162                                 if (negPatternChar == ZERO_DIGIT) {
1163                                     ++pos;
1164                                 } else {
1165                                     // Not a phase 1 character, consider it as
1166                                     // suffix and parse it in phase 2
1167                                     --pos; //process it again in outer loop
1168                                     phase = 2;
1169                                     affix = suffix;
1170                                     break;
1171                                 }
1172                             }
1173                             continue;
1174                         }
1175                         // Consider only '0' as valid pattern char which can appear
1176                         // in number part, rest can be either suffix or prefix
1177                         if (ch == ZERO_DIGIT) {
1178                             zeros = zeros + "0";
1179                         } else {
1180                             phase = 2;
1181                             affix = suffix;
1182                             --pos;
1183                         }
1184                         break;
1185                 }
1186             }
1187 
1188             if (inQuote) {
1189                 throw new IllegalArgumentException("Invalid single quote"
1190                         + " in pattern \"" + pattern + "\"");
1191             }
1192 
1193             if (j == 1) {
1194                 positivePrefix = prefix.toString();
1195                 positiveSuffix = suffix.toString();
1196                 negativePrefix = positivePrefix;
1197                 negativeSuffix = positiveSuffix;
1198             } else {
1199                 negativePrefix = prefix.toString();
1200                 negativeSuffix = suffix.toString();
1201                 gotNegative = true;
1202             }
1203 
1204             // If there is no negative pattern, or if the negative pattern is
1205             // identical to the positive pattern, then prepend the minus sign to
1206             // the positive pattern to form the negative pattern.
1207             if (!gotNegative
1208                     || (negativePrefix.equals(positivePrefix)
1209                     && negativeSuffix.equals(positiveSuffix))) {
1210                 negativeSuffix = positiveSuffix;
1211                 negativePrefix = "'-" + positivePrefix;
1212             }
1213         }
1214 
1215         // If no 0s are specified in a non empty pattern, it is invalid
1216         if (pattern.length() != 0 && zeros.isEmpty()) {
1217             throw new IllegalArgumentException("Invalid pattern"
1218                     + " [" + pattern + "]: all patterns must include digit"
1219                     + " placement 0s");
1220         }
1221 
1222         // Only if positive affix exists; else put empty strings
1223         if (!positivePrefix.isEmpty() || !positiveSuffix.isEmpty()) {
1224             positivePrefixPatterns.add(positivePrefix);
1225             negativePrefixPatterns.add(negativePrefix);
1226             positiveSuffixPatterns.add(positiveSuffix);
1227             negativeSuffixPatterns.add(negativeSuffix);
1228             divisors.add(computeDivisor(zeros, index));
1229         } else {
1230             positivePrefixPatterns.add("");
1231             negativePrefixPatterns.add("");
1232             positiveSuffixPatterns.add("");
1233             negativeSuffixPatterns.add("");
1234             divisors.add(1L);
1235         }
1236     }
1237 
1238     private final transient DigitList digitList = new DigitList();
1239     private static final int STATUS_INFINITE = 0;
1240     private static final int STATUS_POSITIVE = 1;
1241     private static final int STATUS_LENGTH   = 2;
1242 
1243     private static final char ZERO_DIGIT = '0';
1244     private static final char DIGIT = '#';
1245     private static final char DECIMAL_SEPARATOR = '.';
1246     private static final char GROUPING_SEPARATOR = ',';
1247     private static final char MINUS_SIGN = '-';
1248     private static final char PERCENT = '%';
1249     private static final char PER_MILLE = '\u2030';
1250     private static final char SEPARATOR = ';';
1251     private static final char CURRENCY_SIGN = '\u00A4';
1252     private static final char QUOTE = '\'';
1253 
1254     // Expanded form of positive/negative prefix/suffix,
1255     // the expanded form contains special characters in
1256     // its localized form, which are used for matching
1257     // while parsing a string to number
1258     private transient List<String> positivePrefixes;
1259     private transient List<String> negativePrefixes;
1260     private transient List<String> positiveSuffixes;
1261     private transient List<String> negativeSuffixes;
1262 
1263     private void expandAffixPatterns() {
1264         positivePrefixes = new ArrayList<>(compactPatterns.length);
1265         negativePrefixes = new ArrayList<>(compactPatterns.length);
1266         positiveSuffixes = new ArrayList<>(compactPatterns.length);
1267         negativeSuffixes = new ArrayList<>(compactPatterns.length);
1268         for (int index = 0; index < compactPatterns.length; index++) {
1269             positivePrefixes.add(expandAffix(positivePrefixPatterns.get(index)));
1270             negativePrefixes.add(expandAffix(negativePrefixPatterns.get(index)));
1271             positiveSuffixes.add(expandAffix(positiveSuffixPatterns.get(index)));
1272             negativeSuffixes.add(expandAffix(negativeSuffixPatterns.get(index)));
1273         }
1274     }
1275 
1276     /**
1277      * Parses a compact number from a string to produce a {@code Number}.
1278      * <p>
1279      * The method attempts to parse text starting at the index given by
1280      * {@code pos}.
1281      * If parsing succeeds, then the index of {@code pos} is updated
1282      * to the index after the last character used (parsing does not necessarily
1283      * use all characters up to the end of the string), and the parsed
1284      * number is returned. The updated {@code pos} can be used to
1285      * indicate the starting point for the next call to this method.
1286      * If an error occurs, then the index of {@code pos} is not
1287      * changed, the error index of {@code pos} is set to the index of
1288      * the character where the error occurred, and {@code null} is returned.
1289      * <p>
1290      * The value is the numeric part in the given text multiplied
1291      * by the numeric equivalent of the affix attached
1292      * (For example, "K" = 1000 in {@link java.util.Locale#US US locale}).
1293      * The subclass returned depends on the value of
1294      * {@link #isParseBigDecimal}.
1295      * <ul>
1296      * <li>If {@link #isParseBigDecimal()} is false (the default),
1297      *     most integer values are returned as {@code Long}
1298      *     objects, no matter how they are written: {@code "17K"} and
1299      *     {@code "17.000K"} both parse to {@code Long.valueOf(17000)}.
1300      *     If the value cannot fit into {@code Long}, then the result is
1301      *     returned as {@code Double}. This includes values with a
1302      *     fractional part, infinite values, {@code NaN},
1303      *     and the value -0.0.
1304      *     <p>
1305      *     Callers may use the {@code Number} methods {@code doubleValue},
1306      *     {@code longValue}, etc., to obtain the type they want.
1307      *
1308      * <li>If {@link #isParseBigDecimal()} is true, values are returned
1309      *     as {@code BigDecimal} objects. The special cases negative
1310      *     and positive infinity and NaN are returned as {@code Double}
1311      *     instances holding the values of the corresponding
1312      *     {@code Double} constants.
1313      * </ul>
1314      * <p>
1315      * {@code CompactNumberFormat} parses all Unicode characters that represent
1316      * decimal digits, as defined by {@code Character.digit()}. In
1317      * addition, {@code CompactNumberFormat} also recognizes as digits the ten
1318      * consecutive characters starting with the localized zero digit defined in
1319      * the {@code DecimalFormatSymbols} object.
1320      * <p>
1321      * {@code CompactNumberFormat} parse does not allow parsing scientific
1322      * notations. For example, parsing a string {@code "1.05E4K"} in
1323      * {@link java.util.Locale#US US locale} breaks at character 'E'
1324      * and returns 1.05.
1325      *
1326      * @param text the string to be parsed
1327      * @param pos  a {@code ParsePosition} object with index and error
1328      *             index information as described above
1329      * @return the parsed value, or {@code null} if the parse fails
1330      * @exception  NullPointerException if {@code text} or
1331      *             {@code pos} is null
1332      *
1333      */
1334     @Override
1335     public Number parse(String text, ParsePosition pos) {
1336 
1337         Objects.requireNonNull(text);
1338         Objects.requireNonNull(pos);
1339 
1340         // Lazily expanding the affix patterns, on the first parse
1341         // call on this instance
1342         // If not initialized, expand and load all affixes
1343         if (positivePrefixes == null) {
1344             expandAffixPatterns();
1345         }
1346 
1347         // The compact number multiplier for parsed string.
1348         // Its value is set on parsing prefix and suffix. For example,
1349         // in the {@link java.util.Locale#US US locale} parsing {@code "1K"}
1350         // sets its value to 1000, as K (thousand) is abbreviated form of 1000.
1351         Number cnfMultiplier = 1L;
1352 
1353         // Special case NaN
1354         if (text.regionMatches(pos.index, symbols.getNaN(),
1355                 0, symbols.getNaN().length())) {
1356             pos.index = pos.index + symbols.getNaN().length();
1357             return Double.NaN;
1358         }
1359 
1360         int position = pos.index;
1361         int oldStart = pos.index;
1362         boolean gotPositive = false;
1363         boolean gotNegative = false;
1364         int matchedPosIndex = -1;
1365         int matchedNegIndex = -1;
1366         String matchedPosPrefix = "";
1367         String matchedNegPrefix = "";
1368         String defaultPosPrefix = defaultDecimalFormat.getPositivePrefix();
1369         String defaultNegPrefix = defaultDecimalFormat.getNegativePrefix();
1370         // Prefix matching
1371         for (int compactIndex = 0; compactIndex < compactPatterns.length; compactIndex++) {
1372             String positivePrefix = positivePrefixes.get(compactIndex);
1373             String negativePrefix = negativePrefixes.get(compactIndex);
1374 
1375             // Do not break if a match occur; there is a possibility that the
1376             // subsequent affixes may match the longer subsequence in the given
1377             // string.
1378             // For example, matching "Mdx 3" with "M", "Md" as prefix should
1379             // match with "Md"
1380             boolean match = matchAffix(text, position, positivePrefix,
1381                     defaultPosPrefix, matchedPosPrefix);
1382             if (match) {
1383                 matchedPosIndex = compactIndex;
1384                 matchedPosPrefix = positivePrefix;
1385                 gotPositive = true;
1386             }
1387 
1388             match = matchAffix(text, position, negativePrefix,
1389                     defaultNegPrefix, matchedNegPrefix);
1390             if (match) {
1391                 matchedNegIndex = compactIndex;
1392                 matchedNegPrefix = negativePrefix;
1393                 gotNegative = true;
1394             }
1395         }
1396 
1397         // Given text does not match the non empty valid compact prefixes
1398         // check with the default prefixes
1399         if (!gotPositive && !gotNegative) {
1400             if (text.regionMatches(pos.index, defaultPosPrefix, 0,
1401                     defaultPosPrefix.length())) {
1402                 // Matches the default positive prefix
1403                 matchedPosPrefix = defaultPosPrefix;
1404                 gotPositive = true;
1405             }
1406             if (text.regionMatches(pos.index, defaultNegPrefix, 0,
1407                     defaultNegPrefix.length())) {
1408                 // Matches the default negative prefix
1409                 matchedNegPrefix = defaultNegPrefix;
1410                 gotNegative = true;
1411             }
1412         }
1413 
1414         // If both match, take the longest one
1415         if (gotPositive && gotNegative) {
1416             if (matchedPosPrefix.length() > matchedNegPrefix.length()) {
1417                 gotNegative = false;
1418             } else if (matchedPosPrefix.length() < matchedNegPrefix.length()) {
1419                 gotPositive = false;
1420             }
1421         }
1422 
1423         // Update the position and take compact multiplier
1424         // only if it matches the compact prefix, not the default
1425         // prefix; else multiplier should be 1
1426         if (gotPositive) {
1427             position += matchedPosPrefix.length();
1428             cnfMultiplier = matchedPosIndex != -1
1429                     ? divisors.get(matchedPosIndex) : 1L;
1430         } else if (gotNegative) {
1431             position += matchedNegPrefix.length();
1432             cnfMultiplier = matchedNegIndex != -1
1433                     ? divisors.get(matchedNegIndex) : 1L;
1434         }
1435 
1436         digitList.setRoundingMode(getRoundingMode());
1437         boolean[] status = new boolean[STATUS_LENGTH];
1438 
1439         // Call DecimalFormat.subparseNumber() method to parse the
1440         // number part of the input text
1441         position = decimalFormat.subparseNumber(text, position,
1442                 digitList, false, false, status);
1443 
1444         if (position == -1) {
1445             // Unable to parse the number successfully
1446             pos.index = oldStart;
1447             pos.errorIndex = oldStart;
1448             return null;
1449         }
1450 
1451         // If parse integer only is true and the parsing is broken at
1452         // decimal point, then pass/ignore all digits and move pointer
1453         // at the start of suffix, to process the suffix part
1454         if (isParseIntegerOnly()
1455                 && text.charAt(position) == symbols.getDecimalSeparator()) {
1456             position++; // Pass decimal character
1457             for (; position < text.length(); ++position) {
1458                 char ch = text.charAt(position);
1459                 int digit = ch - symbols.getZeroDigit();
1460                 if (digit < 0 || digit > 9) {
1461                     digit = Character.digit(ch, 10);
1462                     // Parse all digit characters
1463                     if (!(digit >= 0 && digit <= 9)) {
1464                         break;
1465                     }
1466                 }
1467             }
1468         }
1469 
1470         // Number parsed successfully; match prefix and
1471         // suffix to obtain multiplier
1472         pos.index = position;
1473         Number multiplier = computeParseMultiplier(text, pos,
1474                 gotPositive ? matchedPosPrefix : matchedNegPrefix,
1475                 status, gotPositive, gotNegative);
1476 
1477         if (multiplier.longValue() == -1L) {
1478             return null;
1479         } else if (multiplier.longValue() != 1L) {
1480             cnfMultiplier = multiplier;
1481         }
1482 
1483         // Special case INFINITY
1484         if (status[STATUS_INFINITE]) {
1485             if (status[STATUS_POSITIVE]) {
1486                 return Double.POSITIVE_INFINITY;
1487             } else {
1488                 return Double.NEGATIVE_INFINITY;
1489             }
1490         }
1491 
1492         if (isParseBigDecimal()) {
1493             BigDecimal bigDecimalResult = digitList.getBigDecimal();
1494 
1495             if (cnfMultiplier.longValue() != 1) {
1496                 bigDecimalResult = bigDecimalResult
1497                         .multiply(new BigDecimal(cnfMultiplier.toString()));
1498             }
1499             if (!status[STATUS_POSITIVE]) {
1500                 bigDecimalResult = bigDecimalResult.negate();
1501             }
1502             return bigDecimalResult;
1503         } else {
1504             Number cnfResult;
1505             if (digitList.fitsIntoLong(status[STATUS_POSITIVE], isParseIntegerOnly())) {
1506                 long longResult = digitList.getLong();
1507                 cnfResult = generateParseResult(longResult, false,
1508                         longResult < 0, status, cnfMultiplier);
1509             } else {
1510                 cnfResult = generateParseResult(digitList.getDouble(),
1511                         true, false, status, cnfMultiplier);
1512             }
1513             return cnfResult;
1514         }
1515     }
1516 
1517     /**
1518      * Returns the parsed result by multiplying the parsed number
1519      * with the multiplier representing the prefix and suffix.
1520      *
1521      * @param number parsed number component
1522      * @param gotDouble whether the parsed number contains decimal
1523      * @param gotLongMin whether the parsed number is Long.MIN
1524      * @param status boolean status flags indicating whether the
1525      *               value is infinite and whether it is positive
1526      * @param cnfMultiplier compact number multiplier
1527      * @return parsed result
1528      */
1529     private Number generateParseResult(Number number, boolean gotDouble,
1530             boolean gotLongMin, boolean[] status, Number cnfMultiplier) {
1531 
1532         if (gotDouble) {
1533             if (cnfMultiplier.longValue() != 1L) {
1534                 double doubleResult = number.doubleValue() * cnfMultiplier.doubleValue();
1535                 doubleResult = (double) convertIfNegative(doubleResult, status, gotLongMin);
1536                 // Check if a double can be represeneted as a long
1537                 long longResult = (long) doubleResult;
1538                 gotDouble = ((doubleResult != (double) longResult)
1539                         || (doubleResult == 0.0 && 1 / doubleResult < 0.0));
1540                 return gotDouble ? (Number) doubleResult : (Number) longResult;
1541             }
1542         } else {
1543             if (cnfMultiplier.longValue() != 1L) {
1544                 Number result;
1545                 if ((cnfMultiplier instanceof Long) && !gotLongMin) {
1546                     long longMultiplier = (long) cnfMultiplier;
1547                     try {
1548                         result = Math.multiplyExact(number.longValue(),
1549                                 longMultiplier);
1550                     } catch (ArithmeticException ex) {
1551                         // If number * longMultiplier can not be represented
1552                         // as long return as double
1553                         result = number.doubleValue() * cnfMultiplier.doubleValue();
1554                     }
1555                 } else {
1556                     // cnfMultiplier can not be stored into long or the number
1557                     // part is Long.MIN, return as double
1558                     result = number.doubleValue() * cnfMultiplier.doubleValue();
1559                 }
1560                 return convertIfNegative(result, status, gotLongMin);
1561             }
1562         }
1563 
1564         // Default number
1565         return convertIfNegative(number, status, gotLongMin);
1566     }
1567 
1568     /**
1569      * Negate the parsed value if the positive status flag is false
1570      * and the value is not a Long.MIN
1571      * @param number parsed value
1572      * @param status boolean status flags indicating whether the
1573      *               value is infinite and whether it is positive
1574      * @param gotLongMin whether the parsed number is Long.MIN
1575      * @return the resulting value
1576      */
1577     private Number convertIfNegative(Number number, boolean[] status,
1578             boolean gotLongMin) {
1579 
1580         if (!status[STATUS_POSITIVE] && !gotLongMin) {
1581             if (number instanceof Long) {
1582                 return -(long) number;
1583             } else {
1584                 return -(double) number;
1585             }
1586         } else {
1587             return number;
1588         }
1589     }
1590 
1591     /**
1592      * Attempts to match the given {@code affix} in the
1593      * specified {@code text}.
1594      */
1595     private boolean matchAffix(String text, int position, String affix,
1596             String defaultAffix, String matchedAffix) {
1597 
1598         // Check with the compact affixes which are non empty and
1599         // do not match with default affix
1600         if (!affix.isEmpty() && !affix.equals(defaultAffix)) {
1601             // Look ahead only for the longer match than the previous match
1602             if (matchedAffix.length() < affix.length()) {
1603                 if (text.regionMatches(position, affix, 0, affix.length())) {
1604                     return true;
1605                 }
1606             }
1607         }
1608         return false;
1609     }
1610 
1611     /**
1612      * Attempts to match given {@code prefix} and {@code suffix} in
1613      * the specified {@code text}.
1614      */
1615     private boolean matchPrefixAndSuffix(String text, int position, String prefix,
1616             String matchedPrefix, String defaultPrefix, String suffix,
1617             String matchedSuffix, String defaultSuffix) {
1618 
1619         // Check the compact pattern suffix only if there is a
1620         // compact prefix match or a default prefix match
1621         // because the compact prefix and suffix should match at the same
1622         // index to obtain the multiplier.
1623         // The prefix match is required because of the possibility of
1624         // same prefix at multiple index, in which case matching the suffix
1625         // is used to obtain the single match
1626 
1627         if (prefix.equals(matchedPrefix)
1628                 || matchedPrefix.equals(defaultPrefix)) {
1629             return matchAffix(text, position, suffix, defaultSuffix, matchedSuffix);
1630         }
1631         return false;
1632     }
1633 
1634     /**
1635      * Computes multiplier by matching the given {@code matchedPrefix}
1636      * and suffix in the specified {@code text} from the lists of
1637      * prefixes and suffixes extracted from compact patterns.
1638      *
1639      * @param text the string to parse
1640      * @param parsePosition the {@code ParsePosition} object representing the
1641      *                      index and error index of the parse string
1642      * @param matchedPrefix prefix extracted which needs to be matched to
1643      *                      obtain the multiplier
1644      * @param status upon return contains boolean status flags indicating
1645      *               whether the value is positive
1646      * @param gotPositive based on the prefix parsed; whether the number is positive
1647      * @param gotNegative based on the prefix parsed; whether the number is negative
1648      * @return the multiplier matching the prefix and suffix; -1 otherwise
1649      */
1650     private Number computeParseMultiplier(String text, ParsePosition parsePosition,
1651             String matchedPrefix, boolean[] status, boolean gotPositive,
1652             boolean gotNegative) {
1653 
1654         int position = parsePosition.index;
1655         boolean gotPos = false;
1656         boolean gotNeg = false;
1657         int matchedPosIndex = -1;
1658         int matchedNegIndex = -1;
1659         String matchedPosSuffix = "";
1660         String matchedNegSuffix = "";
1661         for (int compactIndex = 0; compactIndex < compactPatterns.length; compactIndex++) {
1662             String positivePrefix = positivePrefixes.get(compactIndex);
1663             String negativePrefix = negativePrefixes.get(compactIndex);
1664             String positiveSuffix = positiveSuffixes.get(compactIndex);
1665             String negativeSuffix = negativeSuffixes.get(compactIndex);
1666 
1667             // Do not break if a match occur; there is a possibility that the
1668             // subsequent affixes may match the longer subsequence in the given
1669             // string.
1670             // For example, matching "3Mdx" with "M", "Md" should match with "Md"
1671             boolean match = matchPrefixAndSuffix(text, position, positivePrefix, matchedPrefix,
1672                     defaultDecimalFormat.getPositivePrefix(), positiveSuffix,
1673                     matchedPosSuffix, defaultDecimalFormat.getPositiveSuffix());
1674             if (match) {
1675                 matchedPosIndex = compactIndex;
1676                 matchedPosSuffix = positiveSuffix;
1677                 gotPos = true;
1678             }
1679 
1680             match = matchPrefixAndSuffix(text, position, negativePrefix, matchedPrefix,
1681                     defaultDecimalFormat.getNegativePrefix(), negativeSuffix,
1682                     matchedNegSuffix, defaultDecimalFormat.getNegativeSuffix());
1683             if (match) {
1684                 matchedNegIndex = compactIndex;
1685                 matchedNegSuffix = negativeSuffix;
1686                 gotNeg = true;
1687             }
1688         }
1689 
1690         // Suffix in the given text does not match with the compact
1691         // patterns suffixes; match with the default suffix
1692         if (!gotPos && !gotNeg) {
1693             String positiveSuffix = defaultDecimalFormat.getPositiveSuffix();
1694             String negativeSuffix = defaultDecimalFormat.getNegativeSuffix();
1695             if (text.regionMatches(position, positiveSuffix, 0,
1696                     positiveSuffix.length())) {
1697                 // Matches the default positive prefix
1698                 matchedPosSuffix = positiveSuffix;
1699                 gotPos = true;
1700             }
1701             if (text.regionMatches(position, negativeSuffix, 0,
1702                     negativeSuffix.length())) {
1703                 // Matches the default negative suffix
1704                 matchedNegSuffix = negativeSuffix;
1705                 gotNeg = true;
1706             }
1707         }
1708 
1709         // If both matches, take the longest one
1710         if (gotPos && gotNeg) {
1711             if (matchedPosSuffix.length() > matchedNegSuffix.length()) {
1712                 gotNeg = false;
1713             } else if (matchedPosSuffix.length() < matchedNegSuffix.length()) {
1714                 gotPos = false;
1715             } else {
1716                 // If longest comparison fails; take the positive and negative
1717                 // sign of matching prefix
1718                 gotPos = gotPositive;
1719                 gotNeg = gotNegative;
1720             }
1721         }
1722 
1723         // Fail if neither or both
1724         if (gotPos == gotNeg) {
1725             parsePosition.errorIndex = position;
1726             return -1L;
1727         }
1728 
1729         Number cnfMultiplier;
1730         // Update the parse position index and take compact multiplier
1731         // only if it matches the compact suffix, not the default
1732         // suffix; else multiplier should be 1
1733         if (gotPos) {
1734             parsePosition.index = position + matchedPosSuffix.length();
1735             cnfMultiplier = matchedPosIndex != -1
1736                     ? divisors.get(matchedPosIndex) : 1L;
1737         } else {
1738             parsePosition.index = position + matchedNegSuffix.length();
1739             cnfMultiplier = matchedNegIndex != -1
1740                     ? divisors.get(matchedNegIndex) : 1L;
1741         }
1742         status[STATUS_POSITIVE] = gotPos;
1743         return cnfMultiplier;
1744     }
1745 
1746     /**
1747      * Reconstitutes this {@code CompactNumberFormat} from a stream
1748      * (that is, deserializes it) after performing some validations.
1749      * This method throws InvalidObjectException, if the stream data is invalid
1750      * because of the following reasons,
1751      * <ul>
1752      * <li> If any of the {@code decimalPattern}, {@code compactPatterns},
1753      * {@code symbols} or {@code roundingMode} is {@code null}.
1754      * <li> If the {@code decimalPattern} or the {@code compactPatterns} array
1755      * contains an invalid pattern or if a {@code null} appears in the array of
1756      * compact patterns.
1757      * <li> If the {@code minimumIntegerDigits} is greater than the
1758      * {@code maximumIntegerDigits} or the {@code minimumFractionDigits} is
1759      * greater than the {@code maximumFractionDigits}. This check is performed
1760      * by superclass's Object.
1761      * <li> If any of the minimum/maximum integer/fraction digit count is
1762      * negative. This check is performed by superclass's readObject.
1763      * <li> If the minimum or maximum integer digit count is larger than 309 or
1764      * if the minimum or maximum fraction digit count is larger than 340.
1765      * <li> If the grouping size is negative or larger than 127.
1766      * </ul>
1767      *
1768      * @param inStream the stream
1769      * @throws IOException if an I/O error occurs
1770      * @throws ClassNotFoundException if the class of a serialized object
1771      *         could not be found
1772      */
1773     private void readObject(ObjectInputStream inStream) throws IOException,
1774             ClassNotFoundException {
1775 
1776         inStream.defaultReadObject();
1777         if (decimalPattern == null || compactPatterns == null
1778                 || symbols == null || roundingMode == null) {
1779             throw new InvalidObjectException("One of the 'decimalPattern',"
1780                     + " 'compactPatterns', 'symbols' or 'roundingMode'"
1781                     + " is null");
1782         }
1783 
1784         // Check only the maximum counts because NumberFormat.readObject has
1785         // already ensured that the maximum is greater than the minimum count.
1786         if (getMaximumIntegerDigits() > DecimalFormat.DOUBLE_INTEGER_DIGITS
1787                 || getMaximumFractionDigits() > DecimalFormat.DOUBLE_FRACTION_DIGITS) {
1788             throw new InvalidObjectException("Digit count out of range");
1789         }
1790 
1791         // Check if the grouping size is negative, on an attempt to
1792         // put value > 127, it wraps around, so check just negative value
1793         if (groupingSize < 0) {
1794             throw new InvalidObjectException("Grouping size is negative");
1795         }
1796 
1797         try {
1798             processCompactPatterns();
1799         } catch (IllegalArgumentException ex) {
1800             throw new InvalidObjectException(ex.getMessage());
1801         }
1802 
1803         decimalFormat = new DecimalFormat(SPECIAL_PATTERN, symbols);
1804         decimalFormat.setMaximumFractionDigits(getMaximumFractionDigits());
1805         decimalFormat.setMinimumFractionDigits(getMinimumFractionDigits());
1806         decimalFormat.setMaximumIntegerDigits(getMaximumIntegerDigits());
1807         decimalFormat.setMinimumIntegerDigits(getMinimumIntegerDigits());
1808         decimalFormat.setRoundingMode(getRoundingMode());
1809         decimalFormat.setGroupingSize(getGroupingSize());
1810         decimalFormat.setGroupingUsed(isGroupingUsed());
1811         decimalFormat.setParseIntegerOnly(isParseIntegerOnly());
1812 
1813         try {
1814             defaultDecimalFormat = new DecimalFormat(decimalPattern, symbols);
1815             defaultDecimalFormat.setMaximumFractionDigits(0);
1816         } catch (IllegalArgumentException ex) {
1817             throw new InvalidObjectException(ex.getMessage());
1818         }
1819 
1820     }
1821 
1822     /**
1823      * Sets the maximum number of digits allowed in the integer portion of a
1824      * number.
1825      * The maximum allowed integer range is 309, if the {@code newValue} &gt; 309,
1826      * then the maximum integer digits count is set to 309. Negative input
1827      * values are replaced with 0.
1828      *
1829      * @param newValue the maximum number of integer digits to be shown
1830      * @see #getMaximumIntegerDigits()
1831      */
1832     @Override
1833     public void setMaximumIntegerDigits(int newValue) {
1834         // The maximum integer digits is checked with the allowed range before calling
1835         // the DecimalFormat.setMaximumIntegerDigits, which performs the negative check
1836         // on the given newValue while setting it as max integer digits.
1837         // For example, if a negative value is specified, it is replaced with 0
1838         decimalFormat.setMaximumIntegerDigits(Math.min(newValue,
1839                 DecimalFormat.DOUBLE_INTEGER_DIGITS));
1840         super.setMaximumIntegerDigits(decimalFormat.getMaximumIntegerDigits());
1841         if (decimalFormat.getMinimumIntegerDigits() > decimalFormat.getMaximumIntegerDigits()) {
1842             decimalFormat.setMinimumIntegerDigits(decimalFormat.getMaximumIntegerDigits());
1843             super.setMinimumIntegerDigits(decimalFormat.getMinimumIntegerDigits());
1844         }
1845     }
1846 
1847     /**
1848      * Sets the minimum number of digits allowed in the integer portion of a
1849      * number.
1850      * The maximum allowed integer range is 309, if the {@code newValue} &gt; 309,
1851      * then the minimum integer digits count is set to 309. Negative input
1852      * values are replaced with 0.
1853      *
1854      * @param newValue the minimum number of integer digits to be shown
1855      * @see #getMinimumIntegerDigits()
1856      */
1857     @Override
1858     public void setMinimumIntegerDigits(int newValue) {
1859         // The minimum integer digits is checked with the allowed range before calling
1860         // the DecimalFormat.setMinimumIntegerDigits, which performs check on the given
1861         // newValue while setting it as min integer digits. For example, if a negative
1862         // value is specified, it is replaced with 0
1863         decimalFormat.setMinimumIntegerDigits(Math.min(newValue,
1864                 DecimalFormat.DOUBLE_INTEGER_DIGITS));
1865         super.setMinimumIntegerDigits(decimalFormat.getMinimumIntegerDigits());
1866         if (decimalFormat.getMinimumIntegerDigits() > decimalFormat.getMaximumIntegerDigits()) {
1867             decimalFormat.setMaximumIntegerDigits(decimalFormat.getMinimumIntegerDigits());
1868             super.setMaximumIntegerDigits(decimalFormat.getMaximumIntegerDigits());
1869         }
1870     }
1871 
1872     /**
1873      * Sets the minimum number of digits allowed in the fraction portion of a
1874      * number.
1875      * The maximum allowed fraction range is 340, if the {@code newValue} &gt; 340,
1876      * then the minimum fraction digits count is set to 340. Negative input
1877      * values are replaced with 0.
1878      *
1879      * @param newValue the minimum number of fraction digits to be shown
1880      * @see #getMinimumFractionDigits()
1881      */
1882     @Override
1883     public void setMinimumFractionDigits(int newValue) {
1884         // The minimum fraction digits is checked with the allowed range before
1885         // calling the DecimalFormat.setMinimumFractionDigits, which performs
1886         // check on the given newValue while setting it as min fraction
1887         // digits. For example, if a negative value is specified, it is
1888         // replaced with 0
1889         decimalFormat.setMinimumFractionDigits(Math.min(newValue,
1890                 DecimalFormat.DOUBLE_FRACTION_DIGITS));
1891         super.setMinimumFractionDigits(decimalFormat.getMinimumFractionDigits());
1892         if (decimalFormat.getMinimumFractionDigits() > decimalFormat.getMaximumFractionDigits()) {
1893             decimalFormat.setMaximumFractionDigits(decimalFormat.getMinimumFractionDigits());
1894             super.setMaximumFractionDigits(decimalFormat.getMaximumFractionDigits());
1895         }
1896     }
1897 
1898     /**
1899      * Sets the maximum number of digits allowed in the fraction portion of a
1900      * number.
1901      * The maximum allowed fraction range is 340, if the {@code newValue} &gt; 340,
1902      * then the maximum fraction digits count is set to 340. Negative input
1903      * values are replaced with 0.
1904      *
1905      * @param newValue the maximum number of fraction digits to be shown
1906      * @see #getMaximumFractionDigits()
1907      */
1908     @Override
1909     public void setMaximumFractionDigits(int newValue) {
1910         // The maximum fraction digits is checked with the allowed range before
1911         // calling the DecimalFormat.setMaximumFractionDigits, which performs
1912         // check on the given newValue while setting it as max fraction digits.
1913         // For example, if a negative value is specified, it is replaced with 0
1914         decimalFormat.setMaximumFractionDigits(Math.min(newValue,
1915                 DecimalFormat.DOUBLE_FRACTION_DIGITS));
1916         super.setMaximumFractionDigits(decimalFormat.getMaximumFractionDigits());
1917         if (decimalFormat.getMinimumFractionDigits() > decimalFormat.getMaximumFractionDigits()) {
1918             decimalFormat.setMinimumFractionDigits(decimalFormat.getMaximumFractionDigits());
1919             super.setMinimumFractionDigits(decimalFormat.getMinimumFractionDigits());
1920         }
1921     }
1922 
1923     /**
1924      * Gets the {@link java.math.RoundingMode} used in this
1925      * {@code CompactNumberFormat}.
1926      *
1927      * @return the {@code RoundingMode} used for this
1928      *         {@code CompactNumberFormat}
1929      * @see #setRoundingMode(RoundingMode)
1930      */
1931     @Override
1932     public RoundingMode getRoundingMode() {
1933         return roundingMode;
1934     }
1935 
1936     /**
1937      * Sets the {@link java.math.RoundingMode} used in this
1938      * {@code CompactNumberFormat}.
1939      *
1940      * @param roundingMode the {@code RoundingMode} to be used
1941      * @see #getRoundingMode()
1942      * @throws NullPointerException if {@code roundingMode} is {@code null}
1943      */
1944     @Override
1945     public void setRoundingMode(RoundingMode roundingMode) {
1946         decimalFormat.setRoundingMode(roundingMode);
1947         this.roundingMode = roundingMode;
1948     }
1949 
1950     /**
1951      * Returns the grouping size. Grouping size is the number of digits between
1952      * grouping separators in the integer portion of a number. For example,
1953      * in the compact number {@code "12,347 trillion"} for the
1954      * {@link java.util.Locale#US US locale}, the grouping size is 3.
1955      *
1956      * @return the grouping size
1957      * @see #setGroupingSize
1958      * @see java.text.NumberFormat#isGroupingUsed
1959      * @see java.text.DecimalFormatSymbols#getGroupingSeparator
1960      */
1961     public int getGroupingSize() {
1962         return groupingSize;
1963     }
1964 
1965     /**
1966      * Sets the grouping size. Grouping size is the number of digits between
1967      * grouping separators in the integer portion of a number. For example,
1968      * in the compact number {@code "12,347 trillion"} for the
1969      * {@link java.util.Locale#US US locale}, the grouping size is 3. The grouping
1970      * size must be greater than or equal to zero and less than or equal to 127.
1971      *
1972      * @param newValue the new grouping size
1973      * @see #getGroupingSize
1974      * @see java.text.NumberFormat#setGroupingUsed
1975      * @see java.text.DecimalFormatSymbols#setGroupingSeparator
1976      * @throws IllegalArgumentException if {@code newValue} is negative or
1977      * larger than 127
1978      */
1979     public void setGroupingSize(int newValue) {
1980         if (newValue < 0 || newValue > 127) {
1981             throw new IllegalArgumentException(
1982                     "The value passed is negative or larger than 127");
1983         }
1984         groupingSize = (byte) newValue;
1985         decimalFormat.setGroupingSize(groupingSize);
1986     }
1987 
1988     /**
1989      * Returns true if grouping is used in this format. For example, with
1990      * grouping on and grouping size set to 3, the number {@code 12346567890987654}
1991      * can be formatted as {@code "12,347 trillion"} in the
1992      * {@link java.util.Locale#US US locale}.
1993      * The grouping separator is locale dependent.
1994      *
1995      * @return {@code true} if grouping is used;
1996      *         {@code false} otherwise
1997      * @see #setGroupingUsed
1998      */
1999     @Override
2000     public boolean isGroupingUsed() {
2001         return super.isGroupingUsed();
2002     }
2003 
2004     /**
2005      * Sets whether or not grouping will be used in this format.
2006      *
2007      * @param newValue {@code true} if grouping is used;
2008      *                 {@code false} otherwise
2009      * @see #isGroupingUsed
2010      */
2011     @Override
2012     public void setGroupingUsed(boolean newValue) {
2013         decimalFormat.setGroupingUsed(newValue);
2014         super.setGroupingUsed(newValue);
2015     }
2016 
2017     /**
2018      * Returns true if this format parses only an integer from the number
2019      * component of a compact number.
2020      * Parsing an integer means that only an integer is considered from the
2021      * number component, prefix/suffix is still considered to compute the
2022      * resulting output.
2023      * For example, in the {@link java.util.Locale#US US locale}, if this method
2024      * returns {@code true}, the string {@code "1234.78 thousand"} would be
2025      * parsed as the value {@code 1234000} (1234 (integer part) * 1000
2026      * (thousand)) and the fractional part would be skipped.
2027      * The exact format accepted by the parse operation is locale dependent.
2028      *
2029      * @return {@code true} if compact numbers should be parsed as integers
2030      *         only; {@code false} otherwise
2031      */
2032     @Override
2033     public boolean isParseIntegerOnly() {
2034         return super.isParseIntegerOnly();
2035     }
2036 
2037     /**
2038      * Sets whether or not this format parses only an integer from the number
2039      * component of a compact number.
2040      *
2041      * @param value {@code true} if compact numbers should be parsed as
2042      *              integers only; {@code false} otherwise
2043      * @see #isParseIntegerOnly
2044      */
2045     @Override
2046     public void setParseIntegerOnly(boolean value) {
2047         decimalFormat.setParseIntegerOnly(value);
2048         super.setParseIntegerOnly(value);
2049     }
2050 
2051     /**
2052      * Returns whether the {@link #parse(String, ParsePosition)}
2053      * method returns {@code BigDecimal}. The default value is false.
2054      *
2055      * @return {@code true} if the parse method returns BigDecimal;
2056      *         {@code false} otherwise
2057      * @see #setParseBigDecimal
2058      *
2059      */
2060     public boolean isParseBigDecimal() {
2061         return parseBigDecimal;
2062     }
2063 
2064     /**
2065      * Sets whether the {@link #parse(String, ParsePosition)}
2066      * method returns {@code BigDecimal}.
2067      *
2068      * @param newValue {@code true} if the parse method returns BigDecimal;
2069      *                 {@code false} otherwise
2070      * @see #isParseBigDecimal
2071      *
2072      */
2073     public void setParseBigDecimal(boolean newValue) {
2074         parseBigDecimal = newValue;
2075     }
2076 
2077     /**
2078      * Checks if this {@code CompactNumberFormat} is equal to the
2079      * specified {@code obj}. The objects of type {@code CompactNumberFormat}
2080      * are compared, other types return false; obeys the general contract of
2081      * {@link java.lang.Object#equals(java.lang.Object) Object.equals}.
2082      *
2083      * @param obj the object to compare with
2084      * @return true if this is equal to the other {@code CompactNumberFormat}
2085      */
2086     @Override
2087     public boolean equals(Object obj) {
2088 
2089         if (!super.equals(obj)) {
2090             return false;
2091         }
2092 
2093         CompactNumberFormat other = (CompactNumberFormat) obj;
2094         return decimalPattern.equals(other.decimalPattern)
2095                 && symbols.equals(other.symbols)
2096                 && Arrays.equals(compactPatterns, other.compactPatterns)
2097                 && roundingMode.equals(other.roundingMode)
2098                 && groupingSize == other.groupingSize
2099                 && parseBigDecimal == other.parseBigDecimal;
2100     }
2101 
2102     /**
2103      * Returns the hash code for this {@code CompactNumberFormat} instance.
2104      *
2105      * @return hash code for this {@code CompactNumberFormat}
2106      */
2107     @Override
2108     public int hashCode() {
2109         return 31 * super.hashCode() +
2110                 Objects.hash(decimalPattern, symbols, roundingMode)
2111                 + Arrays.hashCode(compactPatterns) + groupingSize
2112                 + Boolean.hashCode(parseBigDecimal);
2113     }
2114 
2115     /**
2116      * Creates and returns a copy of this {@code CompactNumberFormat}
2117      * instance.
2118      *
2119      * @return a clone of this instance
2120      */
2121     @Override
2122     public CompactNumberFormat clone() {
2123         CompactNumberFormat other = (CompactNumberFormat) super.clone();
2124         other.compactPatterns = compactPatterns.clone();
2125         other.symbols = (DecimalFormatSymbols) symbols.clone();
2126         return other;
2127     }
2128 
2129 }
2130