1 /*
   2  * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "compiler/compileLog.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/convertnode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/matcher.hpp"
  35 #include "opto/memnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/opcodes.hpp"
  38 #include "opto/opaquenode.hpp"
  39 #include "opto/superword.hpp"
  40 #include "opto/vectornode.hpp"
  41 #include "opto/movenode.hpp"
  42 
  43 //
  44 //                  S U P E R W O R D   T R A N S F O R M
  45 //=============================================================================
  46 
  47 //------------------------------SuperWord---------------------------
  48 SuperWord::SuperWord(PhaseIdealLoop* phase) :
  49   _phase(phase),
  50   _igvn(phase->_igvn),
  51   _arena(phase->C->comp_arena()),
  52   _packset(arena(), 8,  0, NULL),         // packs for the current block
  53   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
  54   _block(arena(), 8,  0, NULL),           // nodes in current block
  55   _post_block(arena(), 8, 0, NULL),       // nodes common to current block which are marked as post loop vectorizable
  56   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
  57   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
  58   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
  59   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
  60   _clone_map(phase->C->clone_map()),      // map of nodes created in cloning
  61   _cmovev_kit(_arena, this),              // map to facilitate CMoveVD creation
  62   _align_to_ref(NULL),                    // memory reference to align vectors to
  63   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
  64   _dg(_arena),                            // dependence graph
  65   _visited(arena()),                      // visited node set
  66   _post_visited(arena()),                 // post visited node set
  67   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
  68   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
  69   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
  70   _lpt(NULL),                             // loop tree node
  71   _lp(NULL),                              // LoopNode
  72   _bb(NULL),                              // basic block
  73   _iv(NULL),                              // induction var
  74   _race_possible(false),                  // cases where SDMU is true
  75   _early_return(true),                    // analysis evaluations routine
  76   _num_work_vecs(0),                      // amount of vector work we have
  77   _num_reductions(0),                     // amount of reduction work we have
  78   _do_vector_loop(phase->C->do_vector_loop()),  // whether to do vectorization/simd style
  79   _do_reserve_copy(DoReserveCopyInSuperWord),
  80   _ii_first(-1),                          // first loop generation index - only if do_vector_loop()
  81   _ii_last(-1),                           // last loop generation index - only if do_vector_loop()
  82   _ii_order(arena(), 8, 0, 0)
  83 {
  84 #ifndef PRODUCT
  85   _vector_loop_debug = 0;
  86   if (_phase->C->method() != NULL) {
  87     _vector_loop_debug = phase->C->directive()->VectorizeDebugOption;
  88   }
  89 
  90 #endif
  91 }
  92 
  93 //------------------------------transform_loop---------------------------
  94 void SuperWord::transform_loop(IdealLoopTree* lpt, bool do_optimization) {
  95   assert(UseSuperWord, "should be");
  96   // Do vectors exist on this architecture?
  97   if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
  98 
  99   assert(lpt->_head->is_CountedLoop(), "must be");
 100   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
 101 
 102   if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
 103 
 104   bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
 105   if (post_loop_allowed) {
 106     if (cl->is_reduction_loop()) return; // no predication mapping
 107     Node *limit = cl->limit();
 108     if (limit->is_Con()) return; // non constant limits only
 109     // Now check the limit for expressions we do not handle
 110     if (limit->is_Add()) {
 111       Node *in2 = limit->in(2);
 112       if (in2->is_Con()) {
 113         int val = in2->get_int();
 114         // should not try to program these cases
 115         if (val < 0) return;
 116       }
 117     }
 118   }
 119 
 120   // skip any loop that has not been assigned max unroll by analysis
 121   if (do_optimization) {
 122     if (SuperWordLoopUnrollAnalysis && cl->slp_max_unroll() == 0) return;
 123   }
 124 
 125   // Check for no control flow in body (other than exit)
 126   Node *cl_exit = cl->loopexit();
 127   if (cl->is_main_loop() && (cl_exit->in(0) != lpt->_head)) {
 128     #ifndef PRODUCT
 129       if (TraceSuperWord) {
 130         tty->print_cr("SuperWord::transform_loop: loop too complicated, cl_exit->in(0) != lpt->_head");
 131         tty->print("cl_exit %d", cl_exit->_idx); cl_exit->dump();
 132         tty->print("cl_exit->in(0) %d", cl_exit->in(0)->_idx); cl_exit->in(0)->dump();
 133         tty->print("lpt->_head %d", lpt->_head->_idx); lpt->_head->dump();
 134         lpt->dump_head();
 135       }
 136     #endif
 137     return;
 138   }
 139 
 140   // Make sure the are no extra control users of the loop backedge
 141   if (cl->back_control()->outcnt() != 1) {
 142     return;
 143   }
 144 
 145   // Skip any loops already optimized by slp
 146   if (cl->is_vectorized_loop()) return;
 147 
 148   if (cl->is_main_loop()) {
 149     // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
 150     CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
 151     if (pre_end == NULL) return;
 152     Node *pre_opaq1 = pre_end->limit();
 153     if (pre_opaq1->Opcode() != Op_Opaque1) return;
 154   }
 155 
 156   init(); // initialize data structures
 157 
 158   set_lpt(lpt);
 159   set_lp(cl);
 160 
 161   // For now, define one block which is the entire loop body
 162   set_bb(cl);
 163 
 164   if (do_optimization) {
 165     assert(_packset.length() == 0, "packset must be empty");
 166     SLP_extract();
 167     if (PostLoopMultiversioning && Matcher::has_predicated_vectors()) {
 168       if (cl->is_vectorized_loop() && cl->is_main_loop() && !cl->is_reduction_loop()) {
 169         IdealLoopTree *lpt_next = lpt->_next;
 170         CountedLoopNode *cl_next = lpt_next->_head->as_CountedLoop();
 171         _phase->has_range_checks(lpt_next);
 172         if (cl_next->is_post_loop() && !cl_next->range_checks_present()) {
 173           if (!cl_next->is_vectorized_loop()) {
 174             int slp_max_unroll_factor = cl->slp_max_unroll();
 175             cl_next->set_slp_max_unroll(slp_max_unroll_factor);
 176           }
 177         }
 178       }
 179     }
 180   }
 181 }
 182 
 183 //------------------------------early unrolling analysis------------------------------
 184 void SuperWord::unrolling_analysis(int &local_loop_unroll_factor) {
 185   bool is_slp = true;
 186   ResourceMark rm;
 187   size_t ignored_size = lpt()->_body.size();
 188   int *ignored_loop_nodes = NEW_RESOURCE_ARRAY(int, ignored_size);
 189   Node_Stack nstack((int)ignored_size);
 190   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
 191   Node *cl_exit = cl->loopexit();
 192   int rpo_idx = _post_block.length();
 193 
 194   assert(rpo_idx == 0, "post loop block is empty");
 195 
 196   // First clear the entries
 197   for (uint i = 0; i < lpt()->_body.size(); i++) {
 198     ignored_loop_nodes[i] = -1;
 199   }
 200 
 201   int max_vector = Matcher::max_vector_size(T_BYTE);
 202   bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
 203 
 204   // Process the loop, some/all of the stack entries will not be in order, ergo
 205   // need to preprocess the ignored initial state before we process the loop
 206   for (uint i = 0; i < lpt()->_body.size(); i++) {
 207     Node* n = lpt()->_body.at(i);
 208     if (n == cl->incr() ||
 209       n->is_reduction() ||
 210       n->is_AddP() ||
 211       n->is_Cmp() ||
 212       n->is_IfTrue() ||
 213       n->is_CountedLoop() ||
 214       (n == cl_exit)) {
 215       ignored_loop_nodes[i] = n->_idx;
 216       continue;
 217     }
 218 
 219     if (n->is_If()) {
 220       IfNode *iff = n->as_If();
 221       if (iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN) {
 222         if (lpt()->is_loop_exit(iff)) {
 223           ignored_loop_nodes[i] = n->_idx;
 224           continue;
 225         }
 226       }
 227     }
 228 
 229     if (n->is_Phi() && (n->bottom_type() == Type::MEMORY)) {
 230       Node* n_tail = n->in(LoopNode::LoopBackControl);
 231       if (n_tail != n->in(LoopNode::EntryControl)) {
 232         if (!n_tail->is_Mem()) {
 233           is_slp = false;
 234           break;
 235         }
 236       }
 237     }
 238 
 239     // This must happen after check of phi/if
 240     if (n->is_Phi() || n->is_If()) {
 241       ignored_loop_nodes[i] = n->_idx;
 242       continue;
 243     }
 244 
 245     if (n->is_LoadStore() || n->is_MergeMem() ||
 246       (n->is_Proj() && !n->as_Proj()->is_CFG())) {
 247       is_slp = false;
 248       break;
 249     }
 250 
 251     // Ignore nodes with non-primitive type.
 252     BasicType bt;
 253     if (n->is_Mem()) {
 254       bt = n->as_Mem()->memory_type();
 255     } else {
 256       bt = n->bottom_type()->basic_type();
 257     }
 258     if (is_java_primitive(bt) == false) {
 259       ignored_loop_nodes[i] = n->_idx;
 260       continue;
 261     }
 262 
 263     if (n->is_Mem()) {
 264       MemNode* current = n->as_Mem();
 265       Node* adr = n->in(MemNode::Address);
 266       Node* n_ctrl = _phase->get_ctrl(adr);
 267 
 268       // save a queue of post process nodes
 269       if (n_ctrl != NULL && lpt()->is_member(_phase->get_loop(n_ctrl))) {
 270         // Process the memory expression
 271         int stack_idx = 0;
 272         bool have_side_effects = true;
 273         if (adr->is_AddP() == false) {
 274           nstack.push(adr, stack_idx++);
 275         } else {
 276           // Mark the components of the memory operation in nstack
 277           SWPointer p1(current, this, &nstack, true);
 278           have_side_effects = p1.node_stack()->is_nonempty();
 279         }
 280 
 281         // Process the pointer stack
 282         while (have_side_effects) {
 283           Node* pointer_node = nstack.node();
 284           for (uint j = 0; j < lpt()->_body.size(); j++) {
 285             Node* cur_node = lpt()->_body.at(j);
 286             if (cur_node == pointer_node) {
 287               ignored_loop_nodes[j] = cur_node->_idx;
 288               break;
 289             }
 290           }
 291           nstack.pop();
 292           have_side_effects = nstack.is_nonempty();
 293         }
 294       }
 295     }
 296   }
 297 
 298   if (is_slp) {
 299     // Now we try to find the maximum supported consistent vector which the machine
 300     // description can use
 301     bool small_basic_type = false;
 302     for (uint i = 0; i < lpt()->_body.size(); i++) {
 303       if (ignored_loop_nodes[i] != -1) continue;
 304 
 305       BasicType bt;
 306       Node* n = lpt()->_body.at(i);
 307       if (n->is_Mem()) {
 308         bt = n->as_Mem()->memory_type();
 309       } else {
 310         bt = n->bottom_type()->basic_type();
 311       }
 312 
 313       if (post_loop_allowed) {
 314         if (!small_basic_type) {
 315           switch (bt) {
 316           case T_CHAR:
 317           case T_BYTE:
 318           case T_SHORT:
 319             small_basic_type = true;
 320             break;
 321 
 322           case T_LONG:
 323             // TODO: Remove when support completed for mask context with LONG.
 324             //       Support needs to be augmented for logical qword operations, currently we map to dword
 325             //       buckets for vectors on logicals as these were legacy.
 326             small_basic_type = true;
 327             break;
 328           }
 329         }
 330       }
 331 
 332       if (is_java_primitive(bt) == false) continue;
 333 
 334       int cur_max_vector = Matcher::max_vector_size(bt);
 335 
 336       // If a max vector exists which is not larger than _local_loop_unroll_factor
 337       // stop looking, we already have the max vector to map to.
 338       if (cur_max_vector < local_loop_unroll_factor) {
 339         is_slp = false;
 340         if (TraceSuperWordLoopUnrollAnalysis) {
 341           tty->print_cr("slp analysis fails: unroll limit greater than max vector\n");
 342         }
 343         break;
 344       }
 345 
 346       // Map the maximal common vector
 347       if (VectorNode::implemented(n->Opcode(), cur_max_vector, bt)) {
 348         if (cur_max_vector < max_vector) {
 349           max_vector = cur_max_vector;
 350         }
 351 
 352         // We only process post loops on predicated targets where we want to
 353         // mask map the loop to a single iteration
 354         if (post_loop_allowed) {
 355           _post_block.at_put_grow(rpo_idx++, n);
 356         }
 357       }
 358     }
 359     if (is_slp) {
 360       local_loop_unroll_factor = max_vector;
 361       cl->mark_passed_slp();
 362     }
 363     cl->mark_was_slp();
 364     if (cl->is_main_loop()) {
 365       cl->set_slp_max_unroll(local_loop_unroll_factor);
 366     } else if (post_loop_allowed) {
 367       if (!small_basic_type) {
 368         // avoid replication context for small basic types in programmable masked loops
 369         cl->set_slp_max_unroll(local_loop_unroll_factor);
 370       }
 371     }
 372   }
 373 }
 374 
 375 //------------------------------SLP_extract---------------------------
 376 // Extract the superword level parallelism
 377 //
 378 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
 379 //    this list from first to last, all definitions are visited before their uses.
 380 //
 381 // 2) A point-to-point dependence graph is constructed between memory references.
 382 //    This simplies the upcoming "independence" checker.
 383 //
 384 // 3) The maximum depth in the node graph from the beginning of the block
 385 //    to each node is computed.  This is used to prune the graph search
 386 //    in the independence checker.
 387 //
 388 // 4) For integer types, the necessary bit width is propagated backwards
 389 //    from stores to allow packed operations on byte, char, and short
 390 //    integers.  This reverses the promotion to type "int" that javac
 391 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
 392 //
 393 // 5) One of the memory references is picked to be an aligned vector reference.
 394 //    The pre-loop trip count is adjusted to align this reference in the
 395 //    unrolled body.
 396 //
 397 // 6) The initial set of pack pairs is seeded with memory references.
 398 //
 399 // 7) The set of pack pairs is extended by following use->def and def->use links.
 400 //
 401 // 8) The pairs are combined into vector sized packs.
 402 //
 403 // 9) Reorder the memory slices to co-locate members of the memory packs.
 404 //
 405 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
 406 //    inserting scalar promotion, vector creation from multiple scalars, and
 407 //    extraction of scalar values from vectors.
 408 //
 409 void SuperWord::SLP_extract() {
 410 
 411 #ifndef PRODUCT
 412   if (_do_vector_loop && TraceSuperWord) {
 413     tty->print("SuperWord::SLP_extract\n");
 414     tty->print("input loop\n");
 415     _lpt->dump_head();
 416     _lpt->dump();
 417     for (uint i = 0; i < _lpt->_body.size(); i++) {
 418       _lpt->_body.at(i)->dump();
 419     }
 420   }
 421 #endif
 422   // Ready the block
 423   if (!construct_bb()) {
 424     return; // Exit if no interesting nodes or complex graph.
 425   }
 426 
 427   // build    _dg, _disjoint_ptrs
 428   dependence_graph();
 429 
 430   // compute function depth(Node*)
 431   compute_max_depth();
 432 
 433   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
 434   bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
 435   if (cl->is_main_loop()) {
 436     if (_do_vector_loop) {
 437       if (mark_generations() != -1) {
 438         hoist_loads_in_graph(); // this only rebuild the graph; all basic structs need rebuild explicitly
 439 
 440         if (!construct_bb()) {
 441           return; // Exit if no interesting nodes or complex graph.
 442         }
 443         dependence_graph();
 444         compute_max_depth();
 445       }
 446 
 447 #ifndef PRODUCT
 448       if (TraceSuperWord) {
 449         tty->print_cr("\nSuperWord::_do_vector_loop: graph after hoist_loads_in_graph");
 450         _lpt->dump_head();
 451         for (int j = 0; j < _block.length(); j++) {
 452           Node* n = _block.at(j);
 453           int d = depth(n);
 454           for (int i = 0; i < d; i++) tty->print("%s", "  ");
 455           tty->print("%d :", d);
 456           n->dump();
 457         }
 458       }
 459 #endif
 460     }
 461 
 462     compute_vector_element_type();
 463 
 464     // Attempt vectorization
 465 
 466     find_adjacent_refs();
 467 
 468     extend_packlist();
 469 
 470     if (_do_vector_loop) {
 471       if (_packset.length() == 0) {
 472         if (TraceSuperWord) {
 473           tty->print_cr("\nSuperWord::_do_vector_loop DFA could not build packset, now trying to build anyway");
 474         }
 475         pack_parallel();
 476       }
 477     }
 478 
 479     combine_packs();
 480 
 481     construct_my_pack_map();
 482 
 483     if (_do_vector_loop) {
 484       merge_packs_to_cmovd();
 485     }
 486 
 487     filter_packs();
 488 
 489     schedule();
 490   } else if (post_loop_allowed) {
 491     int saved_mapped_unroll_factor = cl->slp_max_unroll();
 492     if (saved_mapped_unroll_factor) {
 493       int vector_mapped_unroll_factor = saved_mapped_unroll_factor;
 494 
 495       // now reset the slp_unroll_factor so that we can check the analysis mapped
 496       // what the vector loop was mapped to
 497       cl->set_slp_max_unroll(0);
 498 
 499       // do the analysis on the post loop
 500       unrolling_analysis(vector_mapped_unroll_factor);
 501 
 502       // if our analyzed loop is a canonical fit, start processing it
 503       if (vector_mapped_unroll_factor == saved_mapped_unroll_factor) {
 504         // now add the vector nodes to packsets
 505         for (int i = 0; i < _post_block.length(); i++) {
 506           Node* n = _post_block.at(i);
 507           Node_List* singleton = new Node_List();
 508           singleton->push(n);
 509           _packset.append(singleton);
 510           set_my_pack(n, singleton);
 511         }
 512 
 513         // map base types for vector usage
 514         compute_vector_element_type();
 515       } else {
 516         return;
 517       }
 518     } else {
 519       // for some reason we could not map the slp analysis state of the vectorized loop
 520       return;
 521     }
 522   }
 523 
 524   output();
 525 }
 526 
 527 //------------------------------find_adjacent_refs---------------------------
 528 // Find the adjacent memory references and create pack pairs for them.
 529 // This is the initial set of packs that will then be extended by
 530 // following use->def and def->use links.  The align positions are
 531 // assigned relative to the reference "align_to_ref"
 532 void SuperWord::find_adjacent_refs() {
 533   // Get list of memory operations
 534   Node_List memops;
 535   for (int i = 0; i < _block.length(); i++) {
 536     Node* n = _block.at(i);
 537     if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
 538         is_java_primitive(n->as_Mem()->memory_type())) {
 539       int align = memory_alignment(n->as_Mem(), 0);
 540       if (align != bottom_align) {
 541         memops.push(n);
 542       }
 543     }
 544   }
 545 
 546   Node_List align_to_refs;
 547   int best_iv_adjustment = 0;
 548   MemNode* best_align_to_mem_ref = NULL;
 549 
 550   while (memops.size() != 0) {
 551     // Find a memory reference to align to.
 552     MemNode* mem_ref = find_align_to_ref(memops);
 553     if (mem_ref == NULL) break;
 554     align_to_refs.push(mem_ref);
 555     int iv_adjustment = get_iv_adjustment(mem_ref);
 556 
 557     if (best_align_to_mem_ref == NULL) {
 558       // Set memory reference which is the best from all memory operations
 559       // to be used for alignment. The pre-loop trip count is modified to align
 560       // this reference to a vector-aligned address.
 561       best_align_to_mem_ref = mem_ref;
 562       best_iv_adjustment = iv_adjustment;
 563       NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
 564     }
 565 
 566     SWPointer align_to_ref_p(mem_ref, this, NULL, false);
 567     // Set alignment relative to "align_to_ref" for all related memory operations.
 568     for (int i = memops.size() - 1; i >= 0; i--) {
 569       MemNode* s = memops.at(i)->as_Mem();
 570       if (isomorphic(s, mem_ref) &&
 571            (!_do_vector_loop || same_origin_idx(s, mem_ref))) {
 572         SWPointer p2(s, this, NULL, false);
 573         if (p2.comparable(align_to_ref_p)) {
 574           int align = memory_alignment(s, iv_adjustment);
 575           set_alignment(s, align);
 576         }
 577       }
 578     }
 579 
 580     // Create initial pack pairs of memory operations for which
 581     // alignment is set and vectors will be aligned.
 582     bool create_pack = true;
 583     if (memory_alignment(mem_ref, best_iv_adjustment) == 0 || _do_vector_loop) {
 584       if (!Matcher::misaligned_vectors_ok()) {
 585         int vw = vector_width(mem_ref);
 586         int vw_best = vector_width(best_align_to_mem_ref);
 587         if (vw > vw_best) {
 588           // Do not vectorize a memory access with more elements per vector
 589           // if unaligned memory access is not allowed because number of
 590           // iterations in pre-loop will be not enough to align it.
 591           create_pack = false;
 592         } else {
 593           SWPointer p2(best_align_to_mem_ref, this, NULL, false);
 594           if (align_to_ref_p.invar() != p2.invar()) {
 595             // Do not vectorize memory accesses with different invariants
 596             // if unaligned memory accesses are not allowed.
 597             create_pack = false;
 598           }
 599         }
 600       }
 601     } else {
 602       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
 603         // Can't allow vectorization of unaligned memory accesses with the
 604         // same type since it could be overlapped accesses to the same array.
 605         create_pack = false;
 606       } else {
 607         // Allow independent (different type) unaligned memory operations
 608         // if HW supports them.
 609         if (!Matcher::misaligned_vectors_ok()) {
 610           create_pack = false;
 611         } else {
 612           // Check if packs of the same memory type but
 613           // with a different alignment were created before.
 614           for (uint i = 0; i < align_to_refs.size(); i++) {
 615             MemNode* mr = align_to_refs.at(i)->as_Mem();
 616             if (same_velt_type(mr, mem_ref) &&
 617                 memory_alignment(mr, iv_adjustment) != 0)
 618               create_pack = false;
 619           }
 620         }
 621       }
 622     }
 623     if (create_pack) {
 624       for (uint i = 0; i < memops.size(); i++) {
 625         Node* s1 = memops.at(i);
 626         int align = alignment(s1);
 627         if (align == top_align) continue;
 628         for (uint j = 0; j < memops.size(); j++) {
 629           Node* s2 = memops.at(j);
 630           if (alignment(s2) == top_align) continue;
 631           if (s1 != s2 && are_adjacent_refs(s1, s2)) {
 632             if (stmts_can_pack(s1, s2, align)) {
 633               Node_List* pair = new Node_List();
 634               pair->push(s1);
 635               pair->push(s2);
 636               if (!_do_vector_loop || same_origin_idx(s1, s2)) {
 637                 _packset.append(pair);
 638               }
 639             }
 640           }
 641         }
 642       }
 643     } else { // Don't create unaligned pack
 644       // First, remove remaining memory ops of the same type from the list.
 645       for (int i = memops.size() - 1; i >= 0; i--) {
 646         MemNode* s = memops.at(i)->as_Mem();
 647         if (same_velt_type(s, mem_ref)) {
 648           memops.remove(i);
 649         }
 650       }
 651 
 652       // Second, remove already constructed packs of the same type.
 653       for (int i = _packset.length() - 1; i >= 0; i--) {
 654         Node_List* p = _packset.at(i);
 655         MemNode* s = p->at(0)->as_Mem();
 656         if (same_velt_type(s, mem_ref)) {
 657           remove_pack_at(i);
 658         }
 659       }
 660 
 661       // If needed find the best memory reference for loop alignment again.
 662       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
 663         // Put memory ops from remaining packs back on memops list for
 664         // the best alignment search.
 665         uint orig_msize = memops.size();
 666         for (int i = 0; i < _packset.length(); i++) {
 667           Node_List* p = _packset.at(i);
 668           MemNode* s = p->at(0)->as_Mem();
 669           assert(!same_velt_type(s, mem_ref), "sanity");
 670           memops.push(s);
 671         }
 672         best_align_to_mem_ref = find_align_to_ref(memops);
 673         if (best_align_to_mem_ref == NULL) {
 674           if (TraceSuperWord) {
 675             tty->print_cr("SuperWord::find_adjacent_refs(): best_align_to_mem_ref == NULL");
 676           }
 677           break;
 678         }
 679         best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
 680         NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
 681         // Restore list.
 682         while (memops.size() > orig_msize)
 683           (void)memops.pop();
 684       }
 685     } // unaligned memory accesses
 686 
 687     // Remove used mem nodes.
 688     for (int i = memops.size() - 1; i >= 0; i--) {
 689       MemNode* m = memops.at(i)->as_Mem();
 690       if (alignment(m) != top_align) {
 691         memops.remove(i);
 692       }
 693     }
 694 
 695   } // while (memops.size() != 0
 696   set_align_to_ref(best_align_to_mem_ref);
 697 
 698   if (TraceSuperWord) {
 699     tty->print_cr("\nAfter find_adjacent_refs");
 700     print_packset();
 701   }
 702 }
 703 
 704 #ifndef PRODUCT
 705 void SuperWord::find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment) {
 706   if (is_trace_adjacent()) {
 707     tty->print("SuperWord::find_adjacent_refs best_align_to_mem_ref = %d, best_iv_adjustment = %d",
 708        best_align_to_mem_ref->_idx, best_iv_adjustment);
 709        best_align_to_mem_ref->dump();
 710   }
 711 }
 712 #endif
 713 
 714 //------------------------------find_align_to_ref---------------------------
 715 // Find a memory reference to align the loop induction variable to.
 716 // Looks first at stores then at loads, looking for a memory reference
 717 // with the largest number of references similar to it.
 718 MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
 719   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
 720 
 721   // Count number of comparable memory ops
 722   for (uint i = 0; i < memops.size(); i++) {
 723     MemNode* s1 = memops.at(i)->as_Mem();
 724     SWPointer p1(s1, this, NULL, false);
 725     // Discard if pre loop can't align this reference
 726     if (!ref_is_alignable(p1)) {
 727       *cmp_ct.adr_at(i) = 0;
 728       continue;
 729     }
 730     for (uint j = i+1; j < memops.size(); j++) {
 731       MemNode* s2 = memops.at(j)->as_Mem();
 732       if (isomorphic(s1, s2)) {
 733         SWPointer p2(s2, this, NULL, false);
 734         if (p1.comparable(p2)) {
 735           (*cmp_ct.adr_at(i))++;
 736           (*cmp_ct.adr_at(j))++;
 737         }
 738       }
 739     }
 740   }
 741 
 742   // Find Store (or Load) with the greatest number of "comparable" references,
 743   // biggest vector size, smallest data size and smallest iv offset.
 744   int max_ct        = 0;
 745   int max_vw        = 0;
 746   int max_idx       = -1;
 747   int min_size      = max_jint;
 748   int min_iv_offset = max_jint;
 749   for (uint j = 0; j < memops.size(); j++) {
 750     MemNode* s = memops.at(j)->as_Mem();
 751     if (s->is_Store()) {
 752       int vw = vector_width_in_bytes(s);
 753       assert(vw > 1, "sanity");
 754       SWPointer p(s, this, NULL, false);
 755       if (cmp_ct.at(j) >  max_ct ||
 756           cmp_ct.at(j) == max_ct &&
 757             (vw >  max_vw ||
 758              vw == max_vw &&
 759               (data_size(s) <  min_size ||
 760                data_size(s) == min_size &&
 761                  (p.offset_in_bytes() < min_iv_offset)))) {
 762         max_ct = cmp_ct.at(j);
 763         max_vw = vw;
 764         max_idx = j;
 765         min_size = data_size(s);
 766         min_iv_offset = p.offset_in_bytes();
 767       }
 768     }
 769   }
 770   // If no stores, look at loads
 771   if (max_ct == 0) {
 772     for (uint j = 0; j < memops.size(); j++) {
 773       MemNode* s = memops.at(j)->as_Mem();
 774       if (s->is_Load()) {
 775         int vw = vector_width_in_bytes(s);
 776         assert(vw > 1, "sanity");
 777         SWPointer p(s, this, NULL, false);
 778         if (cmp_ct.at(j) >  max_ct ||
 779             cmp_ct.at(j) == max_ct &&
 780               (vw >  max_vw ||
 781                vw == max_vw &&
 782                 (data_size(s) <  min_size ||
 783                  data_size(s) == min_size &&
 784                    (p.offset_in_bytes() < min_iv_offset)))) {
 785           max_ct = cmp_ct.at(j);
 786           max_vw = vw;
 787           max_idx = j;
 788           min_size = data_size(s);
 789           min_iv_offset = p.offset_in_bytes();
 790         }
 791       }
 792     }
 793   }
 794 
 795 #ifdef ASSERT
 796   if (TraceSuperWord && Verbose) {
 797     tty->print_cr("\nVector memops after find_align_to_ref");
 798     for (uint i = 0; i < memops.size(); i++) {
 799       MemNode* s = memops.at(i)->as_Mem();
 800       s->dump();
 801     }
 802   }
 803 #endif
 804 
 805   if (max_ct > 0) {
 806 #ifdef ASSERT
 807     if (TraceSuperWord) {
 808       tty->print("\nVector align to node: ");
 809       memops.at(max_idx)->as_Mem()->dump();
 810     }
 811 #endif
 812     return memops.at(max_idx)->as_Mem();
 813   }
 814   return NULL;
 815 }
 816 
 817 //------------------------------ref_is_alignable---------------------------
 818 // Can the preloop align the reference to position zero in the vector?
 819 bool SuperWord::ref_is_alignable(SWPointer& p) {
 820   if (!p.has_iv()) {
 821     return true;   // no induction variable
 822   }
 823   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
 824   assert(pre_end != NULL, "we must have a correct pre-loop");
 825   assert(pre_end->stride_is_con(), "pre loop stride is constant");
 826   int preloop_stride = pre_end->stride_con();
 827 
 828   int span = preloop_stride * p.scale_in_bytes();
 829   int mem_size = p.memory_size();
 830   int offset   = p.offset_in_bytes();
 831   // Stride one accesses are alignable if offset is aligned to memory operation size.
 832   // Offset can be unaligned when UseUnalignedAccesses is used.
 833   if (ABS(span) == mem_size && (ABS(offset) % mem_size) == 0) {
 834     return true;
 835   }
 836   // If the initial offset from start of the object is computable,
 837   // check if the pre-loop can align the final offset accordingly.
 838   //
 839   // In other words: Can we find an i such that the offset
 840   // after i pre-loop iterations is aligned to vw?
 841   //   (init_offset + pre_loop) % vw == 0              (1)
 842   // where
 843   //   pre_loop = i * span
 844   // is the number of bytes added to the offset by i pre-loop iterations.
 845   //
 846   // For this to hold we need pre_loop to increase init_offset by
 847   //   pre_loop = vw - (init_offset % vw)
 848   //
 849   // This is only possible if pre_loop is divisible by span because each
 850   // pre-loop iteration increases the initial offset by 'span' bytes:
 851   //   (vw - (init_offset % vw)) % span == 0
 852   //
 853   int vw = vector_width_in_bytes(p.mem());
 854   assert(vw > 1, "sanity");
 855   Node* init_nd = pre_end->init_trip();
 856   if (init_nd->is_Con() && p.invar() == NULL) {
 857     int init = init_nd->bottom_type()->is_int()->get_con();
 858     int init_offset = init * p.scale_in_bytes() + offset;
 859     assert(init_offset >= 0, "positive offset from object start");
 860     if (vw % span == 0) {
 861       // If vm is a multiple of span, we use formula (1).
 862       if (span > 0) {
 863         return (vw - (init_offset % vw)) % span == 0;
 864       } else {
 865         assert(span < 0, "nonzero stride * scale");
 866         return (init_offset % vw) % -span == 0;
 867       }
 868     } else if (span % vw == 0) {
 869       // If span is a multiple of vw, we can simplify formula (1) to:
 870       //   (init_offset + i * span) % vw == 0
 871       //     =>
 872       //   (init_offset % vw) + ((i * span) % vw) == 0
 873       //     =>
 874       //   init_offset % vw == 0
 875       //
 876       // Because we add a multiple of vw to the initial offset, the final
 877       // offset is a multiple of vw if and only if init_offset is a multiple.
 878       //
 879       return (init_offset % vw) == 0;
 880     }
 881   }
 882   return false;
 883 }
 884 
 885 //---------------------------get_iv_adjustment---------------------------
 886 // Calculate loop's iv adjustment for this memory ops.
 887 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
 888   SWPointer align_to_ref_p(mem_ref, this, NULL, false);
 889   int offset = align_to_ref_p.offset_in_bytes();
 890   int scale  = align_to_ref_p.scale_in_bytes();
 891   int elt_size = align_to_ref_p.memory_size();
 892   int vw       = vector_width_in_bytes(mem_ref);
 893   assert(vw > 1, "sanity");
 894   int iv_adjustment;
 895   if (scale != 0) {
 896     int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
 897     // At least one iteration is executed in pre-loop by default. As result
 898     // several iterations are needed to align memory operations in main-loop even
 899     // if offset is 0.
 900     int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
 901     assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
 902            "(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size);
 903     iv_adjustment = iv_adjustment_in_bytes/elt_size;
 904   } else {
 905     // This memory op is not dependent on iv (scale == 0)
 906     iv_adjustment = 0;
 907   }
 908 
 909 #ifndef PRODUCT
 910   if (TraceSuperWord) {
 911     tty->print("SuperWord::get_iv_adjustment: n = %d, noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d: ",
 912       mem_ref->_idx, offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
 913     mem_ref->dump();
 914   }
 915 #endif
 916   return iv_adjustment;
 917 }
 918 
 919 //---------------------------dependence_graph---------------------------
 920 // Construct dependency graph.
 921 // Add dependence edges to load/store nodes for memory dependence
 922 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
 923 void SuperWord::dependence_graph() {
 924   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
 925   // First, assign a dependence node to each memory node
 926   for (int i = 0; i < _block.length(); i++ ) {
 927     Node *n = _block.at(i);
 928     if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
 929       _dg.make_node(n);
 930     }
 931   }
 932 
 933   // For each memory slice, create the dependences
 934   for (int i = 0; i < _mem_slice_head.length(); i++) {
 935     Node* n      = _mem_slice_head.at(i);
 936     Node* n_tail = _mem_slice_tail.at(i);
 937 
 938     // Get slice in predecessor order (last is first)
 939     if (cl->is_main_loop()) {
 940       mem_slice_preds(n_tail, n, _nlist);
 941     }
 942 
 943 #ifndef PRODUCT
 944     if(TraceSuperWord && Verbose) {
 945       tty->print_cr("SuperWord::dependence_graph: built a new mem slice");
 946       for (int j = _nlist.length() - 1; j >= 0 ; j--) {
 947         _nlist.at(j)->dump();
 948       }
 949     }
 950 #endif
 951     // Make the slice dependent on the root
 952     DepMem* slice = _dg.dep(n);
 953     _dg.make_edge(_dg.root(), slice);
 954 
 955     // Create a sink for the slice
 956     DepMem* slice_sink = _dg.make_node(NULL);
 957     _dg.make_edge(slice_sink, _dg.tail());
 958 
 959     // Now visit each pair of memory ops, creating the edges
 960     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
 961       Node* s1 = _nlist.at(j);
 962 
 963       // If no dependency yet, use slice
 964       if (_dg.dep(s1)->in_cnt() == 0) {
 965         _dg.make_edge(slice, s1);
 966       }
 967       SWPointer p1(s1->as_Mem(), this, NULL, false);
 968       bool sink_dependent = true;
 969       for (int k = j - 1; k >= 0; k--) {
 970         Node* s2 = _nlist.at(k);
 971         if (s1->is_Load() && s2->is_Load())
 972           continue;
 973         SWPointer p2(s2->as_Mem(), this, NULL, false);
 974 
 975         int cmp = p1.cmp(p2);
 976         if (SuperWordRTDepCheck &&
 977             p1.base() != p2.base() && p1.valid() && p2.valid()) {
 978           // Create a runtime check to disambiguate
 979           OrderedPair pp(p1.base(), p2.base());
 980           _disjoint_ptrs.append_if_missing(pp);
 981         } else if (!SWPointer::not_equal(cmp)) {
 982           // Possibly same address
 983           _dg.make_edge(s1, s2);
 984           sink_dependent = false;
 985         }
 986       }
 987       if (sink_dependent) {
 988         _dg.make_edge(s1, slice_sink);
 989       }
 990     }
 991 
 992     if (TraceSuperWord) {
 993       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
 994       for (int q = 0; q < _nlist.length(); q++) {
 995         _dg.print(_nlist.at(q));
 996       }
 997       tty->cr();
 998     }
 999 
1000     _nlist.clear();
1001   }
1002 
1003   if (TraceSuperWord) {
1004     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
1005     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
1006       _disjoint_ptrs.at(r).print();
1007       tty->cr();
1008     }
1009     tty->cr();
1010   }
1011 
1012 }
1013 
1014 //---------------------------mem_slice_preds---------------------------
1015 // Return a memory slice (node list) in predecessor order starting at "start"
1016 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
1017   assert(preds.length() == 0, "start empty");
1018   Node* n = start;
1019   Node* prev = NULL;
1020   while (true) {
1021     NOT_PRODUCT( if(is_trace_mem_slice()) tty->print_cr("SuperWord::mem_slice_preds: n %d", n->_idx);)
1022     assert(in_bb(n), "must be in block");
1023     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1024       Node* out = n->fast_out(i);
1025       if (out->is_Load()) {
1026         if (in_bb(out)) {
1027           preds.push(out);
1028           if (TraceSuperWord && Verbose) {
1029             tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", out->_idx);
1030           }
1031         }
1032       } else {
1033         // FIXME
1034         if (out->is_MergeMem() && !in_bb(out)) {
1035           // Either unrolling is causing a memory edge not to disappear,
1036           // or need to run igvn.optimize() again before SLP
1037         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
1038           // Ditto.  Not sure what else to check further.
1039         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
1040           // StoreCM has an input edge used as a precedence edge.
1041           // Maybe an issue when oop stores are vectorized.
1042         } else {
1043           assert(out == prev || prev == NULL, "no branches off of store slice");
1044         }
1045       }//else
1046     }//for
1047     if (n == stop) break;
1048     preds.push(n);
1049     if (TraceSuperWord && Verbose) {
1050       tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", n->_idx);
1051     }
1052     prev = n;
1053     assert(n->is_Mem(), "unexpected node %s", n->Name());
1054     n = n->in(MemNode::Memory);
1055   }
1056 }
1057 
1058 //------------------------------stmts_can_pack---------------------------
1059 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
1060 // s1 aligned at "align"
1061 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
1062 
1063   // Do not use superword for non-primitives
1064   BasicType bt1 = velt_basic_type(s1);
1065   BasicType bt2 = velt_basic_type(s2);
1066   if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
1067     return false;
1068   if (Matcher::max_vector_size(bt1) < 2) {
1069     return false; // No vectors for this type
1070   }
1071 
1072   if (isomorphic(s1, s2)) {
1073     if ((independent(s1, s2) && have_similar_inputs(s1, s2)) || reduction(s1, s2)) {
1074       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
1075         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
1076           int s1_align = alignment(s1);
1077           int s2_align = alignment(s2);
1078           if (s1_align == top_align || s1_align == align) {
1079             if (s2_align == top_align || s2_align == align + data_size(s1)) {
1080               return true;
1081             }
1082           }
1083         }
1084       }
1085     }
1086   }
1087   return false;
1088 }
1089 
1090 //------------------------------exists_at---------------------------
1091 // Does s exist in a pack at position pos?
1092 bool SuperWord::exists_at(Node* s, uint pos) {
1093   for (int i = 0; i < _packset.length(); i++) {
1094     Node_List* p = _packset.at(i);
1095     if (p->at(pos) == s) {
1096       return true;
1097     }
1098   }
1099   return false;
1100 }
1101 
1102 //------------------------------are_adjacent_refs---------------------------
1103 // Is s1 immediately before s2 in memory?
1104 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
1105   if (!s1->is_Mem() || !s2->is_Mem()) return false;
1106   if (!in_bb(s1)    || !in_bb(s2))    return false;
1107 
1108   // Do not use superword for non-primitives
1109   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
1110       !is_java_primitive(s2->as_Mem()->memory_type())) {
1111     return false;
1112   }
1113 
1114   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
1115   // only pack memops that are in the same alias set until that's fixed.
1116   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
1117       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
1118     return false;
1119   SWPointer p1(s1->as_Mem(), this, NULL, false);
1120   SWPointer p2(s2->as_Mem(), this, NULL, false);
1121   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
1122   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
1123   return diff == data_size(s1);
1124 }
1125 
1126 //------------------------------isomorphic---------------------------
1127 // Are s1 and s2 similar?
1128 bool SuperWord::isomorphic(Node* s1, Node* s2) {
1129   if (s1->Opcode() != s2->Opcode()) return false;
1130   if (s1->req() != s2->req()) return false;
1131   if (s1->in(0) != s2->in(0)) return false;
1132   if (!same_velt_type(s1, s2)) return false;
1133   return true;
1134 }
1135 
1136 //------------------------------independent---------------------------
1137 // Is there no data path from s1 to s2 or s2 to s1?
1138 bool SuperWord::independent(Node* s1, Node* s2) {
1139   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
1140   int d1 = depth(s1);
1141   int d2 = depth(s2);
1142   if (d1 == d2) return s1 != s2;
1143   Node* deep    = d1 > d2 ? s1 : s2;
1144   Node* shallow = d1 > d2 ? s2 : s1;
1145 
1146   visited_clear();
1147 
1148   return independent_path(shallow, deep);
1149 }
1150 
1151 //--------------------------have_similar_inputs-----------------------
1152 // For a node pair (s1, s2) which is isomorphic and independent,
1153 // do s1 and s2 have similar input edges?
1154 bool SuperWord::have_similar_inputs(Node* s1, Node* s2) {
1155   // assert(isomorphic(s1, s2) == true, "check isomorphic");
1156   // assert(independent(s1, s2) == true, "check independent");
1157   if (s1->req() > 1 && !s1->is_Store() && !s1->is_Load()) {
1158     for (uint i = 1; i < s1->req(); i++) {
1159       if (s1->in(i)->Opcode() != s2->in(i)->Opcode()) return false;
1160     }
1161   }
1162   return true;
1163 }
1164 
1165 //------------------------------reduction---------------------------
1166 // Is there a data path between s1 and s2 and the nodes reductions?
1167 bool SuperWord::reduction(Node* s1, Node* s2) {
1168   bool retValue = false;
1169   int d1 = depth(s1);
1170   int d2 = depth(s2);
1171   if (d1 + 1 == d2) {
1172     if (s1->is_reduction() && s2->is_reduction()) {
1173       // This is an ordered set, so s1 should define s2
1174       for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1175         Node* t1 = s1->fast_out(i);
1176         if (t1 == s2) {
1177           // both nodes are reductions and connected
1178           retValue = true;
1179         }
1180       }
1181     }
1182   }
1183 
1184   return retValue;
1185 }
1186 
1187 //------------------------------independent_path------------------------------
1188 // Helper for independent
1189 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
1190   if (dp >= 1000) return false; // stop deep recursion
1191   visited_set(deep);
1192   int shal_depth = depth(shallow);
1193   assert(shal_depth <= depth(deep), "must be");
1194   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
1195     Node* pred = preds.current();
1196     if (in_bb(pred) && !visited_test(pred)) {
1197       if (shallow == pred) {
1198         return false;
1199       }
1200       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
1201         return false;
1202       }
1203     }
1204   }
1205   return true;
1206 }
1207 
1208 //------------------------------set_alignment---------------------------
1209 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
1210   set_alignment(s1, align);
1211   if (align == top_align || align == bottom_align) {
1212     set_alignment(s2, align);
1213   } else {
1214     set_alignment(s2, align + data_size(s1));
1215   }
1216 }
1217 
1218 //------------------------------data_size---------------------------
1219 int SuperWord::data_size(Node* s) {
1220   Node* use = NULL; //test if the node is a candidate for CMoveVD optimization, then return the size of CMov
1221   if (_do_vector_loop) {
1222     use = _cmovev_kit.is_Bool_candidate(s);
1223     if (use != NULL) {
1224       return data_size(use);
1225     }
1226     use = _cmovev_kit.is_CmpD_candidate(s);
1227     if (use != NULL) {
1228       return data_size(use);
1229     }
1230   }
1231   int bsize = type2aelembytes(velt_basic_type(s));
1232   assert(bsize != 0, "valid size");
1233   return bsize;
1234 }
1235 
1236 //------------------------------extend_packlist---------------------------
1237 // Extend packset by following use->def and def->use links from pack members.
1238 void SuperWord::extend_packlist() {
1239   bool changed;
1240   do {
1241     packset_sort(_packset.length());
1242     changed = false;
1243     for (int i = 0; i < _packset.length(); i++) {
1244       Node_List* p = _packset.at(i);
1245       changed |= follow_use_defs(p);
1246       changed |= follow_def_uses(p);
1247     }
1248   } while (changed);
1249 
1250   if (_race_possible) {
1251     for (int i = 0; i < _packset.length(); i++) {
1252       Node_List* p = _packset.at(i);
1253       order_def_uses(p);
1254     }
1255   }
1256 
1257   if (TraceSuperWord) {
1258     tty->print_cr("\nAfter extend_packlist");
1259     print_packset();
1260   }
1261 }
1262 
1263 //------------------------------follow_use_defs---------------------------
1264 // Extend the packset by visiting operand definitions of nodes in pack p
1265 bool SuperWord::follow_use_defs(Node_List* p) {
1266   assert(p->size() == 2, "just checking");
1267   Node* s1 = p->at(0);
1268   Node* s2 = p->at(1);
1269   assert(s1->req() == s2->req(), "just checking");
1270   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
1271 
1272   if (s1->is_Load()) return false;
1273 
1274   int align = alignment(s1);
1275   NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: s1 %d, align %d", s1->_idx, align);)
1276   bool changed = false;
1277   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
1278   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
1279   for (int j = start; j < end; j++) {
1280     Node* t1 = s1->in(j);
1281     Node* t2 = s2->in(j);
1282     if (!in_bb(t1) || !in_bb(t2))
1283       continue;
1284     if (stmts_can_pack(t1, t2, align)) {
1285       if (est_savings(t1, t2) >= 0) {
1286         Node_List* pair = new Node_List();
1287         pair->push(t1);
1288         pair->push(t2);
1289         _packset.append(pair);
1290         NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: set_alignment(%d, %d, %d)", t1->_idx, t2->_idx, align);)
1291         set_alignment(t1, t2, align);
1292         changed = true;
1293       }
1294     }
1295   }
1296   return changed;
1297 }
1298 
1299 //------------------------------follow_def_uses---------------------------
1300 // Extend the packset by visiting uses of nodes in pack p
1301 bool SuperWord::follow_def_uses(Node_List* p) {
1302   bool changed = false;
1303   Node* s1 = p->at(0);
1304   Node* s2 = p->at(1);
1305   assert(p->size() == 2, "just checking");
1306   assert(s1->req() == s2->req(), "just checking");
1307   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
1308 
1309   if (s1->is_Store()) return false;
1310 
1311   int align = alignment(s1);
1312   NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: s1 %d, align %d", s1->_idx, align);)
1313   int savings = -1;
1314   int num_s1_uses = 0;
1315   Node* u1 = NULL;
1316   Node* u2 = NULL;
1317   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1318     Node* t1 = s1->fast_out(i);
1319     num_s1_uses++;
1320     if (!in_bb(t1)) continue;
1321     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
1322       Node* t2 = s2->fast_out(j);
1323       if (!in_bb(t2)) continue;
1324       if (!opnd_positions_match(s1, t1, s2, t2))
1325         continue;
1326       if (stmts_can_pack(t1, t2, align)) {
1327         int my_savings = est_savings(t1, t2);
1328         if (my_savings > savings) {
1329           savings = my_savings;
1330           u1 = t1;
1331           u2 = t2;
1332         }
1333       }
1334     }
1335   }
1336   if (num_s1_uses > 1) {
1337     _race_possible = true;
1338   }
1339   if (savings >= 0) {
1340     Node_List* pair = new Node_List();
1341     pair->push(u1);
1342     pair->push(u2);
1343     _packset.append(pair);
1344     NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: set_alignment(%d, %d, %d)", u1->_idx, u2->_idx, align);)
1345     set_alignment(u1, u2, align);
1346     changed = true;
1347   }
1348   return changed;
1349 }
1350 
1351 //------------------------------order_def_uses---------------------------
1352 // For extended packsets, ordinally arrange uses packset by major component
1353 void SuperWord::order_def_uses(Node_List* p) {
1354   Node* s1 = p->at(0);
1355 
1356   if (s1->is_Store()) return;
1357 
1358   // reductions are always managed beforehand
1359   if (s1->is_reduction()) return;
1360 
1361   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1362     Node* t1 = s1->fast_out(i);
1363 
1364     // Only allow operand swap on commuting operations
1365     if (!t1->is_Add() && !t1->is_Mul()) {
1366       break;
1367     }
1368 
1369     // Now find t1's packset
1370     Node_List* p2 = NULL;
1371     for (int j = 0; j < _packset.length(); j++) {
1372       p2 = _packset.at(j);
1373       Node* first = p2->at(0);
1374       if (t1 == first) {
1375         break;
1376       }
1377       p2 = NULL;
1378     }
1379     // Arrange all sub components by the major component
1380     if (p2 != NULL) {
1381       for (uint j = 1; j < p->size(); j++) {
1382         Node* d1 = p->at(j);
1383         Node* u1 = p2->at(j);
1384         opnd_positions_match(s1, t1, d1, u1);
1385       }
1386     }
1387   }
1388 }
1389 
1390 //---------------------------opnd_positions_match-------------------------
1391 // Is the use of d1 in u1 at the same operand position as d2 in u2?
1392 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
1393   // check reductions to see if they are marshalled to represent the reduction
1394   // operator in a specified opnd
1395   if (u1->is_reduction() && u2->is_reduction()) {
1396     // ensure reductions have phis and reduction definitions feeding the 1st operand
1397     Node* first = u1->in(2);
1398     if (first->is_Phi() || first->is_reduction()) {
1399       u1->swap_edges(1, 2);
1400     }
1401     // ensure reductions have phis and reduction definitions feeding the 1st operand
1402     first = u2->in(2);
1403     if (first->is_Phi() || first->is_reduction()) {
1404       u2->swap_edges(1, 2);
1405     }
1406     return true;
1407   }
1408 
1409   uint ct = u1->req();
1410   if (ct != u2->req()) return false;
1411   uint i1 = 0;
1412   uint i2 = 0;
1413   do {
1414     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
1415     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
1416     if (i1 != i2) {
1417       if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
1418         // Further analysis relies on operands position matching.
1419         u2->swap_edges(i1, i2);
1420       } else {
1421         return false;
1422       }
1423     }
1424   } while (i1 < ct);
1425   return true;
1426 }
1427 
1428 //------------------------------est_savings---------------------------
1429 // Estimate the savings from executing s1 and s2 as a pack
1430 int SuperWord::est_savings(Node* s1, Node* s2) {
1431   int save_in = 2 - 1; // 2 operations per instruction in packed form
1432 
1433   // inputs
1434   for (uint i = 1; i < s1->req(); i++) {
1435     Node* x1 = s1->in(i);
1436     Node* x2 = s2->in(i);
1437     if (x1 != x2) {
1438       if (are_adjacent_refs(x1, x2)) {
1439         save_in += adjacent_profit(x1, x2);
1440       } else if (!in_packset(x1, x2)) {
1441         save_in -= pack_cost(2);
1442       } else {
1443         save_in += unpack_cost(2);
1444       }
1445     }
1446   }
1447 
1448   // uses of result
1449   uint ct = 0;
1450   int save_use = 0;
1451   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1452     Node* s1_use = s1->fast_out(i);
1453     for (int j = 0; j < _packset.length(); j++) {
1454       Node_List* p = _packset.at(j);
1455       if (p->at(0) == s1_use) {
1456         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
1457           Node* s2_use = s2->fast_out(k);
1458           if (p->at(p->size()-1) == s2_use) {
1459             ct++;
1460             if (are_adjacent_refs(s1_use, s2_use)) {
1461               save_use += adjacent_profit(s1_use, s2_use);
1462             }
1463           }
1464         }
1465       }
1466     }
1467   }
1468 
1469   if (ct < s1->outcnt()) save_use += unpack_cost(1);
1470   if (ct < s2->outcnt()) save_use += unpack_cost(1);
1471 
1472   return MAX2(save_in, save_use);
1473 }
1474 
1475 //------------------------------costs---------------------------
1476 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
1477 int SuperWord::pack_cost(int ct)   { return ct; }
1478 int SuperWord::unpack_cost(int ct) { return ct; }
1479 
1480 //------------------------------combine_packs---------------------------
1481 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
1482 void SuperWord::combine_packs() {
1483   bool changed = true;
1484   // Combine packs regardless max vector size.
1485   while (changed) {
1486     changed = false;
1487     for (int i = 0; i < _packset.length(); i++) {
1488       Node_List* p1 = _packset.at(i);
1489       if (p1 == NULL) continue;
1490       // Because of sorting we can start at i + 1
1491       for (int j = i + 1; j < _packset.length(); j++) {
1492         Node_List* p2 = _packset.at(j);
1493         if (p2 == NULL) continue;
1494         if (i == j) continue;
1495         if (p1->at(p1->size()-1) == p2->at(0)) {
1496           for (uint k = 1; k < p2->size(); k++) {
1497             p1->push(p2->at(k));
1498           }
1499           _packset.at_put(j, NULL);
1500           changed = true;
1501         }
1502       }
1503     }
1504   }
1505 
1506   // Split packs which have size greater then max vector size.
1507   for (int i = 0; i < _packset.length(); i++) {
1508     Node_List* p1 = _packset.at(i);
1509     if (p1 != NULL) {
1510       BasicType bt = velt_basic_type(p1->at(0));
1511       uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
1512       assert(is_power_of_2(max_vlen), "sanity");
1513       uint psize = p1->size();
1514       if (!is_power_of_2(psize)) {
1515         // Skip pack which can't be vector.
1516         // case1: for(...) { a[i] = i; }    elements values are different (i+x)
1517         // case2: for(...) { a[i] = b[i+1]; }  can't align both, load and store
1518         _packset.at_put(i, NULL);
1519         continue;
1520       }
1521       if (psize > max_vlen) {
1522         Node_List* pack = new Node_List();
1523         for (uint j = 0; j < psize; j++) {
1524           pack->push(p1->at(j));
1525           if (pack->size() >= max_vlen) {
1526             assert(is_power_of_2(pack->size()), "sanity");
1527             _packset.append(pack);
1528             pack = new Node_List();
1529           }
1530         }
1531         _packset.at_put(i, NULL);
1532       }
1533     }
1534   }
1535 
1536   // Compress list.
1537   for (int i = _packset.length() - 1; i >= 0; i--) {
1538     Node_List* p1 = _packset.at(i);
1539     if (p1 == NULL) {
1540       _packset.remove_at(i);
1541     }
1542   }
1543 
1544   if (TraceSuperWord) {
1545     tty->print_cr("\nAfter combine_packs");
1546     print_packset();
1547   }
1548 }
1549 
1550 //-----------------------------construct_my_pack_map--------------------------
1551 // Construct the map from nodes to packs.  Only valid after the
1552 // point where a node is only in one pack (after combine_packs).
1553 void SuperWord::construct_my_pack_map() {
1554   Node_List* rslt = NULL;
1555   for (int i = 0; i < _packset.length(); i++) {
1556     Node_List* p = _packset.at(i);
1557     for (uint j = 0; j < p->size(); j++) {
1558       Node* s = p->at(j);
1559       assert(my_pack(s) == NULL, "only in one pack");
1560       set_my_pack(s, p);
1561     }
1562   }
1563 }
1564 
1565 //------------------------------filter_packs---------------------------
1566 // Remove packs that are not implemented or not profitable.
1567 void SuperWord::filter_packs() {
1568   // Remove packs that are not implemented
1569   for (int i = _packset.length() - 1; i >= 0; i--) {
1570     Node_List* pk = _packset.at(i);
1571     bool impl = implemented(pk);
1572     if (!impl) {
1573 #ifndef PRODUCT
1574       if (TraceSuperWord && Verbose) {
1575         tty->print_cr("Unimplemented");
1576         pk->at(0)->dump();
1577       }
1578 #endif
1579       remove_pack_at(i);
1580     }
1581     Node *n = pk->at(0);
1582     if (n->is_reduction()) {
1583       _num_reductions++;
1584     } else {
1585       _num_work_vecs++;
1586     }
1587   }
1588 
1589   // Remove packs that are not profitable
1590   bool changed;
1591   do {
1592     changed = false;
1593     for (int i = _packset.length() - 1; i >= 0; i--) {
1594       Node_List* pk = _packset.at(i);
1595       bool prof = profitable(pk);
1596       if (!prof) {
1597 #ifndef PRODUCT
1598         if (TraceSuperWord && Verbose) {
1599           tty->print_cr("Unprofitable");
1600           pk->at(0)->dump();
1601         }
1602 #endif
1603         remove_pack_at(i);
1604         changed = true;
1605       }
1606     }
1607   } while (changed);
1608 
1609 #ifndef PRODUCT
1610   if (TraceSuperWord) {
1611     tty->print_cr("\nAfter filter_packs");
1612     print_packset();
1613     tty->cr();
1614   }
1615 #endif
1616 }
1617 
1618 //------------------------------merge_packs_to_cmovd---------------------------
1619 // Merge CMoveD into new vector-nodes
1620 // We want to catch this pattern and subsume CmpD and Bool into CMoveD
1621 //
1622 //                   SubD             ConD
1623 //                  /  |               /
1624 //                 /   |           /   /
1625 //                /    |       /      /
1626 //               /     |   /         /
1627 //              /      /            /
1628 //             /    /  |           /
1629 //            v /      |          /
1630 //         CmpD        |         /
1631 //          |          |        /
1632 //          v          |       /
1633 //         Bool        |      /
1634 //           \         |     /
1635 //             \       |    /
1636 //               \     |   /
1637 //                 \   |  /
1638 //                   \ v /
1639 //                   CMoveD
1640 //
1641 
1642 void SuperWord::merge_packs_to_cmovd() {
1643   for (int i = _packset.length() - 1; i >= 0; i--) {
1644     _cmovev_kit.make_cmovevd_pack(_packset.at(i));
1645   }
1646   #ifndef PRODUCT
1647     if (TraceSuperWord) {
1648       tty->print_cr("\nSuperWord::merge_packs_to_cmovd(): After merge");
1649       print_packset();
1650       tty->cr();
1651     }
1652   #endif
1653 }
1654 
1655 Node* CMoveKit::is_Bool_candidate(Node* def) const {
1656   Node* use = NULL;
1657   if (!def->is_Bool() || def->in(0) != NULL || def->outcnt() != 1) {
1658     return NULL;
1659   }
1660   for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1661     use = def->fast_out(j);
1662     if (!_sw->same_generation(def, use) || !use->is_CMove()) {
1663       return NULL;
1664     }
1665   }
1666   return use;
1667 }
1668 
1669 Node* CMoveKit::is_CmpD_candidate(Node* def) const {
1670   Node* use = NULL;
1671   if (!def->is_Cmp() || def->in(0) != NULL || def->outcnt() != 1) {
1672     return NULL;
1673   }
1674   for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1675     use = def->fast_out(j);
1676     if (!_sw->same_generation(def, use) || (use = is_Bool_candidate(use)) == NULL || !_sw->same_generation(def, use)) {
1677       return NULL;
1678     }
1679   }
1680   return use;
1681 }
1682 
1683 Node_List* CMoveKit::make_cmovevd_pack(Node_List* cmovd_pk) {
1684   Node *cmovd = cmovd_pk->at(0);
1685   if (!cmovd->is_CMove()) {
1686     return NULL;
1687   }
1688   if (pack(cmovd) != NULL) { // already in the cmov pack
1689     return NULL;
1690   }
1691   if (cmovd->in(0) != NULL) {
1692     NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CMoveD %d has control flow, escaping...", cmovd->_idx); cmovd->dump();})
1693     return NULL;
1694   }
1695 
1696   Node* bol = cmovd->as_CMove()->in(CMoveNode::Condition);
1697   if (!bol->is_Bool()
1698       || bol->outcnt() != 1
1699       || !_sw->same_generation(bol, cmovd)
1700       || bol->in(0) != NULL  // BoolNode has control flow!!
1701       || _sw->my_pack(bol) == NULL) {
1702       NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: Bool %d does not fit CMoveD %d for building vector, escaping...", bol->_idx, cmovd->_idx); bol->dump();})
1703       return NULL;
1704   }
1705   Node_List* bool_pk = _sw->my_pack(bol);
1706   if (bool_pk->size() != cmovd_pk->size() ) {
1707     return NULL;
1708   }
1709 
1710   Node* cmpd = bol->in(1);
1711   if (!cmpd->is_Cmp()
1712       || cmpd->outcnt() != 1
1713       || !_sw->same_generation(cmpd, cmovd)
1714       || cmpd->in(0) != NULL  // CmpDNode has control flow!!
1715       || _sw->my_pack(cmpd) == NULL) {
1716       NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CmpD %d does not fit CMoveD %d for building vector, escaping...", cmpd->_idx, cmovd->_idx); cmpd->dump();})
1717       return NULL;
1718   }
1719   Node_List* cmpd_pk = _sw->my_pack(cmpd);
1720   if (cmpd_pk->size() != cmovd_pk->size() ) {
1721     return NULL;
1722   }
1723 
1724   if (!test_cmpd_pack(cmpd_pk, cmovd_pk)) {
1725     NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: cmpd pack for CmpD %d failed vectorization test", cmpd->_idx); cmpd->dump();})
1726     return NULL;
1727   }
1728 
1729   Node_List* new_cmpd_pk = new Node_List();
1730   uint sz = cmovd_pk->size() - 1;
1731   for (uint i = 0; i <= sz; ++i) {
1732     Node* cmov = cmovd_pk->at(i);
1733     Node* bol  = bool_pk->at(i);
1734     Node* cmp  = cmpd_pk->at(i);
1735 
1736     new_cmpd_pk->insert(i, cmov);
1737 
1738     map(cmov, new_cmpd_pk);
1739     map(bol, new_cmpd_pk);
1740     map(cmp, new_cmpd_pk);
1741 
1742     _sw->set_my_pack(cmov, new_cmpd_pk); // and keep old packs for cmp and bool
1743   }
1744   _sw->_packset.remove(cmovd_pk);
1745   _sw->_packset.remove(bool_pk);
1746   _sw->_packset.remove(cmpd_pk);
1747   _sw->_packset.append(new_cmpd_pk);
1748   NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print_cr("CMoveKit::make_cmovevd_pack: added syntactic CMoveD pack"); _sw->print_pack(new_cmpd_pk);})
1749   return new_cmpd_pk;
1750 }
1751 
1752 bool CMoveKit::test_cmpd_pack(Node_List* cmpd_pk, Node_List* cmovd_pk) {
1753   Node* cmpd0 = cmpd_pk->at(0);
1754   assert(cmpd0->is_Cmp(), "CMoveKit::test_cmpd_pack: should be CmpDNode");
1755   assert(cmovd_pk->at(0)->is_CMove(), "CMoveKit::test_cmpd_pack: should be CMoveD");
1756   assert(cmpd_pk->size() == cmovd_pk->size(), "CMoveKit::test_cmpd_pack: should be same size");
1757   Node* in1 = cmpd0->in(1);
1758   Node* in2 = cmpd0->in(2);
1759   Node_List* in1_pk = _sw->my_pack(in1);
1760   Node_List* in2_pk = _sw->my_pack(in2);
1761 
1762   if (in1_pk != NULL && in1_pk->size() != cmpd_pk->size()
1763     || in2_pk != NULL && in2_pk->size() != cmpd_pk->size() ) {
1764     return false;
1765   }
1766 
1767   // test if "all" in1 are in the same pack or the same node
1768   if (in1_pk == NULL) {
1769     for (uint j = 1; j < cmpd_pk->size(); j++) {
1770       if (cmpd_pk->at(j)->in(1) != in1) {
1771         return false;
1772       }
1773     }//for: in1_pk is not pack but all CmpD nodes in the pack have the same in(1)
1774   }
1775   // test if "all" in2 are in the same pack or the same node
1776   if (in2_pk == NULL) {
1777     for (uint j = 1; j < cmpd_pk->size(); j++) {
1778       if (cmpd_pk->at(j)->in(2) != in2) {
1779         return false;
1780       }
1781     }//for: in2_pk is not pack but all CmpD nodes in the pack have the same in(2)
1782   }
1783   //now check if cmpd_pk may be subsumed in vector built for cmovd_pk
1784   int cmovd_ind1, cmovd_ind2;
1785   if (cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
1786    && cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
1787       cmovd_ind1 = CMoveNode::IfFalse;
1788       cmovd_ind2 = CMoveNode::IfTrue;
1789   } else if (cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
1790           && cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
1791       cmovd_ind2 = CMoveNode::IfFalse;
1792       cmovd_ind1 = CMoveNode::IfTrue;
1793   }
1794   else {
1795     return false;
1796   }
1797 
1798   for (uint j = 1; j < cmpd_pk->size(); j++) {
1799     if (cmpd_pk->at(j)->in(1) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind1)
1800         || cmpd_pk->at(j)->in(2) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind2)) {
1801         return false;
1802     }//if
1803   }
1804   NOT_PRODUCT(if(_sw->is_trace_cmov()) { tty->print("CMoveKit::test_cmpd_pack: cmpd pack for 1st CmpD %d is OK for vectorization: ", cmpd0->_idx); cmpd0->dump(); })
1805   return true;
1806 }
1807 
1808 //------------------------------implemented---------------------------
1809 // Can code be generated for pack p?
1810 bool SuperWord::implemented(Node_List* p) {
1811   bool retValue = false;
1812   Node* p0 = p->at(0);
1813   if (p0 != NULL) {
1814     int opc = p0->Opcode();
1815     uint size = p->size();
1816     if (p0->is_reduction()) {
1817       const Type *arith_type = p0->bottom_type();
1818       // Length 2 reductions of INT/LONG do not offer performance benefits
1819       if (((arith_type->basic_type() == T_INT) || (arith_type->basic_type() == T_LONG)) && (size == 2)) {
1820         retValue = false;
1821       } else {
1822         retValue = ReductionNode::implemented(opc, size, arith_type->basic_type());
1823       }
1824     } else {
1825       retValue = VectorNode::implemented(opc, size, velt_basic_type(p0));
1826     }
1827     if (!retValue) {
1828       if (is_cmov_pack(p)) {
1829         NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::implemented: found cmpd pack"); print_pack(p);})
1830         return true;
1831       }
1832     }
1833   }
1834   return retValue;
1835 }
1836 
1837 bool SuperWord::is_cmov_pack(Node_List* p) {
1838   return _cmovev_kit.pack(p->at(0)) != NULL;
1839 }
1840 //------------------------------same_inputs--------------------------
1841 // For pack p, are all idx operands the same?
1842 bool SuperWord::same_inputs(Node_List* p, int idx) {
1843   Node* p0 = p->at(0);
1844   uint vlen = p->size();
1845   Node* p0_def = p0->in(idx);
1846   for (uint i = 1; i < vlen; i++) {
1847     Node* pi = p->at(i);
1848     Node* pi_def = pi->in(idx);
1849     if (p0_def != pi_def) {
1850       return false;
1851     }
1852   }
1853   return true;
1854 }
1855 
1856 //------------------------------profitable---------------------------
1857 // For pack p, are all operands and all uses (with in the block) vector?
1858 bool SuperWord::profitable(Node_List* p) {
1859   Node* p0 = p->at(0);
1860   uint start, end;
1861   VectorNode::vector_operands(p0, &start, &end);
1862 
1863   // Return false if some inputs are not vectors or vectors with different
1864   // size or alignment.
1865   // Also, for now, return false if not scalar promotion case when inputs are
1866   // the same. Later, implement PackNode and allow differing, non-vector inputs
1867   // (maybe just the ones from outside the block.)
1868   for (uint i = start; i < end; i++) {
1869     if (!is_vector_use(p0, i)) {
1870       return false;
1871     }
1872   }
1873   // Check if reductions are connected
1874   if (p0->is_reduction()) {
1875     Node* second_in = p0->in(2);
1876     Node_List* second_pk = my_pack(second_in);
1877     if ((second_pk == NULL) || (_num_work_vecs == _num_reductions)) {
1878       // Remove reduction flag if no parent pack or if not enough work
1879       // to cover reduction expansion overhead
1880       p0->remove_flag(Node::Flag_is_reduction);
1881       return false;
1882     } else if (second_pk->size() != p->size()) {
1883       return false;
1884     }
1885   }
1886   if (VectorNode::is_shift(p0)) {
1887     // For now, return false if shift count is vector or not scalar promotion
1888     // case (different shift counts) because it is not supported yet.
1889     Node* cnt = p0->in(2);
1890     Node_List* cnt_pk = my_pack(cnt);
1891     if (cnt_pk != NULL)
1892       return false;
1893     if (!same_inputs(p, 2))
1894       return false;
1895   }
1896   if (!p0->is_Store()) {
1897     // For now, return false if not all uses are vector.
1898     // Later, implement ExtractNode and allow non-vector uses (maybe
1899     // just the ones outside the block.)
1900     for (uint i = 0; i < p->size(); i++) {
1901       Node* def = p->at(i);
1902       if (is_cmov_pack_internal_node(p, def)) {
1903         continue;
1904       }
1905       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1906         Node* use = def->fast_out(j);
1907         for (uint k = 0; k < use->req(); k++) {
1908           Node* n = use->in(k);
1909           if (def == n) {
1910             // reductions can be loop carried dependences
1911             if (def->is_reduction() && use->is_Phi())
1912               continue;
1913             if (!is_vector_use(use, k)) {
1914               return false;
1915             }
1916           }
1917         }
1918       }
1919     }
1920   }
1921   return true;
1922 }
1923 
1924 //------------------------------schedule---------------------------
1925 // Adjust the memory graph for the packed operations
1926 void SuperWord::schedule() {
1927 
1928   // Co-locate in the memory graph the members of each memory pack
1929   for (int i = 0; i < _packset.length(); i++) {
1930     co_locate_pack(_packset.at(i));
1931   }
1932 }
1933 
1934 //-------------------------------remove_and_insert-------------------
1935 // Remove "current" from its current position in the memory graph and insert
1936 // it after the appropriate insertion point (lip or uip).
1937 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
1938                                   Node *uip, Unique_Node_List &sched_before) {
1939   Node* my_mem = current->in(MemNode::Memory);
1940   bool sched_up = sched_before.member(current);
1941 
1942   // remove current_store from its current position in the memmory graph
1943   for (DUIterator i = current->outs(); current->has_out(i); i++) {
1944     Node* use = current->out(i);
1945     if (use->is_Mem()) {
1946       assert(use->in(MemNode::Memory) == current, "must be");
1947       if (use == prev) { // connect prev to my_mem
1948           _igvn.replace_input_of(use, MemNode::Memory, my_mem);
1949           --i; //deleted this edge; rescan position
1950       } else if (sched_before.member(use)) {
1951         if (!sched_up) { // Will be moved together with current
1952           _igvn.replace_input_of(use, MemNode::Memory, uip);
1953           --i; //deleted this edge; rescan position
1954         }
1955       } else {
1956         if (sched_up) { // Will be moved together with current
1957           _igvn.replace_input_of(use, MemNode::Memory, lip);
1958           --i; //deleted this edge; rescan position
1959         }
1960       }
1961     }
1962   }
1963 
1964   Node *insert_pt =  sched_up ?  uip : lip;
1965 
1966   // all uses of insert_pt's memory state should use current's instead
1967   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
1968     Node* use = insert_pt->out(i);
1969     if (use->is_Mem()) {
1970       assert(use->in(MemNode::Memory) == insert_pt, "must be");
1971       _igvn.replace_input_of(use, MemNode::Memory, current);
1972       --i; //deleted this edge; rescan position
1973     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
1974       uint pos; //lip (lower insert point) must be the last one in the memory slice
1975       for (pos=1; pos < use->req(); pos++) {
1976         if (use->in(pos) == insert_pt) break;
1977       }
1978       _igvn.replace_input_of(use, pos, current);
1979       --i;
1980     }
1981   }
1982 
1983   //connect current to insert_pt
1984   _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
1985 }
1986 
1987 //------------------------------co_locate_pack----------------------------------
1988 // To schedule a store pack, we need to move any sandwiched memory ops either before
1989 // or after the pack, based upon dependence information:
1990 // (1) If any store in the pack depends on the sandwiched memory op, the
1991 //     sandwiched memory op must be scheduled BEFORE the pack;
1992 // (2) If a sandwiched memory op depends on any store in the pack, the
1993 //     sandwiched memory op must be scheduled AFTER the pack;
1994 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
1995 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
1996 //     scheduled before the pack, memB must also be scheduled before the pack;
1997 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
1998 //     schedule this store AFTER the pack
1999 // (5) We know there is no dependence cycle, so there in no other case;
2000 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
2001 //
2002 // To schedule a load pack, we use the memory state of either the first or the last load in
2003 // the pack, based on the dependence constraint.
2004 void SuperWord::co_locate_pack(Node_List* pk) {
2005   if (pk->at(0)->is_Store()) {
2006     MemNode* first     = executed_first(pk)->as_Mem();
2007     MemNode* last      = executed_last(pk)->as_Mem();
2008     Unique_Node_List schedule_before_pack;
2009     Unique_Node_List memops;
2010 
2011     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
2012     MemNode* previous  = last;
2013     while (true) {
2014       assert(in_bb(current), "stay in block");
2015       memops.push(previous);
2016       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2017         Node* use = current->out(i);
2018         if (use->is_Mem() && use != previous)
2019           memops.push(use);
2020       }
2021       if (current == first) break;
2022       previous = current;
2023       current  = current->in(MemNode::Memory)->as_Mem();
2024     }
2025 
2026     // determine which memory operations should be scheduled before the pack
2027     for (uint i = 1; i < memops.size(); i++) {
2028       Node *s1 = memops.at(i);
2029       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
2030         for (uint j = 0; j< i; j++) {
2031           Node *s2 = memops.at(j);
2032           if (!independent(s1, s2)) {
2033             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
2034               schedule_before_pack.push(s1); // s1 must be scheduled before
2035               Node_List* mem_pk = my_pack(s1);
2036               if (mem_pk != NULL) {
2037                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
2038                   Node* s = mem_pk->at(ii);  // follow partner
2039                   if (memops.member(s) && !schedule_before_pack.member(s))
2040                     schedule_before_pack.push(s);
2041                 }
2042               }
2043               break;
2044             }
2045           }
2046         }
2047       }
2048     }
2049 
2050     Node*    upper_insert_pt = first->in(MemNode::Memory);
2051     // Following code moves loads connected to upper_insert_pt below aliased stores.
2052     // Collect such loads here and reconnect them back to upper_insert_pt later.
2053     memops.clear();
2054     for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
2055       Node* use = upper_insert_pt->out(i);
2056       if (use->is_Mem() && !use->is_Store()) {
2057         memops.push(use);
2058       }
2059     }
2060 
2061     MemNode* lower_insert_pt = last;
2062     previous                 = last; //previous store in pk
2063     current                  = last->in(MemNode::Memory)->as_Mem();
2064 
2065     // start scheduling from "last" to "first"
2066     while (true) {
2067       assert(in_bb(current), "stay in block");
2068       assert(in_pack(previous, pk), "previous stays in pack");
2069       Node* my_mem = current->in(MemNode::Memory);
2070 
2071       if (in_pack(current, pk)) {
2072         // Forward users of my memory state (except "previous) to my input memory state
2073         for (DUIterator i = current->outs(); current->has_out(i); i++) {
2074           Node* use = current->out(i);
2075           if (use->is_Mem() && use != previous) {
2076             assert(use->in(MemNode::Memory) == current, "must be");
2077             if (schedule_before_pack.member(use)) {
2078               _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
2079             } else {
2080               _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
2081             }
2082             --i; // deleted this edge; rescan position
2083           }
2084         }
2085         previous = current;
2086       } else { // !in_pack(current, pk) ==> a sandwiched store
2087         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
2088       }
2089 
2090       if (current == first) break;
2091       current = my_mem->as_Mem();
2092     } // end while
2093 
2094     // Reconnect loads back to upper_insert_pt.
2095     for (uint i = 0; i < memops.size(); i++) {
2096       Node *ld = memops.at(i);
2097       if (ld->in(MemNode::Memory) != upper_insert_pt) {
2098         _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
2099       }
2100     }
2101   } else if (pk->at(0)->is_Load()) { //load
2102     // all loads in the pack should have the same memory state. By default,
2103     // we use the memory state of the last load. However, if any load could
2104     // not be moved down due to the dependence constraint, we use the memory
2105     // state of the first load.
2106     Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
2107     Node* first_mem = executed_first(pk)->in(MemNode::Memory);
2108     bool schedule_last = true;
2109     for (uint i = 0; i < pk->size(); i++) {
2110       Node* ld = pk->at(i);
2111       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
2112            current=current->in(MemNode::Memory)) {
2113         assert(current != first_mem, "corrupted memory graph");
2114         if(current->is_Mem() && !independent(current, ld)){
2115           schedule_last = false; // a later store depends on this load
2116           break;
2117         }
2118       }
2119     }
2120 
2121     Node* mem_input = schedule_last ? last_mem : first_mem;
2122     _igvn.hash_delete(mem_input);
2123     // Give each load the same memory state
2124     for (uint i = 0; i < pk->size(); i++) {
2125       LoadNode* ld = pk->at(i)->as_Load();
2126       _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
2127     }
2128   }
2129 }
2130 
2131 #ifndef PRODUCT
2132 void SuperWord::print_loop(bool whole) {
2133   Node_Stack stack(_arena, _phase->C->unique() >> 2);
2134   Node_List rpo_list;
2135   VectorSet visited(_arena);
2136   visited.set(lpt()->_head->_idx);
2137   _phase->rpo(lpt()->_head, stack, visited, rpo_list);
2138   _phase->dump(lpt(), rpo_list.size(), rpo_list );
2139   if(whole) {
2140     tty->print_cr("\n Whole loop tree");
2141     _phase->dump();
2142     tty->print_cr(" End of whole loop tree\n");
2143   }
2144 }
2145 #endif
2146 
2147 //------------------------------output---------------------------
2148 // Convert packs into vector node operations
2149 void SuperWord::output() {
2150   if (_packset.length() == 0) return;
2151 
2152 #ifndef PRODUCT
2153   if (TraceLoopOpts) {
2154     tty->print("SuperWord::output    ");
2155     lpt()->dump_head();
2156   }
2157 #endif
2158 
2159   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
2160   if (cl->is_main_loop()) {
2161     // MUST ENSURE main loop's initial value is properly aligned:
2162     //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
2163 
2164     align_initial_loop_index(align_to_ref());
2165 
2166     // Insert extract (unpack) operations for scalar uses
2167     for (int i = 0; i < _packset.length(); i++) {
2168       insert_extracts(_packset.at(i));
2169     }
2170   }
2171 
2172   Compile* C = _phase->C;
2173   uint max_vlen_in_bytes = 0;
2174   uint max_vlen = 0;
2175   bool can_process_post_loop = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
2176 
2177   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop before create_reserve_version_of_loop"); print_loop(true);})
2178 
2179   CountedLoopReserveKit make_reversable(_phase, _lpt, do_reserve_copy());
2180 
2181   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop after create_reserve_version_of_loop"); print_loop(true);})
2182 
2183   if (do_reserve_copy() && !make_reversable.has_reserved()) {
2184     NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: loop was not reserved correctly, exiting SuperWord");})
2185     return;
2186   }
2187 
2188   for (int i = 0; i < _block.length(); i++) {
2189     Node* n = _block.at(i);
2190     Node_List* p = my_pack(n);
2191     if (p && n == executed_last(p)) {
2192       uint vlen = p->size();
2193       uint vlen_in_bytes = 0;
2194       Node* vn = NULL;
2195       Node* low_adr = p->at(0);
2196       Node* first   = executed_first(p);
2197       if (can_process_post_loop) {
2198         // override vlen with the main loops vector length
2199         vlen = cl->slp_max_unroll();
2200       }
2201       NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d executed first, %d executed last in pack", first->_idx, n->_idx); print_pack(p);})
2202       int   opc = n->Opcode();
2203       if (n->is_Load()) {
2204         Node* ctl = n->in(MemNode::Control);
2205         Node* mem = first->in(MemNode::Memory);
2206         SWPointer p1(n->as_Mem(), this, NULL, false);
2207         // Identify the memory dependency for the new loadVector node by
2208         // walking up through memory chain.
2209         // This is done to give flexibility to the new loadVector node so that
2210         // it can move above independent storeVector nodes.
2211         while (mem->is_StoreVector()) {
2212           SWPointer p2(mem->as_Mem(), this, NULL, false);
2213           int cmp = p1.cmp(p2);
2214           if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
2215             mem = mem->in(MemNode::Memory);
2216           } else {
2217             break; // dependent memory
2218           }
2219         }
2220         Node* adr = low_adr->in(MemNode::Address);
2221         const TypePtr* atyp = n->adr_type();
2222         vn = LoadVectorNode::make(opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p));
2223         vlen_in_bytes = vn->as_LoadVector()->memory_size();
2224       } else if (n->is_Store()) {
2225         // Promote value to be stored to vector
2226         Node* val = vector_opd(p, MemNode::ValueIn);
2227         if (val == NULL) {
2228           if (do_reserve_copy()) {
2229             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: val should not be NULL, exiting SuperWord");})
2230             return; //and reverse to backup IG
2231           }
2232           ShouldNotReachHere();
2233         }
2234 
2235         Node* ctl = n->in(MemNode::Control);
2236         Node* mem = first->in(MemNode::Memory);
2237         Node* adr = low_adr->in(MemNode::Address);
2238         const TypePtr* atyp = n->adr_type();
2239         vn = StoreVectorNode::make(opc, ctl, mem, adr, atyp, val, vlen);
2240         vlen_in_bytes = vn->as_StoreVector()->memory_size();
2241       } else if (n->req() == 3 && !is_cmov_pack(p)) {
2242         // Promote operands to vector
2243         Node* in1 = NULL;
2244         bool node_isa_reduction = n->is_reduction();
2245         if (node_isa_reduction) {
2246           // the input to the first reduction operation is retained
2247           in1 = low_adr->in(1);
2248         } else {
2249           in1 = vector_opd(p, 1);
2250           if (in1 == NULL) {
2251             if (do_reserve_copy()) {
2252               NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in1 should not be NULL, exiting SuperWord");})
2253               return; //and reverse to backup IG
2254             }
2255             ShouldNotReachHere();
2256           }
2257         }
2258         Node* in2 = vector_opd(p, 2);
2259         if (in2 == NULL) {
2260           if (do_reserve_copy()) {
2261             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in2 should not be NULL, exiting SuperWord");})
2262             return; //and reverse to backup IG
2263           }
2264           ShouldNotReachHere();
2265         }
2266         if (VectorNode::is_invariant_vector(in1) && (node_isa_reduction == false) && (n->is_Add() || n->is_Mul())) {
2267           // Move invariant vector input into second position to avoid register spilling.
2268           Node* tmp = in1;
2269           in1 = in2;
2270           in2 = tmp;
2271         }
2272         if (node_isa_reduction) {
2273           const Type *arith_type = n->bottom_type();
2274           vn = ReductionNode::make(opc, NULL, in1, in2, arith_type->basic_type());
2275           if (in2->is_Load()) {
2276             vlen_in_bytes = in2->as_LoadVector()->memory_size();
2277           } else {
2278             vlen_in_bytes = in2->as_Vector()->length_in_bytes();
2279           }
2280         } else {
2281           vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
2282           vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2283         }
2284       } else if (opc == Op_SqrtD || opc == Op_AbsF || opc == Op_AbsD || opc == Op_NegF || opc == Op_NegD) {
2285         // Promote operand to vector (Sqrt/Abs/Neg are 2 address instructions)
2286         Node* in = vector_opd(p, 1);
2287         vn = VectorNode::make(opc, in, NULL, vlen, velt_basic_type(n));
2288         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2289       } else if (is_cmov_pack(p)) {
2290         if (can_process_post_loop) {
2291           // do not refactor of flow in post loop context
2292           return;
2293         }
2294         if (!n->is_CMove()) {
2295           continue;
2296         }
2297         // place here CMoveVDNode
2298         NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: print before CMove vectorization"); print_loop(false);})
2299         Node* bol = n->in(CMoveNode::Condition);
2300         if (!bol->is_Bool() && bol->Opcode() == Op_ExtractI && bol->req() > 1 ) {
2301           NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d is not Bool node, trying its in(1) node %d", bol->_idx, bol->in(1)->_idx); bol->dump(); bol->in(1)->dump();})
2302           bol = bol->in(1); //may be ExtractNode
2303         }
2304 
2305         assert(bol->is_Bool(), "should be BoolNode - too late to bail out!");
2306         if (!bol->is_Bool()) {
2307           if (do_reserve_copy()) {
2308             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: expected %d bool node, exiting SuperWord", bol->_idx); bol->dump();})
2309             return; //and reverse to backup IG
2310           }
2311           ShouldNotReachHere();
2312         }
2313 
2314         int cond = (int)bol->as_Bool()->_test._test;
2315         Node* in_cc  = _igvn.intcon(cond);
2316         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created intcon in_cc node %d", in_cc->_idx); in_cc->dump();})
2317         Node* cc = bol->clone();
2318         cc->set_req(1, in_cc);
2319         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created bool cc node %d", cc->_idx); cc->dump();})
2320 
2321         Node* src1 = vector_opd(p, 2); //2=CMoveNode::IfFalse
2322         if (src1 == NULL) {
2323           if (do_reserve_copy()) {
2324             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src1 should not be NULL, exiting SuperWord");})
2325             return; //and reverse to backup IG
2326           }
2327           ShouldNotReachHere();
2328         }
2329         Node* src2 = vector_opd(p, 3); //3=CMoveNode::IfTrue
2330         if (src2 == NULL) {
2331           if (do_reserve_copy()) {
2332             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src2 should not be NULL, exiting SuperWord");})
2333             return; //and reverse to backup IG
2334           }
2335           ShouldNotReachHere();
2336         }
2337         BasicType bt = velt_basic_type(n);
2338         const TypeVect* vt = TypeVect::make(bt, vlen);
2339         vn = new CMoveVDNode(cc, src1, src2, vt);
2340         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created new CMove node %d: ", vn->_idx); vn->dump();})
2341       } else if (opc == Op_FmaD || opc == Op_FmaF) {
2342         // Promote operands to vector
2343         Node* in1 = vector_opd(p, 1);
2344         Node* in2 = vector_opd(p, 2);
2345         Node* in3 = vector_opd(p, 3);
2346         vn = VectorNode::make(opc, in1, in2, in3, vlen, velt_basic_type(n));
2347         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2348       } else {
2349         if (do_reserve_copy()) {
2350           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: ShouldNotReachHere, exiting SuperWord");})
2351           return; //and reverse to backup IG
2352         }
2353         ShouldNotReachHere();
2354       }
2355 
2356       assert(vn != NULL, "sanity");
2357       if (vn == NULL) {
2358         if (do_reserve_copy()){
2359           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: got NULL node, cannot proceed, exiting SuperWord");})
2360           return; //and reverse to backup IG
2361         }
2362         ShouldNotReachHere();
2363       }
2364 
2365       _block.at_put(i, vn);
2366       _igvn.register_new_node_with_optimizer(vn);
2367       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
2368       for (uint j = 0; j < p->size(); j++) {
2369         Node* pm = p->at(j);
2370         _igvn.replace_node(pm, vn);
2371       }
2372       _igvn._worklist.push(vn);
2373 
2374       if (can_process_post_loop) {
2375         // first check if the vector size if the maximum vector which we can use on the machine,
2376         // other vector size have reduced values for predicated data mapping.
2377         if (vlen_in_bytes != (uint)MaxVectorSize) {
2378           return;
2379         }
2380       }
2381 
2382       if (vlen_in_bytes > max_vlen_in_bytes) {
2383         max_vlen = vlen;
2384         max_vlen_in_bytes = vlen_in_bytes;
2385       }
2386 #ifdef ASSERT
2387       if (TraceNewVectors) {
2388         tty->print("new Vector node: ");
2389         vn->dump();
2390       }
2391 #endif
2392     }
2393   }//for (int i = 0; i < _block.length(); i++)
2394 
2395   C->set_max_vector_size(max_vlen_in_bytes);
2396 
2397   if (SuperWordLoopUnrollAnalysis) {
2398     if (cl->has_passed_slp()) {
2399       uint slp_max_unroll_factor = cl->slp_max_unroll();
2400       if (slp_max_unroll_factor == max_vlen) {
2401         if (TraceSuperWordLoopUnrollAnalysis) {
2402           tty->print_cr("vector loop(unroll=%d, len=%d)\n", max_vlen, max_vlen_in_bytes*BitsPerByte);
2403         }
2404 
2405         // For atomic unrolled loops which are vector mapped, instigate more unrolling
2406         cl->set_notpassed_slp();
2407         if (cl->is_main_loop()) {
2408           // if vector resources are limited, do not allow additional unrolling, also
2409           // do not unroll more on pure vector loops which were not reduced so that we can
2410           // program the post loop to single iteration execution.
2411           if (FLOATPRESSURE > 8) {
2412             C->set_major_progress();
2413             cl->mark_do_unroll_only();
2414           }
2415         }
2416 
2417         if (do_reserve_copy()) {
2418           cl->mark_loop_vectorized();
2419           if (can_process_post_loop) {
2420             // Now create the difference of trip and limit and use it as our mask index.
2421             // Note: We limited the unroll of the vectorized loop so that
2422             //       only vlen-1 size iterations can remain to be mask programmed.
2423             Node *incr = cl->incr();
2424             SubINode *index = new SubINode(cl->limit(), cl->init_trip());
2425             _igvn.register_new_node_with_optimizer(index);
2426             SetVectMaskINode  *mask = new SetVectMaskINode(_phase->get_ctrl(cl->init_trip()), index);
2427             _igvn.register_new_node_with_optimizer(mask);
2428             // make this a single iteration loop
2429             AddINode *new_incr = new AddINode(incr->in(1), mask);
2430             _igvn.register_new_node_with_optimizer(new_incr);
2431             _phase->set_ctrl(new_incr, _phase->get_ctrl(incr));
2432             _igvn.replace_node(incr, new_incr);
2433             cl->mark_is_multiversioned();
2434             cl->loopexit()->add_flag(Node::Flag_has_vector_mask_set);
2435           }
2436         }
2437       }
2438     }
2439   }
2440 
2441   if (do_reserve_copy()) {
2442     make_reversable.use_new();
2443   }
2444   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("\n Final loop after SuperWord"); print_loop(true);})
2445   return;
2446 }
2447 
2448 //------------------------------vector_opd---------------------------
2449 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
2450 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
2451   Node* p0 = p->at(0);
2452   uint vlen = p->size();
2453   Node* opd = p0->in(opd_idx);
2454   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
2455 
2456   if (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()) {
2457     // override vlen with the main loops vector length
2458     vlen = cl->slp_max_unroll();
2459   }
2460 
2461   if (same_inputs(p, opd_idx)) {
2462     if (opd->is_Vector() || opd->is_LoadVector()) {
2463       assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
2464       if (opd_idx == 2 && VectorNode::is_shift(p0)) {
2465         NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("shift's count can't be vector");})
2466         return NULL;
2467       }
2468       return opd; // input is matching vector
2469     }
2470     if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
2471       Compile* C = _phase->C;
2472       Node* cnt = opd;
2473       // Vector instructions do not mask shift count, do it here.
2474       juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2475       const TypeInt* t = opd->find_int_type();
2476       if (t != NULL && t->is_con()) {
2477         juint shift = t->get_con();
2478         if (shift > mask) { // Unsigned cmp
2479           cnt = ConNode::make(TypeInt::make(shift & mask));
2480         }
2481       } else {
2482         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2483           cnt = ConNode::make(TypeInt::make(mask));
2484           _igvn.register_new_node_with_optimizer(cnt);
2485           cnt = new AndINode(opd, cnt);
2486           _igvn.register_new_node_with_optimizer(cnt);
2487           _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
2488         }
2489         assert(opd->bottom_type()->isa_int(), "int type only");
2490         if (!opd->bottom_type()->isa_int()) {
2491           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should be int type only");})
2492           return NULL;
2493         }
2494         // Move non constant shift count into vector register.
2495         cnt = VectorNode::shift_count(p0, cnt, vlen, velt_basic_type(p0));
2496       }
2497       if (cnt != opd) {
2498         _igvn.register_new_node_with_optimizer(cnt);
2499         _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
2500       }
2501       return cnt;
2502     }
2503     assert(!opd->is_StoreVector(), "such vector is not expected here");
2504     if (opd->is_StoreVector()) {
2505       NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("StoreVector is not expected here");})
2506       return NULL;
2507     }
2508     // Convert scalar input to vector with the same number of elements as
2509     // p0's vector. Use p0's type because size of operand's container in
2510     // vector should match p0's size regardless operand's size.
2511     const Type* p0_t = velt_type(p0);
2512     VectorNode* vn = VectorNode::scalar2vector(opd, vlen, p0_t);
2513 
2514     _igvn.register_new_node_with_optimizer(vn);
2515     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
2516 #ifdef ASSERT
2517     if (TraceNewVectors) {
2518       tty->print("new Vector node: ");
2519       vn->dump();
2520     }
2521 #endif
2522     return vn;
2523   }
2524 
2525   // Insert pack operation
2526   BasicType bt = velt_basic_type(p0);
2527   PackNode* pk = PackNode::make(opd, vlen, bt);
2528   DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
2529 
2530   for (uint i = 1; i < vlen; i++) {
2531     Node* pi = p->at(i);
2532     Node* in = pi->in(opd_idx);
2533     assert(my_pack(in) == NULL, "Should already have been unpacked");
2534     if (my_pack(in) != NULL) {
2535       NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should already have been unpacked");})
2536       return NULL;
2537     }
2538     assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
2539     pk->add_opd(in);
2540   }
2541   _igvn.register_new_node_with_optimizer(pk);
2542   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
2543 #ifdef ASSERT
2544   if (TraceNewVectors) {
2545     tty->print("new Vector node: ");
2546     pk->dump();
2547   }
2548 #endif
2549   return pk;
2550 }
2551 
2552 //------------------------------insert_extracts---------------------------
2553 // If a use of pack p is not a vector use, then replace the
2554 // use with an extract operation.
2555 void SuperWord::insert_extracts(Node_List* p) {
2556   if (p->at(0)->is_Store()) return;
2557   assert(_n_idx_list.is_empty(), "empty (node,index) list");
2558 
2559   // Inspect each use of each pack member.  For each use that is
2560   // not a vector use, replace the use with an extract operation.
2561 
2562   for (uint i = 0; i < p->size(); i++) {
2563     Node* def = p->at(i);
2564     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
2565       Node* use = def->fast_out(j);
2566       for (uint k = 0; k < use->req(); k++) {
2567         Node* n = use->in(k);
2568         if (def == n) {
2569           Node_List* u_pk = my_pack(use);
2570           if ((u_pk == NULL || !is_cmov_pack(u_pk) || use->is_CMove()) && !is_vector_use(use, k)) {
2571               _n_idx_list.push(use, k);
2572           }
2573         }
2574       }
2575     }
2576   }
2577 
2578   while (_n_idx_list.is_nonempty()) {
2579     Node* use = _n_idx_list.node();
2580     int   idx = _n_idx_list.index();
2581     _n_idx_list.pop();
2582     Node* def = use->in(idx);
2583 
2584     if (def->is_reduction()) continue;
2585 
2586     // Insert extract operation
2587     _igvn.hash_delete(def);
2588     int def_pos = alignment(def) / data_size(def);
2589 
2590     Node* ex = ExtractNode::make(def, def_pos, velt_basic_type(def));
2591     _igvn.register_new_node_with_optimizer(ex);
2592     _phase->set_ctrl(ex, _phase->get_ctrl(def));
2593     _igvn.replace_input_of(use, idx, ex);
2594     _igvn._worklist.push(def);
2595 
2596     bb_insert_after(ex, bb_idx(def));
2597     set_velt_type(ex, velt_type(def));
2598   }
2599 }
2600 
2601 //------------------------------is_vector_use---------------------------
2602 // Is use->in(u_idx) a vector use?
2603 bool SuperWord::is_vector_use(Node* use, int u_idx) {
2604   Node_List* u_pk = my_pack(use);
2605   if (u_pk == NULL) return false;
2606   if (use->is_reduction()) return true;
2607   Node* def = use->in(u_idx);
2608   Node_List* d_pk = my_pack(def);
2609   if (d_pk == NULL) {
2610     // check for scalar promotion
2611     Node* n = u_pk->at(0)->in(u_idx);
2612     for (uint i = 1; i < u_pk->size(); i++) {
2613       if (u_pk->at(i)->in(u_idx) != n) return false;
2614     }
2615     return true;
2616   }
2617   if (u_pk->size() != d_pk->size())
2618     return false;
2619   for (uint i = 0; i < u_pk->size(); i++) {
2620     Node* ui = u_pk->at(i);
2621     Node* di = d_pk->at(i);
2622     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
2623       return false;
2624   }
2625   return true;
2626 }
2627 
2628 //------------------------------construct_bb---------------------------
2629 // Construct reverse postorder list of block members
2630 bool SuperWord::construct_bb() {
2631   Node* entry = bb();
2632 
2633   assert(_stk.length() == 0,            "stk is empty");
2634   assert(_block.length() == 0,          "block is empty");
2635   assert(_data_entry.length() == 0,     "data_entry is empty");
2636   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
2637   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
2638 
2639   // Find non-control nodes with no inputs from within block,
2640   // create a temporary map from node _idx to bb_idx for use
2641   // by the visited and post_visited sets,
2642   // and count number of nodes in block.
2643   int bb_ct = 0;
2644   for (uint i = 0; i < lpt()->_body.size(); i++) {
2645     Node *n = lpt()->_body.at(i);
2646     set_bb_idx(n, i); // Create a temporary map
2647     if (in_bb(n)) {
2648       if (n->is_LoadStore() || n->is_MergeMem() ||
2649           (n->is_Proj() && !n->as_Proj()->is_CFG())) {
2650         // Bailout if the loop has LoadStore, MergeMem or data Proj
2651         // nodes. Superword optimization does not work with them.
2652         return false;
2653       }
2654       bb_ct++;
2655       if (!n->is_CFG()) {
2656         bool found = false;
2657         for (uint j = 0; j < n->req(); j++) {
2658           Node* def = n->in(j);
2659           if (def && in_bb(def)) {
2660             found = true;
2661             break;
2662           }
2663         }
2664         if (!found) {
2665           assert(n != entry, "can't be entry");
2666           _data_entry.push(n);
2667         }
2668       }
2669     }
2670   }
2671 
2672   // Find memory slices (head and tail)
2673   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
2674     Node *n = lp()->fast_out(i);
2675     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
2676       Node* n_tail  = n->in(LoopNode::LoopBackControl);
2677       if (n_tail != n->in(LoopNode::EntryControl)) {
2678         if (!n_tail->is_Mem()) {
2679           assert(n_tail->is_Mem(), "unexpected node for memory slice: %s", n_tail->Name());
2680           return false; // Bailout
2681         }
2682         _mem_slice_head.push(n);
2683         _mem_slice_tail.push(n_tail);
2684       }
2685     }
2686   }
2687 
2688   // Create an RPO list of nodes in block
2689 
2690   visited_clear();
2691   post_visited_clear();
2692 
2693   // Push all non-control nodes with no inputs from within block, then control entry
2694   for (int j = 0; j < _data_entry.length(); j++) {
2695     Node* n = _data_entry.at(j);
2696     visited_set(n);
2697     _stk.push(n);
2698   }
2699   visited_set(entry);
2700   _stk.push(entry);
2701 
2702   // Do a depth first walk over out edges
2703   int rpo_idx = bb_ct - 1;
2704   int size;
2705   int reduction_uses = 0;
2706   while ((size = _stk.length()) > 0) {
2707     Node* n = _stk.top(); // Leave node on stack
2708     if (!visited_test_set(n)) {
2709       // forward arc in graph
2710     } else if (!post_visited_test(n)) {
2711       // cross or back arc
2712       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2713         Node *use = n->fast_out(i);
2714         if (in_bb(use) && !visited_test(use) &&
2715             // Don't go around backedge
2716             (!use->is_Phi() || n == entry)) {
2717           if (use->is_reduction()) {
2718             // First see if we can map the reduction on the given system we are on, then
2719             // make a data entry operation for each reduction we see.
2720             BasicType bt = use->bottom_type()->basic_type();
2721             if (ReductionNode::implemented(use->Opcode(), Matcher::min_vector_size(bt), bt)) {
2722               reduction_uses++;
2723             }
2724           }
2725           _stk.push(use);
2726         }
2727       }
2728       if (_stk.length() == size) {
2729         // There were no additional uses, post visit node now
2730         _stk.pop(); // Remove node from stack
2731         assert(rpo_idx >= 0, "");
2732         _block.at_put_grow(rpo_idx, n);
2733         rpo_idx--;
2734         post_visited_set(n);
2735         assert(rpo_idx >= 0 || _stk.is_empty(), "");
2736       }
2737     } else {
2738       _stk.pop(); // Remove post-visited node from stack
2739     }
2740   }//while
2741 
2742   int ii_current = -1;
2743   unsigned int load_idx = (unsigned int)-1;
2744   _ii_order.clear();
2745   // Create real map of block indices for nodes
2746   for (int j = 0; j < _block.length(); j++) {
2747     Node* n = _block.at(j);
2748     set_bb_idx(n, j);
2749     if (_do_vector_loop && n->is_Load()) {
2750       if (ii_current == -1) {
2751         ii_current = _clone_map.gen(n->_idx);
2752         _ii_order.push(ii_current);
2753         load_idx = _clone_map.idx(n->_idx);
2754       } else if (_clone_map.idx(n->_idx) == load_idx && _clone_map.gen(n->_idx) != ii_current) {
2755         ii_current = _clone_map.gen(n->_idx);
2756         _ii_order.push(ii_current);
2757       }
2758     }
2759   }//for
2760 
2761   // Ensure extra info is allocated.
2762   initialize_bb();
2763 
2764 #ifndef PRODUCT
2765   if (_vector_loop_debug && _ii_order.length() > 0) {
2766     tty->print("SuperWord::construct_bb: List of generations: ");
2767     for (int jj = 0; jj < _ii_order.length(); ++jj) {
2768       tty->print("  %d:%d", jj, _ii_order.at(jj));
2769     }
2770     tty->print_cr(" ");
2771   }
2772   if (TraceSuperWord) {
2773     print_bb();
2774     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
2775     for (int m = 0; m < _data_entry.length(); m++) {
2776       tty->print("%3d ", m);
2777       _data_entry.at(m)->dump();
2778     }
2779     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
2780     for (int m = 0; m < _mem_slice_head.length(); m++) {
2781       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
2782       tty->print("    ");    _mem_slice_tail.at(m)->dump();
2783     }
2784   }
2785 #endif
2786   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
2787   return (_mem_slice_head.length() > 0) || (reduction_uses > 0) || (_data_entry.length() > 0);
2788 }
2789 
2790 //------------------------------initialize_bb---------------------------
2791 // Initialize per node info
2792 void SuperWord::initialize_bb() {
2793   Node* last = _block.at(_block.length() - 1);
2794   grow_node_info(bb_idx(last));
2795 }
2796 
2797 //------------------------------bb_insert_after---------------------------
2798 // Insert n into block after pos
2799 void SuperWord::bb_insert_after(Node* n, int pos) {
2800   int n_pos = pos + 1;
2801   // Make room
2802   for (int i = _block.length() - 1; i >= n_pos; i--) {
2803     _block.at_put_grow(i+1, _block.at(i));
2804   }
2805   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
2806     _node_info.at_put_grow(j+1, _node_info.at(j));
2807   }
2808   // Set value
2809   _block.at_put_grow(n_pos, n);
2810   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
2811   // Adjust map from node->_idx to _block index
2812   for (int i = n_pos; i < _block.length(); i++) {
2813     set_bb_idx(_block.at(i), i);
2814   }
2815 }
2816 
2817 //------------------------------compute_max_depth---------------------------
2818 // Compute max depth for expressions from beginning of block
2819 // Use to prune search paths during test for independence.
2820 void SuperWord::compute_max_depth() {
2821   int ct = 0;
2822   bool again;
2823   do {
2824     again = false;
2825     for (int i = 0; i < _block.length(); i++) {
2826       Node* n = _block.at(i);
2827       if (!n->is_Phi()) {
2828         int d_orig = depth(n);
2829         int d_in   = 0;
2830         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
2831           Node* pred = preds.current();
2832           if (in_bb(pred)) {
2833             d_in = MAX2(d_in, depth(pred));
2834           }
2835         }
2836         if (d_in + 1 != d_orig) {
2837           set_depth(n, d_in + 1);
2838           again = true;
2839         }
2840       }
2841     }
2842     ct++;
2843   } while (again);
2844 
2845   if (TraceSuperWord && Verbose) {
2846     tty->print_cr("compute_max_depth iterated: %d times", ct);
2847   }
2848 }
2849 
2850 //-------------------------compute_vector_element_type-----------------------
2851 // Compute necessary vector element type for expressions
2852 // This propagates backwards a narrower integer type when the
2853 // upper bits of the value are not needed.
2854 // Example:  char a,b,c;  a = b + c;
2855 // Normally the type of the add is integer, but for packed character
2856 // operations the type of the add needs to be char.
2857 void SuperWord::compute_vector_element_type() {
2858   if (TraceSuperWord && Verbose) {
2859     tty->print_cr("\ncompute_velt_type:");
2860   }
2861 
2862   // Initial type
2863   for (int i = 0; i < _block.length(); i++) {
2864     Node* n = _block.at(i);
2865     set_velt_type(n, container_type(n));
2866   }
2867 
2868   // Propagate integer narrowed type backwards through operations
2869   // that don't depend on higher order bits
2870   for (int i = _block.length() - 1; i >= 0; i--) {
2871     Node* n = _block.at(i);
2872     // Only integer types need be examined
2873     const Type* vtn = velt_type(n);
2874     if (vtn->basic_type() == T_INT) {
2875       uint start, end;
2876       VectorNode::vector_operands(n, &start, &end);
2877 
2878       for (uint j = start; j < end; j++) {
2879         Node* in  = n->in(j);
2880         // Don't propagate through a memory
2881         if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
2882             data_size(n) < data_size(in)) {
2883           bool same_type = true;
2884           for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
2885             Node *use = in->fast_out(k);
2886             if (!in_bb(use) || !same_velt_type(use, n)) {
2887               same_type = false;
2888               break;
2889             }
2890           }
2891           if (same_type) {
2892             // For right shifts of small integer types (bool, byte, char, short)
2893             // we need precise information about sign-ness. Only Load nodes have
2894             // this information because Store nodes are the same for signed and
2895             // unsigned values. And any arithmetic operation after a load may
2896             // expand a value to signed Int so such right shifts can't be used
2897             // because vector elements do not have upper bits of Int.
2898             const Type* vt = vtn;
2899             if (VectorNode::is_shift(in)) {
2900               Node* load = in->in(1);
2901               if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
2902                 vt = velt_type(load);
2903               } else if (in->Opcode() != Op_LShiftI) {
2904                 // Widen type to Int to avoid creation of right shift vector
2905                 // (align + data_size(s1) check in stmts_can_pack() will fail).
2906                 // Note, left shifts work regardless type.
2907                 vt = TypeInt::INT;
2908               }
2909             }
2910             set_velt_type(in, vt);
2911           }
2912         }
2913       }
2914     }
2915   }
2916 #ifndef PRODUCT
2917   if (TraceSuperWord && Verbose) {
2918     for (int i = 0; i < _block.length(); i++) {
2919       Node* n = _block.at(i);
2920       velt_type(n)->dump();
2921       tty->print("\t");
2922       n->dump();
2923     }
2924   }
2925 #endif
2926 }
2927 
2928 //------------------------------memory_alignment---------------------------
2929 // Alignment within a vector memory reference
2930 int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
2931   #ifndef PRODUCT
2932     if(TraceSuperWord && Verbose) {
2933       tty->print("SuperWord::memory_alignment within a vector memory reference for %d:  ", s->_idx); s->dump();
2934     }
2935   #endif
2936   NOT_PRODUCT(SWPointer::Tracer::Depth ddd(0);)
2937   SWPointer p(s, this, NULL, false);
2938   if (!p.valid()) {
2939     NOT_PRODUCT(if(is_trace_alignment()) tty->print("SWPointer::memory_alignment: SWPointer p invalid, return bottom_align");)
2940     return bottom_align;
2941   }
2942   int vw = vector_width_in_bytes(s);
2943   if (vw < 2) {
2944     NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SWPointer::memory_alignment: vector_width_in_bytes < 2, return bottom_align");)
2945     return bottom_align; // No vectors for this type
2946   }
2947   int offset  = p.offset_in_bytes();
2948   offset     += iv_adjust*p.memory_size();
2949   int off_rem = offset % vw;
2950   int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
2951   if (TraceSuperWord && Verbose) {
2952     tty->print_cr("SWPointer::memory_alignment: off_rem = %d, off_mod = %d", off_rem, off_mod);
2953   }
2954   return off_mod;
2955 }
2956 
2957 //---------------------------container_type---------------------------
2958 // Smallest type containing range of values
2959 const Type* SuperWord::container_type(Node* n) {
2960   if (n->is_Mem()) {
2961     BasicType bt = n->as_Mem()->memory_type();
2962     if (n->is_Store() && (bt == T_CHAR)) {
2963       // Use T_SHORT type instead of T_CHAR for stored values because any
2964       // preceding arithmetic operation extends values to signed Int.
2965       bt = T_SHORT;
2966     }
2967     if (n->Opcode() == Op_LoadUB) {
2968       // Adjust type for unsigned byte loads, it is important for right shifts.
2969       // T_BOOLEAN is used because there is no basic type representing type
2970       // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
2971       // size (one byte) and sign is important.
2972       bt = T_BOOLEAN;
2973     }
2974     return Type::get_const_basic_type(bt);
2975   }
2976   const Type* t = _igvn.type(n);
2977   if (t->basic_type() == T_INT) {
2978     // A narrow type of arithmetic operations will be determined by
2979     // propagating the type of memory operations.
2980     return TypeInt::INT;
2981   }
2982   return t;
2983 }
2984 
2985 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
2986   const Type* vt1 = velt_type(n1);
2987   const Type* vt2 = velt_type(n2);
2988   if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
2989     // Compare vectors element sizes for integer types.
2990     return data_size(n1) == data_size(n2);
2991   }
2992   return vt1 == vt2;
2993 }
2994 
2995 //------------------------------in_packset---------------------------
2996 // Are s1 and s2 in a pack pair and ordered as s1,s2?
2997 bool SuperWord::in_packset(Node* s1, Node* s2) {
2998   for (int i = 0; i < _packset.length(); i++) {
2999     Node_List* p = _packset.at(i);
3000     assert(p->size() == 2, "must be");
3001     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
3002       return true;
3003     }
3004   }
3005   return false;
3006 }
3007 
3008 //------------------------------in_pack---------------------------
3009 // Is s in pack p?
3010 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
3011   for (uint i = 0; i < p->size(); i++) {
3012     if (p->at(i) == s) {
3013       return p;
3014     }
3015   }
3016   return NULL;
3017 }
3018 
3019 //------------------------------remove_pack_at---------------------------
3020 // Remove the pack at position pos in the packset
3021 void SuperWord::remove_pack_at(int pos) {
3022   Node_List* p = _packset.at(pos);
3023   for (uint i = 0; i < p->size(); i++) {
3024     Node* s = p->at(i);
3025     set_my_pack(s, NULL);
3026   }
3027   _packset.remove_at(pos);
3028 }
3029 
3030 void SuperWord::packset_sort(int n) {
3031   // simple bubble sort so that we capitalize with O(n) when its already sorted
3032   while (n != 0) {
3033     bool swapped = false;
3034     for (int i = 1; i < n; i++) {
3035       Node_List* q_low = _packset.at(i-1);
3036       Node_List* q_i = _packset.at(i);
3037 
3038       // only swap when we find something to swap
3039       if (alignment(q_low->at(0)) > alignment(q_i->at(0))) {
3040         Node_List* t = q_i;
3041         *(_packset.adr_at(i)) = q_low;
3042         *(_packset.adr_at(i-1)) = q_i;
3043         swapped = true;
3044       }
3045     }
3046     if (swapped == false) break;
3047     n--;
3048   }
3049 }
3050 
3051 //------------------------------executed_first---------------------------
3052 // Return the node executed first in pack p.  Uses the RPO block list
3053 // to determine order.
3054 Node* SuperWord::executed_first(Node_List* p) {
3055   Node* n = p->at(0);
3056   int n_rpo = bb_idx(n);
3057   for (uint i = 1; i < p->size(); i++) {
3058     Node* s = p->at(i);
3059     int s_rpo = bb_idx(s);
3060     if (s_rpo < n_rpo) {
3061       n = s;
3062       n_rpo = s_rpo;
3063     }
3064   }
3065   return n;
3066 }
3067 
3068 //------------------------------executed_last---------------------------
3069 // Return the node executed last in pack p.
3070 Node* SuperWord::executed_last(Node_List* p) {
3071   Node* n = p->at(0);
3072   int n_rpo = bb_idx(n);
3073   for (uint i = 1; i < p->size(); i++) {
3074     Node* s = p->at(i);
3075     int s_rpo = bb_idx(s);
3076     if (s_rpo > n_rpo) {
3077       n = s;
3078       n_rpo = s_rpo;
3079     }
3080   }
3081   return n;
3082 }
3083 
3084 LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) {
3085   LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest;
3086   for (uint i = 0; i < p->size(); i++) {
3087     Node* n = p->at(i);
3088     assert(n->is_Load(), "only meaningful for loads");
3089     if (!n->depends_only_on_test()) {
3090       dep = LoadNode::Pinned;
3091     }
3092   }
3093   return dep;
3094 }
3095 
3096 
3097 //----------------------------align_initial_loop_index---------------------------
3098 // Adjust pre-loop limit so that in main loop, a load/store reference
3099 // to align_to_ref will be a position zero in the vector.
3100 //   (iv + k) mod vector_align == 0
3101 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
3102   CountedLoopNode *main_head = lp()->as_CountedLoop();
3103   assert(main_head->is_main_loop(), "");
3104   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
3105   assert(pre_end != NULL, "we must have a correct pre-loop");
3106   Node *pre_opaq1 = pre_end->limit();
3107   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
3108   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
3109   Node *lim0 = pre_opaq->in(1);
3110 
3111   // Where we put new limit calculations
3112   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
3113 
3114   // Ensure the original loop limit is available from the
3115   // pre-loop Opaque1 node.
3116   Node *orig_limit = pre_opaq->original_loop_limit();
3117   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
3118 
3119   SWPointer align_to_ref_p(align_to_ref, this, NULL, false);
3120   assert(align_to_ref_p.valid(), "sanity");
3121 
3122   // Given:
3123   //     lim0 == original pre loop limit
3124   //     V == v_align (power of 2)
3125   //     invar == extra invariant piece of the address expression
3126   //     e == offset [ +/- invar ]
3127   //
3128   // When reassociating expressions involving '%' the basic rules are:
3129   //     (a - b) % k == 0   =>  a % k == b % k
3130   // and:
3131   //     (a + b) % k == 0   =>  a % k == (k - b) % k
3132   //
3133   // For stride > 0 && scale > 0,
3134   //   Derive the new pre-loop limit "lim" such that the two constraints:
3135   //     (1) lim = lim0 + N           (where N is some positive integer < V)
3136   //     (2) (e + lim) % V == 0
3137   //   are true.
3138   //
3139   //   Substituting (1) into (2),
3140   //     (e + lim0 + N) % V == 0
3141   //   solve for N:
3142   //     N = (V - (e + lim0)) % V
3143   //   substitute back into (1), so that new limit
3144   //     lim = lim0 + (V - (e + lim0)) % V
3145   //
3146   // For stride > 0 && scale < 0
3147   //   Constraints:
3148   //     lim = lim0 + N
3149   //     (e - lim) % V == 0
3150   //   Solving for lim:
3151   //     (e - lim0 - N) % V == 0
3152   //     N = (e - lim0) % V
3153   //     lim = lim0 + (e - lim0) % V
3154   //
3155   // For stride < 0 && scale > 0
3156   //   Constraints:
3157   //     lim = lim0 - N
3158   //     (e + lim) % V == 0
3159   //   Solving for lim:
3160   //     (e + lim0 - N) % V == 0
3161   //     N = (e + lim0) % V
3162   //     lim = lim0 - (e + lim0) % V
3163   //
3164   // For stride < 0 && scale < 0
3165   //   Constraints:
3166   //     lim = lim0 - N
3167   //     (e - lim) % V == 0
3168   //   Solving for lim:
3169   //     (e - lim0 + N) % V == 0
3170   //     N = (V - (e - lim0)) % V
3171   //     lim = lim0 - (V - (e - lim0)) % V
3172 
3173   int vw = vector_width_in_bytes(align_to_ref);
3174   int stride   = iv_stride();
3175   int scale    = align_to_ref_p.scale_in_bytes();
3176   int elt_size = align_to_ref_p.memory_size();
3177   int v_align  = vw / elt_size;
3178   assert(v_align > 1, "sanity");
3179   int offset   = align_to_ref_p.offset_in_bytes() / elt_size;
3180   Node *offsn  = _igvn.intcon(offset);
3181 
3182   Node *e = offsn;
3183   if (align_to_ref_p.invar() != NULL) {
3184     // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
3185     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
3186     Node* aref     = new URShiftINode(align_to_ref_p.invar(), log2_elt);
3187     _igvn.register_new_node_with_optimizer(aref);
3188     _phase->set_ctrl(aref, pre_ctrl);
3189     if (align_to_ref_p.negate_invar()) {
3190       e = new SubINode(e, aref);
3191     } else {
3192       e = new AddINode(e, aref);
3193     }
3194     _igvn.register_new_node_with_optimizer(e);
3195     _phase->set_ctrl(e, pre_ctrl);
3196   }
3197   if (vw > ObjectAlignmentInBytes) {
3198     // incorporate base e +/- base && Mask >>> log2(elt)
3199     Node* xbase = new CastP2XNode(NULL, align_to_ref_p.base());
3200     _igvn.register_new_node_with_optimizer(xbase);
3201 #ifdef _LP64
3202     xbase  = new ConvL2INode(xbase);
3203     _igvn.register_new_node_with_optimizer(xbase);
3204 #endif
3205     Node* mask = _igvn.intcon(vw-1);
3206     Node* masked_xbase  = new AndINode(xbase, mask);
3207     _igvn.register_new_node_with_optimizer(masked_xbase);
3208     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
3209     Node* bref     = new URShiftINode(masked_xbase, log2_elt);
3210     _igvn.register_new_node_with_optimizer(bref);
3211     _phase->set_ctrl(bref, pre_ctrl);
3212     e = new AddINode(e, bref);
3213     _igvn.register_new_node_with_optimizer(e);
3214     _phase->set_ctrl(e, pre_ctrl);
3215   }
3216 
3217   // compute e +/- lim0
3218   if (scale < 0) {
3219     e = new SubINode(e, lim0);
3220   } else {
3221     e = new AddINode(e, lim0);
3222   }
3223   _igvn.register_new_node_with_optimizer(e);
3224   _phase->set_ctrl(e, pre_ctrl);
3225 
3226   if (stride * scale > 0) {
3227     // compute V - (e +/- lim0)
3228     Node* va  = _igvn.intcon(v_align);
3229     e = new SubINode(va, e);
3230     _igvn.register_new_node_with_optimizer(e);
3231     _phase->set_ctrl(e, pre_ctrl);
3232   }
3233   // compute N = (exp) % V
3234   Node* va_msk = _igvn.intcon(v_align - 1);
3235   Node* N = new AndINode(e, va_msk);
3236   _igvn.register_new_node_with_optimizer(N);
3237   _phase->set_ctrl(N, pre_ctrl);
3238 
3239   //   substitute back into (1), so that new limit
3240   //     lim = lim0 + N
3241   Node* lim;
3242   if (stride < 0) {
3243     lim = new SubINode(lim0, N);
3244   } else {
3245     lim = new AddINode(lim0, N);
3246   }
3247   _igvn.register_new_node_with_optimizer(lim);
3248   _phase->set_ctrl(lim, pre_ctrl);
3249   Node* constrained =
3250     (stride > 0) ? (Node*) new MinINode(lim, orig_limit)
3251                  : (Node*) new MaxINode(lim, orig_limit);
3252   _igvn.register_new_node_with_optimizer(constrained);
3253   _phase->set_ctrl(constrained, pre_ctrl);
3254   _igvn.replace_input_of(pre_opaq, 1, constrained);
3255 }
3256 
3257 //----------------------------get_pre_loop_end---------------------------
3258 // Find pre loop end from main loop.  Returns null if none.
3259 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode* cl) {
3260   // The loop cannot be optimized if the graph shape at
3261   // the loop entry is inappropriate.
3262   if (!PhaseIdealLoop::is_canonical_loop_entry(cl)) {
3263     return NULL;
3264   }
3265 
3266   Node* p_f = cl->in(LoopNode::EntryControl)->in(0)->in(0);
3267   if (!p_f->is_IfFalse()) return NULL;
3268   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
3269   CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
3270   CountedLoopNode* loop_node = pre_end->loopnode();
3271   if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL;
3272   return pre_end;
3273 }
3274 
3275 //------------------------------init---------------------------
3276 void SuperWord::init() {
3277   _dg.init();
3278   _packset.clear();
3279   _disjoint_ptrs.clear();
3280   _block.clear();
3281   _post_block.clear();
3282   _data_entry.clear();
3283   _mem_slice_head.clear();
3284   _mem_slice_tail.clear();
3285   _iteration_first.clear();
3286   _iteration_last.clear();
3287   _node_info.clear();
3288   _align_to_ref = NULL;
3289   _lpt = NULL;
3290   _lp = NULL;
3291   _bb = NULL;
3292   _iv = NULL;
3293   _race_possible = 0;
3294   _early_return = false;
3295   _num_work_vecs = 0;
3296   _num_reductions = 0;
3297 }
3298 
3299 //------------------------------restart---------------------------
3300 void SuperWord::restart() {
3301   _dg.init();
3302   _packset.clear();
3303   _disjoint_ptrs.clear();
3304   _block.clear();
3305   _post_block.clear();
3306   _data_entry.clear();
3307   _mem_slice_head.clear();
3308   _mem_slice_tail.clear();
3309   _node_info.clear();
3310 }
3311 
3312 //------------------------------print_packset---------------------------
3313 void SuperWord::print_packset() {
3314 #ifndef PRODUCT
3315   tty->print_cr("packset");
3316   for (int i = 0; i < _packset.length(); i++) {
3317     tty->print_cr("Pack: %d", i);
3318     Node_List* p = _packset.at(i);
3319     print_pack(p);
3320   }
3321 #endif
3322 }
3323 
3324 //------------------------------print_pack---------------------------
3325 void SuperWord::print_pack(Node_List* p) {
3326   for (uint i = 0; i < p->size(); i++) {
3327     print_stmt(p->at(i));
3328   }
3329 }
3330 
3331 //------------------------------print_bb---------------------------
3332 void SuperWord::print_bb() {
3333 #ifndef PRODUCT
3334   tty->print_cr("\nBlock");
3335   for (int i = 0; i < _block.length(); i++) {
3336     Node* n = _block.at(i);
3337     tty->print("%d ", i);
3338     if (n) {
3339       n->dump();
3340     }
3341   }
3342 #endif
3343 }
3344 
3345 //------------------------------print_stmt---------------------------
3346 void SuperWord::print_stmt(Node* s) {
3347 #ifndef PRODUCT
3348   tty->print(" align: %d \t", alignment(s));
3349   s->dump();
3350 #endif
3351 }
3352 
3353 //------------------------------blank---------------------------
3354 char* SuperWord::blank(uint depth) {
3355   static char blanks[101];
3356   assert(depth < 101, "too deep");
3357   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
3358   blanks[depth] = '\0';
3359   return blanks;
3360 }
3361 
3362 
3363 //==============================SWPointer===========================
3364 #ifndef PRODUCT
3365 int SWPointer::Tracer::_depth = 0;
3366 #endif
3367 //----------------------------SWPointer------------------------
3368 SWPointer::SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only) :
3369   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
3370   _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
3371   _nstack(nstack), _analyze_only(analyze_only),
3372   _stack_idx(0)
3373 #ifndef PRODUCT
3374   , _tracer(slp)
3375 #endif
3376 {
3377   NOT_PRODUCT(_tracer.ctor_1(mem);)
3378 
3379   Node* adr = mem->in(MemNode::Address);
3380   if (!adr->is_AddP()) {
3381     assert(!valid(), "too complex");
3382     return;
3383   }
3384   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
3385   Node* base = adr->in(AddPNode::Base);
3386   // The base address should be loop invariant
3387   if (!invariant(base)) {
3388     assert(!valid(), "base address is loop variant");
3389     return;
3390   }
3391   //unsafe reference could not be aligned appropriately without runtime checking
3392   if (base == NULL || base->bottom_type() == Type::TOP) {
3393     assert(!valid(), "unsafe access");
3394     return;
3395   }
3396 
3397   NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.store_depth();)
3398   NOT_PRODUCT(_tracer.ctor_2(adr);)
3399 
3400   int i;
3401   for (i = 0; i < 3; i++) {
3402     NOT_PRODUCT(_tracer.ctor_3(adr, i);)
3403 
3404     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
3405       assert(!valid(), "too complex");
3406       return;
3407     }
3408     adr = adr->in(AddPNode::Address);
3409     NOT_PRODUCT(_tracer.ctor_4(adr, i);)
3410 
3411     if (base == adr || !adr->is_AddP()) {
3412       NOT_PRODUCT(_tracer.ctor_5(adr, base, i);)
3413       break; // stop looking at addp's
3414     }
3415   }
3416   NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.restore_depth();)
3417   NOT_PRODUCT(_tracer.ctor_6(mem);)
3418 
3419   _base = base;
3420   _adr  = adr;
3421   assert(valid(), "Usable");
3422 }
3423 
3424 // Following is used to create a temporary object during
3425 // the pattern match of an address expression.
3426 SWPointer::SWPointer(SWPointer* p) :
3427   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
3428   _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
3429   _nstack(p->_nstack), _analyze_only(p->_analyze_only),
3430   _stack_idx(p->_stack_idx)
3431   #ifndef PRODUCT
3432   , _tracer(p->_slp)
3433   #endif
3434 {}
3435 
3436 
3437 bool SWPointer::invariant(Node* n) {
3438   NOT_PRODUCT(Tracer::Depth dd;)
3439   Node *n_c = phase()->get_ctrl(n);
3440   NOT_PRODUCT(_tracer.invariant_1(n, n_c);)
3441   return !lpt()->is_member(phase()->get_loop(n_c));
3442 }
3443 //------------------------scaled_iv_plus_offset--------------------
3444 // Match: k*iv + offset
3445 // where: k is a constant that maybe zero, and
3446 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
3447 bool SWPointer::scaled_iv_plus_offset(Node* n) {
3448   NOT_PRODUCT(Tracer::Depth ddd;)
3449   NOT_PRODUCT(_tracer.scaled_iv_plus_offset_1(n);)
3450 
3451   if (scaled_iv(n)) {
3452     NOT_PRODUCT(_tracer.scaled_iv_plus_offset_2(n);)
3453     return true;
3454   }
3455 
3456   if (offset_plus_k(n)) {
3457     NOT_PRODUCT(_tracer.scaled_iv_plus_offset_3(n);)
3458     return true;
3459   }
3460 
3461   int opc = n->Opcode();
3462   if (opc == Op_AddI) {
3463     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
3464       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_4(n);)
3465       return true;
3466     }
3467     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
3468       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_5(n);)
3469       return true;
3470     }
3471   } else if (opc == Op_SubI) {
3472     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
3473       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_6(n);)
3474       return true;
3475     }
3476     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
3477       _scale *= -1;
3478       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_7(n);)
3479       return true;
3480     }
3481   }
3482 
3483   NOT_PRODUCT(_tracer.scaled_iv_plus_offset_8(n);)
3484   return false;
3485 }
3486 
3487 //----------------------------scaled_iv------------------------
3488 // Match: k*iv where k is a constant that's not zero
3489 bool SWPointer::scaled_iv(Node* n) {
3490   NOT_PRODUCT(Tracer::Depth ddd;)
3491   NOT_PRODUCT(_tracer.scaled_iv_1(n);)
3492 
3493   if (_scale != 0) { // already found a scale
3494     NOT_PRODUCT(_tracer.scaled_iv_2(n, _scale);)
3495     return false;
3496   }
3497 
3498   if (n == iv()) {
3499     _scale = 1;
3500     NOT_PRODUCT(_tracer.scaled_iv_3(n, _scale);)
3501     return true;
3502   }
3503   if (_analyze_only && (invariant(n) == false)) {
3504     _nstack->push(n, _stack_idx++);
3505   }
3506 
3507   int opc = n->Opcode();
3508   if (opc == Op_MulI) {
3509     if (n->in(1) == iv() && n->in(2)->is_Con()) {
3510       _scale = n->in(2)->get_int();
3511       NOT_PRODUCT(_tracer.scaled_iv_4(n, _scale);)
3512       return true;
3513     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
3514       _scale = n->in(1)->get_int();
3515       NOT_PRODUCT(_tracer.scaled_iv_5(n, _scale);)
3516       return true;
3517     }
3518   } else if (opc == Op_LShiftI) {
3519     if (n->in(1) == iv() && n->in(2)->is_Con()) {
3520       _scale = 1 << n->in(2)->get_int();
3521       NOT_PRODUCT(_tracer.scaled_iv_6(n, _scale);)
3522       return true;
3523     }
3524   } else if (opc == Op_ConvI2L) {
3525     if (n->in(1)->Opcode() == Op_CastII &&
3526         n->in(1)->as_CastII()->has_range_check()) {
3527       // Skip range check dependent CastII nodes
3528       n = n->in(1);
3529     }
3530     if (scaled_iv_plus_offset(n->in(1))) {
3531       NOT_PRODUCT(_tracer.scaled_iv_7(n);)
3532       return true;
3533     }
3534   } else if (opc == Op_LShiftL) {
3535     if (!has_iv() && _invar == NULL) {
3536       // Need to preserve the current _offset value, so
3537       // create a temporary object for this expression subtree.
3538       // Hacky, so should re-engineer the address pattern match.
3539       NOT_PRODUCT(Tracer::Depth dddd;)
3540       SWPointer tmp(this);
3541       NOT_PRODUCT(_tracer.scaled_iv_8(n, &tmp);)
3542 
3543       if (tmp.scaled_iv_plus_offset(n->in(1))) {
3544         if (tmp._invar == NULL || _slp->do_vector_loop()) {
3545           int mult = 1 << n->in(2)->get_int();
3546           _scale   = tmp._scale  * mult;
3547           _offset += tmp._offset * mult;
3548           NOT_PRODUCT(_tracer.scaled_iv_9(n, _scale, _offset, mult);)
3549           return true;
3550         }
3551       }
3552     }
3553   }
3554   NOT_PRODUCT(_tracer.scaled_iv_10(n);)
3555   return false;
3556 }
3557 
3558 //----------------------------offset_plus_k------------------------
3559 // Match: offset is (k [+/- invariant])
3560 // where k maybe zero and invariant is optional, but not both.
3561 bool SWPointer::offset_plus_k(Node* n, bool negate) {
3562   NOT_PRODUCT(Tracer::Depth ddd;)
3563   NOT_PRODUCT(_tracer.offset_plus_k_1(n);)
3564 
3565   int opc = n->Opcode();
3566   if (opc == Op_ConI) {
3567     _offset += negate ? -(n->get_int()) : n->get_int();
3568     NOT_PRODUCT(_tracer.offset_plus_k_2(n, _offset);)
3569     return true;
3570   } else if (opc == Op_ConL) {
3571     // Okay if value fits into an int
3572     const TypeLong* t = n->find_long_type();
3573     if (t->higher_equal(TypeLong::INT)) {
3574       jlong loff = n->get_long();
3575       jint  off  = (jint)loff;
3576       _offset += negate ? -off : loff;
3577       NOT_PRODUCT(_tracer.offset_plus_k_3(n, _offset);)
3578       return true;
3579     }
3580     NOT_PRODUCT(_tracer.offset_plus_k_4(n);)
3581     return false;
3582   }
3583   if (_invar != NULL) { // already has an invariant
3584     NOT_PRODUCT(_tracer.offset_plus_k_5(n, _invar);)
3585     return false;
3586   }
3587 
3588   if (_analyze_only && (invariant(n) == false)) {
3589     _nstack->push(n, _stack_idx++);
3590   }
3591   if (opc == Op_AddI) {
3592     if (n->in(2)->is_Con() && invariant(n->in(1))) {
3593       _negate_invar = negate;
3594       _invar = n->in(1);
3595       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
3596       NOT_PRODUCT(_tracer.offset_plus_k_6(n, _invar, _negate_invar, _offset);)
3597       return true;
3598     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
3599       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
3600       _negate_invar = negate;
3601       _invar = n->in(2);
3602       NOT_PRODUCT(_tracer.offset_plus_k_7(n, _invar, _negate_invar, _offset);)
3603       return true;
3604     }
3605   }
3606   if (opc == Op_SubI) {
3607     if (n->in(2)->is_Con() && invariant(n->in(1))) {
3608       _negate_invar = negate;
3609       _invar = n->in(1);
3610       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
3611       NOT_PRODUCT(_tracer.offset_plus_k_8(n, _invar, _negate_invar, _offset);)
3612       return true;
3613     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
3614       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
3615       _negate_invar = !negate;
3616       _invar = n->in(2);
3617       NOT_PRODUCT(_tracer.offset_plus_k_9(n, _invar, _negate_invar, _offset);)
3618       return true;
3619     }
3620   }
3621   if (invariant(n)) {
3622     if (opc == Op_ConvI2L) {
3623       n = n->in(1);
3624       if (n->Opcode() == Op_CastII &&
3625           n->as_CastII()->has_range_check()) {
3626         // Skip range check dependent CastII nodes
3627         assert(invariant(n), "sanity");
3628         n = n->in(1);
3629       }
3630     }
3631     if (n->bottom_type()->isa_int()) {
3632       _negate_invar = negate;
3633       _invar = n;
3634       NOT_PRODUCT(_tracer.offset_plus_k_10(n, _invar, _negate_invar, _offset);)
3635       return true;
3636     }
3637   }
3638 
3639   NOT_PRODUCT(_tracer.offset_plus_k_11(n);)
3640   return false;
3641 }
3642 
3643 //----------------------------print------------------------
3644 void SWPointer::print() {
3645 #ifndef PRODUCT
3646   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
3647              _base != NULL ? _base->_idx : 0,
3648              _adr  != NULL ? _adr->_idx  : 0,
3649              _scale, _offset,
3650              _negate_invar?'-':'+',
3651              _invar != NULL ? _invar->_idx : 0);
3652 #endif
3653 }
3654 
3655 //----------------------------tracing------------------------
3656 #ifndef PRODUCT
3657 void SWPointer::Tracer::print_depth() {
3658   for (int ii = 0; ii<_depth; ++ii) tty->print("  ");
3659 }
3660 
3661 void SWPointer::Tracer::ctor_1 (Node* mem) {
3662   if(_slp->is_trace_alignment()) {
3663     print_depth(); tty->print(" %d SWPointer::SWPointer: start alignment analysis", mem->_idx); mem->dump();
3664   }
3665 }
3666 
3667 void SWPointer::Tracer::ctor_2(Node* adr) {
3668   if(_slp->is_trace_alignment()) {
3669     //store_depth();
3670     inc_depth();
3671     print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: ", adr->_idx); adr->dump();
3672     inc_depth();
3673     print_depth(); tty->print(" %d (base) SWPointer::SWPointer: ", adr->in(AddPNode::Base)->_idx); adr->in(AddPNode::Base)->dump();
3674   }
3675 }
3676 
3677 void SWPointer::Tracer::ctor_3(Node* adr, int i) {
3678   if(_slp->is_trace_alignment()) {
3679     inc_depth();
3680     Node* offset = adr->in(AddPNode::Offset);
3681     print_depth(); tty->print(" %d (offset) SWPointer::SWPointer: i = %d: ", offset->_idx, i); offset->dump();
3682   }
3683 }
3684 
3685 void SWPointer::Tracer::ctor_4(Node* adr, int i) {
3686   if(_slp->is_trace_alignment()) {
3687     inc_depth();
3688     print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: i = %d: ", adr->_idx, i); adr->dump();
3689   }
3690 }
3691 
3692 void SWPointer::Tracer::ctor_5(Node* adr, Node* base, int i) {
3693   if(_slp->is_trace_alignment()) {
3694     inc_depth();
3695     if (base == adr) {
3696       print_depth(); tty->print_cr("  \\ %d (adr) == %d (base) SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, base->_idx, i);
3697     } else if (!adr->is_AddP()) {
3698       print_depth(); tty->print_cr("  \\ %d (adr) is NOT Addp SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, i);
3699     }
3700   }
3701 }
3702 
3703 void SWPointer::Tracer::ctor_6(Node* mem) {
3704   if(_slp->is_trace_alignment()) {
3705     //restore_depth();
3706     print_depth(); tty->print_cr(" %d (adr) SWPointer::SWPointer: stop analysis", mem->_idx);
3707   }
3708 }
3709 
3710 void SWPointer::Tracer::invariant_1(Node *n, Node *n_c) {
3711   if (_slp->do_vector_loop() && _slp->is_debug() && _slp->_lpt->is_member(_slp->_phase->get_loop(n_c)) != (int)_slp->in_bb(n)) {
3712     int is_member =  _slp->_lpt->is_member(_slp->_phase->get_loop(n_c));
3713     int in_bb     =  _slp->in_bb(n);
3714     print_depth(); tty->print("  \\ ");  tty->print_cr(" %d SWPointer::invariant  conditions differ: n_c %d", n->_idx, n_c->_idx);
3715     print_depth(); tty->print("  \\ ");  tty->print_cr("is_member %d, in_bb %d", is_member, in_bb);
3716     print_depth(); tty->print("  \\ ");  n->dump();
3717     print_depth(); tty->print("  \\ ");  n_c->dump();
3718   }
3719 }
3720 
3721 void SWPointer::Tracer::scaled_iv_plus_offset_1(Node* n) {
3722   if(_slp->is_trace_alignment()) {
3723     print_depth(); tty->print(" %d SWPointer::scaled_iv_plus_offset testing node: ", n->_idx);
3724     n->dump();
3725   }
3726 }
3727 
3728 void SWPointer::Tracer::scaled_iv_plus_offset_2(Node* n) {
3729   if(_slp->is_trace_alignment()) {
3730     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
3731   }
3732 }
3733 
3734 void SWPointer::Tracer::scaled_iv_plus_offset_3(Node* n) {
3735   if(_slp->is_trace_alignment()) {
3736     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
3737   }
3738 }
3739 
3740 void SWPointer::Tracer::scaled_iv_plus_offset_4(Node* n) {
3741   if(_slp->is_trace_alignment()) {
3742     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
3743     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
3744     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
3745   }
3746 }
3747 
3748 void SWPointer::Tracer::scaled_iv_plus_offset_5(Node* n) {
3749   if(_slp->is_trace_alignment()) {
3750     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
3751     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
3752     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
3753   }
3754 }
3755 
3756 void SWPointer::Tracer::scaled_iv_plus_offset_6(Node* n) {
3757   if(_slp->is_trace_alignment()) {
3758     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
3759     print_depth(); tty->print("  \\  %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
3760     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
3761   }
3762 }
3763 
3764 void SWPointer::Tracer::scaled_iv_plus_offset_7(Node* n) {
3765   if(_slp->is_trace_alignment()) {
3766     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
3767     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
3768     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
3769   }
3770 }
3771 
3772 void SWPointer::Tracer::scaled_iv_plus_offset_8(Node* n) {
3773   if(_slp->is_trace_alignment()) {
3774     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: FAILED", n->_idx);
3775   }
3776 }
3777 
3778 void SWPointer::Tracer::scaled_iv_1(Node* n) {
3779   if(_slp->is_trace_alignment()) {
3780     print_depth(); tty->print(" %d SWPointer::scaled_iv: testing node: ", n->_idx); n->dump();
3781   }
3782 }
3783 
3784 void SWPointer::Tracer::scaled_iv_2(Node* n, int scale) {
3785   if(_slp->is_trace_alignment()) {
3786     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED since another _scale has been detected before", n->_idx);
3787     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: _scale (%d) != 0", scale);
3788   }
3789 }
3790 
3791 void SWPointer::Tracer::scaled_iv_3(Node* n, int scale) {
3792   if(_slp->is_trace_alignment()) {
3793     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: is iv, setting _scale = %d", n->_idx, scale);
3794   }
3795 }
3796 
3797 void SWPointer::Tracer::scaled_iv_4(Node* n, int scale) {
3798   if(_slp->is_trace_alignment()) {
3799     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
3800     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
3801     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
3802   }
3803 }
3804 
3805 void SWPointer::Tracer::scaled_iv_5(Node* n, int scale) {
3806   if(_slp->is_trace_alignment()) {
3807     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
3808     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is iv: ", n->in(2)->_idx); n->in(2)->dump();
3809     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
3810   }
3811 }
3812 
3813 void SWPointer::Tracer::scaled_iv_6(Node* n, int scale) {
3814   if(_slp->is_trace_alignment()) {
3815     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftI PASSED, setting _scale = %d", n->_idx, scale);
3816     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
3817     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
3818   }
3819 }
3820 
3821 void SWPointer::Tracer::scaled_iv_7(Node* n) {
3822   if(_slp->is_trace_alignment()) {
3823     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_ConvI2L PASSED", n->_idx);
3824     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset: ", n->in(1)->_idx);
3825     inc_depth(); inc_depth();
3826     print_depth(); n->in(1)->dump();
3827     dec_depth(); dec_depth();
3828   }
3829 }
3830 
3831 void SWPointer::Tracer::scaled_iv_8(Node* n, SWPointer* tmp) {
3832   if(_slp->is_trace_alignment()) {
3833     print_depth(); tty->print(" %d SWPointer::scaled_iv: Op_LShiftL, creating tmp SWPointer: ", n->_idx); tmp->print();
3834   }
3835 }
3836 
3837 void SWPointer::Tracer::scaled_iv_9(Node* n, int scale, int _offset, int mult) {
3838   if(_slp->is_trace_alignment()) {
3839     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftL PASSED, setting _scale = %d, _offset = %d", n->_idx, scale, _offset);
3840     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset, in(2) %d used to get mult = %d: _scale = %d, _offset = %d",
3841     n->in(1)->_idx, n->in(2)->_idx, mult, scale, _offset);
3842     inc_depth(); inc_depth();
3843     print_depth(); n->in(1)->dump();
3844     print_depth(); n->in(2)->dump();
3845     dec_depth(); dec_depth();
3846   }
3847 }
3848 
3849 void SWPointer::Tracer::scaled_iv_10(Node* n) {
3850   if(_slp->is_trace_alignment()) {
3851     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED", n->_idx);
3852   }
3853 }
3854 
3855 void SWPointer::Tracer::offset_plus_k_1(Node* n) {
3856   if(_slp->is_trace_alignment()) {
3857     print_depth(); tty->print(" %d SWPointer::offset_plus_k: testing node: ", n->_idx); n->dump();
3858   }
3859 }
3860 
3861 void SWPointer::Tracer::offset_plus_k_2(Node* n, int _offset) {
3862   if(_slp->is_trace_alignment()) {
3863     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConI PASSED, setting _offset = %d", n->_idx, _offset);
3864   }
3865 }
3866 
3867 void SWPointer::Tracer::offset_plus_k_3(Node* n, int _offset) {
3868   if(_slp->is_trace_alignment()) {
3869     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConL PASSED, setting _offset = %d", n->_idx, _offset);
3870   }
3871 }
3872 
3873 void SWPointer::Tracer::offset_plus_k_4(Node* n) {
3874   if(_slp->is_trace_alignment()) {
3875     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
3876     print_depth(); tty->print_cr("  \\ " JLONG_FORMAT " SWPointer::offset_plus_k: Op_ConL FAILED, k is too big", n->get_long());
3877   }
3878 }
3879 
3880 void SWPointer::Tracer::offset_plus_k_5(Node* n, Node* _invar) {
3881   if(_slp->is_trace_alignment()) {
3882     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED since another invariant has been detected before", n->_idx);
3883     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: _invar != NULL: ", _invar->_idx); _invar->dump();
3884   }
3885 }
3886 
3887 void SWPointer::Tracer::offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3888   if(_slp->is_trace_alignment()) {
3889     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
3890     n->_idx, _negate_invar, _invar->_idx, _offset);
3891     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
3892     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
3893   }
3894 }
3895 
3896 void SWPointer::Tracer::offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3897   if(_slp->is_trace_alignment()) {
3898     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
3899     n->_idx, _negate_invar, _invar->_idx, _offset);
3900     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
3901     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
3902   }
3903 }
3904 
3905 void SWPointer::Tracer::offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3906   if(_slp->is_trace_alignment()) {
3907     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI is PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
3908     n->_idx, _negate_invar, _invar->_idx, _offset);
3909     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
3910     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
3911   }
3912 }
3913 
3914 void SWPointer::Tracer::offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3915   if(_slp->is_trace_alignment()) {
3916     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
3917     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
3918     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
3919   }
3920 }
3921 
3922 void SWPointer::Tracer::offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3923   if(_slp->is_trace_alignment()) {
3924     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
3925     print_depth(); tty->print_cr("  \\ %d SWPointer::offset_plus_k: is invariant", n->_idx);
3926   }
3927 }
3928 
3929 void SWPointer::Tracer::offset_plus_k_11(Node* n) {
3930   if(_slp->is_trace_alignment()) {
3931     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
3932   }
3933 }
3934 
3935 #endif
3936 // ========================= OrderedPair =====================
3937 
3938 const OrderedPair OrderedPair::initial;
3939 
3940 // ========================= SWNodeInfo =====================
3941 
3942 const SWNodeInfo SWNodeInfo::initial;
3943 
3944 
3945 // ============================ DepGraph ===========================
3946 
3947 //------------------------------make_node---------------------------
3948 // Make a new dependence graph node for an ideal node.
3949 DepMem* DepGraph::make_node(Node* node) {
3950   DepMem* m = new (_arena) DepMem(node);
3951   if (node != NULL) {
3952     assert(_map.at_grow(node->_idx) == NULL, "one init only");
3953     _map.at_put_grow(node->_idx, m);
3954   }
3955   return m;
3956 }
3957 
3958 //------------------------------make_edge---------------------------
3959 // Make a new dependence graph edge from dpred -> dsucc
3960 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
3961   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
3962   dpred->set_out_head(e);
3963   dsucc->set_in_head(e);
3964   return e;
3965 }
3966 
3967 // ========================== DepMem ========================
3968 
3969 //------------------------------in_cnt---------------------------
3970 int DepMem::in_cnt() {
3971   int ct = 0;
3972   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
3973   return ct;
3974 }
3975 
3976 //------------------------------out_cnt---------------------------
3977 int DepMem::out_cnt() {
3978   int ct = 0;
3979   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
3980   return ct;
3981 }
3982 
3983 //------------------------------print-----------------------------
3984 void DepMem::print() {
3985 #ifndef PRODUCT
3986   tty->print("  DepNode %d (", _node->_idx);
3987   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
3988     Node* pred = p->pred()->node();
3989     tty->print(" %d", pred != NULL ? pred->_idx : 0);
3990   }
3991   tty->print(") [");
3992   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
3993     Node* succ = s->succ()->node();
3994     tty->print(" %d", succ != NULL ? succ->_idx : 0);
3995   }
3996   tty->print_cr(" ]");
3997 #endif
3998 }
3999 
4000 // =========================== DepEdge =========================
4001 
4002 //------------------------------DepPreds---------------------------
4003 void DepEdge::print() {
4004 #ifndef PRODUCT
4005   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
4006 #endif
4007 }
4008 
4009 // =========================== DepPreds =========================
4010 // Iterator over predecessor edges in the dependence graph.
4011 
4012 //------------------------------DepPreds---------------------------
4013 DepPreds::DepPreds(Node* n, DepGraph& dg) {
4014   _n = n;
4015   _done = false;
4016   if (_n->is_Store() || _n->is_Load()) {
4017     _next_idx = MemNode::Address;
4018     _end_idx  = n->req();
4019     _dep_next = dg.dep(_n)->in_head();
4020   } else if (_n->is_Mem()) {
4021     _next_idx = 0;
4022     _end_idx  = 0;
4023     _dep_next = dg.dep(_n)->in_head();
4024   } else {
4025     _next_idx = 1;
4026     _end_idx  = _n->req();
4027     _dep_next = NULL;
4028   }
4029   next();
4030 }
4031 
4032 //------------------------------next---------------------------
4033 void DepPreds::next() {
4034   if (_dep_next != NULL) {
4035     _current  = _dep_next->pred()->node();
4036     _dep_next = _dep_next->next_in();
4037   } else if (_next_idx < _end_idx) {
4038     _current  = _n->in(_next_idx++);
4039   } else {
4040     _done = true;
4041   }
4042 }
4043 
4044 // =========================== DepSuccs =========================
4045 // Iterator over successor edges in the dependence graph.
4046 
4047 //------------------------------DepSuccs---------------------------
4048 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
4049   _n = n;
4050   _done = false;
4051   if (_n->is_Load()) {
4052     _next_idx = 0;
4053     _end_idx  = _n->outcnt();
4054     _dep_next = dg.dep(_n)->out_head();
4055   } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
4056     _next_idx = 0;
4057     _end_idx  = 0;
4058     _dep_next = dg.dep(_n)->out_head();
4059   } else {
4060     _next_idx = 0;
4061     _end_idx  = _n->outcnt();
4062     _dep_next = NULL;
4063   }
4064   next();
4065 }
4066 
4067 //-------------------------------next---------------------------
4068 void DepSuccs::next() {
4069   if (_dep_next != NULL) {
4070     _current  = _dep_next->succ()->node();
4071     _dep_next = _dep_next->next_out();
4072   } else if (_next_idx < _end_idx) {
4073     _current  = _n->raw_out(_next_idx++);
4074   } else {
4075     _done = true;
4076   }
4077 }
4078 
4079 //
4080 // --------------------------------- vectorization/simd -----------------------------------
4081 //
4082 bool SuperWord::same_origin_idx(Node* a, Node* b) const {
4083   return a != NULL && b != NULL && _clone_map.same_idx(a->_idx, b->_idx);
4084 }
4085 bool SuperWord::same_generation(Node* a, Node* b) const {
4086   return a != NULL && b != NULL && _clone_map.same_gen(a->_idx, b->_idx);
4087 }
4088 
4089 Node*  SuperWord::find_phi_for_mem_dep(LoadNode* ld) {
4090   assert(in_bb(ld), "must be in block");
4091   if (_clone_map.gen(ld->_idx) == _ii_first) {
4092 #ifndef PRODUCT
4093     if (_vector_loop_debug) {
4094       tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(ld->_idx)=%d",
4095         _clone_map.gen(ld->_idx));
4096     }
4097 #endif
4098     return NULL; //we think that any ld in the first gen being vectorizable
4099   }
4100 
4101   Node* mem = ld->in(MemNode::Memory);
4102   if (mem->outcnt() <= 1) {
4103     // we don't want to remove the only edge from mem node to load
4104 #ifndef PRODUCT
4105     if (_vector_loop_debug) {
4106       tty->print_cr("SuperWord::find_phi_for_mem_dep input node %d to load %d has no other outputs and edge mem->load cannot be removed",
4107         mem->_idx, ld->_idx);
4108       ld->dump();
4109       mem->dump();
4110     }
4111 #endif
4112     return NULL;
4113   }
4114   if (!in_bb(mem) || same_generation(mem, ld)) {
4115 #ifndef PRODUCT
4116     if (_vector_loop_debug) {
4117       tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(mem->_idx)=%d",
4118         _clone_map.gen(mem->_idx));
4119     }
4120 #endif
4121     return NULL; // does not depend on loop volatile node or depends on the same generation
4122   }
4123 
4124   //otherwise first node should depend on mem-phi
4125   Node* first = first_node(ld);
4126   assert(first->is_Load(), "must be Load");
4127   Node* phi = first->as_Load()->in(MemNode::Memory);
4128   if (!phi->is_Phi() || phi->bottom_type() != Type::MEMORY) {
4129 #ifndef PRODUCT
4130     if (_vector_loop_debug) {
4131       tty->print_cr("SuperWord::find_phi_for_mem_dep load is not vectorizable node, since it's `first` does not take input from mem phi");
4132       ld->dump();
4133       first->dump();
4134     }
4135 #endif
4136     return NULL;
4137   }
4138 
4139   Node* tail = 0;
4140   for (int m = 0; m < _mem_slice_head.length(); m++) {
4141     if (_mem_slice_head.at(m) == phi) {
4142       tail = _mem_slice_tail.at(m);
4143     }
4144   }
4145   if (tail == 0) { //test that found phi is in the list  _mem_slice_head
4146 #ifndef PRODUCT
4147     if (_vector_loop_debug) {
4148       tty->print_cr("SuperWord::find_phi_for_mem_dep load %d is not vectorizable node, its phi %d is not _mem_slice_head",
4149         ld->_idx, phi->_idx);
4150       ld->dump();
4151       phi->dump();
4152     }
4153 #endif
4154     return NULL;
4155   }
4156 
4157   // now all conditions are met
4158   return phi;
4159 }
4160 
4161 Node* SuperWord::first_node(Node* nd) {
4162   for (int ii = 0; ii < _iteration_first.length(); ii++) {
4163     Node* nnn = _iteration_first.at(ii);
4164     if (same_origin_idx(nnn, nd)) {
4165 #ifndef PRODUCT
4166       if (_vector_loop_debug) {
4167         tty->print_cr("SuperWord::first_node: %d is the first iteration node for %d (_clone_map.idx(nnn->_idx) = %d)",
4168           nnn->_idx, nd->_idx, _clone_map.idx(nnn->_idx));
4169       }
4170 #endif
4171       return nnn;
4172     }
4173   }
4174 
4175 #ifndef PRODUCT
4176   if (_vector_loop_debug) {
4177     tty->print_cr("SuperWord::first_node: did not find first iteration node for %d (_clone_map.idx(nd->_idx)=%d)",
4178       nd->_idx, _clone_map.idx(nd->_idx));
4179   }
4180 #endif
4181   return 0;
4182 }
4183 
4184 Node* SuperWord::last_node(Node* nd) {
4185   for (int ii = 0; ii < _iteration_last.length(); ii++) {
4186     Node* nnn = _iteration_last.at(ii);
4187     if (same_origin_idx(nnn, nd)) {
4188 #ifndef PRODUCT
4189       if (_vector_loop_debug) {
4190         tty->print_cr("SuperWord::last_node _clone_map.idx(nnn->_idx)=%d, _clone_map.idx(nd->_idx)=%d",
4191           _clone_map.idx(nnn->_idx), _clone_map.idx(nd->_idx));
4192       }
4193 #endif
4194       return nnn;
4195     }
4196   }
4197   return 0;
4198 }
4199 
4200 int SuperWord::mark_generations() {
4201   Node *ii_err = NULL, *tail_err = NULL;
4202   for (int i = 0; i < _mem_slice_head.length(); i++) {
4203     Node* phi  = _mem_slice_head.at(i);
4204     assert(phi->is_Phi(), "must be phi");
4205 
4206     Node* tail = _mem_slice_tail.at(i);
4207     if (_ii_last == -1) {
4208       tail_err = tail;
4209       _ii_last = _clone_map.gen(tail->_idx);
4210     }
4211     else if (_ii_last != _clone_map.gen(tail->_idx)) {
4212 #ifndef PRODUCT
4213       if (TraceSuperWord && Verbose) {
4214         tty->print_cr("SuperWord::mark_generations _ii_last error - found different generations in two tail nodes ");
4215         tail->dump();
4216         tail_err->dump();
4217       }
4218 #endif
4219       return -1;
4220     }
4221 
4222     // find first iteration in the loop
4223     for (DUIterator_Fast imax, i = phi->fast_outs(imax); i < imax; i++) {
4224       Node* ii = phi->fast_out(i);
4225       if (in_bb(ii) && ii->is_Store()) { // we speculate that normally Stores of one and one only generation have deps from mem phi
4226         if (_ii_first == -1) {
4227           ii_err = ii;
4228           _ii_first = _clone_map.gen(ii->_idx);
4229         } else if (_ii_first != _clone_map.gen(ii->_idx)) {
4230 #ifndef PRODUCT
4231           if (TraceSuperWord && Verbose) {
4232             tty->print_cr("SuperWord::mark_generations: _ii_first was found before and not equal to one in this node (%d)", _ii_first);
4233             ii->dump();
4234             if (ii_err!= 0) {
4235               ii_err->dump();
4236             }
4237           }
4238 #endif
4239           return -1; // this phi has Stores from different generations of unroll and cannot be simd/vectorized
4240         }
4241       }
4242     }//for (DUIterator_Fast imax,
4243   }//for (int i...
4244 
4245   if (_ii_first == -1 || _ii_last == -1) {
4246     if (TraceSuperWord && Verbose) {
4247       tty->print_cr("SuperWord::mark_generations unknown error, something vent wrong");
4248     }
4249     return -1; // something vent wrong
4250   }
4251   // collect nodes in the first and last generations
4252   assert(_iteration_first.length() == 0, "_iteration_first must be empty");
4253   assert(_iteration_last.length() == 0, "_iteration_last must be empty");
4254   for (int j = 0; j < _block.length(); j++) {
4255     Node* n = _block.at(j);
4256     node_idx_t gen = _clone_map.gen(n->_idx);
4257     if ((signed)gen == _ii_first) {
4258       _iteration_first.push(n);
4259     } else if ((signed)gen == _ii_last) {
4260       _iteration_last.push(n);
4261     }
4262   }
4263 
4264   // building order of iterations
4265   if (_ii_order.length() == 0 && ii_err != 0) {
4266     assert(in_bb(ii_err) && ii_err->is_Store(), "should be Store in bb");
4267     Node* nd = ii_err;
4268     while(_clone_map.gen(nd->_idx) != _ii_last) {
4269       _ii_order.push(_clone_map.gen(nd->_idx));
4270       bool found = false;
4271       for (DUIterator_Fast imax, i = nd->fast_outs(imax); i < imax; i++) {
4272         Node* use = nd->fast_out(i);
4273         if (same_origin_idx(use, nd) && use->as_Store()->in(MemNode::Memory) == nd) {
4274           found = true;
4275           nd = use;
4276           break;
4277         }
4278       }//for
4279 
4280       if (found == false) {
4281         if (TraceSuperWord && Verbose) {
4282           tty->print_cr("SuperWord::mark_generations: Cannot build order of iterations - no dependent Store for %d", nd->_idx);
4283         }
4284         _ii_order.clear();
4285         return -1;
4286       }
4287     } //while
4288     _ii_order.push(_clone_map.gen(nd->_idx));
4289   }
4290 
4291 #ifndef PRODUCT
4292   if (_vector_loop_debug) {
4293     tty->print_cr("SuperWord::mark_generations");
4294     tty->print_cr("First generation (%d) nodes:", _ii_first);
4295     for (int ii = 0; ii < _iteration_first.length(); ii++)  _iteration_first.at(ii)->dump();
4296     tty->print_cr("Last generation (%d) nodes:", _ii_last);
4297     for (int ii = 0; ii < _iteration_last.length(); ii++)  _iteration_last.at(ii)->dump();
4298     tty->print_cr(" ");
4299 
4300     tty->print("SuperWord::List of generations: ");
4301     for (int jj = 0; jj < _ii_order.length(); ++jj) {
4302       tty->print("%d:%d ", jj, _ii_order.at(jj));
4303     }
4304     tty->print_cr(" ");
4305   }
4306 #endif
4307 
4308   return _ii_first;
4309 }
4310 
4311 bool SuperWord::fix_commutative_inputs(Node* gold, Node* fix) {
4312   assert(gold->is_Add() && fix->is_Add() || gold->is_Mul() && fix->is_Mul(), "should be only Add or Mul nodes");
4313   assert(same_origin_idx(gold, fix), "should be clones of the same node");
4314   Node* gin1 = gold->in(1);
4315   Node* gin2 = gold->in(2);
4316   Node* fin1 = fix->in(1);
4317   Node* fin2 = fix->in(2);
4318   bool swapped = false;
4319 
4320   if (in_bb(gin1) && in_bb(gin2) && in_bb(fin1) && in_bb(fin1)) {
4321     if (same_origin_idx(gin1, fin1) &&
4322         same_origin_idx(gin2, fin2)) {
4323       return true; // nothing to fix
4324     }
4325     if (same_origin_idx(gin1, fin2) &&
4326         same_origin_idx(gin2, fin1)) {
4327       fix->swap_edges(1, 2);
4328       swapped = true;
4329     }
4330   }
4331   // at least one input comes from outside of bb
4332   if (gin1->_idx == fin1->_idx)  {
4333     return true; // nothing to fix
4334   }
4335   if (!swapped && (gin1->_idx == fin2->_idx || gin2->_idx == fin1->_idx))  { //swapping is expensive, check condition first
4336     fix->swap_edges(1, 2);
4337     swapped = true;
4338   }
4339 
4340   if (swapped) {
4341 #ifndef PRODUCT
4342     if (_vector_loop_debug) {
4343       tty->print_cr("SuperWord::fix_commutative_inputs: fixed node %d", fix->_idx);
4344     }
4345 #endif
4346     return true;
4347   }
4348 
4349   if (TraceSuperWord && Verbose) {
4350     tty->print_cr("SuperWord::fix_commutative_inputs: cannot fix node %d", fix->_idx);
4351   }
4352 
4353   return false;
4354 }
4355 
4356 bool SuperWord::pack_parallel() {
4357 #ifndef PRODUCT
4358   if (_vector_loop_debug) {
4359     tty->print_cr("SuperWord::pack_parallel: START");
4360   }
4361 #endif
4362 
4363   _packset.clear();
4364 
4365   for (int ii = 0; ii < _iteration_first.length(); ii++) {
4366     Node* nd = _iteration_first.at(ii);
4367     if (in_bb(nd) && (nd->is_Load() || nd->is_Store() || nd->is_Add() || nd->is_Mul())) {
4368       Node_List* pk = new Node_List();
4369       pk->push(nd);
4370       for (int gen = 1; gen < _ii_order.length(); ++gen) {
4371         for (int kk = 0; kk < _block.length(); kk++) {
4372           Node* clone = _block.at(kk);
4373           if (same_origin_idx(clone, nd) &&
4374               _clone_map.gen(clone->_idx) == _ii_order.at(gen)) {
4375             if (nd->is_Add() || nd->is_Mul()) {
4376               fix_commutative_inputs(nd, clone);
4377             }
4378             pk->push(clone);
4379             if (pk->size() == 4) {
4380               _packset.append(pk);
4381 #ifndef PRODUCT
4382               if (_vector_loop_debug) {
4383                 tty->print_cr("SuperWord::pack_parallel: added pack ");
4384                 pk->dump();
4385               }
4386 #endif
4387               if (_clone_map.gen(clone->_idx) != _ii_last) {
4388                 pk = new Node_List();
4389               }
4390             }
4391             break;
4392           }
4393         }
4394       }//for
4395     }//if
4396   }//for
4397 
4398 #ifndef PRODUCT
4399   if (_vector_loop_debug) {
4400     tty->print_cr("SuperWord::pack_parallel: END");
4401   }
4402 #endif
4403 
4404   return true;
4405 }
4406 
4407 bool SuperWord::hoist_loads_in_graph() {
4408   GrowableArray<Node*> loads;
4409 
4410 #ifndef PRODUCT
4411   if (_vector_loop_debug) {
4412     tty->print_cr("SuperWord::hoist_loads_in_graph: total number _mem_slice_head.length() = %d", _mem_slice_head.length());
4413   }
4414 #endif
4415 
4416   for (int i = 0; i < _mem_slice_head.length(); i++) {
4417     Node* n = _mem_slice_head.at(i);
4418     if ( !in_bb(n) || !n->is_Phi() || n->bottom_type() != Type::MEMORY) {
4419       if (TraceSuperWord && Verbose) {
4420         tty->print_cr("SuperWord::hoist_loads_in_graph: skipping unexpected node n=%d", n->_idx);
4421       }
4422       continue;
4423     }
4424 
4425 #ifndef PRODUCT
4426     if (_vector_loop_debug) {
4427       tty->print_cr("SuperWord::hoist_loads_in_graph: processing phi %d  = _mem_slice_head.at(%d);", n->_idx, i);
4428     }
4429 #endif
4430 
4431     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4432       Node* ld = n->fast_out(i);
4433       if (ld->is_Load() && ld->as_Load()->in(MemNode::Memory) == n && in_bb(ld)) {
4434         for (int i = 0; i < _block.length(); i++) {
4435           Node* ld2 = _block.at(i);
4436           if (ld2->is_Load() && same_origin_idx(ld, ld2) &&
4437               !same_generation(ld, ld2)) { // <= do not collect the first generation ld
4438 #ifndef PRODUCT
4439             if (_vector_loop_debug) {
4440               tty->print_cr("SuperWord::hoist_loads_in_graph: will try to hoist load ld2->_idx=%d, cloned from %d (ld->_idx=%d)",
4441                 ld2->_idx, _clone_map.idx(ld->_idx), ld->_idx);
4442             }
4443 #endif
4444             // could not do on-the-fly, since iterator is immutable
4445             loads.push(ld2);
4446           }
4447         }// for
4448       }//if
4449     }//for (DUIterator_Fast imax,
4450   }//for (int i = 0; i
4451 
4452   for (int i = 0; i < loads.length(); i++) {
4453     LoadNode* ld = loads.at(i)->as_Load();
4454     Node* phi = find_phi_for_mem_dep(ld);
4455     if (phi != NULL) {
4456 #ifndef PRODUCT
4457       if (_vector_loop_debug) {
4458         tty->print_cr("SuperWord::hoist_loads_in_graph replacing MemNode::Memory(%d) edge in %d with one from %d",
4459           MemNode::Memory, ld->_idx, phi->_idx);
4460       }
4461 #endif
4462       _igvn.replace_input_of(ld, MemNode::Memory, phi);
4463     }
4464   }//for
4465 
4466   restart(); // invalidate all basic structures, since we rebuilt the graph
4467 
4468   if (TraceSuperWord && Verbose) {
4469     tty->print_cr("\nSuperWord::hoist_loads_in_graph() the graph was rebuilt, all structures invalidated and need rebuild");
4470   }
4471 
4472   return true;
4473 }
4474