1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 
  31 // definitions of various symbolic names for machine registers
  32 
  33 // First intercalls between C and Java which use 8 general registers
  34 // and 8 floating registers
  35 
  36 // we also have to copy between x86 and ARM registers but that's a
  37 // secondary complication -- not all code employing C call convention
  38 // executes as x86 code though -- we generate some of it
  39 
  40 class Argument {
  41  public:
  42   enum {
  43     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  44     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  45 
  46     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  47     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  48   };
  49 };
  50 
  51 REGISTER_DECLARATION(Register, c_rarg0, r0);
  52 REGISTER_DECLARATION(Register, c_rarg1, r1);
  53 REGISTER_DECLARATION(Register, c_rarg2, r2);
  54 REGISTER_DECLARATION(Register, c_rarg3, r3);
  55 REGISTER_DECLARATION(Register, c_rarg4, r4);
  56 REGISTER_DECLARATION(Register, c_rarg5, r5);
  57 REGISTER_DECLARATION(Register, c_rarg6, r6);
  58 REGISTER_DECLARATION(Register, c_rarg7, r7);
  59 
  60 REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
  61 REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
  62 REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
  63 REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
  64 REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
  65 REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
  66 REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
  67 REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
  68 
  69 // Symbolically name the register arguments used by the Java calling convention.
  70 // We have control over the convention for java so we can do what we please.
  71 // What pleases us is to offset the java calling convention so that when
  72 // we call a suitable jni method the arguments are lined up and we don't
  73 // have to do much shuffling. A suitable jni method is non-static and a
  74 // small number of arguments
  75 //
  76 //  |--------------------------------------------------------------------|
  77 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  78 //  |--------------------------------------------------------------------|
  79 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  80 //  |--------------------------------------------------------------------|
  81 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
  82 //  |--------------------------------------------------------------------|
  83 
  84 
  85 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
  86 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
  87 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
  88 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
  89 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
  90 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
  91 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
  92 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
  93 
  94 // Java floating args are passed as per C
  95 
  96 REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
  97 REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
  98 REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
  99 REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
 100 REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
 101 REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
 102 REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
 103 REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
 104 
 105 // registers used to hold VM data either temporarily within a method
 106 // or across method calls
 107 
 108 // volatile (caller-save) registers
 109 
 110 // r8 is used for indirect result location return
 111 // we use it and r9 as scratch registers
 112 REGISTER_DECLARATION(Register, rscratch1, r8);
 113 REGISTER_DECLARATION(Register, rscratch2, r9);
 114 
 115 // current method -- must be in a call-clobbered register
 116 REGISTER_DECLARATION(Register, rmethod,   r12);
 117 
 118 // non-volatile (callee-save) registers are r16-29
 119 // of which the following are dedicated global state
 120 
 121 // link register
 122 REGISTER_DECLARATION(Register, lr,        r30);
 123 // frame pointer
 124 REGISTER_DECLARATION(Register, rfp,       r29);
 125 // current thread
 126 REGISTER_DECLARATION(Register, rthread,   r28);
 127 // base of heap
 128 REGISTER_DECLARATION(Register, rheapbase, r27);
 129 // constant pool cache
 130 REGISTER_DECLARATION(Register, rcpool,    r26);
 131 // monitors allocated on stack
 132 REGISTER_DECLARATION(Register, rmonitors, r25);
 133 // locals on stack
 134 REGISTER_DECLARATION(Register, rlocals,   r24);
 135 // bytecode pointer
 136 REGISTER_DECLARATION(Register, rbcp,      r22);
 137 // Dispatch table base
 138 REGISTER_DECLARATION(Register, rdispatch, r21);
 139 // Java stack pointer
 140 REGISTER_DECLARATION(Register, esp,      r20);
 141 
 142 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 143 
 144 namespace asm_util {
 145   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 146 };
 147 
 148 using namespace asm_util;
 149 
 150 
 151 class Assembler;
 152 
 153 class Instruction_aarch64 {
 154   unsigned insn;
 155 #ifdef ASSERT
 156   unsigned bits;
 157 #endif
 158   Assembler *assem;
 159 
 160 public:
 161 
 162   Instruction_aarch64(class Assembler *as) {
 163 #ifdef ASSERT
 164     bits = 0;
 165 #endif
 166     insn = 0;
 167     assem = as;
 168   }
 169 
 170   inline ~Instruction_aarch64();
 171 
 172   unsigned &get_insn() { return insn; }
 173 #ifdef ASSERT
 174   unsigned &get_bits() { return bits; }
 175 #endif
 176 
 177   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 178     union {
 179       unsigned u;
 180       int n;
 181     };
 182 
 183     u = val << (31 - hi);
 184     n = n >> (31 - hi + lo);
 185     return n;
 186   }
 187 
 188   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 189     int nbits = msb - lsb + 1;
 190     assert_cond(msb >= lsb);
 191     uint32_t mask = (1U << nbits) - 1;
 192     uint32_t result = val >> lsb;
 193     result &= mask;
 194     return result;
 195   }
 196 
 197   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 198     uint32_t uval = extract(val, msb, lsb);
 199     return extend(uval, msb - lsb);
 200   }
 201 
 202   static void patch(address a, int msb, int lsb, unsigned long val) {
 203     int nbits = msb - lsb + 1;
 204     guarantee(val < (1U << nbits), "Field too big for insn");
 205     assert_cond(msb >= lsb);
 206     unsigned mask = (1U << nbits) - 1;
 207     val <<= lsb;
 208     mask <<= lsb;
 209     unsigned target = *(unsigned *)a;
 210     target &= ~mask;
 211     target |= val;
 212     *(unsigned *)a = target;
 213   }
 214 
 215   static void spatch(address a, int msb, int lsb, long val) {
 216     int nbits = msb - lsb + 1;
 217     long chk = val >> (nbits - 1);
 218     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 219     unsigned uval = val;
 220     unsigned mask = (1U << nbits) - 1;
 221     uval &= mask;
 222     uval <<= lsb;
 223     mask <<= lsb;
 224     unsigned target = *(unsigned *)a;
 225     target &= ~mask;
 226     target |= uval;
 227     *(unsigned *)a = target;
 228   }
 229 
 230   void f(unsigned val, int msb, int lsb) {
 231     int nbits = msb - lsb + 1;
 232     guarantee(val < (1U << nbits), "Field too big for insn");
 233     assert_cond(msb >= lsb);
 234     unsigned mask = (1U << nbits) - 1;
 235     val <<= lsb;
 236     mask <<= lsb;
 237     insn |= val;
 238     assert_cond((bits & mask) == 0);
 239 #ifdef ASSERT
 240     bits |= mask;
 241 #endif
 242   }
 243 
 244   void f(unsigned val, int bit) {
 245     f(val, bit, bit);
 246   }
 247 
 248   void sf(long val, int msb, int lsb) {
 249     int nbits = msb - lsb + 1;
 250     long chk = val >> (nbits - 1);
 251     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 252     unsigned uval = val;
 253     unsigned mask = (1U << nbits) - 1;
 254     uval &= mask;
 255     f(uval, lsb + nbits - 1, lsb);
 256   }
 257 
 258   void rf(Register r, int lsb) {
 259     f(r->encoding_nocheck(), lsb + 4, lsb);
 260   }
 261 
 262   // reg|ZR
 263   void zrf(Register r, int lsb) {
 264     f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
 265   }
 266 
 267   // reg|SP
 268   void srf(Register r, int lsb) {
 269     f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
 270   }
 271 
 272   void rf(FloatRegister r, int lsb) {
 273     f(r->encoding_nocheck(), lsb + 4, lsb);
 274   }
 275 
 276   unsigned get(int msb = 31, int lsb = 0) {
 277     int nbits = msb - lsb + 1;
 278     unsigned mask = ((1U << nbits) - 1) << lsb;
 279     assert_cond((bits & mask) == mask);
 280     return (insn & mask) >> lsb;
 281   }
 282 
 283   void fixed(unsigned value, unsigned mask) {
 284     assert_cond ((mask & bits) == 0);
 285 #ifdef ASSERT
 286     bits |= mask;
 287 #endif
 288     insn |= value;
 289   }
 290 };
 291 
 292 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
 293 
 294 class PrePost {
 295   int _offset;
 296   Register _r;
 297 public:
 298   PrePost(Register reg, int o) : _offset(o), _r(reg) { }
 299   int offset() { return _offset; }
 300   Register reg() { return _r; }
 301 };
 302 
 303 class Pre : public PrePost {
 304 public:
 305   Pre(Register reg, int o) : PrePost(reg, o) { }
 306 };
 307 class Post : public PrePost {
 308   Register _idx;
 309   bool _is_postreg;
 310 public:
 311   Post(Register reg, int o) : PrePost(reg, o) { _idx = NULL; _is_postreg = false; }
 312   Post(Register reg, Register idx) : PrePost(reg, 0) { _idx = idx; _is_postreg = true; }
 313   Register idx_reg() { return _idx; }
 314   bool is_postreg() {return _is_postreg; }
 315 };
 316 
 317 namespace ext
 318 {
 319   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 320 };
 321 
 322 // Addressing modes
 323 class Address {
 324  public:
 325 
 326   enum mode { no_mode, base_plus_offset, pre, post, post_reg, pcrel,
 327               base_plus_offset_reg, literal };
 328 
 329   // Shift and extend for base reg + reg offset addressing
 330   class extend {
 331     int _option, _shift;
 332     ext::operation _op;
 333   public:
 334     extend() { }
 335     extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { }
 336     int option() const{ return _option; }
 337     int shift() const { return _shift; }
 338     ext::operation op() const { return _op; }
 339   };
 340   class uxtw : public extend {
 341   public:
 342     uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
 343   };
 344   class lsl : public extend {
 345   public:
 346     lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
 347   };
 348   class sxtw : public extend {
 349   public:
 350     sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
 351   };
 352   class sxtx : public extend {
 353   public:
 354     sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
 355   };
 356 
 357  private:
 358   Register _base;
 359   Register _index;
 360   long _offset;
 361   enum mode _mode;
 362   extend _ext;
 363 
 364   RelocationHolder _rspec;
 365 
 366   // Typically we use AddressLiterals we want to use their rval
 367   // However in some situations we want the lval (effect address) of
 368   // the item.  We provide a special factory for making those lvals.
 369   bool _is_lval;
 370 
 371   // If the target is far we'll need to load the ea of this to a
 372   // register to reach it. Otherwise if near we can do PC-relative
 373   // addressing.
 374   address          _target;
 375 
 376  public:
 377   Address()
 378     : _mode(no_mode) { }
 379   Address(Register r)
 380     : _base(r), _index(noreg), _offset(0), _mode(base_plus_offset), _target(0) { }
 381   Address(Register r, int o)
 382     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 383   Address(Register r, long o)
 384     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 385   Address(Register r, unsigned long o)
 386     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 387 #ifdef ASSERT
 388   Address(Register r, ByteSize disp)
 389     : _base(r), _index(noreg), _offset(in_bytes(disp)), _mode(base_plus_offset), _target(0) { }
 390 #endif
 391   Address(Register r, Register r1, extend ext = lsl())
 392     : _base(r), _index(r1), _offset(0), _mode(base_plus_offset_reg),
 393       _ext(ext), _target(0) { }
 394   Address(Pre p)
 395     : _base(p.reg()), _offset(p.offset()), _mode(pre) { }
 396   Address(Post p)
 397     : _base(p.reg()),  _index(p.idx_reg()), _offset(p.offset()),
 398       _mode(p.is_postreg() ? post_reg : post), _target(0) { }
 399   Address(address target, RelocationHolder const& rspec)
 400     : _mode(literal),
 401       _rspec(rspec),
 402       _is_lval(false),
 403       _target(target)  { }
 404   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 405   Address(Register base, RegisterOrConstant index, extend ext = lsl())
 406     : _base (base),
 407       _offset(0), _ext(ext), _target(0) {
 408     if (index.is_register()) {
 409       _mode = base_plus_offset_reg;
 410       _index = index.as_register();
 411     } else {
 412       guarantee(ext.option() == ext::uxtx, "should be");
 413       assert(index.is_constant(), "should be");
 414       _mode = base_plus_offset;
 415       _offset = index.as_constant() << ext.shift();
 416     }
 417   }
 418 
 419   Register base() const {
 420     guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
 421                | _mode == post | _mode == post_reg),
 422               "wrong mode");
 423     return _base;
 424   }
 425   long offset() const {
 426     return _offset;
 427   }
 428   Register index() const {
 429     return _index;
 430   }
 431   mode getMode() const {
 432     return _mode;
 433   }
 434   bool uses(Register reg) const { return _base == reg || _index == reg; }
 435   address target() const { return _target; }
 436   const RelocationHolder& rspec() const { return _rspec; }
 437 
 438   void encode(Instruction_aarch64 *i) const {
 439     i->f(0b111, 29, 27);
 440     i->srf(_base, 5);
 441 
 442     switch(_mode) {
 443     case base_plus_offset:
 444       {
 445         unsigned size = i->get(31, 30);
 446         if (i->get(26, 26) && i->get(23, 23)) {
 447           // SIMD Q Type - Size = 128 bits
 448           assert(size == 0, "bad size");
 449           size = 0b100;
 450         }
 451         unsigned mask = (1 << size) - 1;
 452         if (_offset < 0 || _offset & mask)
 453           {
 454             i->f(0b00, 25, 24);
 455             i->f(0, 21), i->f(0b00, 11, 10);
 456             i->sf(_offset, 20, 12);
 457           } else {
 458             i->f(0b01, 25, 24);
 459             i->f(_offset >> size, 21, 10);
 460           }
 461       }
 462       break;
 463 
 464     case base_plus_offset_reg:
 465       {
 466         i->f(0b00, 25, 24);
 467         i->f(1, 21);
 468         i->rf(_index, 16);
 469         i->f(_ext.option(), 15, 13);
 470         unsigned size = i->get(31, 30);
 471         if (i->get(26, 26) && i->get(23, 23)) {
 472           // SIMD Q Type - Size = 128 bits
 473           assert(size == 0, "bad size");
 474           size = 0b100;
 475         }
 476         if (size == 0) // It's a byte
 477           i->f(_ext.shift() >= 0, 12);
 478         else {
 479           if (_ext.shift() > 0)
 480             assert(_ext.shift() == (int)size, "bad shift");
 481           i->f(_ext.shift() > 0, 12);
 482         }
 483         i->f(0b10, 11, 10);
 484       }
 485       break;
 486 
 487     case pre:
 488       i->f(0b00, 25, 24);
 489       i->f(0, 21), i->f(0b11, 11, 10);
 490       i->sf(_offset, 20, 12);
 491       break;
 492 
 493     case post:
 494       i->f(0b00, 25, 24);
 495       i->f(0, 21), i->f(0b01, 11, 10);
 496       i->sf(_offset, 20, 12);
 497       break;
 498 
 499     default:
 500       ShouldNotReachHere();
 501     }
 502   }
 503 
 504   void encode_pair(Instruction_aarch64 *i) const {
 505     switch(_mode) {
 506     case base_plus_offset:
 507       i->f(0b010, 25, 23);
 508       break;
 509     case pre:
 510       i->f(0b011, 25, 23);
 511       break;
 512     case post:
 513       i->f(0b001, 25, 23);
 514       break;
 515     default:
 516       ShouldNotReachHere();
 517     }
 518 
 519     unsigned size; // Operand shift in 32-bit words
 520 
 521     if (i->get(26, 26)) { // float
 522       switch(i->get(31, 30)) {
 523       case 0b10:
 524         size = 2; break;
 525       case 0b01:
 526         size = 1; break;
 527       case 0b00:
 528         size = 0; break;
 529       default:
 530         ShouldNotReachHere();
 531         size = 0;  // unreachable
 532       }
 533     } else {
 534       size = i->get(31, 31);
 535     }
 536 
 537     size = 4 << size;
 538     guarantee(_offset % size == 0, "bad offset");
 539     i->sf(_offset / size, 21, 15);
 540     i->srf(_base, 5);
 541   }
 542 
 543   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 544     // Only base + offset is allowed
 545     i->f(0b000, 25, 23);
 546     unsigned size = i->get(31, 31);
 547     size = 4 << size;
 548     guarantee(_offset % size == 0, "bad offset");
 549     i->sf(_offset / size, 21, 15);
 550     i->srf(_base, 5);
 551     guarantee(_mode == Address::base_plus_offset,
 552               "Bad addressing mode for non-temporal op");
 553   }
 554 
 555   void lea(MacroAssembler *, Register) const;
 556 
 557   static bool offset_ok_for_immed(long offset, int shift) {
 558     unsigned mask = (1 << shift) - 1;
 559     if (offset < 0 || offset & mask) {
 560       return (uabs(offset) < (1 << (20 - 12))); // Unscaled offset
 561     } else {
 562       return ((offset >> shift) < (1 << (21 - 10 + 1))); // Scaled, unsigned offset
 563     }
 564   }
 565 };
 566 
 567 // Convience classes
 568 class RuntimeAddress: public Address {
 569 
 570   public:
 571 
 572   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 573 
 574 };
 575 
 576 class OopAddress: public Address {
 577 
 578   public:
 579 
 580   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 581 
 582 };
 583 
 584 class ExternalAddress: public Address {
 585  private:
 586   static relocInfo::relocType reloc_for_target(address target) {
 587     // Sometimes ExternalAddress is used for values which aren't
 588     // exactly addresses, like the card table base.
 589     // external_word_type can't be used for values in the first page
 590     // so just skip the reloc in that case.
 591     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 592   }
 593 
 594  public:
 595 
 596   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 597 
 598 };
 599 
 600 class InternalAddress: public Address {
 601 
 602   public:
 603 
 604   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 605 };
 606 
 607 const int FPUStateSizeInWords = FloatRegisterImpl::number_of_registers *
 608                                 FloatRegisterImpl::save_slots_per_register;
 609 
 610 typedef enum {
 611   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 612   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 613   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 614 } prfop;
 615 
 616 class Assembler : public AbstractAssembler {
 617 
 618 #ifndef PRODUCT
 619   static const unsigned long asm_bp;
 620 
 621   void emit_long(jint x) {
 622     if ((unsigned long)pc() == asm_bp)
 623       asm volatile ("nop");
 624     AbstractAssembler::emit_int32(x);
 625   }
 626 #else
 627   void emit_long(jint x) {
 628     AbstractAssembler::emit_int32(x);
 629   }
 630 #endif
 631 
 632 public:
 633 
 634   enum { instruction_size = 4 };
 635 
 636   //---<  calculate length of instruction  >---
 637   // We just use the values set above.
 638   // instruction must start at passed address
 639   static unsigned int instr_len(unsigned char *instr) { return instruction_size; }
 640 
 641   //---<  longest instructions  >---
 642   static unsigned int instr_maxlen() { return instruction_size; }
 643 
 644   Address adjust(Register base, int offset, bool preIncrement) {
 645     if (preIncrement)
 646       return Address(Pre(base, offset));
 647     else
 648       return Address(Post(base, offset));
 649   }
 650 
 651   Address pre(Register base, int offset) {
 652     return adjust(base, offset, true);
 653   }
 654 
 655   Address post(Register base, int offset) {
 656     return adjust(base, offset, false);
 657   }
 658 
 659   Address post(Register base, Register idx) {
 660     return Address(Post(base, idx));
 661   }
 662 
 663   Instruction_aarch64* current;
 664 
 665   void set_current(Instruction_aarch64* i) { current = i; }
 666 
 667   void f(unsigned val, int msb, int lsb) {
 668     current->f(val, msb, lsb);
 669   }
 670   void f(unsigned val, int msb) {
 671     current->f(val, msb, msb);
 672   }
 673   void sf(long val, int msb, int lsb) {
 674     current->sf(val, msb, lsb);
 675   }
 676   void rf(Register reg, int lsb) {
 677     current->rf(reg, lsb);
 678   }
 679   void srf(Register reg, int lsb) {
 680     current->srf(reg, lsb);
 681   }
 682   void zrf(Register reg, int lsb) {
 683     current->zrf(reg, lsb);
 684   }
 685   void rf(FloatRegister reg, int lsb) {
 686     current->rf(reg, lsb);
 687   }
 688   void fixed(unsigned value, unsigned mask) {
 689     current->fixed(value, mask);
 690   }
 691 
 692   void emit() {
 693     emit_long(current->get_insn());
 694     assert_cond(current->get_bits() == 0xffffffff);
 695     current = NULL;
 696   }
 697 
 698   typedef void (Assembler::* uncond_branch_insn)(address dest);
 699   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 700   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 701   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 702 
 703   void wrap_label(Label &L, uncond_branch_insn insn);
 704   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 705   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 706   void wrap_label(Label &L, prfop, prefetch_insn insn);
 707 
 708   // PC-rel. addressing
 709 
 710   void adr(Register Rd, address dest);
 711   void _adrp(Register Rd, address dest);
 712 
 713   void adr(Register Rd, const Address &dest);
 714   void _adrp(Register Rd, const Address &dest);
 715 
 716   void adr(Register Rd, Label &L) {
 717     wrap_label(Rd, L, &Assembler::Assembler::adr);
 718   }
 719   void _adrp(Register Rd, Label &L) {
 720     wrap_label(Rd, L, &Assembler::_adrp);
 721   }
 722 
 723   void adrp(Register Rd, const Address &dest, unsigned long &offset);
 724 
 725 #undef INSN
 726 
 727   void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
 728                          int negated_op);
 729 
 730   // Add/subtract (immediate)
 731 #define INSN(NAME, decode, negated)                                     \
 732   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 733     starti;                                                             \
 734     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 735     zrf(Rd, 0), srf(Rn, 5);                                             \
 736   }                                                                     \
 737                                                                         \
 738   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 739     starti;                                                             \
 740     add_sub_immediate(Rd, Rn, imm, decode, negated);                    \
 741   }
 742 
 743   INSN(addsw, 0b001, 0b011);
 744   INSN(subsw, 0b011, 0b001);
 745   INSN(adds,  0b101, 0b111);
 746   INSN(subs,  0b111, 0b101);
 747 
 748 #undef INSN
 749 
 750 #define INSN(NAME, decode, negated)                     \
 751   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 752     starti;                                             \
 753     add_sub_immediate(Rd, Rn, imm, decode, negated);    \
 754   }
 755 
 756   INSN(addw, 0b000, 0b010);
 757   INSN(subw, 0b010, 0b000);
 758   INSN(add,  0b100, 0b110);
 759   INSN(sub,  0b110, 0b100);
 760 
 761 #undef INSN
 762 
 763  // Logical (immediate)
 764 #define INSN(NAME, decode, is32)                                \
 765   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 766     starti;                                                     \
 767     uint32_t val = encode_logical_immediate(is32, imm);         \
 768     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 769     srf(Rd, 0), zrf(Rn, 5);                                     \
 770   }
 771 
 772   INSN(andw, 0b000, true);
 773   INSN(orrw, 0b001, true);
 774   INSN(eorw, 0b010, true);
 775   INSN(andr,  0b100, false);
 776   INSN(orr,  0b101, false);
 777   INSN(eor,  0b110, false);
 778 
 779 #undef INSN
 780 
 781 #define INSN(NAME, decode, is32)                                \
 782   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 783     starti;                                                     \
 784     uint32_t val = encode_logical_immediate(is32, imm);         \
 785     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 786     zrf(Rd, 0), zrf(Rn, 5);                                     \
 787   }
 788 
 789   INSN(ands, 0b111, false);
 790   INSN(andsw, 0b011, true);
 791 
 792 #undef INSN
 793 
 794   // Move wide (immediate)
 795 #define INSN(NAME, opcode)                                              \
 796   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 797     assert_cond((shift/16)*16 == shift);                                \
 798     starti;                                                             \
 799     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 800       f(imm, 20, 5);                                                    \
 801     rf(Rd, 0);                                                          \
 802   }
 803 
 804   INSN(movnw, 0b000);
 805   INSN(movzw, 0b010);
 806   INSN(movkw, 0b011);
 807   INSN(movn, 0b100);
 808   INSN(movz, 0b110);
 809   INSN(movk, 0b111);
 810 
 811 #undef INSN
 812 
 813   // Bitfield
 814 #define INSN(NAME, opcode, size)                                        \
 815   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 816     starti;                                                             \
 817     guarantee(size == 1 || (immr < 32 && imms < 32), "incorrect immr/imms");\
 818     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 819     zrf(Rn, 5), rf(Rd, 0);                                              \
 820   }
 821 
 822   INSN(sbfmw, 0b0001001100, 0);
 823   INSN(bfmw,  0b0011001100, 0);
 824   INSN(ubfmw, 0b0101001100, 0);
 825   INSN(sbfm,  0b1001001101, 1);
 826   INSN(bfm,   0b1011001101, 1);
 827   INSN(ubfm,  0b1101001101, 1);
 828 
 829 #undef INSN
 830 
 831   // Extract
 832 #define INSN(NAME, opcode, size)                                        \
 833   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 834     starti;                                                             \
 835     guarantee(size == 1 || imms < 32, "incorrect imms");                \
 836     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 837     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
 838   }
 839 
 840   INSN(extrw, 0b00010011100, 0);
 841   INSN(extr,  0b10010011110, 1);
 842 
 843 #undef INSN
 844 
 845   // The maximum range of a branch is fixed for the AArch64
 846   // architecture.  In debug mode we shrink it in order to test
 847   // trampolines, but not so small that branches in the interpreter
 848   // are out of range.
 849   static const unsigned long branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 850 
 851   static bool reachable_from_branch_at(address branch, address target) {
 852     return uabs(target - branch) < branch_range;
 853   }
 854 
 855   // Unconditional branch (immediate)
 856 #define INSN(NAME, opcode)                                              \
 857   void NAME(address dest) {                                             \
 858     starti;                                                             \
 859     long offset = (dest - pc()) >> 2;                                   \
 860     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 861     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 862   }                                                                     \
 863   void NAME(Label &L) {                                                 \
 864     wrap_label(L, &Assembler::NAME);                                    \
 865   }                                                                     \
 866   void NAME(const Address &dest);
 867 
 868   INSN(b, 0);
 869   INSN(bl, 1);
 870 
 871 #undef INSN
 872 
 873   // Compare & branch (immediate)
 874 #define INSN(NAME, opcode)                              \
 875   void NAME(Register Rt, address dest) {                \
 876     long offset = (dest - pc()) >> 2;                   \
 877     starti;                                             \
 878     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 879   }                                                     \
 880   void NAME(Register Rt, Label &L) {                    \
 881     wrap_label(Rt, L, &Assembler::NAME);                \
 882   }
 883 
 884   INSN(cbzw,  0b00110100);
 885   INSN(cbnzw, 0b00110101);
 886   INSN(cbz,   0b10110100);
 887   INSN(cbnz,  0b10110101);
 888 
 889 #undef INSN
 890 
 891   // Test & branch (immediate)
 892 #define INSN(NAME, opcode)                                              \
 893   void NAME(Register Rt, int bitpos, address dest) {                    \
 894     long offset = (dest - pc()) >> 2;                                   \
 895     int b5 = bitpos >> 5;                                               \
 896     bitpos &= 0x1f;                                                     \
 897     starti;                                                             \
 898     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 899     rf(Rt, 0);                                                          \
 900   }                                                                     \
 901   void NAME(Register Rt, int bitpos, Label &L) {                        \
 902     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 903   }
 904 
 905   INSN(tbz,  0b0110110);
 906   INSN(tbnz, 0b0110111);
 907 
 908 #undef INSN
 909 
 910   // Conditional branch (immediate)
 911   enum Condition
 912     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 913 
 914   void br(Condition  cond, address dest) {
 915     long offset = (dest - pc()) >> 2;
 916     starti;
 917     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 918   }
 919 
 920 #define INSN(NAME, cond)                        \
 921   void NAME(address dest) {                     \
 922     br(cond, dest);                             \
 923   }
 924 
 925   INSN(beq, EQ);
 926   INSN(bne, NE);
 927   INSN(bhs, HS);
 928   INSN(bcs, CS);
 929   INSN(blo, LO);
 930   INSN(bcc, CC);
 931   INSN(bmi, MI);
 932   INSN(bpl, PL);
 933   INSN(bvs, VS);
 934   INSN(bvc, VC);
 935   INSN(bhi, HI);
 936   INSN(bls, LS);
 937   INSN(bge, GE);
 938   INSN(blt, LT);
 939   INSN(bgt, GT);
 940   INSN(ble, LE);
 941   INSN(bal, AL);
 942   INSN(bnv, NV);
 943 
 944   void br(Condition cc, Label &L);
 945 
 946 #undef INSN
 947 
 948   // Exception generation
 949   void generate_exception(int opc, int op2, int LL, unsigned imm) {
 950     starti;
 951     f(0b11010100, 31, 24);
 952     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
 953   }
 954 
 955 #define INSN(NAME, opc, op2, LL)                \
 956   void NAME(unsigned imm) {                     \
 957     generate_exception(opc, op2, LL, imm);      \
 958   }
 959 
 960   INSN(svc, 0b000, 0, 0b01);
 961   INSN(hvc, 0b000, 0, 0b10);
 962   INSN(smc, 0b000, 0, 0b11);
 963   INSN(brk, 0b001, 0, 0b00);
 964   INSN(hlt, 0b010, 0, 0b00);
 965   INSN(dcps1, 0b101, 0, 0b01);
 966   INSN(dcps2, 0b101, 0, 0b10);
 967   INSN(dcps3, 0b101, 0, 0b11);
 968 
 969 #undef INSN
 970 
 971   // System
 972   void system(int op0, int op1, int CRn, int CRm, int op2,
 973               Register rt = dummy_reg)
 974   {
 975     starti;
 976     f(0b11010101000, 31, 21);
 977     f(op0, 20, 19);
 978     f(op1, 18, 16);
 979     f(CRn, 15, 12);
 980     f(CRm, 11, 8);
 981     f(op2, 7, 5);
 982     rf(rt, 0);
 983   }
 984 
 985   void hint(int imm) {
 986     system(0b00, 0b011, 0b0010, 0b0000, imm);
 987   }
 988 
 989   void nop() {
 990     hint(0);
 991   }
 992 
 993   void yield() {
 994     hint(1);
 995   }
 996 
 997   void wfe() {
 998     hint(2);
 999   }
1000 
1001   void wfi() {
1002     hint(3);
1003   }
1004 
1005   void sev() {
1006     hint(4);
1007   }
1008 
1009   void sevl() {
1010     hint(5);
1011   }
1012 
1013   // we only provide mrs and msr for the special purpose system
1014   // registers where op1 (instr[20:19]) == 11 and, (currently) only
1015   // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
1016 
1017   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1018     starti;
1019     f(0b1101010100011, 31, 19);
1020     f(op1, 18, 16);
1021     f(CRn, 15, 12);
1022     f(CRm, 11, 8);
1023     f(op2, 7, 5);
1024     // writing zr is ok
1025     zrf(rt, 0);
1026   }
1027 
1028   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1029     starti;
1030     f(0b1101010100111, 31, 19);
1031     f(op1, 18, 16);
1032     f(CRn, 15, 12);
1033     f(CRm, 11, 8);
1034     f(op2, 7, 5);
1035     // reading to zr is a mistake
1036     rf(rt, 0);
1037   }
1038 
1039   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1040                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1041 
1042   void dsb(barrier imm) {
1043     system(0b00, 0b011, 0b00011, imm, 0b100);
1044   }
1045 
1046   void dmb(barrier imm) {
1047     system(0b00, 0b011, 0b00011, imm, 0b101);
1048   }
1049 
1050   void isb() {
1051     system(0b00, 0b011, 0b00011, SY, 0b110);
1052   }
1053 
1054   void sys(int op1, int CRn, int CRm, int op2,
1055            Register rt = (Register)0b11111) {
1056     system(0b01, op1, CRn, CRm, op2, rt);
1057   }
1058 
1059   // Only implement operations accessible from EL0 or higher, i.e.,
1060   //            op1    CRn    CRm    op2
1061   // IC IVAU     3      7      5      1
1062   // DC CVAC     3      7      10     1
1063   // DC CVAP     3      7      12     1
1064   // DC CVAU     3      7      11     1
1065   // DC CIVAC    3      7      14     1
1066   // DC ZVA      3      7      4      1
1067   // So only deal with the CRm field.
1068   enum icache_maintenance {IVAU = 0b0101};
1069   enum dcache_maintenance {CVAC = 0b1010, CVAP = 0b1100, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
1070 
1071   void dc(dcache_maintenance cm, Register Rt) {
1072     sys(0b011, 0b0111, cm, 0b001, Rt);
1073   }
1074 
1075   void ic(icache_maintenance cm, Register Rt) {
1076     sys(0b011, 0b0111, cm, 0b001, Rt);
1077   }
1078 
1079   // A more convenient access to dmb for our purposes
1080   enum Membar_mask_bits {
1081     // We can use ISH for a barrier because the ARM ARM says "This
1082     // architecture assumes that all Processing Elements that use the
1083     // same operating system or hypervisor are in the same Inner
1084     // Shareable shareability domain."
1085     StoreStore = ISHST,
1086     LoadStore  = ISHLD,
1087     LoadLoad   = ISHLD,
1088     StoreLoad  = ISH,
1089     AnyAny     = ISH
1090   };
1091 
1092   void membar(Membar_mask_bits order_constraint) {
1093     dmb(Assembler::barrier(order_constraint));
1094   }
1095 
1096   // Unconditional branch (register)
1097   void branch_reg(Register R, int opc) {
1098     starti;
1099     f(0b1101011, 31, 25);
1100     f(opc, 24, 21);
1101     f(0b11111000000, 20, 10);
1102     rf(R, 5);
1103     f(0b00000, 4, 0);
1104   }
1105 
1106 #define INSN(NAME, opc)                         \
1107   void NAME(Register R) {                       \
1108     branch_reg(R, opc);                         \
1109   }
1110 
1111   INSN(br, 0b0000);
1112   INSN(blr, 0b0001);
1113   INSN(ret, 0b0010);
1114 
1115   void ret(void *p); // This forces a compile-time error for ret(0)
1116 
1117 #undef INSN
1118 
1119 #define INSN(NAME, opc)                         \
1120   void NAME() {                 \
1121     branch_reg(dummy_reg, opc);         \
1122   }
1123 
1124   INSN(eret, 0b0100);
1125   INSN(drps, 0b0101);
1126 
1127 #undef INSN
1128 
1129   // Load/store exclusive
1130   enum operand_size { byte, halfword, word, xword };
1131 
1132   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1133     Register Rn, enum operand_size sz, int op, bool ordered) {
1134     starti;
1135     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1136     rf(Rs, 16), f(ordered, 15), zrf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0);
1137   }
1138 
1139   void load_exclusive(Register dst, Register addr,
1140                       enum operand_size sz, bool ordered) {
1141     load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1142                          sz, 0b010, ordered);
1143   }
1144 
1145   void store_exclusive(Register status, Register new_val, Register addr,
1146                        enum operand_size sz, bool ordered) {
1147     load_store_exclusive(status, new_val, dummy_reg, addr,
1148                          sz, 0b000, ordered);
1149   }
1150 
1151 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1152   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1153     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1154     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1155   }
1156 
1157 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1158   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1159     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1160     load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1161   }
1162 
1163 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1164   void NAME(Register Rt, Register Rn) {                                 \
1165     load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1166                          Rn, sz, op, o0);                               \
1167   }
1168 
1169 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1170   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1171     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1172     load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0);          \
1173   }
1174 
1175   // bytes
1176   INSN3(stxrb, byte, 0b000, 0);
1177   INSN3(stlxrb, byte, 0b000, 1);
1178   INSN2(ldxrb, byte, 0b010, 0);
1179   INSN2(ldaxrb, byte, 0b010, 1);
1180   INSN2(stlrb, byte, 0b100, 1);
1181   INSN2(ldarb, byte, 0b110, 1);
1182 
1183   // halfwords
1184   INSN3(stxrh, halfword, 0b000, 0);
1185   INSN3(stlxrh, halfword, 0b000, 1);
1186   INSN2(ldxrh, halfword, 0b010, 0);
1187   INSN2(ldaxrh, halfword, 0b010, 1);
1188   INSN2(stlrh, halfword, 0b100, 1);
1189   INSN2(ldarh, halfword, 0b110, 1);
1190 
1191   // words
1192   INSN3(stxrw, word, 0b000, 0);
1193   INSN3(stlxrw, word, 0b000, 1);
1194   INSN4(stxpw, word, 0b001, 0);
1195   INSN4(stlxpw, word, 0b001, 1);
1196   INSN2(ldxrw, word, 0b010, 0);
1197   INSN2(ldaxrw, word, 0b010, 1);
1198   INSN_FOO(ldxpw, word, 0b011, 0);
1199   INSN_FOO(ldaxpw, word, 0b011, 1);
1200   INSN2(stlrw, word, 0b100, 1);
1201   INSN2(ldarw, word, 0b110, 1);
1202 
1203   // xwords
1204   INSN3(stxr, xword, 0b000, 0);
1205   INSN3(stlxr, xword, 0b000, 1);
1206   INSN4(stxp, xword, 0b001, 0);
1207   INSN4(stlxp, xword, 0b001, 1);
1208   INSN2(ldxr, xword, 0b010, 0);
1209   INSN2(ldaxr, xword, 0b010, 1);
1210   INSN_FOO(ldxp, xword, 0b011, 0);
1211   INSN_FOO(ldaxp, xword, 0b011, 1);
1212   INSN2(stlr, xword, 0b100, 1);
1213   INSN2(ldar, xword, 0b110, 1);
1214 
1215 #undef INSN2
1216 #undef INSN3
1217 #undef INSN4
1218 #undef INSN_FOO
1219 
1220   // 8.1 Compare and swap extensions
1221   void lse_cas(Register Rs, Register Rt, Register Rn,
1222                         enum operand_size sz, bool a, bool r, bool not_pair) {
1223     starti;
1224     if (! not_pair) { // Pair
1225       assert(sz == word || sz == xword, "invalid size");
1226       /* The size bit is in bit 30, not 31 */
1227       sz = (operand_size)(sz == word ? 0b00:0b01);
1228     }
1229     f(sz, 31, 30), f(0b001000, 29, 24), f(not_pair ? 1 : 0, 23), f(a, 22), f(1, 21);
1230     zrf(Rs, 16), f(r, 15), f(0b11111, 14, 10), srf(Rn, 5), zrf(Rt, 0);
1231   }
1232 
1233   // CAS
1234 #define INSN(NAME, a, r)                                                \
1235   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1236     assert(Rs != Rn && Rs != Rt, "unpredictable instruction");          \
1237     lse_cas(Rs, Rt, Rn, sz, a, r, true);                                \
1238   }
1239   INSN(cas,    false, false)
1240   INSN(casa,   true,  false)
1241   INSN(casl,   false, true)
1242   INSN(casal,  true,  true)
1243 #undef INSN
1244 
1245   // CASP
1246 #define INSN(NAME, a, r)                                                \
1247   void NAME(operand_size sz, Register Rs, Register Rs1,                 \
1248             Register Rt, Register Rt1, Register Rn) {                   \
1249     assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 &&    \
1250            Rs->successor() == Rs1 && Rt->successor() == Rt1 &&          \
1251            Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers");     \
1252     lse_cas(Rs, Rt, Rn, sz, a, r, false);                               \
1253   }
1254   INSN(casp,    false, false)
1255   INSN(caspa,   true,  false)
1256   INSN(caspl,   false, true)
1257   INSN(caspal,  true,  true)
1258 #undef INSN
1259 
1260   // 8.1 Atomic operations
1261   void lse_atomic(Register Rs, Register Rt, Register Rn,
1262                   enum operand_size sz, int op1, int op2, bool a, bool r) {
1263     starti;
1264     f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
1265     zrf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), srf(Rn, 5), zrf(Rt, 0);
1266   }
1267 
1268 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2)                   \
1269   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1270     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false);                 \
1271   }                                                                     \
1272   void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1273     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false);                  \
1274   }                                                                     \
1275   void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1276     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true);                  \
1277   }                                                                     \
1278   void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
1279     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true);                   \
1280   }
1281   INSN(ldadd,  ldadda,  ldaddl,  ldaddal,  0, 0b000);
1282   INSN(ldbic,  ldbica,  ldbicl,  ldbical,  0, 0b001);
1283   INSN(ldeor,  ldeora,  ldeorl,  ldeoral,  0, 0b010);
1284   INSN(ldorr,  ldorra,  ldorrl,  ldorral,  0, 0b011);
1285   INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
1286   INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
1287   INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
1288   INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
1289   INSN(swp,    swpa,    swpl,    swpal,    1, 0b000);
1290 #undef INSN
1291 
1292   // Load register (literal)
1293 #define INSN(NAME, opc, V)                                              \
1294   void NAME(Register Rt, address dest) {                                \
1295     long offset = (dest - pc()) >> 2;                                   \
1296     starti;                                                             \
1297     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1298       sf(offset, 23, 5);                                                \
1299     rf(Rt, 0);                                                          \
1300   }                                                                     \
1301   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1302     InstructionMark im(this);                                           \
1303     guarantee(rtype == relocInfo::internal_word_type,                   \
1304               "only internal_word_type relocs make sense here");        \
1305     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1306     NAME(Rt, dest);                                                     \
1307   }                                                                     \
1308   void NAME(Register Rt, Label &L) {                                    \
1309     wrap_label(Rt, L, &Assembler::NAME);                                \
1310   }
1311 
1312   INSN(ldrw, 0b00, 0);
1313   INSN(ldr, 0b01, 0);
1314   INSN(ldrsw, 0b10, 0);
1315 
1316 #undef INSN
1317 
1318 #define INSN(NAME, opc, V)                                              \
1319   void NAME(FloatRegister Rt, address dest) {                           \
1320     long offset = (dest - pc()) >> 2;                                   \
1321     starti;                                                             \
1322     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1323       sf(offset, 23, 5);                                                \
1324     rf((Register)Rt, 0);                                                \
1325   }
1326 
1327   INSN(ldrs, 0b00, 1);
1328   INSN(ldrd, 0b01, 1);
1329   INSN(ldrq, 0b10, 1);
1330 
1331 #undef INSN
1332 
1333 #define INSN(NAME, size, opc)                                           \
1334   void NAME(FloatRegister Rt, Register Rn) {                            \
1335     starti;                                                             \
1336     f(size, 31, 30), f(0b111100, 29, 24), f(opc, 23, 22), f(0, 21);     \
1337     f(0, 20, 12), f(0b01, 11, 10);                                      \
1338     rf(Rn, 5), rf((Register)Rt, 0);                                     \
1339   }
1340 
1341   INSN(ldrs, 0b10, 0b01);
1342   INSN(ldrd, 0b11, 0b01);
1343   INSN(ldrq, 0b00, 0b11);
1344 
1345 #undef INSN
1346 
1347 
1348 #define INSN(NAME, opc, V)                                              \
1349   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1350     long offset = (dest - pc()) >> 2;                                   \
1351     starti;                                                             \
1352     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1353       sf(offset, 23, 5);                                                \
1354     f(op, 4, 0);                                                        \
1355   }                                                                     \
1356   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1357     wrap_label(L, op, &Assembler::NAME);                                \
1358   }
1359 
1360   INSN(prfm, 0b11, 0);
1361 
1362 #undef INSN
1363 
1364   // Load/store
1365   void ld_st1(int opc, int p1, int V, int L,
1366               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1367     starti;
1368     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1369     zrf(Rt2, 10), zrf(Rt1, 0);
1370     if (no_allocate) {
1371       adr.encode_nontemporal_pair(current);
1372     } else {
1373       adr.encode_pair(current);
1374     }
1375   }
1376 
1377   // Load/store register pair (offset)
1378 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1379   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1380     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1381    }
1382 
1383   INSN(stpw, 0b00, 0b101, 0, 0, false);
1384   INSN(ldpw, 0b00, 0b101, 0, 1, false);
1385   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1386   INSN(stp, 0b10, 0b101, 0, 0, false);
1387   INSN(ldp, 0b10, 0b101, 0, 1, false);
1388 
1389   // Load/store no-allocate pair (offset)
1390   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1391   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1392   INSN(stnp, 0b10, 0b101, 0, 0, true);
1393   INSN(ldnp, 0b10, 0b101, 0, 1, true);
1394 
1395 #undef INSN
1396 
1397 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1398   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1399     ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1400    }
1401 
1402   INSN(stps, 0b00, 0b101, 1, 0, false);
1403   INSN(ldps, 0b00, 0b101, 1, 1, false);
1404   INSN(stpd, 0b01, 0b101, 1, 0, false);
1405   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1406   INSN(stpq, 0b10, 0b101, 1, 0, false);
1407   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1408 
1409 #undef INSN
1410 
1411   // Load/store register (all modes)
1412   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1413     starti;
1414 
1415     f(V, 26); // general reg?
1416     zrf(Rt, 0);
1417 
1418     // Encoding for literal loads is done here (rather than pushed
1419     // down into Address::encode) because the encoding of this
1420     // instruction is too different from all of the other forms to
1421     // make it worth sharing.
1422     if (adr.getMode() == Address::literal) {
1423       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1424       assert(op == 0b01, "literal form can only be used with loads");
1425       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1426       long offset = (adr.target() - pc()) >> 2;
1427       sf(offset, 23, 5);
1428       code_section()->relocate(pc(), adr.rspec());
1429       return;
1430     }
1431 
1432     f(size, 31, 30);
1433     f(op, 23, 22); // str
1434     adr.encode(current);
1435   }
1436 
1437 #define INSN(NAME, size, op)                            \
1438   void NAME(Register Rt, const Address &adr) {          \
1439     ld_st2(Rt, adr, size, op);                          \
1440   }                                                     \
1441 
1442   INSN(str, 0b11, 0b00);
1443   INSN(strw, 0b10, 0b00);
1444   INSN(strb, 0b00, 0b00);
1445   INSN(strh, 0b01, 0b00);
1446 
1447   INSN(ldr, 0b11, 0b01);
1448   INSN(ldrw, 0b10, 0b01);
1449   INSN(ldrb, 0b00, 0b01);
1450   INSN(ldrh, 0b01, 0b01);
1451 
1452   INSN(ldrsb, 0b00, 0b10);
1453   INSN(ldrsbw, 0b00, 0b11);
1454   INSN(ldrsh, 0b01, 0b10);
1455   INSN(ldrshw, 0b01, 0b11);
1456   INSN(ldrsw, 0b10, 0b10);
1457 
1458 #undef INSN
1459 
1460 #define INSN(NAME, size, op)                                    \
1461   void NAME(const Address &adr, prfop pfop = PLDL1KEEP) {       \
1462     ld_st2((Register)pfop, adr, size, op);                      \
1463   }
1464 
1465   INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1466                           // writeback modes, but the assembler
1467                           // doesn't enfore that.
1468 
1469 #undef INSN
1470 
1471 #define INSN(NAME, size, op)                            \
1472   void NAME(FloatRegister Rt, const Address &adr) {     \
1473     ld_st2((Register)Rt, adr, size, op, 1);             \
1474   }
1475 
1476   INSN(strd, 0b11, 0b00);
1477   INSN(strs, 0b10, 0b00);
1478   INSN(ldrd, 0b11, 0b01);
1479   INSN(ldrs, 0b10, 0b01);
1480   INSN(strq, 0b00, 0b10);
1481   INSN(ldrq, 0x00, 0b11);
1482 
1483 #undef INSN
1484 
1485 /* SIMD extensions
1486  *
1487  * We just use FloatRegister in the following. They are exactly the same
1488  * as SIMD registers.
1489  */
1490 public:
1491 
1492   enum SIMD_Arrangement {
1493     T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q
1494   };
1495 
1496   enum SIMD_RegVariant {
1497     B, H, S, D, Q
1498   };
1499 
1500   enum shift_kind { LSL, LSR, ASR, ROR };
1501 
1502   void op_shifted_reg(unsigned decode,
1503                       enum shift_kind kind, unsigned shift,
1504                       unsigned size, unsigned op) {
1505     f(size, 31);
1506     f(op, 30, 29);
1507     f(decode, 28, 24);
1508     f(shift, 15, 10);
1509     f(kind, 23, 22);
1510   }
1511 
1512   // Logical (shifted register)
1513 #define INSN(NAME, size, op, N)                                 \
1514   void NAME(Register Rd, Register Rn, Register Rm,              \
1515             enum shift_kind kind = LSL, unsigned shift = 0) {   \
1516     starti;                                                     \
1517     guarantee(size == 1 || shift < 32, "incorrect shift");      \
1518     f(N, 21);                                                   \
1519     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                        \
1520     op_shifted_reg(0b01010, kind, shift, size, op);             \
1521   }
1522 
1523   INSN(andr, 1, 0b00, 0);
1524   INSN(orr, 1, 0b01, 0);
1525   INSN(eor, 1, 0b10, 0);
1526   INSN(ands, 1, 0b11, 0);
1527   INSN(andw, 0, 0b00, 0);
1528   INSN(orrw, 0, 0b01, 0);
1529   INSN(eorw, 0, 0b10, 0);
1530   INSN(andsw, 0, 0b11, 0);
1531 
1532 #undef INSN
1533 
1534 #define INSN(NAME, size, op, N)                                         \
1535   void NAME(Register Rd, Register Rn, Register Rm,                      \
1536             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1537     starti;                                                             \
1538     f(N, 21);                                                           \
1539     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
1540     op_shifted_reg(0b01010, kind, shift, size, op);                     \
1541   }                                                                     \
1542                                                                         \
1543   /* These instructions have no immediate form. Provide an overload so  \
1544      that if anyone does try to use an immediate operand -- this has    \
1545      happened! -- we'll get a compile-time error. */                    \
1546   void NAME(Register Rd, Register Rn, unsigned imm,                     \
1547             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1548     assert(false, " can't be used with immediate operand");             \
1549   }
1550 
1551   INSN(bic, 1, 0b00, 1);
1552   INSN(orn, 1, 0b01, 1);
1553   INSN(eon, 1, 0b10, 1);
1554   INSN(bics, 1, 0b11, 1);
1555   INSN(bicw, 0, 0b00, 1);
1556   INSN(ornw, 0, 0b01, 1);
1557   INSN(eonw, 0, 0b10, 1);
1558   INSN(bicsw, 0, 0b11, 1);
1559 
1560 #undef INSN
1561 
1562   // Aliases for short forms of orn
1563 void mvn(Register Rd, Register Rm,
1564             enum shift_kind kind = LSL, unsigned shift = 0) {
1565   orn(Rd, zr, Rm, kind, shift);
1566 }
1567 
1568 void mvnw(Register Rd, Register Rm,
1569             enum shift_kind kind = LSL, unsigned shift = 0) {
1570   ornw(Rd, zr, Rm, kind, shift);
1571 }
1572 
1573   // Add/subtract (shifted register)
1574 #define INSN(NAME, size, op)                            \
1575   void NAME(Register Rd, Register Rn, Register Rm,      \
1576             enum shift_kind kind, unsigned shift = 0) { \
1577     starti;                                             \
1578     f(0, 21);                                           \
1579     assert_cond(kind != ROR);                           \
1580     guarantee(size == 1 || shift < 32, "incorrect shift");\
1581     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1582     op_shifted_reg(0b01011, kind, shift, size, op);     \
1583   }
1584 
1585   INSN(add, 1, 0b000);
1586   INSN(sub, 1, 0b10);
1587   INSN(addw, 0, 0b000);
1588   INSN(subw, 0, 0b10);
1589 
1590   INSN(adds, 1, 0b001);
1591   INSN(subs, 1, 0b11);
1592   INSN(addsw, 0, 0b001);
1593   INSN(subsw, 0, 0b11);
1594 
1595 #undef INSN
1596 
1597   // Add/subtract (extended register)
1598 #define INSN(NAME, op)                                                  \
1599   void NAME(Register Rd, Register Rn, Register Rm,                      \
1600            ext::operation option, int amount = 0) {                     \
1601     starti;                                                             \
1602     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1603     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1604   }
1605 
1606   void add_sub_extended_reg(unsigned op, unsigned decode,
1607     Register Rd, Register Rn, Register Rm,
1608     unsigned opt, ext::operation option, unsigned imm) {
1609     guarantee(imm <= 4, "shift amount must be <= 4");
1610     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1611     f(option, 15, 13), f(imm, 12, 10);
1612   }
1613 
1614   INSN(addw, 0b000);
1615   INSN(subw, 0b010);
1616   INSN(add, 0b100);
1617   INSN(sub, 0b110);
1618 
1619 #undef INSN
1620 
1621 #define INSN(NAME, op)                                                  \
1622   void NAME(Register Rd, Register Rn, Register Rm,                      \
1623            ext::operation option, int amount = 0) {                     \
1624     starti;                                                             \
1625     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1626     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1627   }
1628 
1629   INSN(addsw, 0b001);
1630   INSN(subsw, 0b011);
1631   INSN(adds, 0b101);
1632   INSN(subs, 0b111);
1633 
1634 #undef INSN
1635 
1636   // Aliases for short forms of add and sub
1637 #define INSN(NAME)                                      \
1638   void NAME(Register Rd, Register Rn, Register Rm) {    \
1639     if (Rd == sp || Rn == sp)                           \
1640       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1641     else                                                \
1642       NAME(Rd, Rn, Rm, LSL);                            \
1643   }
1644 
1645   INSN(addw);
1646   INSN(subw);
1647   INSN(add);
1648   INSN(sub);
1649 
1650   INSN(addsw);
1651   INSN(subsw);
1652   INSN(adds);
1653   INSN(subs);
1654 
1655 #undef INSN
1656 
1657   // Add/subtract (with carry)
1658   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1659     starti;
1660     f(op, 31, 29);
1661     f(0b11010000, 28, 21);
1662     f(0b000000, 15, 10);
1663     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1664   }
1665 
1666   #define INSN(NAME, op)                                \
1667     void NAME(Register Rd, Register Rn, Register Rm) {  \
1668       add_sub_carry(op, Rd, Rn, Rm);                    \
1669     }
1670 
1671   INSN(adcw, 0b000);
1672   INSN(adcsw, 0b001);
1673   INSN(sbcw, 0b010);
1674   INSN(sbcsw, 0b011);
1675   INSN(adc, 0b100);
1676   INSN(adcs, 0b101);
1677   INSN(sbc,0b110);
1678   INSN(sbcs, 0b111);
1679 
1680 #undef INSN
1681 
1682   // Conditional compare (both kinds)
1683   void conditional_compare(unsigned op, int o1, int o2, int o3,
1684                            Register Rn, unsigned imm5, unsigned nzcv,
1685                            unsigned cond) {
1686     starti;
1687     f(op, 31, 29);
1688     f(0b11010010, 28, 21);
1689     f(cond, 15, 12);
1690     f(o1, 11);
1691     f(o2, 10);
1692     f(o3, 4);
1693     f(nzcv, 3, 0);
1694     f(imm5, 20, 16), zrf(Rn, 5);
1695   }
1696 
1697 #define INSN(NAME, op)                                                  \
1698   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1699     int regNumber = (Rm == zr ? 31 : (uintptr_t)Rm);                    \
1700     conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond);         \
1701   }                                                                     \
1702                                                                         \
1703   void NAME(Register Rn, int imm5, int imm, Condition cond) {           \
1704     conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond);              \
1705   }
1706 
1707   INSN(ccmnw, 0b001);
1708   INSN(ccmpw, 0b011);
1709   INSN(ccmn, 0b101);
1710   INSN(ccmp, 0b111);
1711 
1712 #undef INSN
1713 
1714   // Conditional select
1715   void conditional_select(unsigned op, unsigned op2,
1716                           Register Rd, Register Rn, Register Rm,
1717                           unsigned cond) {
1718     starti;
1719     f(op, 31, 29);
1720     f(0b11010100, 28, 21);
1721     f(cond, 15, 12);
1722     f(op2, 11, 10);
1723     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1724   }
1725 
1726 #define INSN(NAME, op, op2)                                             \
1727   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1728     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1729   }
1730 
1731   INSN(cselw, 0b000, 0b00);
1732   INSN(csincw, 0b000, 0b01);
1733   INSN(csinvw, 0b010, 0b00);
1734   INSN(csnegw, 0b010, 0b01);
1735   INSN(csel, 0b100, 0b00);
1736   INSN(csinc, 0b100, 0b01);
1737   INSN(csinv, 0b110, 0b00);
1738   INSN(csneg, 0b110, 0b01);
1739 
1740 #undef INSN
1741 
1742   // Data processing
1743   void data_processing(unsigned op29, unsigned opcode,
1744                        Register Rd, Register Rn) {
1745     f(op29, 31, 29), f(0b11010110, 28, 21);
1746     f(opcode, 15, 10);
1747     rf(Rn, 5), rf(Rd, 0);
1748   }
1749 
1750   // (1 source)
1751 #define INSN(NAME, op29, opcode2, opcode)       \
1752   void NAME(Register Rd, Register Rn) {         \
1753     starti;                                     \
1754     f(opcode2, 20, 16);                         \
1755     data_processing(op29, opcode, Rd, Rn);      \
1756   }
1757 
1758   INSN(rbitw,  0b010, 0b00000, 0b00000);
1759   INSN(rev16w, 0b010, 0b00000, 0b00001);
1760   INSN(revw,   0b010, 0b00000, 0b00010);
1761   INSN(clzw,   0b010, 0b00000, 0b00100);
1762   INSN(clsw,   0b010, 0b00000, 0b00101);
1763 
1764   INSN(rbit,   0b110, 0b00000, 0b00000);
1765   INSN(rev16,  0b110, 0b00000, 0b00001);
1766   INSN(rev32,  0b110, 0b00000, 0b00010);
1767   INSN(rev,    0b110, 0b00000, 0b00011);
1768   INSN(clz,    0b110, 0b00000, 0b00100);
1769   INSN(cls,    0b110, 0b00000, 0b00101);
1770 
1771 #undef INSN
1772 
1773   // (2 sources)
1774 #define INSN(NAME, op29, opcode)                        \
1775   void NAME(Register Rd, Register Rn, Register Rm) {    \
1776     starti;                                             \
1777     rf(Rm, 16);                                         \
1778     data_processing(op29, opcode, Rd, Rn);              \
1779   }
1780 
1781   INSN(udivw, 0b000, 0b000010);
1782   INSN(sdivw, 0b000, 0b000011);
1783   INSN(lslvw, 0b000, 0b001000);
1784   INSN(lsrvw, 0b000, 0b001001);
1785   INSN(asrvw, 0b000, 0b001010);
1786   INSN(rorvw, 0b000, 0b001011);
1787 
1788   INSN(udiv, 0b100, 0b000010);
1789   INSN(sdiv, 0b100, 0b000011);
1790   INSN(lslv, 0b100, 0b001000);
1791   INSN(lsrv, 0b100, 0b001001);
1792   INSN(asrv, 0b100, 0b001010);
1793   INSN(rorv, 0b100, 0b001011);
1794 
1795 #undef INSN
1796 
1797   // (3 sources)
1798   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1799                        Register Rd, Register Rn, Register Rm,
1800                        Register Ra) {
1801     starti;
1802     f(op54, 31, 29), f(0b11011, 28, 24);
1803     f(op31, 23, 21), f(o0, 15);
1804     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1805   }
1806 
1807 #define INSN(NAME, op54, op31, o0)                                      \
1808   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1809     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1810   }
1811 
1812   INSN(maddw, 0b000, 0b000, 0);
1813   INSN(msubw, 0b000, 0b000, 1);
1814   INSN(madd, 0b100, 0b000, 0);
1815   INSN(msub, 0b100, 0b000, 1);
1816   INSN(smaddl, 0b100, 0b001, 0);
1817   INSN(smsubl, 0b100, 0b001, 1);
1818   INSN(umaddl, 0b100, 0b101, 0);
1819   INSN(umsubl, 0b100, 0b101, 1);
1820 
1821 #undef INSN
1822 
1823 #define INSN(NAME, op54, op31, o0)                      \
1824   void NAME(Register Rd, Register Rn, Register Rm) {    \
1825     data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31);  \
1826   }
1827 
1828   INSN(smulh, 0b100, 0b010, 0);
1829   INSN(umulh, 0b100, 0b110, 0);
1830 
1831 #undef INSN
1832 
1833   // Floating-point data-processing (1 source)
1834   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1835                        FloatRegister Vd, FloatRegister Vn) {
1836     starti;
1837     f(op31, 31, 29);
1838     f(0b11110, 28, 24);
1839     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1840     rf(Vn, 5), rf(Vd, 0);
1841   }
1842 
1843 #define INSN(NAME, op31, type, opcode)                  \
1844   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
1845     data_processing(op31, type, opcode, Vd, Vn);        \
1846   }
1847 
1848 private:
1849   INSN(i_fmovs, 0b000, 0b00, 0b000000);
1850 public:
1851   INSN(fabss, 0b000, 0b00, 0b000001);
1852   INSN(fnegs, 0b000, 0b00, 0b000010);
1853   INSN(fsqrts, 0b000, 0b00, 0b000011);
1854   INSN(fcvts, 0b000, 0b00, 0b000101);   // Single-precision to double-precision
1855 
1856 private:
1857   INSN(i_fmovd, 0b000, 0b01, 0b000000);
1858 public:
1859   INSN(fabsd, 0b000, 0b01, 0b000001);
1860   INSN(fnegd, 0b000, 0b01, 0b000010);
1861   INSN(fsqrtd, 0b000, 0b01, 0b000011);
1862   INSN(fcvtd, 0b000, 0b01, 0b000100);   // Double-precision to single-precision
1863 
1864   void fmovd(FloatRegister Vd, FloatRegister Vn) {
1865     assert(Vd != Vn, "should be");
1866     i_fmovd(Vd, Vn);
1867   }
1868 
1869   void fmovs(FloatRegister Vd, FloatRegister Vn) {
1870     assert(Vd != Vn, "should be");
1871     i_fmovs(Vd, Vn);
1872   }
1873 
1874 private:
1875   void _fcvt_narrow_extend(FloatRegister Vd, SIMD_Arrangement Ta,
1876                            FloatRegister Vn, SIMD_Arrangement Tb, bool do_extend) {
1877     assert((do_extend && (Tb >> 1) + 1 == (Ta >> 1))
1878            || (!do_extend && (Ta >> 1) + 1 == (Tb >> 1)), "Incompatible arrangement");
1879     starti;
1880     int op30 = (do_extend ? Tb : Ta) & 1;
1881     int op22 = ((do_extend ? Ta : Tb) >> 1) & 1;
1882     f(0, 31), f(op30, 30), f(0b0011100, 29, 23), f(op22, 22);
1883     f(0b100001011, 21, 13), f(do_extend ? 1 : 0, 12), f(0b10, 11, 10);
1884     rf(Vn, 5), rf(Vd, 0);
1885   }
1886 
1887 public:
1888   void fcvtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb) {
1889     assert(Tb == T4H || Tb == T8H|| Tb == T2S || Tb == T4S, "invalid arrangement");
1890     _fcvt_narrow_extend(Vd, Ta, Vn, Tb, true);
1891   }
1892 
1893   void fcvtn(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb) {
1894     assert(Ta == T4H || Ta == T8H|| Ta == T2S || Ta == T4S, "invalid arrangement");
1895     _fcvt_narrow_extend(Vd, Ta, Vn, Tb, false);
1896   }
1897 
1898 #undef INSN
1899 
1900   // Floating-point data-processing (2 source)
1901   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1902                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1903     starti;
1904     f(op31, 31, 29);
1905     f(0b11110, 28, 24);
1906     f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
1907     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1908   }
1909 
1910 #define INSN(NAME, op31, type, opcode)                  \
1911   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
1912     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
1913   }
1914 
1915   INSN(fmuls, 0b000, 0b00, 0b0000);
1916   INSN(fdivs, 0b000, 0b00, 0b0001);
1917   INSN(fadds, 0b000, 0b00, 0b0010);
1918   INSN(fsubs, 0b000, 0b00, 0b0011);
1919   INSN(fmaxs, 0b000, 0b00, 0b0100);
1920   INSN(fmins, 0b000, 0b00, 0b0101);
1921   INSN(fnmuls, 0b000, 0b00, 0b1000);
1922 
1923   INSN(fmuld, 0b000, 0b01, 0b0000);
1924   INSN(fdivd, 0b000, 0b01, 0b0001);
1925   INSN(faddd, 0b000, 0b01, 0b0010);
1926   INSN(fsubd, 0b000, 0b01, 0b0011);
1927   INSN(fmaxd, 0b000, 0b01, 0b0100);
1928   INSN(fmind, 0b000, 0b01, 0b0101);
1929   INSN(fnmuld, 0b000, 0b01, 0b1000);
1930 
1931 #undef INSN
1932 
1933    // Floating-point data-processing (3 source)
1934   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1935                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1936                        FloatRegister Va) {
1937     starti;
1938     f(op31, 31, 29);
1939     f(0b11111, 28, 24);
1940     f(type, 23, 22), f(o1, 21), f(o0, 15);
1941     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1942   }
1943 
1944 #define INSN(NAME, op31, type, o1, o0)                                  \
1945   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
1946             FloatRegister Va) {                                         \
1947     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
1948   }
1949 
1950   INSN(fmadds, 0b000, 0b00, 0, 0);
1951   INSN(fmsubs, 0b000, 0b00, 0, 1);
1952   INSN(fnmadds, 0b000, 0b00, 1, 0);
1953   INSN(fnmsubs, 0b000, 0b00, 1, 1);
1954 
1955   INSN(fmaddd, 0b000, 0b01, 0, 0);
1956   INSN(fmsubd, 0b000, 0b01, 0, 1);
1957   INSN(fnmaddd, 0b000, 0b01, 1, 0);
1958   INSN(fnmsub, 0b000, 0b01, 1, 1);
1959 
1960 #undef INSN
1961 
1962    // Floating-point conditional select
1963   void fp_conditional_select(unsigned op31, unsigned type,
1964                              unsigned op1, unsigned op2,
1965                              Condition cond, FloatRegister Vd,
1966                              FloatRegister Vn, FloatRegister Vm) {
1967     starti;
1968     f(op31, 31, 29);
1969     f(0b11110, 28, 24);
1970     f(type, 23, 22);
1971     f(op1, 21, 21);
1972     f(op2, 11, 10);
1973     f(cond, 15, 12);
1974     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1975   }
1976 
1977 #define INSN(NAME, op31, type, op1, op2)                                \
1978   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
1979             FloatRegister Vm, Condition cond) {                         \
1980     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
1981   }
1982 
1983   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
1984   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
1985 
1986 #undef INSN
1987 
1988    // Floating-point<->integer conversions
1989   void float_int_convert(unsigned op31, unsigned type,
1990                          unsigned rmode, unsigned opcode,
1991                          Register Rd, Register Rn) {
1992     starti;
1993     f(op31, 31, 29);
1994     f(0b11110, 28, 24);
1995     f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
1996     f(opcode, 18, 16), f(0b000000, 15, 10);
1997     zrf(Rn, 5), zrf(Rd, 0);
1998   }
1999 
2000 #define INSN(NAME, op31, type, rmode, opcode)                           \
2001   void NAME(Register Rd, FloatRegister Vn) {                            \
2002     float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn);     \
2003   }
2004 
2005   INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
2006   INSN(fcvtzs,  0b100, 0b00, 0b11, 0b000);
2007   INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
2008   INSN(fcvtzd,  0b100, 0b01, 0b11, 0b000);
2009 
2010   INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
2011   INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
2012 
2013   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
2014 
2015 #undef INSN
2016 
2017 #define INSN(NAME, op31, type, rmode, opcode)                           \
2018   void NAME(FloatRegister Vd, Register Rn) {                            \
2019     float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn);     \
2020   }
2021 
2022   INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
2023   INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
2024 
2025   INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
2026   INSN(scvtfs,  0b100, 0b00, 0b00, 0b010);
2027   INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
2028   INSN(scvtfd,  0b100, 0b01, 0b00, 0b010);
2029 
2030   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
2031 
2032 #undef INSN
2033 
2034   enum sign_kind { SIGNED, UNSIGNED };
2035 
2036 private:
2037   void _xcvtf_scalar_integer(sign_kind sign, unsigned sz,
2038                              FloatRegister Rd, FloatRegister Rn) {
2039     starti;
2040     f(0b01, 31, 30), f(sign == SIGNED ? 0 : 1, 29);
2041     f(0b111100, 27, 23), f((sz >> 1) & 1, 22), f(0b100001110110, 21, 10);
2042     rf(Rn, 5), rf(Rd, 0);
2043   }
2044 
2045 public:
2046 #define INSN(NAME, sign, sz)                        \
2047   void NAME(FloatRegister Rd, FloatRegister Rn) {   \
2048     _xcvtf_scalar_integer(sign, sz, Rd, Rn);        \
2049   }
2050 
2051   INSN(scvtfs, SIGNED, 0);
2052   INSN(scvtfd, SIGNED, 1);
2053 
2054 #undef INSN
2055 
2056 private:
2057   void _xcvtf_vector_integer(sign_kind sign, SIMD_Arrangement T,
2058                              FloatRegister Rd, FloatRegister Rn) {
2059     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
2060     starti;
2061     f(0, 31), f(T & 1, 30), f(sign == SIGNED ? 0 : 1, 29);
2062     f(0b011100, 28, 23), f((T >> 1) & 1, 22), f(0b100001110110, 21, 10);
2063     rf(Rn, 5), rf(Rd, 0);
2064   }
2065 
2066 public:
2067   void scvtfv(SIMD_Arrangement T, FloatRegister Rd, FloatRegister Rn) {
2068     _xcvtf_vector_integer(SIGNED, T, Rd, Rn);
2069   }
2070 
2071   // Floating-point compare
2072   void float_compare(unsigned op31, unsigned type,
2073                      unsigned op, unsigned op2,
2074                      FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
2075     starti;
2076     f(op31, 31, 29);
2077     f(0b11110, 28, 24);
2078     f(type, 23, 22), f(1, 21);
2079     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
2080     rf(Vn, 5), rf(Vm, 16);
2081   }
2082 
2083 
2084 #define INSN(NAME, op31, type, op, op2)                 \
2085   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
2086     float_compare(op31, type, op, op2, Vn, Vm);         \
2087   }
2088 
2089 #define INSN1(NAME, op31, type, op, op2)        \
2090   void NAME(FloatRegister Vn, double d) {       \
2091     assert_cond(d == 0.0);                      \
2092     float_compare(op31, type, op, op2, Vn);     \
2093   }
2094 
2095   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
2096   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
2097   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
2098   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
2099 
2100   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
2101   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
2102   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
2103   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
2104 
2105 #undef INSN
2106 #undef INSN1
2107 
2108   // Floating-point Move (immediate)
2109 private:
2110   unsigned pack(double value);
2111 
2112   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
2113     starti;
2114     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
2115     f(pack(value), 20, 13), f(0b10000000, 12, 5);
2116     rf(Vn, 0);
2117   }
2118 
2119 public:
2120 
2121   void fmovs(FloatRegister Vn, double value) {
2122     if (value)
2123       fmov_imm(Vn, value, 0b00);
2124     else
2125       fmovs(Vn, zr);
2126   }
2127   void fmovd(FloatRegister Vn, double value) {
2128     if (value)
2129       fmov_imm(Vn, value, 0b01);
2130     else
2131       fmovd(Vn, zr);
2132   }
2133 
2134    // Floating-point rounding
2135    // type: half-precision = 11
2136    //       single         = 00
2137    //       double         = 01
2138    // rmode: A = Away     = 100
2139    //        I = current  = 111
2140    //        M = MinusInf = 010
2141    //        N = eveN     = 000
2142    //        P = PlusInf  = 001
2143    //        X = eXact    = 110
2144    //        Z = Zero     = 011
2145   void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) {
2146     starti;
2147     f(0b00011110, 31, 24);
2148     f(type, 23, 22);
2149     f(0b1001, 21, 18);
2150     f(rmode, 17, 15);
2151     f(0b10000, 14, 10);
2152     rf(Rn, 5), rf(Rd, 0);
2153   }
2154 #define INSN(NAME, type, rmode)                   \
2155   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2156     float_round(type, rmode, Vd, Vn);             \
2157   }
2158 
2159 public:
2160   INSN(frintah, 0b11, 0b100);
2161   INSN(frintih, 0b11, 0b111);
2162   INSN(frintmh, 0b11, 0b010);
2163   INSN(frintnh, 0b11, 0b000);
2164   INSN(frintph, 0b11, 0b001);
2165   INSN(frintxh, 0b11, 0b110);
2166   INSN(frintzh, 0b11, 0b011);
2167 
2168   INSN(frintas, 0b00, 0b100);
2169   INSN(frintis, 0b00, 0b111);
2170   INSN(frintms, 0b00, 0b010);
2171   INSN(frintns, 0b00, 0b000);
2172   INSN(frintps, 0b00, 0b001);
2173   INSN(frintxs, 0b00, 0b110);
2174   INSN(frintzs, 0b00, 0b011);
2175 
2176   INSN(frintad, 0b01, 0b100);
2177   INSN(frintid, 0b01, 0b111);
2178   INSN(frintmd, 0b01, 0b010);
2179   INSN(frintnd, 0b01, 0b000);
2180   INSN(frintpd, 0b01, 0b001);
2181   INSN(frintxd, 0b01, 0b110);
2182   INSN(frintzd, 0b01, 0b011);
2183 #undef INSN
2184 
2185 private:
2186   static short SIMD_Size_in_bytes[];
2187 
2188 public:
2189 #define INSN(NAME, op)                                            \
2190   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {   \
2191     ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
2192   }                                                                      \
2193 
2194   INSN(ldr, 1);
2195   INSN(str, 0);
2196 
2197 #undef INSN
2198 
2199  private:
2200 
2201   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
2202     starti;
2203     f(0,31), f((int)T & 1, 30);
2204     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
2205     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2206   }
2207   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2208              int imm, int op1, int op2, int regs) {
2209 
2210     bool replicate = op2 >> 2 == 3;
2211     // post-index value (imm) is formed differently for replicate/non-replicate ld* instructions
2212     int expectedImmediate = replicate ? regs * (1 << (T >> 1)) : SIMD_Size_in_bytes[T] * regs;
2213     guarantee(T < T1Q , "incorrect arrangement");
2214     guarantee(imm == expectedImmediate, "bad offset");
2215     starti;
2216     f(0,31), f((int)T & 1, 30);
2217     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
2218     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2219   }
2220   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2221              Register Xm, int op1, int op2) {
2222     starti;
2223     f(0,31), f((int)T & 1, 30);
2224     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
2225     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2226   }
2227 
2228   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) {
2229     switch (a.getMode()) {
2230     case Address::base_plus_offset:
2231       guarantee(a.offset() == 0, "no offset allowed here");
2232       ld_st(Vt, T, a.base(), op1, op2);
2233       break;
2234     case Address::post:
2235       ld_st(Vt, T, a.base(), a.offset(), op1, op2, regs);
2236       break;
2237     case Address::post_reg:
2238       ld_st(Vt, T, a.base(), a.index(), op1, op2);
2239       break;
2240     default:
2241       ShouldNotReachHere();
2242     }
2243   }
2244 
2245  public:
2246 
2247 #define INSN1(NAME, op1, op2)                                           \
2248   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
2249     ld_st(Vt, T, a, op1, op2, 1);                                       \
2250  }
2251 
2252 #define INSN2(NAME, op1, op2)                                           \
2253   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2254     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
2255     ld_st(Vt, T, a, op1, op2, 2);                                       \
2256   }
2257 
2258 #define INSN3(NAME, op1, op2)                                           \
2259   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2260             SIMD_Arrangement T, const Address &a) {                     \
2261     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
2262            "Registers must be ordered");                                \
2263     ld_st(Vt, T, a, op1, op2, 3);                                       \
2264   }
2265 
2266 #define INSN4(NAME, op1, op2)                                           \
2267   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2268             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
2269     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
2270            Vt3->successor() == Vt4, "Registers must be ordered");       \
2271     ld_st(Vt, T, a, op1, op2, 4);                                       \
2272   }
2273 
2274   INSN1(ld1,  0b001100010, 0b0111);
2275   INSN2(ld1,  0b001100010, 0b1010);
2276   INSN3(ld1,  0b001100010, 0b0110);
2277   INSN4(ld1,  0b001100010, 0b0010);
2278 
2279   INSN2(ld2,  0b001100010, 0b1000);
2280   INSN3(ld3,  0b001100010, 0b0100);
2281   INSN4(ld4,  0b001100010, 0b0000);
2282 
2283   INSN1(st1,  0b001100000, 0b0111);
2284   INSN2(st1,  0b001100000, 0b1010);
2285   INSN3(st1,  0b001100000, 0b0110);
2286   INSN4(st1,  0b001100000, 0b0010);
2287 
2288   INSN2(st2,  0b001100000, 0b1000);
2289   INSN3(st3,  0b001100000, 0b0100);
2290   INSN4(st4,  0b001100000, 0b0000);
2291 
2292   INSN1(ld1r, 0b001101010, 0b1100);
2293   INSN2(ld2r, 0b001101011, 0b1100);
2294   INSN3(ld3r, 0b001101010, 0b1110);
2295   INSN4(ld4r, 0b001101011, 0b1110);
2296 
2297 #undef INSN1
2298 #undef INSN2
2299 #undef INSN3
2300 #undef INSN4
2301 
2302 #define INSN(NAME, opc)                                                                 \
2303   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2304     starti;                                                                             \
2305     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2306     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2307     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2308   }
2309 
2310   INSN(eor,  0b101110001);
2311   INSN(orr,  0b001110101);
2312   INSN(andr, 0b001110001);
2313   INSN(bic,  0b001110011);
2314   INSN(bif,  0b101110111);
2315   INSN(bit,  0b101110101);
2316   INSN(bsl,  0b101110011);
2317   INSN(orn,  0b001110111);
2318 
2319 #undef INSN
2320 
2321 #define INSN(NAME, opc, opc2, acceptT2D)                                                \
2322   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2323     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2324     if (!acceptT2D) guarantee(T != T2D, "incorrect arrangement");                       \
2325     starti;                                                                             \
2326     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2327     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2328     rf(Vn, 5), rf(Vd, 0);                                                               \
2329   }
2330 
2331   INSN(addv,   0, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2332   INSN(subv,   1, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2333   INSN(mulv,   0, 0b100111, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2334   INSN(mlav,   0, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2335   INSN(mlsv,   1, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2336   INSN(sshl,   0, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2337   INSN(ushl,   1, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2338   INSN(addpv,  0, 0b101111, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2339   INSN(smullv, 0, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2340   INSN(umullv, 1, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2341   INSN(umlalv, 1, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2342   INSN(maxv,   0, 0b011001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2343   INSN(minv,   0, 0b011011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2344   INSN(cmeq,   1, 0b100011, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2345   INSN(cmgt,   0, 0b001101, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2346   INSN(cmge,   0, 0b001111, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2347 
2348 #undef INSN
2349 
2350 #define INSN(NAME, opc, opc2, accepted) \
2351   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2352     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2353     if (accepted < 3) guarantee(T != T2D, "incorrect arrangement");                     \
2354     if (accepted < 2) guarantee(T != T2S, "incorrect arrangement");                     \
2355     if (accepted < 1) guarantee(T == T8B || T == T16B, "incorrect arrangement");        \
2356     starti;                                                                             \
2357     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2358     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2359     rf(Vn, 5), rf(Vd, 0);                                                               \
2360   }
2361 
2362   INSN(absr,   0, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2363   INSN(negr,   1, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2364   INSN(notr,   1, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2365   INSN(addv,   0, 0b110001101110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2366   INSN(smaxv,  0, 0b110000101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2367   INSN(sminv,  0, 0b110001101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2368   INSN(cls,    0, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2369   INSN(clz,    1, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2370   INSN(cnt,    0, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2371   INSN(uaddlp, 1, 0b100000001010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2372   INSN(uaddlv, 1, 0b110000001110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2373 
2374 #undef INSN
2375 
2376 #define INSN(NAME, opc) \
2377   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                  \
2378     starti;                                                                            \
2379     assert(T == T4S, "arrangement must be T4S");                                       \
2380     f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24), f(opc, 23),                      \
2381     f(T == T4S ? 0 : 1, 22), f(0b110000111110, 21, 10); rf(Vn, 5), rf(Vd, 0);          \
2382   }
2383 
2384   INSN(fmaxv, 0);
2385   INSN(fminv, 1);
2386 
2387 #undef INSN
2388 
2389 #define INSN(NAME, op0, cmode0) \
2390   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2391     unsigned cmode = cmode0;                                                           \
2392     unsigned op = op0;                                                                 \
2393     starti;                                                                            \
2394     assert(lsl == 0 ||                                                                 \
2395            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2396            ((T == T2S || T == T4S) && ((lsl >> 3) < 4) && ((lsl & 7) == 0)), "invalid shift");\
2397     cmode |= lsl >> 2;                                                                 \
2398     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2399     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2400       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2401       cmode = 0b1110;                                                                  \
2402       if (T == T1D || T == T2D) op = 1;                                                \
2403     }                                                                                  \
2404     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2405     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2406     rf(Vd, 0);                                                                         \
2407   }
2408 
2409   INSN(movi, 0, 0);
2410   INSN(orri, 0, 1);
2411   INSN(mvni, 1, 0);
2412   INSN(bici, 1, 1);
2413 
2414 #undef INSN
2415 
2416 #define INSN(NAME, op1, op2, op3) \
2417   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2418     starti;                                                                             \
2419     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2420     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2421     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2422   }
2423 
2424   INSN(fadd, 0, 0, 0b110101);
2425   INSN(fdiv, 1, 0, 0b111111);
2426   INSN(fmul, 1, 0, 0b110111);
2427   INSN(fsub, 0, 1, 0b110101);
2428   INSN(fmla, 0, 0, 0b110011);
2429   INSN(fmls, 0, 1, 0b110011);
2430   INSN(fmax, 0, 0, 0b111101);
2431   INSN(fmin, 0, 1, 0b111101);
2432   INSN(fcmeq, 0, 0, 0b111001);
2433   INSN(fcmgt, 1, 1, 0b111001);
2434   INSN(fcmge, 1, 0, 0b111001);
2435 
2436 #undef INSN
2437 
2438 #define INSN(NAME, opc)                                                                 \
2439   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2440     starti;                                                                             \
2441     assert(T == T4S, "arrangement must be T4S");                                        \
2442     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2443   }
2444 
2445   INSN(sha1c,     0b000000);
2446   INSN(sha1m,     0b001000);
2447   INSN(sha1p,     0b000100);
2448   INSN(sha1su0,   0b001100);
2449   INSN(sha256h2,  0b010100);
2450   INSN(sha256h,   0b010000);
2451   INSN(sha256su1, 0b011000);
2452 
2453 #undef INSN
2454 
2455 #define INSN(NAME, opc)                                                                 \
2456   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2457     starti;                                                                             \
2458     assert(T == T4S, "arrangement must be T4S");                                        \
2459     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2460   }
2461 
2462   INSN(sha1h,     0b000010);
2463   INSN(sha1su1,   0b000110);
2464   INSN(sha256su0, 0b001010);
2465 
2466 #undef INSN
2467 
2468 #define INSN(NAME, opc)                           \
2469   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2470     starti;                                       \
2471     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2472   }
2473 
2474   INSN(aese, 0b0100111000101000010010);
2475   INSN(aesd, 0b0100111000101000010110);
2476   INSN(aesmc, 0b0100111000101000011010);
2477   INSN(aesimc, 0b0100111000101000011110);
2478 
2479 #undef INSN
2480 
2481 #define INSN(NAME, op1, op2) \
2482   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \
2483     starti;                                                                                            \
2484     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                                   \
2485     assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index");     \
2486     f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23);                                      \
2487     f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16);                              \
2488     f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10);                                  \
2489     rf(Vn, 5), rf(Vd, 0);                                                                              \
2490   }
2491 
2492   // FMLA/FMLS - Vector - Scalar
2493   INSN(fmlavs, 0, 0b0001);
2494   INSN(fmlsvs, 0, 0b0101);
2495   // FMULX - Vector - Scalar
2496   INSN(fmulxvs, 1, 0b1001);
2497 
2498 #undef INSN
2499 
2500   // Floating-point Reciprocal Estimate
2501   void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {
2502     assert(type == D || type == S, "Wrong type for frecpe");
2503     starti;
2504     f(0b010111101, 31, 23);
2505     f(type == D ? 1 : 0, 22);
2506     f(0b100001110110, 21, 10);
2507     rf(Vn, 5), rf(Vd, 0);
2508   }
2509 
2510   // (long) {a, b} -> (a + b)
2511   void addpd(FloatRegister Vd, FloatRegister Vn) {
2512     starti;
2513     f(0b0101111011110001101110, 31, 10);
2514     rf(Vn, 5), rf(Vd, 0);
2515   }
2516 
2517   // (Floating-point) {a, b} -> (a + b)
2518   void faddp(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {
2519     assert(type == D || type == S, "Wrong type for faddp");
2520     starti;
2521     f(0b011111100, 31, 23);
2522     f(type == D ? 1 : 0, 22);
2523     f(0b110000110110, 21, 10);
2524     rf(Vn, 5), rf(Vd, 0);
2525   }
2526 
2527   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2528     starti;
2529     assert(T != Q, "invalid register variant");
2530     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2531     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2532   }
2533 
2534   void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
2535     starti;
2536     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
2537     f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10);
2538     rf(Vn, 5), rf(Rd, 0);
2539   }
2540 
2541   void smov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
2542     starti;
2543     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
2544     f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001011, 15, 10);
2545     rf(Vn, 5), rf(Rd, 0);
2546   }
2547 
2548 
2549 #define INSN(NAME, opc, opc2, isSHR)                                    \
2550   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
2551     starti;                                                             \
2552     /* The encodings for the immh:immb fields (bits 22:16) in *SHR are  \
2553      *   0001 xxx       8B/16B, shift = 16  - UInt(immh:immb)           \
2554      *   001x xxx       4H/8H,  shift = 32  - UInt(immh:immb)           \
2555      *   01xx xxx       2S/4S,  shift = 64  - UInt(immh:immb)           \
2556      *   1xxx xxx       1D/2D,  shift = 128 - UInt(immh:immb)           \
2557      *   (1D is RESERVED)                                               \
2558      * for SHL shift is calculated as:                                  \
2559      *   0001 xxx       8B/16B, shift = UInt(immh:immb) - 8             \
2560      *   001x xxx       4H/8H,  shift = UInt(immh:immb) - 16            \
2561      *   01xx xxx       2S/4S,  shift = UInt(immh:immb) - 32            \
2562      *   1xxx xxx       1D/2D,  shift = UInt(immh:immb) - 64            \
2563      *   (1D is RESERVED)                                               \
2564      */                                                                 \
2565     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");           \
2566     int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0)));               \
2567     int encodedShift = isSHR ? cVal - shift : cVal + shift;             \
2568     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),            \
2569     f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);     \
2570   }
2571 
2572   INSN(shl,  0, 0b010101, /* isSHR = */ false);
2573   INSN(sshr, 0, 0b000001, /* isSHR = */ true);
2574   INSN(ushr, 1, 0b000001, /* isSHR = */ true);
2575 
2576 #undef INSN
2577 
2578 private:
2579   void _xshll(sign_kind sign, FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2580     starti;
2581     /* The encodings for the immh:immb fields (bits 22:16) are
2582      *   0001 xxx       8H, 8B/16B shift = xxx
2583      *   001x xxx       4S, 4H/8H  shift = xxxx
2584      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2585      *   1xxx xxx       RESERVED
2586      */
2587     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2588     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2589     f(0, 31), f(Tb & 1, 30), f(sign == SIGNED ? 0 : 1, 29), f(0b011110, 28, 23);
2590     f((1 << ((Tb>>1)+3))|shift, 22, 16);
2591     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2592   }
2593 
2594 public:
2595   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2596     assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
2597     _xshll(UNSIGNED, Vd, Ta, Vn, Tb, shift);
2598   }
2599 
2600   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2601     assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
2602     _xshll(UNSIGNED, Vd, Ta, Vn, Tb, shift);
2603   }
2604 
2605   void uxtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb) {
2606     ushll(Vd, Ta, Vn, Tb, 0);
2607   }
2608 
2609   void sshll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2610     assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
2611     _xshll(SIGNED, Vd, Ta, Vn, Tb, shift);
2612   }
2613 
2614   void sshll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2615     assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
2616     _xshll(SIGNED, Vd, Ta, Vn, Tb, shift);
2617   }
2618 
2619   void sxtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb) {
2620     sshll(Vd, Ta, Vn, Tb, 0);
2621   }
2622 
2623   // Move from general purpose register
2624   //   mov  Vd.T[index], Rn
2625   void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2626     starti;
2627     f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2628     f(0b000111, 15, 10), zrf(Xn, 5), rf(Vd, 0);
2629   }
2630 
2631   // Move to general purpose register
2632   //   mov  Rd, Vn.T[index]
2633   void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2634     guarantee(T >= T2S && T < T1Q, "only D and S arrangements are supported");
2635     starti;
2636     f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2637     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2638     f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2639   }
2640 
2641 private:
2642   void _pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2643     starti;
2644     assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
2645            (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
2646     int size = (Ta == T1Q) ? 0b11 : 0b00;
2647     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
2648     f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
2649   }
2650 
2651 public:
2652   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2653     assert(Tb == T1D || Tb == T8B, "pmull assumes T1D or T8B as the second size specifier");
2654     _pmull(Vd, Ta, Vn, Vm, Tb);
2655   }
2656 
2657   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2658     assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
2659     _pmull(Vd, Ta, Vn, Vm, Tb);
2660   }
2661 
2662   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2663     starti;
2664     int size_b = (int)Tb >> 1;
2665     int size_a = (int)Ta >> 1;
2666     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2667     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2668     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2669   }
2670 
2671   void xtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2672     starti;
2673     int size_b = (int)Tb >> 1;
2674     int size_a = (int)Ta >> 1;
2675     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2676     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size_b, 23, 22);
2677     f(0b100001001010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2678   }
2679 
2680   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2681   {
2682     starti;
2683     assert(T != T1D, "reserved encoding");
2684     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2685     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), zrf(Xs, 5), rf(Vd, 0);
2686   }
2687 
2688   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2689   {
2690     starti;
2691     assert(T != T1D, "reserved encoding");
2692     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2693     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2694     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2695   }
2696 
2697   // AdvSIMD ZIP/UZP/TRN
2698 #define INSN(NAME, opcode)                                              \
2699   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2700     guarantee(T != T1D && T != T1Q, "invalid arrangement");             \
2701     starti;                                                             \
2702     f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15);                  \
2703     f(opcode, 14, 12), f(0b10, 11, 10);                                 \
2704     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);                                   \
2705     f(T & 1, 30), f(T >> 1, 23, 22);                                    \
2706   }
2707 
2708   INSN(uzp1, 0b001);
2709   INSN(trn1, 0b010);
2710   INSN(zip1, 0b011);
2711   INSN(uzp2, 0b101);
2712   INSN(trn2, 0b110);
2713   INSN(zip2, 0b111);
2714 
2715 #undef INSN
2716 
2717   // CRC32 instructions
2718 #define INSN(NAME, c, sf, sz)                                             \
2719   void NAME(Register Rd, Register Rn, Register Rm) {                      \
2720     starti;                                                               \
2721     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
2722     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
2723   }
2724 
2725   INSN(crc32b,  0, 0, 0b00);
2726   INSN(crc32h,  0, 0, 0b01);
2727   INSN(crc32w,  0, 0, 0b10);
2728   INSN(crc32x,  0, 1, 0b11);
2729   INSN(crc32cb, 1, 0, 0b00);
2730   INSN(crc32ch, 1, 0, 0b01);
2731   INSN(crc32cw, 1, 0, 0b10);
2732   INSN(crc32cx, 1, 1, 0b11);
2733 
2734 #undef INSN
2735 
2736   // Table vector lookup
2737 #define INSN(NAME, op)                                                  \
2738   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
2739     starti;                                                             \
2740     assert(T == T8B || T == T16B, "invalid arrangement");               \
2741     assert(0 < registers && registers <= 4, "invalid number of registers"); \
2742     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
2743     f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
2744   }
2745 
2746   INSN(tbl, 0);
2747   INSN(tbx, 1);
2748 
2749 #undef INSN
2750 
2751   // AdvSIMD two-reg misc
2752   // In this instruction group, the 2 bits in the size field ([23:22]) may be
2753   // fixed or determined by the "SIMD_Arrangement T", or both. The additional
2754   // parameter "tmask" is a 2-bit mask used to indicate which bits in the size
2755   // field are determined by the SIMD_Arrangement. The bit of "tmask" should be
2756   // set to 1 if corresponding bit marked as "x" in the ArmARM.
2757 #define INSN(NAME, U, size, tmask, opcode)                                          \
2758   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {               \
2759        starti;                                                                      \
2760        assert((ASSERTION), MSG);                                                    \
2761        f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24);                   \
2762        f(size | ((int)(T >> 1) & tmask), 23, 22), f(0b10000, 21, 17);               \
2763        f(opcode, 16, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);                    \
2764  }
2765 
2766 #define MSG "invalid arrangement"
2767 
2768 #define ASSERTION (T == T2S || T == T4S || T == T2D)
2769   INSN(fsqrt,  1, 0b10, 0b01, 0b11111);
2770   INSN(fabs,   0, 0b10, 0b01, 0b01111);
2771   INSN(fneg,   1, 0b10, 0b01, 0b01111);
2772   INSN(frintn, 0, 0b00, 0b01, 0b11000);
2773   INSN(frintm, 0, 0b00, 0b01, 0b11001);
2774   INSN(frintp, 0, 0b10, 0b01, 0b11000);
2775 #undef ASSERTION
2776 
2777 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
2778   INSN(rev64, 0, 0b00, 0b11, 0b00000);
2779 #undef ASSERTION
2780 
2781 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
2782   INSN(rev32, 1, 0b00, 0b11, 0b00000);
2783 #undef ASSERTION
2784 
2785 #define ASSERTION (T == T8B || T == T16B)
2786   INSN(rev16, 0, 0b00, 0b11, 0b00001);
2787   INSN(rbit,  1, 0b01, 0b00, 0b00101);
2788 #undef ASSERTION
2789 
2790 #undef MSG
2791 
2792 #undef INSN
2793 
2794 void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
2795   {
2796     starti;
2797     assert(T == T8B || T == T16B, "invalid arrangement");
2798     assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
2799     f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
2800     rf(Vm, 16), f(0, 15), f(index, 14, 11);
2801     f(0, 10), rf(Vn, 5), rf(Vd, 0);
2802   }
2803 
2804   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2805   }
2806 
2807   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2808                                                 Register tmp,
2809                                                 int offset) {
2810     ShouldNotCallThis();
2811     return RegisterOrConstant();
2812   }
2813 
2814   // Stack overflow checking
2815   virtual void bang_stack_with_offset(int offset);
2816 
2817   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
2818   static bool operand_valid_for_add_sub_immediate(long imm);
2819   static bool operand_valid_for_float_immediate(double imm);
2820 
2821   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
2822   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
2823 };
2824 
2825 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
2826                                              Assembler::Membar_mask_bits b) {
2827   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
2828 }
2829 
2830 Instruction_aarch64::~Instruction_aarch64() {
2831   assem->emit();
2832 }
2833 
2834 #undef starti
2835 
2836 // Invert a condition
2837 inline const Assembler::Condition operator~(const Assembler::Condition cond) {
2838   return Assembler::Condition(int(cond) ^ 1);
2839 }
2840 
2841 class BiasedLockingCounters;
2842 
2843 extern "C" void das(uint64_t start, int len);
2844 
2845 #endif // CPU_AARCH64_ASSEMBLER_AARCH64_HPP