1 /*
   2  * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.java2d.pisces;
  27 
  28 import java.util.Iterator;
  29 
  30 final class Curve {
  31 
  32     float ax, ay, bx, by, cx, cy, dx, dy;
  33     float dax, day, dbx, dby;
  34 
  35     Curve() {
  36     }
  37 
  38     void set(float[] points, int type) {
  39         switch(type) {
  40         case 8:
  41             set(points[0], points[1],
  42                 points[2], points[3],
  43                 points[4], points[5],
  44                 points[6], points[7]);
  45             break;
  46         case 6:
  47             set(points[0], points[1],
  48                 points[2], points[3],
  49                 points[4], points[5]);
  50             break;
  51         default:
  52             throw new InternalError("Curves can only be cubic or quadratic");
  53         }
  54     }
  55 
  56     void set(float x1, float y1,
  57              float x2, float y2,
  58              float x3, float y3,
  59              float x4, float y4)
  60     {
  61         ax = 3 * (x2 - x3) + x4 - x1;
  62         ay = 3 * (y2 - y3) + y4 - y1;
  63         bx = 3 * (x1 - 2 * x2 + x3);
  64         by = 3 * (y1 - 2 * y2 + y3);
  65         cx = 3 * (x2 - x1);
  66         cy = 3 * (y2 - y1);
  67         dx = x1;
  68         dy = y1;
  69         dax = 3 * ax; day = 3 * ay;
  70         dbx = 2 * bx; dby = 2 * by;
  71     }
  72 
  73     void set(float x1, float y1,
  74              float x2, float y2,
  75              float x3, float y3)
  76     {
  77         ax = ay = 0f;
  78 
  79         bx = x1 - 2 * x2 + x3;
  80         by = y1 - 2 * y2 + y3;
  81         cx = 2 * (x2 - x1);
  82         cy = 2 * (y2 - y1);
  83         dx = x1;
  84         dy = y1;
  85         dax = 0; day = 0;
  86         dbx = 2 * bx; dby = 2 * by;
  87     }
  88 
  89     float xat(float t) {
  90         return t * (t * (t * ax + bx) + cx) + dx;
  91     }
  92     float yat(float t) {
  93         return t * (t * (t * ay + by) + cy) + dy;
  94     }
  95 
  96     float dxat(float t) {
  97         return t * (t * dax + dbx) + cx;
  98     }
  99 
 100     float dyat(float t) {
 101         return t * (t * day + dby) + cy;
 102     }
 103 
 104     int dxRoots(float[] roots, int off) {
 105         return Helpers.quadraticRoots(dax, dbx, cx, roots, off);
 106     }
 107 
 108     int dyRoots(float[] roots, int off) {
 109         return Helpers.quadraticRoots(day, dby, cy, roots, off);
 110     }
 111 
 112     int infPoints(float[] pts, int off) {
 113         // inflection point at t if -f'(t)x*f''(t)y + f'(t)y*f''(t)x == 0
 114         // Fortunately, this turns out to be quadratic, so there are at
 115         // most 2 inflection points.
 116         final float a = dax * dby - dbx * day;
 117         final float b = 2 * (cy * dax - day * cx);
 118         final float c = cy * dbx - cx * dby;
 119 
 120         return Helpers.quadraticRoots(a, b, c, pts, off);
 121     }
 122 
 123     // finds points where the first and second derivative are
 124     // perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where
 125     // * is a dot product). Unfortunately, we have to solve a cubic.
 126     private int perpendiculardfddf(float[] pts, int off) {
 127         assert pts.length >= off + 4;
 128 
 129         // these are the coefficients of some multiple of g(t) (not g(t),
 130         // because the roots of a polynomial are not changed after multiplication
 131         // by a constant, and this way we save a few multiplications).
 132         final float a = 2*(dax*dax + day*day);
 133         final float b = 3*(dax*dbx + day*dby);
 134         final float c = 2*(dax*cx + day*cy) + dbx*dbx + dby*dby;
 135         final float d = dbx*cx + dby*cy;
 136         return Helpers.cubicRootsInAB(a, b, c, d, pts, off, 0f, 1f);
 137     }
 138 
 139     // Tries to find the roots of the function ROC(t)-w in [0, 1). It uses
 140     // a variant of the false position algorithm to find the roots. False
 141     // position requires that 2 initial values x0,x1 be given, and that the
 142     // function must have opposite signs at those values. To find such
 143     // values, we need the local extrema of the ROC function, for which we
 144     // need the roots of its derivative; however, it's harder to find the
 145     // roots of the derivative in this case than it is to find the roots
 146     // of the original function. So, we find all points where this curve's
 147     // first and second derivative are perpendicular, and we pretend these
 148     // are our local extrema. There are at most 3 of these, so we will check
 149     // at most 4 sub-intervals of (0,1). ROC has asymptotes at inflection
 150     // points, so roc-w can have at least 6 roots. This shouldn't be a
 151     // problem for what we're trying to do (draw a nice looking curve).
 152     int rootsOfROCMinusW(float[] roots, int off, final float w, final float err) {
 153         // no OOB exception, because by now off<=6, and roots.length >= 10
 154         assert off <= 6 && roots.length >= 10;
 155         int ret = off;
 156         int numPerpdfddf = perpendiculardfddf(roots, off);
 157         float t0 = 0, ft0 = ROCsq(t0) - w*w;
 158         roots[off + numPerpdfddf] = 1f; // always check interval end points
 159         numPerpdfddf++;
 160         for (int i = off; i < off + numPerpdfddf; i++) {
 161             float t1 = roots[i], ft1 = ROCsq(t1) - w*w;
 162             if (ft0 == 0f) {
 163                 roots[ret++] = t0;
 164             } else if (ft1 * ft0 < 0f) { // have opposite signs
 165                 // (ROC(t)^2 == w^2) == (ROC(t) == w) is true because
 166                 // ROC(t) >= 0 for all t.
 167                 roots[ret++] = falsePositionROCsqMinusX(t0, t1, w*w, err);
 168             }
 169             t0 = t1;
 170             ft0 = ft1;
 171         }
 172 
 173         return ret - off;
 174     }
 175 
 176     private static float eliminateInf(float x) {
 177         return (x == Float.POSITIVE_INFINITY ? Float.MAX_VALUE :
 178             (x == Float.NEGATIVE_INFINITY ? Float.MIN_VALUE : x));
 179     }
 180 
 181     // A slight modification of the false position algorithm on wikipedia.
 182     // This only works for the ROCsq-x functions. It might be nice to have
 183     // the function as an argument, but that would be awkward in java6.
 184     // TODO: It is something to consider for java8 (or whenever lambda
 185     // expressions make it into the language), depending on how closures
 186     // and turn out. Same goes for the newton's method
 187     // algorithm in Helpers.java
 188     private float falsePositionROCsqMinusX(float x0, float x1,
 189                                            final float x, final float err)
 190     {
 191         final int iterLimit = 100;
 192         int side = 0;
 193         float t = x1, ft = eliminateInf(ROCsq(t) - x);
 194         float s = x0, fs = eliminateInf(ROCsq(s) - x);
 195         float r = s, fr;
 196         for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) {
 197             r = (fs * t - ft * s) / (fs - ft);
 198             fr = ROCsq(r) - x;
 199             if (sameSign(fr, ft)) {
 200                 ft = fr; t = r;
 201                 if (side < 0) {
 202                     fs /= (1 << (-side));
 203                     side--;
 204                 } else {
 205                     side = -1;
 206                 }
 207             } else if (fr * fs > 0) {
 208                 fs = fr; s = r;
 209                 if (side > 0) {
 210                     ft /= (1 << side);
 211                     side++;
 212                 } else {
 213                     side = 1;
 214                 }
 215             } else {
 216                 break;
 217             }
 218         }
 219         return r;
 220     }
 221 
 222     private static boolean sameSign(double x, double y) {
 223         // another way is to test if x*y > 0. This is bad for small x, y.
 224         return (x < 0 && y < 0) || (x > 0 && y > 0);
 225     }
 226 
 227     // returns the radius of curvature squared at t of this curve
 228     // see http://en.wikipedia.org/wiki/Radius_of_curvature_(applications)
 229     private float ROCsq(final float t) {
 230         // dx=xat(t) and dy=yat(t). These calls have been inlined for efficiency
 231         final float dx = t * (t * dax + dbx) + cx;
 232         final float dy = t * (t * day + dby) + cy;
 233         final float ddx = 2 * dax * t + dbx;
 234         final float ddy = 2 * day * t + dby;
 235         final float dx2dy2 = dx*dx + dy*dy;
 236         final float ddx2ddy2 = ddx*ddx + ddy*ddy;
 237         final float ddxdxddydy = ddx*dx + ddy*dy;
 238         return dx2dy2*((dx2dy2*dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy*ddxdxddydy));
 239     }
 240 
 241     // curve to be broken should be in pts
 242     // this will change the contents of pts but not Ts
 243     // TODO: There's no reason for Ts to be an array. All we need is a sequence
 244     // of t values at which to subdivide. An array statisfies this condition,
 245     // but is unnecessarily restrictive. Ts should be an Iterator<Float> instead.
 246     // Doing this will also make dashing easier, since we could easily make
 247     // LengthIterator an Iterator<Float> and feed it to this function to simplify
 248     // the loop in Dasher.somethingTo.
 249     static Iterator<Integer> breakPtsAtTs(final float[] pts, final int type,
 250                                           final float[] Ts, final int numTs)
 251     {
 252         assert pts.length >= 2*type && numTs <= Ts.length;
 253         return new Iterator<Integer>() {
 254             // these prevent object creation and destruction during autoboxing.
 255             // Because of this, the compiler should be able to completely
 256             // eliminate the boxing costs.
 257             final Integer i0 = 0;
 258             final Integer itype = type;
 259             int nextCurveIdx = 0;
 260             Integer curCurveOff = i0;
 261             float prevT = 0;
 262 
 263             @Override public boolean hasNext() {
 264                 return nextCurveIdx < numTs + 1;
 265             }
 266 
 267             @Override public Integer next() {
 268                 Integer ret;
 269                 if (nextCurveIdx < numTs) {
 270                     float curT = Ts[nextCurveIdx];
 271                     float splitT = (curT - prevT) / (1 - prevT);
 272                     Helpers.subdivideAt(splitT,
 273                                         pts, curCurveOff,
 274                                         pts, 0,
 275                                         pts, type, type);
 276                     prevT = curT;
 277                     ret = i0;
 278                     curCurveOff = itype;
 279                 } else {
 280                     ret = curCurveOff;
 281                 }
 282                 nextCurveIdx++;
 283                 return ret;
 284             }
 285 
 286             @Override public void remove() {}
 287         };
 288     }
 289 }
 290