1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 // -*- C++ -*-
  27 // Program for unpacking specially compressed Java packages.
  28 // John R. Rose
  29 
  30 /*
  31  * When compiling for a 64bit LP64 system (longs and pointers being 64bits),
  32  *    the printf format %ld is correct and use of %lld will cause warning
  33  *    errors from some compilers (gcc/g++).
  34  * _LP64 can be explicitly set (used on Linux).
  35  * Solaris compilers will define __sparcv9 or __x86_64 on 64bit compilations.
  36  */
  37 #if defined(_LP64) || defined(__sparcv9) || defined(__x86_64)
  38   #define LONG_LONG_FORMAT "%ld"
  39   #define LONG_LONG_HEX_FORMAT "%lx"
  40 #else
  41   #define LONG_LONG_FORMAT "%lld"
  42   #define LONG_LONG_HEX_FORMAT "%016llx"
  43 #endif
  44 
  45 #include <sys/types.h>
  46 
  47 #include <stdio.h>
  48 #include <string.h>
  49 #include <stdlib.h>
  50 #include <stdarg.h>
  51 
  52 #include <limits.h>
  53 #include <time.h>
  54 
  55 
  56 
  57 
  58 #include "defines.h"
  59 #include "bytes.h"
  60 #include "utils.h"
  61 #include "coding.h"
  62 #include "bands.h"
  63 
  64 #include "constants.h"
  65 
  66 #include "zip.h"
  67 
  68 #include "unpack.h"
  69 
  70 
  71 // tags, in canonical order:
  72 static const byte TAGS_IN_ORDER[] = {
  73   CONSTANT_Utf8,
  74   CONSTANT_Integer,
  75   CONSTANT_Float,
  76   CONSTANT_Long,
  77   CONSTANT_Double,
  78   CONSTANT_String,
  79   CONSTANT_Class,
  80   CONSTANT_Signature,
  81   CONSTANT_NameandType,
  82   CONSTANT_Fieldref,
  83   CONSTANT_Methodref,
  84   CONSTANT_InterfaceMethodref
  85 };
  86 #define N_TAGS_IN_ORDER (sizeof TAGS_IN_ORDER)
  87 
  88 #ifndef PRODUCT
  89 static const char* TAG_NAME[] = {
  90   "*None",
  91   "Utf8",
  92   "*Unicode",
  93   "Integer",
  94   "Float",
  95   "Long",
  96   "Double",
  97   "Class",
  98   "String",
  99   "Fieldref",
 100   "Methodref",
 101   "InterfaceMethodref",
 102   "NameandType",
 103   "*Signature",
 104   0
 105 };
 106 
 107 static const char* ATTR_CONTEXT_NAME[] = {  // match ATTR_CONTEXT_NAME, etc.
 108   "class", "field", "method", "code"
 109 };
 110 
 111 #else
 112 
 113 #define ATTR_CONTEXT_NAME ((const char**)null)
 114 
 115 #endif
 116 
 117 
 118 // REQUESTED must be -2 for u2 and REQUESTED_LDC must be -1 for u1
 119 enum { NOT_REQUESTED = 0, REQUESTED = -2, REQUESTED_LDC = -1 };
 120 
 121 #define NO_INORD ((uint)-1)
 122 
 123 struct entry {
 124   byte tag;
 125 
 126   #if 0
 127   byte bits;
 128   enum {
 129     //EB_EXTRA = 1,
 130     EB_SUPER = 2
 131   };
 132   #endif
 133   unsigned short nrefs;  // pack w/ tag
 134 
 135   int  outputIndex;
 136   uint inord;   // &cp.entries[cp.tag_base[this->tag]+this->inord] == this
 137 
 138   entry* *refs;
 139 
 140   // put last to pack best
 141   union {
 142     bytes b;
 143     int i;
 144     jlong l;
 145   } value;
 146 
 147   void requestOutputIndex(cpool& cp, int req = REQUESTED);
 148   int getOutputIndex() {
 149     assert(outputIndex > NOT_REQUESTED);
 150     return outputIndex;
 151   }
 152 
 153   entry* ref(int refnum) {
 154     assert((uint)refnum < nrefs);
 155     return refs[refnum];
 156   }
 157 
 158   const char* utf8String() {
 159     assert(tagMatches(CONSTANT_Utf8));
 160     assert(value.b.len == strlen((const char*)value.b.ptr));
 161     return (const char*)value.b.ptr;
 162   }
 163 
 164   entry* className() {
 165     assert(tagMatches(CONSTANT_Class));
 166     return ref(0);
 167   }
 168 
 169   entry* memberClass() {
 170     assert(tagMatches(CONSTANT_Member));
 171     return ref(0);
 172   }
 173 
 174   entry* memberDescr() {
 175     assert(tagMatches(CONSTANT_Member));
 176     return ref(1);
 177   }
 178 
 179   entry* descrName() {
 180     assert(tagMatches(CONSTANT_NameandType));
 181     return ref(0);
 182   }
 183 
 184   entry* descrType() {
 185     assert(tagMatches(CONSTANT_NameandType));
 186     return ref(1);
 187   }
 188 
 189   int typeSize();
 190 
 191   bytes& asUtf8();
 192   int    asInteger() { assert(tag == CONSTANT_Integer); return value.i; }
 193 
 194   bool isUtf8(bytes& b) { return tagMatches(CONSTANT_Utf8) && value.b.equals(b); }
 195 
 196   bool isDoubleWord() { return tag == CONSTANT_Double || tag == CONSTANT_Long; }
 197 
 198   bool tagMatches(byte tag2) {
 199     return (tag2 == tag)
 200       || (tag2 == CONSTANT_Utf8 && tag == CONSTANT_Signature)
 201       #ifndef PRODUCT
 202       || (tag2 == CONSTANT_Literal
 203           && tag >= CONSTANT_Integer && tag <= CONSTANT_String && tag != CONSTANT_Class)
 204       || (tag2 == CONSTANT_Member
 205           && tag >= CONSTANT_Fieldref && tag <= CONSTANT_InterfaceMethodref)
 206       #endif
 207       ;
 208   }
 209 
 210 #ifdef PRODUCT
 211   char* string() { return 0; }
 212 #else
 213   char* string();  // see far below
 214 #endif
 215 };
 216 
 217 entry* cpindex::get(uint i) {
 218   if (i >= len)
 219     return null;
 220   else if (base1 != null)
 221     // primary index
 222     return &base1[i];
 223   else
 224     // secondary index
 225     return base2[i];
 226 }
 227 
 228 inline bytes& entry::asUtf8() {
 229   assert(tagMatches(CONSTANT_Utf8));
 230   return value.b;
 231 }
 232 
 233 int entry::typeSize() {
 234   assert(tagMatches(CONSTANT_Utf8));
 235   const char* sigp = (char*) value.b.ptr;
 236   switch (*sigp) {
 237   case '(': sigp++; break;  // skip opening '('
 238   case 'D':
 239   case 'J': return 2; // double field
 240   default:  return 1; // field
 241   }
 242   int siglen = 0;
 243   for (;;) {
 244     int ch = *sigp++;
 245     switch (ch) {
 246     case 'D': case 'J':
 247       siglen += 1;
 248       break;
 249     case '[':
 250       // Skip rest of array info.
 251       while (ch == '[') { ch = *sigp++; }
 252       if (ch != 'L')  break;
 253       // else fall through
 254     case 'L':
 255       sigp = strchr(sigp, ';');
 256       if (sigp == null) {
 257           unpack_abort("bad data");
 258           return 0;
 259       }
 260       sigp += 1;
 261       break;
 262     case ')':  // closing ')'
 263       return siglen;
 264     }
 265     siglen += 1;
 266   }
 267 }
 268 
 269 inline cpindex* cpool::getFieldIndex(entry* classRef) {
 270   assert(classRef->tagMatches(CONSTANT_Class));
 271   assert((uint)classRef->inord < (uint)tag_count[CONSTANT_Class]);
 272   return &member_indexes[classRef->inord*2+0];
 273 }
 274 inline cpindex* cpool::getMethodIndex(entry* classRef) {
 275   assert(classRef->tagMatches(CONSTANT_Class));
 276   assert((uint)classRef->inord < (uint)tag_count[CONSTANT_Class]);
 277   return &member_indexes[classRef->inord*2+1];
 278 }
 279 
 280 struct inner_class {
 281   entry* inner;
 282   entry* outer;
 283   entry* name;
 284   int    flags;
 285   inner_class* next_sibling;
 286   bool   requested;
 287 };
 288 
 289 // Here is where everything gets deallocated:
 290 void unpacker::free() {
 291   int i;
 292   assert(jniobj == null); // caller resp.
 293   assert(infileptr == null);  // caller resp.
 294   if (jarout != null)  jarout->reset();
 295   if (gzin != null)    { gzin->free(); gzin = null; }
 296   if (free_input)  input.free();
 297   // free everybody ever allocated with U_NEW or (recently) with T_NEW
 298   assert(smallbuf.base()  == null || mallocs.contains(smallbuf.base()));
 299   assert(tsmallbuf.base() == null || tmallocs.contains(tsmallbuf.base()));
 300   mallocs.freeAll();
 301   tmallocs.freeAll();
 302   smallbuf.init();
 303   tsmallbuf.init();
 304   bcimap.free();
 305   class_fixup_type.free();
 306   class_fixup_offset.free();
 307   class_fixup_ref.free();
 308   code_fixup_type.free();
 309   code_fixup_offset.free();
 310   code_fixup_source.free();
 311   requested_ics.free();
 312   cur_classfile_head.free();
 313   cur_classfile_tail.free();
 314   for (i = 0; i < ATTR_CONTEXT_LIMIT; i++)
 315     attr_defs[i].free();
 316 
 317   // free CP state
 318   cp.outputEntries.free();
 319   for (i = 0; i < CONSTANT_Limit; i++)
 320     cp.tag_extras[i].free();
 321 }
 322 
 323 // input handling
 324 // Attempts to advance rplimit so that (rplimit-rp) is at least 'more'.
 325 // Will eagerly read ahead by larger chunks, if possible.
 326 // Returns false if (rplimit-rp) is not at least 'more',
 327 // unless rplimit hits input.limit().
 328 bool unpacker::ensure_input(jlong more) {
 329   julong want = more - input_remaining();
 330   if ((jlong)want <= 0)          return true;  // it's already in the buffer
 331   if (rplimit == input.limit())  return true;  // not expecting any more
 332 
 333   if (read_input_fn == null) {
 334     // assume it is already all there
 335     bytes_read += input.limit() - rplimit;
 336     rplimit = input.limit();
 337     return true;
 338   }
 339   CHECK_0;
 340 
 341   julong remaining = (input.limit() - rplimit);  // how much left to read?
 342   byte* rpgoal = (want >= remaining)? input.limit(): rplimit + (size_t)want;
 343   enum { CHUNK_SIZE = (1<<14) };
 344   julong fetch = want;
 345   if (fetch < CHUNK_SIZE)
 346     fetch = CHUNK_SIZE;
 347   if (fetch > remaining*3/4)
 348     fetch = remaining;
 349   // Try to fetch at least "more" bytes.
 350   while ((jlong)fetch > 0) {
 351     jlong nr = (*read_input_fn)(this, rplimit, fetch, remaining);
 352     if (nr <= 0) {
 353       return (rplimit >= rpgoal);
 354     }
 355     remaining -= nr;
 356     rplimit += nr;
 357     fetch -= nr;
 358     bytes_read += nr;
 359     assert(remaining == (julong)(input.limit() - rplimit));
 360   }
 361   return true;
 362 }
 363 
 364 // output handling
 365 
 366 fillbytes* unpacker::close_output(fillbytes* which) {
 367   assert(wp != null);
 368   if (which == null) {
 369     if (wpbase == cur_classfile_head.base()) {
 370       which = &cur_classfile_head;
 371     } else {
 372       which = &cur_classfile_tail;
 373     }
 374   }
 375   assert(wpbase  == which->base());
 376   assert(wplimit == which->end());
 377   which->setLimit(wp);
 378   wp      = null;
 379   wplimit = null;
 380   //wpbase = null;
 381   return which;
 382 }
 383 
 384 //maybe_inline
 385 void unpacker::ensure_put_space(size_t size) {
 386   if (wp + size <= wplimit)  return;
 387   // Determine which segment needs expanding.
 388   fillbytes* which = close_output();
 389   byte* wp0 = which->grow(size);
 390   wpbase  = which->base();
 391   wplimit = which->end();
 392   wp = wp0;
 393 }
 394 
 395 maybe_inline
 396 byte* unpacker::put_space(size_t size) {
 397   byte* wp0 = wp;
 398   byte* wp1 = wp0 + size;
 399   if (wp1 > wplimit) {
 400     ensure_put_space(size);
 401     wp0 = wp;
 402     wp1 = wp0 + size;
 403   }
 404   wp = wp1;
 405   return wp0;
 406 }
 407 
 408 maybe_inline
 409 void unpacker::putu2_at(byte* wp, int n) {
 410   if (n != (unsigned short)n) {
 411     unpack_abort(ERROR_OVERFLOW);
 412     return;
 413   }
 414   wp[0] = (n) >> 8;
 415   wp[1] = (n) >> 0;
 416 }
 417 
 418 maybe_inline
 419 void unpacker::putu4_at(byte* wp, int n) {
 420   wp[0] = (n) >> 24;
 421   wp[1] = (n) >> 16;
 422   wp[2] = (n) >> 8;
 423   wp[3] = (n) >> 0;
 424 }
 425 
 426 maybe_inline
 427 void unpacker::putu8_at(byte* wp, jlong n) {
 428   putu4_at(wp+0, (int)((julong)n >> 32));
 429   putu4_at(wp+4, (int)((julong)n >> 0));
 430 }
 431 
 432 maybe_inline
 433 void unpacker::putu2(int n) {
 434   putu2_at(put_space(2), n);
 435 }
 436 
 437 maybe_inline
 438 void unpacker::putu4(int n) {
 439   putu4_at(put_space(4), n);
 440 }
 441 
 442 maybe_inline
 443 void unpacker::putu8(jlong n) {
 444   putu8_at(put_space(8), n);
 445 }
 446 
 447 maybe_inline
 448 int unpacker::putref_index(entry* e, int size) {
 449   if (e == null)
 450     return 0;
 451   else if (e->outputIndex > NOT_REQUESTED)
 452     return e->outputIndex;
 453   else if (e->tag == CONSTANT_Signature)
 454     return putref_index(e->ref(0), size);
 455   else {
 456     e->requestOutputIndex(cp, -size);
 457     // Later on we'll fix the bits.
 458     class_fixup_type.addByte(size);
 459     class_fixup_offset.add((int)wpoffset());
 460     class_fixup_ref.add(e);
 461 #ifdef PRODUCT
 462     return 0;
 463 #else
 464     return 0x20+size;  // 0x22 is easy to eyeball
 465 #endif
 466   }
 467 }
 468 
 469 maybe_inline
 470 void unpacker::putref(entry* e) {
 471   int oidx = putref_index(e, 2);
 472   putu2_at(put_space(2), oidx);
 473 }
 474 
 475 maybe_inline
 476 void unpacker::putu1ref(entry* e) {
 477   int oidx = putref_index(e, 1);
 478   putu1_at(put_space(1), oidx);
 479 }
 480 
 481 
 482 static int total_cp_size[] = {0, 0};
 483 static int largest_cp_ref[] = {0, 0};
 484 static int hash_probes[] = {0, 0};
 485 
 486 // Allocation of small and large blocks.
 487 
 488 enum { CHUNK = (1 << 14), SMALL = (1 << 9) };
 489 
 490 // Call malloc.  Try to combine small blocks and free much later.
 491 void* unpacker::alloc_heap(size_t size, bool smallOK, bool temp) {
 492   if (!smallOK || size > SMALL) {
 493     void* res = must_malloc((int)size);
 494     (temp ? &tmallocs : &mallocs)->add(res);
 495     return res;
 496   }
 497   fillbytes& xsmallbuf = *(temp ? &tsmallbuf : &smallbuf);
 498   if (!xsmallbuf.canAppend(size+1)) {
 499     xsmallbuf.init(CHUNK);
 500     (temp ? &tmallocs : &mallocs)->add(xsmallbuf.base());
 501   }
 502   int growBy = (int)size;
 503   growBy += -growBy & 7;  // round up mod 8
 504   return xsmallbuf.grow(growBy);
 505 }
 506 
 507 maybe_inline
 508 void unpacker::saveTo(bytes& b, byte* ptr, size_t len) {
 509   b.ptr = U_NEW(byte, add_size(len,1));
 510   if (aborting()) {
 511     b.len = 0;
 512     return;
 513   }
 514   b.len = len;
 515   b.copyFrom(ptr, len);
 516 }
 517 
 518 // Read up through band_headers.
 519 // Do the archive_size dance to set the size of the input mega-buffer.
 520 void unpacker::read_file_header() {
 521   // Read file header to determine file type and total size.
 522   enum {
 523     MAGIC_BYTES = 4,
 524     AH_LENGTH_0 = 3,  //minver, majver, options are outside of archive_size
 525     AH_LENGTH_0_MAX = AH_LENGTH_0 + 1,  // options might have 2 bytes
 526     AH_LENGTH   = 26, //maximum archive header length (w/ all fields)
 527     // Length contributions from optional header fields:
 528     AH_FILE_HEADER_LEN = 5, // sizehi/lo/next/modtime/files
 529     AH_ARCHIVE_SIZE_LEN = 2, // sizehi/lo only; part of AH_FILE_HEADER_LEN
 530     AH_CP_NUMBER_LEN = 4,  // int/float/long/double
 531     AH_SPECIAL_FORMAT_LEN = 2, // layouts/band-headers
 532     AH_LENGTH_MIN = AH_LENGTH
 533         -(AH_FILE_HEADER_LEN+AH_SPECIAL_FORMAT_LEN+AH_CP_NUMBER_LEN),
 534     ARCHIVE_SIZE_MIN = AH_LENGTH_MIN - (AH_LENGTH_0 + AH_ARCHIVE_SIZE_LEN),
 535     FIRST_READ  = MAGIC_BYTES + AH_LENGTH_MIN
 536   };
 537 
 538   assert(AH_LENGTH_MIN    == 15); // # of UNSIGNED5 fields required after archive_magic
 539   assert(ARCHIVE_SIZE_MIN == 10); // # of UNSIGNED5 fields required after archive_size
 540   // An absolute minimum null archive is magic[4], {minver,majver,options}[3],
 541   // archive_size[0], cp_counts[8], class_counts[4], for a total of 19 bytes.
 542   // (Note that archive_size is optional; it may be 0..10 bytes in length.)
 543   // The first read must capture everything up through the options field.
 544   // This happens to work even if {minver,majver,options} is a pathological
 545   // 15 bytes long.  Legal pack files limit those three fields to 1+1+2 bytes.
 546   assert(FIRST_READ >= MAGIC_BYTES + AH_LENGTH_0 * B_MAX);
 547 
 548   // Up through archive_size, the largest possible archive header is
 549   // magic[4], {minver,majver,options}[4], archive_size[10].
 550   // (Note only the low 12 bits of options are allowed to be non-zero.)
 551   // In order to parse archive_size, we need at least this many bytes
 552   // in the first read.  Of course, if archive_size_hi is more than
 553   // a byte, we probably will fail to allocate the buffer, since it
 554   // will be many gigabytes long.  This is a practical, not an
 555   // architectural limit to Pack200 archive sizes.
 556   assert(FIRST_READ >= MAGIC_BYTES + AH_LENGTH_0_MAX + 2*B_MAX);
 557 
 558   bool foreign_buf = (read_input_fn == null);
 559   byte initbuf[(int)FIRST_READ + (int)C_SLOP + 200];  // 200 is for JAR I/O
 560   if (foreign_buf) {
 561     // inbytes is all there is
 562     input.set(inbytes);
 563     rp      = input.base();
 564     rplimit = input.limit();
 565   } else {
 566     // inbytes, if not empty, contains some read-ahead we must use first
 567     // ensure_input will take care of copying it into initbuf,
 568     // then querying read_input_fn for any additional data needed.
 569     // However, the caller must assume that we use up all of inbytes.
 570     // There is no way to tell the caller that we used only part of them.
 571     // Therefore, the caller must use only a bare minimum of read-ahead.
 572     if (inbytes.len > FIRST_READ) {
 573       abort("too much read-ahead");
 574       return;
 575     }
 576     input.set(initbuf, sizeof(initbuf));
 577     input.b.clear();
 578     input.b.copyFrom(inbytes);
 579     rplimit = rp = input.base();
 580     rplimit += inbytes.len;
 581     bytes_read += inbytes.len;
 582   }
 583   // Read only 19 bytes, which is certain to contain #archive_options fields,
 584   // but is certain not to overflow past the archive_header.
 585   input.b.len = FIRST_READ;
 586   if (!ensure_input(FIRST_READ))
 587     abort("EOF reading archive magic number");
 588 
 589   if (rp[0] == 'P' && rp[1] == 'K') {
 590 #ifdef UNPACK_JNI
 591     // Java driver must handle this case before we get this far.
 592     abort("encountered a JAR header in unpacker");
 593 #else
 594     // In the Unix-style program, we simply simulate a copy command.
 595     // Copy until EOF; assume the JAR file is the last segment.
 596     fprintf(errstrm, "Copy-mode.\n");
 597     for (;;) {
 598       jarout->write_data(rp, (int)input_remaining());
 599       if (foreign_buf)
 600         break;  // one-time use of a passed in buffer
 601       if (input.size() < CHUNK) {
 602         // Get some breathing room.
 603         input.set(U_NEW(byte, (size_t) CHUNK + C_SLOP), (size_t) CHUNK);
 604         CHECK;
 605       }
 606       rp = rplimit = input.base();
 607       if (!ensure_input(1))
 608         break;
 609     }
 610     jarout->closeJarFile(false);
 611 #endif
 612     return;
 613   }
 614 
 615   // Read the magic number.
 616   magic = 0;
 617   for (int i1 = 0; i1 < (int)sizeof(magic); i1++) {
 618     magic <<= 8;
 619     magic += (*rp++ & 0xFF);
 620   }
 621 
 622   // Read the first 3 values from the header.
 623   value_stream hdr;
 624   int          hdrVals = 0;
 625   int          hdrValsSkipped = 0;  // debug only
 626   hdr.init(rp, rplimit, UNSIGNED5_spec);
 627   minver = hdr.getInt();
 628   majver = hdr.getInt();
 629   hdrVals += 2;
 630 
 631   if (magic != (int)JAVA_PACKAGE_MAGIC ||
 632       (majver != JAVA5_PACKAGE_MAJOR_VERSION  &&
 633        majver != JAVA6_PACKAGE_MAJOR_VERSION) ||
 634       (minver != JAVA5_PACKAGE_MINOR_VERSION  &&
 635        minver != JAVA6_PACKAGE_MINOR_VERSION)) {
 636     char message[200];
 637     sprintf(message, "@" ERROR_FORMAT ": magic/ver = "
 638             "%08X/%d.%d should be %08X/%d.%d OR %08X/%d.%d\n",
 639             magic, majver, minver,
 640             JAVA_PACKAGE_MAGIC, JAVA5_PACKAGE_MAJOR_VERSION, JAVA5_PACKAGE_MINOR_VERSION,
 641             JAVA_PACKAGE_MAGIC, JAVA6_PACKAGE_MAJOR_VERSION, JAVA6_PACKAGE_MINOR_VERSION);
 642     abort(message);
 643   }
 644   CHECK;
 645 
 646   archive_options = hdr.getInt();
 647   hdrVals += 1;
 648   assert(hdrVals == AH_LENGTH_0);  // first three fields only
 649 
 650 #define ORBIT(bit) |(bit)
 651   int OPTION_LIMIT = (0 ARCHIVE_BIT_DO(ORBIT));
 652 #undef ORBIT
 653   if ((archive_options & ~OPTION_LIMIT) != 0) {
 654     fprintf(errstrm, "Warning: Illegal archive options 0x%x\n",
 655         archive_options);
 656     abort("illegal archive options");
 657     return;
 658   }
 659 
 660   if ((archive_options & AO_HAVE_FILE_HEADERS) != 0) {
 661     uint hi = hdr.getInt();
 662     uint lo = hdr.getInt();
 663     julong x = band::makeLong(hi, lo);
 664     archive_size = (size_t) x;
 665     if (archive_size != x) {
 666       // Silly size specified; force overflow.
 667       archive_size = PSIZE_MAX+1;
 668     }
 669     hdrVals += 2;
 670   } else {
 671     hdrValsSkipped += 2;
 672   }
 673 
 674   // Now we can size the whole archive.
 675   // Read everything else into a mega-buffer.
 676   rp = hdr.rp;
 677   int header_size_0 = (int)(rp - input.base()); // used-up header (4byte + 3int)
 678   int header_size_1 = (int)(rplimit - rp);      // buffered unused initial fragment
 679   int header_size   = header_size_0+header_size_1;
 680   unsized_bytes_read = header_size_0;
 681   CHECK;
 682   if (foreign_buf) {
 683     if (archive_size > (size_t)header_size_1) {
 684       abort("EOF reading fixed input buffer");
 685       return;
 686     }
 687   } else if (archive_size != 0) {
 688     if (archive_size < ARCHIVE_SIZE_MIN) {
 689       abort("impossible archive size");  // bad input data
 690       return;
 691     }
 692     if (archive_size < header_size_1) {
 693       abort("too much read-ahead");  // somehow we pre-fetched too much?
 694       return;
 695     }
 696     input.set(U_NEW(byte, add_size(header_size_0, archive_size, C_SLOP)),
 697               (size_t) header_size_0 + archive_size);
 698     CHECK;
 699     assert(input.limit()[0] == 0);
 700     // Move all the bytes we read initially into the real buffer.
 701     input.b.copyFrom(initbuf, header_size);
 702     rp      = input.b.ptr + header_size_0;
 703     rplimit = input.b.ptr + header_size;
 704   } else {
 705     // It's more complicated and painful.
 706     // A zero archive_size means that we must read until EOF.
 707     input.init(CHUNK*2);
 708     CHECK;
 709     input.b.len = input.allocated;
 710     rp = rplimit = input.base();
 711     // Set up input buffer as if we already read the header:
 712     input.b.copyFrom(initbuf, header_size);
 713     CHECK;
 714     rplimit += header_size;
 715     while (ensure_input(input.limit() - rp)) {
 716       size_t dataSoFar = input_remaining();
 717       size_t nextSize = add_size(dataSoFar, CHUNK);
 718       input.ensureSize(nextSize);
 719       CHECK;
 720       input.b.len = input.allocated;
 721       rp = rplimit = input.base();
 722       rplimit += dataSoFar;
 723     }
 724     size_t dataSize = (rplimit - input.base());
 725     input.b.len = dataSize;
 726     input.grow(C_SLOP);
 727     CHECK;
 728     free_input = true;  // free it later
 729     input.b.len = dataSize;
 730     assert(input.limit()[0] == 0);
 731     rp = rplimit = input.base();
 732     rplimit += dataSize;
 733     rp += header_size_0;  // already scanned these bytes...
 734   }
 735   live_input = true;    // mark as "do not reuse"
 736   if (aborting()) {
 737     abort("cannot allocate large input buffer for package file");
 738     return;
 739   }
 740 
 741   // read the rest of the header fields
 742   ensure_input((AH_LENGTH-AH_LENGTH_0) * B_MAX);
 743   CHECK;
 744   hdr.rp      = rp;
 745   hdr.rplimit = rplimit;
 746 
 747   if ((archive_options & AO_HAVE_FILE_HEADERS) != 0) {
 748     archive_next_count = hdr.getInt();
 749     CHECK_COUNT(archive_next_count);
 750     archive_modtime = hdr.getInt();
 751     file_count = hdr.getInt();
 752     CHECK_COUNT(file_count);
 753     hdrVals += 3;
 754   } else {
 755     hdrValsSkipped += 3;
 756   }
 757 
 758   if ((archive_options & AO_HAVE_SPECIAL_FORMATS) != 0) {
 759     band_headers_size = hdr.getInt();
 760     CHECK_COUNT(band_headers_size);
 761     attr_definition_count = hdr.getInt();
 762     CHECK_COUNT(attr_definition_count);
 763     hdrVals += 2;
 764   } else {
 765     hdrValsSkipped += 2;
 766   }
 767 
 768   int cp_counts[N_TAGS_IN_ORDER];
 769   for (int k = 0; k < (int)N_TAGS_IN_ORDER; k++) {
 770     if (!(archive_options & AO_HAVE_CP_NUMBERS)) {
 771       switch (TAGS_IN_ORDER[k]) {
 772       case CONSTANT_Integer:
 773       case CONSTANT_Float:
 774       case CONSTANT_Long:
 775       case CONSTANT_Double:
 776         cp_counts[k] = 0;
 777         hdrValsSkipped += 1;
 778         continue;
 779       }
 780     }
 781     cp_counts[k] = hdr.getInt();
 782     CHECK_COUNT(cp_counts[k]);
 783     hdrVals += 1;
 784   }
 785 
 786   ic_count = hdr.getInt();
 787   CHECK_COUNT(ic_count);
 788   default_class_minver = hdr.getInt();
 789   default_class_majver = hdr.getInt();
 790   class_count = hdr.getInt();
 791   CHECK_COUNT(class_count);
 792   hdrVals += 4;
 793 
 794   // done with archive_header
 795   hdrVals += hdrValsSkipped;
 796   assert(hdrVals == AH_LENGTH);
 797 #ifndef PRODUCT
 798   int assertSkipped = AH_LENGTH - AH_LENGTH_MIN;
 799   if ((archive_options & AO_HAVE_FILE_HEADERS) != 0)
 800     assertSkipped -= AH_FILE_HEADER_LEN;
 801   if ((archive_options & AO_HAVE_SPECIAL_FORMATS) != 0)
 802     assertSkipped -= AH_SPECIAL_FORMAT_LEN;
 803   if ((archive_options & AO_HAVE_CP_NUMBERS) != 0)
 804     assertSkipped -= AH_CP_NUMBER_LEN;
 805   assert(hdrValsSkipped == assertSkipped);
 806 #endif //PRODUCT
 807 
 808   rp = hdr.rp;
 809   if (rp > rplimit)
 810     abort("EOF reading archive header");
 811 
 812   // Now size the CP.
 813 #ifndef PRODUCT
 814   bool x = (N_TAGS_IN_ORDER == cpool::NUM_COUNTS);
 815   assert(x);
 816 #endif //PRODUCT
 817   cp.init(this, cp_counts);
 818   CHECK;
 819 
 820   default_file_modtime = archive_modtime;
 821   if (default_file_modtime == 0 && !(archive_options & AO_HAVE_FILE_MODTIME))
 822     default_file_modtime = DEFAULT_ARCHIVE_MODTIME;  // taken from driver
 823   if ((archive_options & AO_DEFLATE_HINT) != 0)
 824     default_file_options |= FO_DEFLATE_HINT;
 825 
 826   // meta-bytes, if any, immediately follow archive header
 827   //band_headers.readData(band_headers_size);
 828   ensure_input(band_headers_size);
 829   if (input_remaining() < (size_t)band_headers_size) {
 830     abort("EOF reading band headers");
 831     return;
 832   }
 833   bytes band_headers;
 834   // The "1+" allows an initial byte to be pushed on the front.
 835   band_headers.set(1+U_NEW(byte, 1+band_headers_size+C_SLOP),
 836                    band_headers_size);
 837   CHECK;
 838   // Start scanning band headers here:
 839   band_headers.copyFrom(rp, band_headers.len);
 840   rp += band_headers.len;
 841   assert(rp <= rplimit);
 842   meta_rp = band_headers.ptr;
 843   // Put evil meta-codes at the end of the band headers,
 844   // so we are sure to throw an error if we run off the end.
 845   bytes::of(band_headers.limit(), C_SLOP).clear(_meta_error);
 846 }
 847 
 848 void unpacker::finish() {
 849   if (verbose >= 1) {
 850     fprintf(errstrm,
 851             "A total of "
 852             LONG_LONG_FORMAT " bytes were read in %d segment(s).\n",
 853             (bytes_read_before_reset+bytes_read),
 854             segments_read_before_reset+1);
 855     fprintf(errstrm,
 856             "A total of "
 857             LONG_LONG_FORMAT " file content bytes were written.\n",
 858             (bytes_written_before_reset+bytes_written));
 859     fprintf(errstrm,
 860             "A total of %d files (of which %d are classes) were written to output.\n",
 861             files_written_before_reset+files_written,
 862             classes_written_before_reset+classes_written);
 863   }
 864   if (jarout != null)
 865     jarout->closeJarFile(true);
 866   if (errstrm != null) {
 867     if (errstrm == stdout || errstrm == stderr) {
 868       fflush(errstrm);
 869     } else {
 870       fclose(errstrm);
 871     }
 872     errstrm = null;
 873     errstrm_name = null;
 874   }
 875 }
 876 
 877 
 878 // Cf. PackageReader.readConstantPoolCounts
 879 void cpool::init(unpacker* u_, int counts[NUM_COUNTS]) {
 880   this->u = u_;
 881 
 882   // Fill-pointer for CP.
 883   int next_entry = 0;
 884 
 885   // Size the constant pool:
 886   for (int k = 0; k < (int)N_TAGS_IN_ORDER; k++) {
 887     byte tag = TAGS_IN_ORDER[k];
 888     int  len = counts[k];
 889     tag_count[tag] = len;
 890     tag_base[tag] = next_entry;
 891     next_entry += len;
 892     // Detect and defend against constant pool size overflow.
 893     // (Pack200 forbids the sum of CP counts to exceed 2^29-1.)
 894     enum {
 895       CP_SIZE_LIMIT = (1<<29),
 896       IMPLICIT_ENTRY_COUNT = 1  // empty Utf8 string
 897     };
 898     if (len >= (1<<29) || len < 0
 899         || next_entry >= CP_SIZE_LIMIT+IMPLICIT_ENTRY_COUNT) {
 900       abort("archive too large:  constant pool limit exceeded");
 901       return;
 902     }
 903   }
 904 
 905   // Close off the end of the CP:
 906   nentries = next_entry;
 907 
 908   // place a limit on future CP growth:
 909   int generous = 0;
 910   generous = add_size(generous, u->ic_count); // implicit name
 911   generous = add_size(generous, u->ic_count); // outer
 912   generous = add_size(generous, u->ic_count); // outer.utf8
 913   generous = add_size(generous, 40); // WKUs, misc
 914   generous = add_size(generous, u->class_count); // implicit SourceFile strings
 915   maxentries = add_size(nentries, generous);
 916 
 917   // Note that this CP does not include "empty" entries
 918   // for longs and doubles.  Those are introduced when
 919   // the entries are renumbered for classfile output.
 920 
 921   entries = U_NEW(entry, maxentries);
 922   CHECK;
 923 
 924   first_extra_entry = &entries[nentries];
 925 
 926   // Initialize the standard indexes.
 927   tag_count[CONSTANT_All] = nentries;
 928   tag_base[ CONSTANT_All] = 0;
 929   for (int tag = 0; tag < CONSTANT_Limit; tag++) {
 930     entry* cpMap = &entries[tag_base[tag]];
 931     tag_index[tag].init(tag_count[tag], cpMap, tag);
 932   }
 933 
 934   // Initialize hashTab to a generous power-of-two size.
 935   uint pow2 = 1;
 936   uint target = maxentries + maxentries/2;  // 60% full
 937   while (pow2 < target)  pow2 <<= 1;
 938   hashTab = U_NEW(entry*, hashTabLength = pow2);
 939 }
 940 
 941 static byte* store_Utf8_char(byte* cp, unsigned short ch) {
 942   if (ch >= 0x001 && ch <= 0x007F) {
 943     *cp++ = (byte) ch;
 944   } else if (ch <= 0x07FF) {
 945     *cp++ = (byte) (0xC0 | ((ch >>  6) & 0x1F));
 946     *cp++ = (byte) (0x80 | ((ch >>  0) & 0x3F));
 947   } else {
 948     *cp++ = (byte) (0xE0 | ((ch >> 12) & 0x0F));
 949     *cp++ = (byte) (0x80 | ((ch >>  6) & 0x3F));
 950     *cp++ = (byte) (0x80 | ((ch >>  0) & 0x3F));
 951   }
 952   return cp;
 953 }
 954 
 955 static byte* skip_Utf8_chars(byte* cp, int len) {
 956   for (;; cp++) {
 957     int ch = *cp & 0xFF;
 958     if ((ch & 0xC0) != 0x80) {
 959       if (len-- == 0)
 960         return cp;
 961       if (ch < 0x80 && len == 0)
 962         return cp+1;
 963     }
 964   }
 965 }
 966 
 967 static int compare_Utf8_chars(bytes& b1, bytes& b2) {
 968   int l1 = (int)b1.len;
 969   int l2 = (int)b2.len;
 970   int l0 = (l1 < l2) ? l1 : l2;
 971   byte* p1 = b1.ptr;
 972   byte* p2 = b2.ptr;
 973   int c0 = 0;
 974   for (int i = 0; i < l0; i++) {
 975     int c1 = p1[i] & 0xFF;
 976     int c2 = p2[i] & 0xFF;
 977     if (c1 != c2) {
 978       // Before returning the obvious answer,
 979       // check to see if c1 or c2 is part of a 0x0000,
 980       // which encodes as {0xC0,0x80}.  The 0x0000 is the
 981       // lowest-sorting Java char value, and yet it encodes
 982       // as if it were the first char after 0x7F, which causes
 983       // strings containing nulls to sort too high.  All other
 984       // comparisons are consistent between Utf8 and Java chars.
 985       if (c1 == 0xC0 && (p1[i+1] & 0xFF) == 0x80)  c1 = 0;
 986       if (c2 == 0xC0 && (p2[i+1] & 0xFF) == 0x80)  c2 = 0;
 987       if (c0 == 0xC0) {
 988         assert(((c1|c2) & 0xC0) == 0x80);  // c1 & c2 are extension chars
 989         if (c1 == 0x80)  c1 = 0;  // will sort below c2
 990         if (c2 == 0x80)  c2 = 0;  // will sort below c1
 991       }
 992       return c1 - c2;
 993     }
 994     c0 = c1;  // save away previous char
 995   }
 996   // common prefix is identical; return length difference if any
 997   return l1 - l2;
 998 }
 999 
1000 // Cf. PackageReader.readUtf8Bands
1001 local_inline
1002 void unpacker::read_Utf8_values(entry* cpMap, int len) {
1003   // Implicit first Utf8 string is the empty string.
1004   enum {
1005     // certain bands begin with implicit zeroes
1006     PREFIX_SKIP_2 = 2,
1007     SUFFIX_SKIP_1 = 1
1008   };
1009 
1010   int i;
1011 
1012   // First band:  Read lengths of shared prefixes.
1013   if (len > PREFIX_SKIP_2)
1014     cp_Utf8_prefix.readData(len - PREFIX_SKIP_2);
1015     NOT_PRODUCT(else cp_Utf8_prefix.readData(0));  // for asserts
1016 
1017   // Second band:  Read lengths of unshared suffixes:
1018   if (len > SUFFIX_SKIP_1)
1019     cp_Utf8_suffix.readData(len - SUFFIX_SKIP_1);
1020     NOT_PRODUCT(else cp_Utf8_suffix.readData(0));  // for asserts
1021 
1022   bytes* allsuffixes = T_NEW(bytes, len);
1023   CHECK;
1024 
1025   int nbigsuf = 0;
1026   fillbytes charbuf;    // buffer to allocate small strings
1027   charbuf.init();
1028 
1029   // Third band:  Read the char values in the unshared suffixes:
1030   cp_Utf8_chars.readData(cp_Utf8_suffix.getIntTotal());
1031   for (i = 0; i < len; i++) {
1032     int suffix = (i < SUFFIX_SKIP_1)? 0: cp_Utf8_suffix.getInt();
1033     if (suffix < 0) {
1034       abort("bad utf8 suffix");
1035       return;
1036     }
1037     if (suffix == 0 && i >= SUFFIX_SKIP_1) {
1038       // chars are packed in cp_Utf8_big_chars
1039       nbigsuf += 1;
1040       continue;
1041     }
1042     bytes& chars  = allsuffixes[i];
1043     uint size3    = suffix * 3;     // max Utf8 length
1044     bool isMalloc = (suffix > SMALL);
1045     if (isMalloc) {
1046       chars.malloc(size3);
1047     } else {
1048       if (!charbuf.canAppend(size3+1)) {
1049         assert(charbuf.allocated == 0 || tmallocs.contains(charbuf.base()));
1050         charbuf.init(CHUNK);  // Reset to new buffer.
1051         tmallocs.add(charbuf.base());
1052       }
1053       chars.set(charbuf.grow(size3+1), size3);
1054     }
1055     CHECK;
1056     byte* chp = chars.ptr;
1057     for (int j = 0; j < suffix; j++) {
1058       unsigned short ch = cp_Utf8_chars.getInt();
1059       chp = store_Utf8_char(chp, ch);
1060     }
1061     // shrink to fit:
1062     if (isMalloc) {
1063       chars.realloc(chp - chars.ptr);
1064       CHECK;
1065       tmallocs.add(chars.ptr); // free it later
1066     } else {
1067       int shrink = (int)(chars.limit() - chp);
1068       chars.len -= shrink;
1069       charbuf.b.len -= shrink;  // ungrow to reclaim buffer space
1070       // Note that we did not reclaim the final '\0'.
1071       assert(chars.limit() == charbuf.limit()-1);
1072       assert(strlen((char*)chars.ptr) == chars.len);
1073     }
1074   }
1075   //cp_Utf8_chars.done();
1076 #ifndef PRODUCT
1077   charbuf.b.set(null, 0); // tidy
1078 #endif
1079 
1080   // Fourth band:  Go back and size the specially packed strings.
1081   int maxlen = 0;
1082   cp_Utf8_big_suffix.readData(nbigsuf);
1083   cp_Utf8_suffix.rewind();
1084   for (i = 0; i < len; i++) {
1085     int suffix = (i < SUFFIX_SKIP_1)? 0: cp_Utf8_suffix.getInt();
1086     int prefix = (i < PREFIX_SKIP_2)? 0: cp_Utf8_prefix.getInt();
1087     if (prefix < 0 || prefix+suffix < 0) {
1088        abort("bad utf8 prefix");
1089        return;
1090     }
1091     bytes& chars = allsuffixes[i];
1092     if (suffix == 0 && i >= SUFFIX_SKIP_1) {
1093       suffix = cp_Utf8_big_suffix.getInt();
1094       assert(chars.ptr == null);
1095       chars.len = suffix;  // just a momentary hack
1096     } else {
1097       assert(chars.ptr != null);
1098     }
1099     if (maxlen < prefix + suffix) {
1100       maxlen = prefix + suffix;
1101     }
1102   }
1103   //cp_Utf8_suffix.done();      // will use allsuffixes[i].len (ptr!=null)
1104   //cp_Utf8_big_suffix.done();  // will use allsuffixes[i].len
1105 
1106   // Fifth band(s):  Get the specially packed characters.
1107   cp_Utf8_big_suffix.rewind();
1108   for (i = 0; i < len; i++) {
1109     bytes& chars = allsuffixes[i];
1110     if (chars.ptr != null)  continue;  // already input
1111     int suffix = (int)chars.len;  // pick up the hack
1112     uint size3 = suffix * 3;
1113     if (suffix == 0)  continue;  // done with empty string
1114     chars.malloc(size3);
1115     byte* chp = chars.ptr;
1116     band saved_band = cp_Utf8_big_chars;
1117     cp_Utf8_big_chars.readData(suffix);
1118     for (int j = 0; j < suffix; j++) {
1119       unsigned short ch = cp_Utf8_big_chars.getInt();
1120       chp = store_Utf8_char(chp, ch);
1121     }
1122     chars.realloc(chp - chars.ptr);
1123     CHECK;
1124     tmallocs.add(chars.ptr);  // free it later
1125     //cp_Utf8_big_chars.done();
1126     cp_Utf8_big_chars = saved_band;  // reset the band for the next string
1127   }
1128   cp_Utf8_big_chars.readData(0);  // zero chars
1129   //cp_Utf8_big_chars.done();
1130 
1131   // Finally, sew together all the prefixes and suffixes.
1132   bytes bigbuf;
1133   bigbuf.malloc(maxlen * 3 + 1);  // max Utf8 length, plus slop for null
1134   CHECK;
1135   int prevlen = 0;  // previous string length (in chars)
1136   tmallocs.add(bigbuf.ptr);  // free after this block
1137   cp_Utf8_prefix.rewind();
1138   for (i = 0; i < len; i++) {
1139     bytes& chars = allsuffixes[i];
1140     int prefix = (i < PREFIX_SKIP_2)? 0: cp_Utf8_prefix.getInt();
1141     int suffix = (int)chars.len;
1142     byte* fillp;
1143     // by induction, the buffer is already filled with the prefix
1144     // make sure the prefix value is not corrupted, though:
1145     if (prefix > prevlen) {
1146        abort("utf8 prefix overflow");
1147        return;
1148     }
1149     fillp = skip_Utf8_chars(bigbuf.ptr, prefix);
1150     // copy the suffix into the same buffer:
1151     fillp = chars.writeTo(fillp);
1152     assert(bigbuf.inBounds(fillp));
1153     *fillp = 0;  // bigbuf must contain a well-formed Utf8 string
1154     int length = (int)(fillp - bigbuf.ptr);
1155     bytes& value = cpMap[i].value.b;
1156     value.set(U_NEW(byte, add_size(length,1)), length);
1157     value.copyFrom(bigbuf.ptr, length);
1158     CHECK;
1159     // Index all Utf8 strings
1160     entry* &htref = cp.hashTabRef(CONSTANT_Utf8, value);
1161     if (htref == null) {
1162       // Note that if two identical strings are transmitted,
1163       // the first is taken to be the canonical one.
1164       htref = &cpMap[i];
1165     }
1166     prevlen = prefix + suffix;
1167   }
1168   //cp_Utf8_prefix.done();
1169 
1170   // Free intermediate buffers.
1171   free_temps();
1172 }
1173 
1174 local_inline
1175 void unpacker::read_single_words(band& cp_band, entry* cpMap, int len) {
1176   cp_band.readData(len);
1177   for (int i = 0; i < len; i++) {
1178     cpMap[i].value.i = cp_band.getInt();  // coding handles signs OK
1179   }
1180 }
1181 
1182 maybe_inline
1183 void unpacker::read_double_words(band& cp_bands, entry* cpMap, int len) {
1184   band& cp_band_hi = cp_bands;
1185   band& cp_band_lo = cp_bands.nextBand();
1186   cp_band_hi.readData(len);
1187   cp_band_lo.readData(len);
1188   for (int i = 0; i < len; i++) {
1189     cpMap[i].value.l = cp_band_hi.getLong(cp_band_lo, true);
1190   }
1191   //cp_band_hi.done();
1192   //cp_band_lo.done();
1193 }
1194 
1195 maybe_inline
1196 void unpacker::read_single_refs(band& cp_band, byte refTag, entry* cpMap, int len) {
1197   assert(refTag == CONSTANT_Utf8);
1198   cp_band.setIndexByTag(refTag);
1199   cp_band.readData(len);
1200   CHECK;
1201   int indexTag = (cp_band.bn == e_cp_Class) ? CONSTANT_Class : 0;
1202   for (int i = 0; i < len; i++) {
1203     entry& e = cpMap[i];
1204     e.refs = U_NEW(entry*, e.nrefs = 1);
1205     entry* utf = cp_band.getRef();
1206     CHECK;
1207     e.refs[0] = utf;
1208     e.value.b = utf->value.b;  // copy value of Utf8 string to self
1209     if (indexTag != 0) {
1210       // Maintain cross-reference:
1211       entry* &htref = cp.hashTabRef(indexTag, e.value.b);
1212       if (htref == null) {
1213         // Note that if two identical classes are transmitted,
1214         // the first is taken to be the canonical one.
1215         htref = &e;
1216       }
1217     }
1218   }
1219   //cp_band.done();
1220 }
1221 
1222 maybe_inline
1223 void unpacker::read_double_refs(band& cp_band, byte ref1Tag, byte ref2Tag,
1224                                 entry* cpMap, int len) {
1225   band& cp_band1 = cp_band;
1226   band& cp_band2 = cp_band.nextBand();
1227   cp_band1.setIndexByTag(ref1Tag);
1228   cp_band2.setIndexByTag(ref2Tag);
1229   cp_band1.readData(len);
1230   cp_band2.readData(len);
1231   CHECK;
1232   for (int i = 0; i < len; i++) {
1233     entry& e = cpMap[i];
1234     e.refs = U_NEW(entry*, e.nrefs = 2);
1235     e.refs[0] = cp_band1.getRef();
1236     e.refs[1] = cp_band2.getRef();
1237     CHECK;
1238   }
1239   //cp_band1.done();
1240   //cp_band2.done();
1241 }
1242 
1243 // Cf. PackageReader.readSignatureBands
1244 maybe_inline
1245 void unpacker::read_signature_values(entry* cpMap, int len) {
1246   cp_Signature_form.setIndexByTag(CONSTANT_Utf8);
1247   cp_Signature_form.readData(len);
1248   CHECK;
1249   int ncTotal = 0;
1250   int i;
1251   for (i = 0; i < len; i++) {
1252     entry& e = cpMap[i];
1253     entry& form = *cp_Signature_form.getRef();
1254     CHECK;
1255     int nc = 0;
1256 
1257     for ( const char* ncp = form.utf8String() ; *ncp; ncp++) {
1258       if (*ncp == 'L')  nc++;
1259     }
1260 
1261     ncTotal += nc;
1262     e.refs = U_NEW(entry*, cpMap[i].nrefs = 1 + nc);
1263     CHECK;
1264     e.refs[0] = &form;
1265   }
1266   //cp_Signature_form.done();
1267   cp_Signature_classes.setIndexByTag(CONSTANT_Class);
1268   cp_Signature_classes.readData(ncTotal);
1269   for (i = 0; i < len; i++) {
1270     entry& e = cpMap[i];
1271     for (int j = 1; j < e.nrefs; j++) {
1272       e.refs[j] = cp_Signature_classes.getRef();
1273       CHECK;
1274     }
1275   }
1276   //cp_Signature_classes.done();
1277 }
1278 
1279 // Cf. PackageReader.readConstantPool
1280 void unpacker::read_cp() {
1281   byte* rp0 = rp;
1282 
1283   int i;
1284 
1285   for (int k = 0; k < (int)N_TAGS_IN_ORDER; k++) {
1286     byte tag = TAGS_IN_ORDER[k];
1287     int  len = cp.tag_count[tag];
1288     int base = cp.tag_base[tag];
1289 
1290     PRINTCR((1,"Reading %d %s entries...", len, NOT_PRODUCT(TAG_NAME[tag])+0));
1291     entry* cpMap = &cp.entries[base];
1292     for (i = 0; i < len; i++) {
1293       cpMap[i].tag = tag;
1294       cpMap[i].inord = i;
1295     }
1296 
1297     switch (tag) {
1298     case CONSTANT_Utf8:
1299       read_Utf8_values(cpMap, len);
1300       break;
1301     case CONSTANT_Integer:
1302       read_single_words(cp_Int, cpMap, len);
1303       break;
1304     case CONSTANT_Float:
1305       read_single_words(cp_Float, cpMap, len);
1306       break;
1307     case CONSTANT_Long:
1308       read_double_words(cp_Long_hi /*& cp_Long_lo*/, cpMap, len);
1309       break;
1310     case CONSTANT_Double:
1311       read_double_words(cp_Double_hi /*& cp_Double_lo*/, cpMap, len);
1312       break;
1313     case CONSTANT_String:
1314       read_single_refs(cp_String, CONSTANT_Utf8, cpMap, len);
1315       break;
1316     case CONSTANT_Class:
1317       read_single_refs(cp_Class, CONSTANT_Utf8, cpMap, len);
1318       break;
1319     case CONSTANT_Signature:
1320       read_signature_values(cpMap, len);
1321       break;
1322     case CONSTANT_NameandType:
1323       read_double_refs(cp_Descr_name /*& cp_Descr_type*/,
1324                        CONSTANT_Utf8, CONSTANT_Signature,
1325                        cpMap, len);
1326       break;
1327     case CONSTANT_Fieldref:
1328       read_double_refs(cp_Field_class /*& cp_Field_desc*/,
1329                        CONSTANT_Class, CONSTANT_NameandType,
1330                        cpMap, len);
1331       break;
1332     case CONSTANT_Methodref:
1333       read_double_refs(cp_Method_class /*& cp_Method_desc*/,
1334                        CONSTANT_Class, CONSTANT_NameandType,
1335                        cpMap, len);
1336       break;
1337     case CONSTANT_InterfaceMethodref:
1338       read_double_refs(cp_Imethod_class /*& cp_Imethod_desc*/,
1339                        CONSTANT_Class, CONSTANT_NameandType,
1340                        cpMap, len);
1341       break;
1342     default:
1343       assert(false);
1344       break;
1345     }
1346 
1347     // Initialize the tag's CP index right away, since it might be needed
1348     // in the next pass to initialize the CP for another tag.
1349 #ifndef PRODUCT
1350     cpindex* ix = &cp.tag_index[tag];
1351     assert(ix->ixTag == tag);
1352     assert((int)ix->len   == len);
1353     assert(ix->base1 == cpMap);
1354 #endif
1355     CHECK;
1356   }
1357 
1358   cp.expandSignatures();
1359   CHECK;
1360   cp.initMemberIndexes();
1361   CHECK;
1362 
1363   PRINTCR((1,"parsed %d constant pool entries in %d bytes", cp.nentries, (rp - rp0)));
1364 
1365   #define SNAME(n,s) #s "\0"
1366   const char* symNames = (
1367     ALL_ATTR_DO(SNAME)
1368     "<init>"
1369   );
1370   #undef SNAME
1371 
1372   for (int sn = 0; sn < cpool::s_LIMIT; sn++) {
1373     assert(symNames[0] >= '0' && symNames[0] <= 'Z');  // sanity
1374     bytes name; name.set(symNames);
1375     if (name.len > 0 && name.ptr[0] != '0') {
1376       cp.sym[sn] = cp.ensureUtf8(name);
1377       PRINTCR((4, "well-known sym %d=%s", sn, cp.sym[sn]->string()));
1378     }
1379     symNames += name.len + 1;  // skip trailing null to next name
1380   }
1381 
1382   band::initIndexes(this);
1383 }
1384 
1385 static band* no_bands[] = { null };  // shared empty body
1386 
1387 inline
1388 band& unpacker::attr_definitions::fixed_band(int e_class_xxx) {
1389   return u->all_bands[xxx_flags_hi_bn + (e_class_xxx-e_class_flags_hi)];
1390 }
1391 inline band& unpacker::attr_definitions::xxx_flags_hi()
1392   { return fixed_band(e_class_flags_hi); }
1393 inline band& unpacker::attr_definitions::xxx_flags_lo()
1394   { return fixed_band(e_class_flags_lo); }
1395 inline band& unpacker::attr_definitions::xxx_attr_count()
1396   { return fixed_band(e_class_attr_count); }
1397 inline band& unpacker::attr_definitions::xxx_attr_indexes()
1398   { return fixed_band(e_class_attr_indexes); }
1399 inline band& unpacker::attr_definitions::xxx_attr_calls()
1400   { return fixed_band(e_class_attr_calls); }
1401 
1402 
1403 inline
1404 unpacker::layout_definition*
1405 unpacker::attr_definitions::defineLayout(int idx,
1406                                          entry* nameEntry,
1407                                          const char* layout) {
1408   const char* name = nameEntry->value.b.strval();
1409   layout_definition* lo = defineLayout(idx, name, layout);
1410   CHECK_0;
1411   lo->nameEntry = nameEntry;
1412   return lo;
1413 }
1414 
1415 unpacker::layout_definition*
1416 unpacker::attr_definitions::defineLayout(int idx,
1417                                          const char* name,
1418                                          const char* layout) {
1419   assert(flag_limit != 0);  // must be set up already
1420   if (idx >= 0) {
1421     // Fixed attr.
1422     if (idx >= (int)flag_limit)
1423       abort("attribute index too large");
1424     if (isRedefined(idx))
1425       abort("redefined attribute index");
1426     redef |= ((julong)1<<idx);
1427   } else {
1428     idx = flag_limit + overflow_count.length();
1429     overflow_count.add(0);  // make a new counter
1430   }
1431   layout_definition* lo = U_NEW(layout_definition, 1);
1432   CHECK_0;
1433   lo->idx = idx;
1434   lo->name = name;
1435   lo->layout = layout;
1436   for (int adds = (idx+1) - layouts.length(); adds > 0; adds--) {
1437     layouts.add(null);
1438   }
1439   CHECK_0;
1440   layouts.get(idx) = lo;
1441   return lo;
1442 }
1443 
1444 band**
1445 unpacker::attr_definitions::buildBands(unpacker::layout_definition* lo) {
1446   int i;
1447   if (lo->elems != null)
1448     return lo->bands();
1449   if (lo->layout[0] == '\0') {
1450     lo->elems = no_bands;
1451   } else {
1452     // Create bands for this attribute by parsing the layout.
1453     bool hasCallables = lo->hasCallables();
1454     bands_made = 0x10000;  // base number for bands made
1455     const char* lp = lo->layout;
1456     lp = parseLayout(lp, lo->elems, -1);
1457     CHECK_0;
1458     if (lp[0] != '\0' || band_stack.length() > 0) {
1459       abort("garbage at end of layout");
1460     }
1461     band_stack.popTo(0);
1462     CHECK_0;
1463 
1464     // Fix up callables to point at their callees.
1465     band** bands = lo->elems;
1466     assert(bands == lo->bands());
1467     int num_callables = 0;
1468     if (hasCallables) {
1469       while (bands[num_callables] != null) {
1470         if (bands[num_callables]->le_kind != EK_CBLE) {
1471           abort("garbage mixed with callables");
1472           break;
1473         }
1474         num_callables += 1;
1475       }
1476     }
1477     for (i = 0; i < calls_to_link.length(); i++) {
1478       band& call = *(band*) calls_to_link.get(i);
1479       assert(call.le_kind == EK_CALL);
1480       // Determine the callee.
1481       int call_num = call.le_len;
1482       if (call_num < 0 || call_num >= num_callables) {
1483         abort("bad call in layout");
1484         break;
1485       }
1486       band& cble = *bands[call_num];
1487       // Link the call to it.
1488       call.le_body[0] = &cble;
1489       // Distinguish backward calls and callables:
1490       assert(cble.le_kind == EK_CBLE);
1491       assert(cble.le_len == call_num);
1492       cble.le_back |= call.le_back;
1493     }
1494     calls_to_link.popTo(0);
1495   }
1496   return lo->elems;
1497 }
1498 
1499 /* attribute layout language parser
1500 
1501   attribute_layout:
1502         ( layout_element )* | ( callable )+
1503   layout_element:
1504         ( integral | replication | union | call | reference )
1505 
1506   callable:
1507         '[' body ']'
1508   body:
1509         ( layout_element )+
1510 
1511   integral:
1512         ( unsigned_int | signed_int | bc_index | bc_offset | flag )
1513   unsigned_int:
1514         uint_type
1515   signed_int:
1516         'S' uint_type
1517   any_int:
1518         ( unsigned_int | signed_int )
1519   bc_index:
1520         ( 'P' uint_type | 'PO' uint_type )
1521   bc_offset:
1522         'O' any_int
1523   flag:
1524         'F' uint_type
1525   uint_type:
1526         ( 'B' | 'H' | 'I' | 'V' )
1527 
1528   replication:
1529         'N' uint_type '[' body ']'
1530 
1531   union:
1532         'T' any_int (union_case)* '(' ')' '[' (body)? ']'
1533   union_case:
1534         '(' union_case_tag (',' union_case_tag)* ')' '[' (body)? ']'
1535   union_case_tag:
1536         ( numeral | numeral '-' numeral )
1537   call:
1538         '(' numeral ')'
1539 
1540   reference:
1541         reference_type ( 'N' )? uint_type
1542   reference_type:
1543         ( constant_ref | schema_ref | utf8_ref | untyped_ref )
1544   constant_ref:
1545         ( 'KI' | 'KJ' | 'KF' | 'KD' | 'KS' | 'KQ' )
1546   schema_ref:
1547         ( 'RC' | 'RS' | 'RD' | 'RF' | 'RM' | 'RI' )
1548   utf8_ref:
1549         'RU'
1550   untyped_ref:
1551         'RQ'
1552 
1553   numeral:
1554         '(' ('-')? (digit)+ ')'
1555   digit:
1556         ( '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' )
1557 
1558 */
1559 
1560 const char*
1561 unpacker::attr_definitions::parseIntLayout(const char* lp, band* &res,
1562                                            byte le_kind, bool can_be_signed) {
1563   const char* lp0 = lp;
1564   band* b = U_NEW(band, 1);
1565   CHECK_(lp);
1566   char le = *lp++;
1567   int spec = UNSIGNED5_spec;
1568   if (le == 'S' && can_be_signed) {
1569     // Note:  This is the last use of sign.  There is no 'EF_SIGN'.
1570     spec = SIGNED5_spec;
1571     le = *lp++;
1572   } else if (le == 'B') {
1573     spec = BYTE1_spec;  // unsigned byte
1574   }
1575   b->init(u, bands_made++, spec);
1576   b->le_kind = le_kind;
1577   int le_len = 0;
1578   switch (le) {
1579   case 'B': le_len = 1; break;
1580   case 'H': le_len = 2; break;
1581   case 'I': le_len = 4; break;
1582   case 'V': le_len = 0; break;
1583   default:  abort("bad layout element");
1584   }
1585   b->le_len = le_len;
1586   band_stack.add(b);
1587   res = b;
1588   return lp;
1589 }
1590 
1591 const char*
1592 unpacker::attr_definitions::parseNumeral(const char* lp, int &res) {
1593   const char* lp0 = lp;
1594   bool sgn = false;
1595   if (*lp == '0') { res = 0; return lp+1; }  // special case '0'
1596   if (*lp == '-') { sgn = true; lp++; }
1597   const char* dp = lp;
1598   int con = 0;
1599   while (*dp >= '0' && *dp <= '9') {
1600     int con0 = con;
1601     con *= 10;
1602     con += (*dp++) - '0';
1603     if (con <= con0) { con = -1; break; }  //  numeral overflow
1604   }
1605   if (lp == dp) {
1606     abort("missing numeral in layout");
1607     return "";
1608   }
1609   lp = dp;
1610   if (con < 0 && !(sgn && con == -con)) {
1611     // (Portability note:  Misses the error if int is not 32 bits.)
1612     abort("numeral overflow");
1613     return "" ;
1614   }
1615   if (sgn)  con = -con;
1616   res = con;
1617   return lp;
1618 }
1619 
1620 band**
1621 unpacker::attr_definitions::popBody(int bs_base) {
1622   // Return everything that was pushed, as a null-terminated pointer array.
1623   int bs_limit = band_stack.length();
1624   if (bs_base == bs_limit) {
1625     return no_bands;
1626   } else {
1627     int nb = bs_limit - bs_base;
1628     band** res = U_NEW(band*, add_size(nb, 1));
1629     CHECK_(no_bands);
1630     for (int i = 0; i < nb; i++) {
1631       band* b = (band*) band_stack.get(bs_base + i);
1632       res[i] = b;
1633     }
1634     band_stack.popTo(bs_base);
1635     return res;
1636   }
1637 }
1638 
1639 const char*
1640 unpacker::attr_definitions::parseLayout(const char* lp, band** &res,
1641                                         int curCble) {
1642   const char* lp0 = lp;
1643   int bs_base = band_stack.length();
1644   bool top_level = (bs_base == 0);
1645   band* b;
1646   enum { can_be_signed = true };  // optional arg to parseIntLayout
1647 
1648   for (bool done = false; !done; ) {
1649     switch (*lp++) {
1650     case 'B': case 'H': case 'I': case 'V': // unsigned_int
1651     case 'S': // signed_int
1652       --lp;  // reparse
1653     case 'F':
1654       lp = parseIntLayout(lp, b, EK_INT);
1655       break;
1656     case 'P':
1657       {
1658         int le_bci = EK_BCI;
1659         if (*lp == 'O') {
1660           ++lp;
1661           le_bci = EK_BCID;
1662         }
1663         assert(*lp != 'S');  // no PSH, etc.
1664         lp = parseIntLayout(lp, b, EK_INT);
1665         b->le_bci = le_bci;
1666         if (le_bci == EK_BCI)
1667           b->defc = coding::findBySpec(BCI5_spec);
1668         else
1669           b->defc = coding::findBySpec(BRANCH5_spec);
1670       }
1671       break;
1672     case 'O':
1673       lp = parseIntLayout(lp, b, EK_INT, can_be_signed);
1674       b->le_bci = EK_BCO;
1675       b->defc = coding::findBySpec(BRANCH5_spec);
1676       break;
1677     case 'N': // replication: 'N' uint '[' elem ... ']'
1678       lp = parseIntLayout(lp, b, EK_REPL);
1679       assert(*lp == '[');
1680       ++lp;
1681       lp = parseLayout(lp, b->le_body, curCble);
1682       CHECK_(lp);
1683       break;
1684     case 'T': // union: 'T' any_int union_case* '(' ')' '[' body ']'
1685       lp = parseIntLayout(lp, b, EK_UN, can_be_signed);
1686       {
1687         int union_base = band_stack.length();
1688         for (;;) {   // for each case
1689           band& k_case = *U_NEW(band, 1);
1690           CHECK_(lp);
1691           band_stack.add(&k_case);
1692           k_case.le_kind = EK_CASE;
1693           k_case.bn = bands_made++;
1694           if (*lp++ != '(') {
1695             abort("bad union case");
1696             return "";
1697           }
1698           if (*lp++ != ')') {
1699             --lp;  // reparse
1700             // Read some case values.  (Use band_stack for temp. storage.)
1701             int case_base = band_stack.length();
1702             for (;;) {
1703               int caseval = 0;
1704               lp = parseNumeral(lp, caseval);
1705               band_stack.add((void*)(size_t)caseval);
1706               if (*lp == '-') {
1707                 // new in version 160, allow (1-5) for (1,2,3,4,5)
1708                 if (u->majver < JAVA6_PACKAGE_MAJOR_VERSION) {
1709                   abort("bad range in union case label (old archive format)");
1710                   return "";
1711                 }
1712                 int caselimit = caseval;
1713                 lp++;
1714                 lp = parseNumeral(lp, caselimit);
1715                 if (caseval >= caselimit
1716                     || (uint)(caselimit - caseval) > 0x10000) {
1717                   // Note:  0x10000 is arbitrary implementation restriction.
1718                   // We can remove it later if it's important to.
1719                   abort("bad range in union case label");
1720                   return "";
1721                 }
1722                 for (;;) {
1723                   ++caseval;
1724                   band_stack.add((void*)(size_t)caseval);
1725                   if (caseval == caselimit)  break;
1726                 }
1727               }
1728               if (*lp != ',')  break;
1729               lp++;
1730             }
1731             if (*lp++ != ')') {
1732               abort("bad case label");
1733               return "";
1734             }
1735             // save away the case labels
1736             int ntags = band_stack.length() - case_base;
1737             int* tags = U_NEW(int, add_size(ntags, 1));
1738             CHECK_(lp);
1739             k_case.le_casetags = tags;
1740             *tags++ = ntags;
1741             for (int i = 0; i < ntags; i++) {
1742               *tags++ = ptrlowbits(band_stack.get(case_base+i));
1743             }
1744             band_stack.popTo(case_base);
1745             CHECK_(lp);
1746           }
1747           // Got le_casetags.  Now grab the body.
1748           assert(*lp == '[');
1749           ++lp;
1750           lp = parseLayout(lp, k_case.le_body, curCble);
1751           CHECK_(lp);
1752           if (k_case.le_casetags == null)  break;  // done
1753         }
1754         b->le_body = popBody(union_base);
1755       }
1756       break;
1757     case '(': // call: '(' -?NN* ')'
1758       {
1759         band& call = *U_NEW(band, 1);
1760         CHECK_(lp);
1761         band_stack.add(&call);
1762         call.le_kind = EK_CALL;
1763         call.bn = bands_made++;
1764         call.le_body = U_NEW(band*, 2); // fill in later
1765         int call_num = 0;
1766         lp = parseNumeral(lp, call_num);
1767         call.le_back = (call_num <= 0);
1768         call_num += curCble;  // numeral is self-relative offset
1769         call.le_len = call_num;  //use le_len as scratch
1770         calls_to_link.add(&call);
1771         CHECK_(lp);
1772         if (*lp++ != ')') {
1773           abort("bad call label");
1774           return "";
1775         }
1776       }
1777       break;
1778     case 'K': // reference_type: constant_ref
1779     case 'R': // reference_type: schema_ref
1780       {
1781         int ixTag = CONSTANT_None;
1782         if (lp[-1] == 'K') {
1783           switch (*lp++) {
1784           case 'I': ixTag = CONSTANT_Integer; break;
1785           case 'J': ixTag = CONSTANT_Long; break;
1786           case 'F': ixTag = CONSTANT_Float; break;
1787           case 'D': ixTag = CONSTANT_Double; break;
1788           case 'S': ixTag = CONSTANT_String; break;
1789           case 'Q': ixTag = CONSTANT_Literal; break;
1790           }
1791         } else {
1792           switch (*lp++) {
1793           case 'C': ixTag = CONSTANT_Class; break;
1794           case 'S': ixTag = CONSTANT_Signature; break;
1795           case 'D': ixTag = CONSTANT_NameandType; break;
1796           case 'F': ixTag = CONSTANT_Fieldref; break;
1797           case 'M': ixTag = CONSTANT_Methodref; break;
1798           case 'I': ixTag = CONSTANT_InterfaceMethodref; break;
1799           case 'U': ixTag = CONSTANT_Utf8; break; //utf8_ref
1800           case 'Q': ixTag = CONSTANT_All; break; //untyped_ref
1801           }
1802         }
1803         if (ixTag == CONSTANT_None) {
1804           abort("bad reference layout");
1805           break;
1806         }
1807         bool nullOK = false;
1808         if (*lp == 'N') {
1809           nullOK = true;
1810           lp++;
1811         }
1812         lp = parseIntLayout(lp, b, EK_REF);
1813         b->defc = coding::findBySpec(UNSIGNED5_spec);
1814         b->initRef(ixTag, nullOK);
1815       }
1816       break;
1817     case '[':
1818       {
1819         // [callable1][callable2]...
1820         if (!top_level) {
1821           abort("bad nested callable");
1822           break;
1823         }
1824         curCble += 1;
1825         NOT_PRODUCT(int call_num = band_stack.length() - bs_base);
1826         band& cble = *U_NEW(band, 1);
1827         CHECK_(lp);
1828         band_stack.add(&cble);
1829         cble.le_kind = EK_CBLE;
1830         NOT_PRODUCT(cble.le_len = call_num);
1831         cble.bn = bands_made++;
1832         lp = parseLayout(lp, cble.le_body, curCble);
1833       }
1834       break;
1835     case ']':
1836       // Hit a closing brace.  This ends whatever body we were in.
1837       done = true;
1838       break;
1839     case '\0':
1840       // Hit a null.  Also ends the (top-level) body.
1841       --lp;  // back up, so caller can see the null also
1842       done = true;
1843       break;
1844     default:
1845       abort("bad layout");
1846       break;
1847     }
1848     CHECK_(lp);
1849   }
1850 
1851   // Return the accumulated bands:
1852   res = popBody(bs_base);
1853   return lp;
1854 }
1855 
1856 void unpacker::read_attr_defs() {
1857   int i;
1858 
1859   // Tell each AD which attrc it is and where its fixed flags are:
1860   attr_defs[ATTR_CONTEXT_CLASS].attrc            = ATTR_CONTEXT_CLASS;
1861   attr_defs[ATTR_CONTEXT_CLASS].xxx_flags_hi_bn  = e_class_flags_hi;
1862   attr_defs[ATTR_CONTEXT_FIELD].attrc            = ATTR_CONTEXT_FIELD;
1863   attr_defs[ATTR_CONTEXT_FIELD].xxx_flags_hi_bn  = e_field_flags_hi;
1864   attr_defs[ATTR_CONTEXT_METHOD].attrc           = ATTR_CONTEXT_METHOD;
1865   attr_defs[ATTR_CONTEXT_METHOD].xxx_flags_hi_bn = e_method_flags_hi;
1866   attr_defs[ATTR_CONTEXT_CODE].attrc             = ATTR_CONTEXT_CODE;
1867   attr_defs[ATTR_CONTEXT_CODE].xxx_flags_hi_bn   = e_code_flags_hi;
1868 
1869   // Decide whether bands for the optional high flag words are present.
1870   attr_defs[ATTR_CONTEXT_CLASS]
1871     .setHaveLongFlags((archive_options & AO_HAVE_CLASS_FLAGS_HI) != 0);
1872   attr_defs[ATTR_CONTEXT_FIELD]
1873     .setHaveLongFlags((archive_options & AO_HAVE_FIELD_FLAGS_HI) != 0);
1874   attr_defs[ATTR_CONTEXT_METHOD]
1875     .setHaveLongFlags((archive_options & AO_HAVE_METHOD_FLAGS_HI) != 0);
1876   attr_defs[ATTR_CONTEXT_CODE]
1877     .setHaveLongFlags((archive_options & AO_HAVE_CODE_FLAGS_HI) != 0);
1878 
1879   // Set up built-in attrs.
1880   // (The simple ones are hard-coded.  The metadata layouts are not.)
1881   const char* md_layout = (
1882     // parameter annotations:
1883 #define MDL0 \
1884     "[NB[(1)]]"
1885     MDL0
1886     // annotations:
1887 #define MDL1 \
1888     "[NH[(1)]]" \
1889     "[RSHNH[RUH(1)]]"
1890     MDL1
1891     // member_value:
1892     "[TB"
1893       "(66,67,73,83,90)[KIH]"
1894       "(68)[KDH]"
1895       "(70)[KFH]"
1896       "(74)[KJH]"
1897       "(99)[RSH]"
1898       "(101)[RSHRUH]"
1899       "(115)[RUH]"
1900       "(91)[NH[(0)]]"
1901       "(64)["
1902         // nested annotation:
1903         "RSH"
1904         "NH[RUH(0)]"
1905         "]"
1906       "()[]"
1907     "]"
1908     );
1909 
1910   const char* md_layout_P = md_layout;
1911   const char* md_layout_A = md_layout+strlen(MDL0);
1912   const char* md_layout_V = md_layout+strlen(MDL0 MDL1);
1913   assert(0 == strncmp(&md_layout_A[-3], ")]][", 4));
1914   assert(0 == strncmp(&md_layout_V[-3], ")]][", 4));
1915 
1916   for (i = 0; i < ATTR_CONTEXT_LIMIT; i++) {
1917     attr_definitions& ad = attr_defs[i];
1918     ad.defineLayout(X_ATTR_RuntimeVisibleAnnotations,
1919                     "RuntimeVisibleAnnotations", md_layout_A);
1920     ad.defineLayout(X_ATTR_RuntimeInvisibleAnnotations,
1921                     "RuntimeInvisibleAnnotations", md_layout_A);
1922     if (i != ATTR_CONTEXT_METHOD)  continue;
1923     ad.defineLayout(METHOD_ATTR_RuntimeVisibleParameterAnnotations,
1924                     "RuntimeVisibleParameterAnnotations", md_layout_P);
1925     ad.defineLayout(METHOD_ATTR_RuntimeInvisibleParameterAnnotations,
1926                     "RuntimeInvisibleParameterAnnotations", md_layout_P);
1927     ad.defineLayout(METHOD_ATTR_AnnotationDefault,
1928                     "AnnotationDefault", md_layout_V);
1929   }
1930 
1931   attr_definition_headers.readData(attr_definition_count);
1932   attr_definition_name.readData(attr_definition_count);
1933   attr_definition_layout.readData(attr_definition_count);
1934 
1935   CHECK;
1936 
1937   // Initialize correct predef bits, to distinguish predefs from new defs.
1938 #define ORBIT(n,s) |((julong)1<<n)
1939   attr_defs[ATTR_CONTEXT_CLASS].predef
1940     = (0 X_ATTR_DO(ORBIT) CLASS_ATTR_DO(ORBIT));
1941   attr_defs[ATTR_CONTEXT_FIELD].predef
1942     = (0 X_ATTR_DO(ORBIT) FIELD_ATTR_DO(ORBIT));
1943   attr_defs[ATTR_CONTEXT_METHOD].predef
1944     = (0 X_ATTR_DO(ORBIT) METHOD_ATTR_DO(ORBIT));
1945   attr_defs[ATTR_CONTEXT_CODE].predef
1946     = (0 O_ATTR_DO(ORBIT) CODE_ATTR_DO(ORBIT));
1947 #undef ORBIT
1948   // Clear out the redef bits, folding them back into predef.
1949   for (i = 0; i < ATTR_CONTEXT_LIMIT; i++) {
1950     attr_defs[i].predef |= attr_defs[i].redef;
1951     attr_defs[i].redef = 0;
1952   }
1953 
1954   // Now read the transmitted locally defined attrs.
1955   // This will set redef bits again.
1956   for (i = 0; i < attr_definition_count; i++) {
1957     int    header  = attr_definition_headers.getByte();
1958     int    attrc   = ADH_BYTE_CONTEXT(header);
1959     int    idx     = ADH_BYTE_INDEX(header);
1960     entry* name    = attr_definition_name.getRef();
1961     entry* layout  = attr_definition_layout.getRef();
1962     CHECK;
1963     attr_defs[attrc].defineLayout(idx, name, layout->value.b.strval());
1964   }
1965 }
1966 
1967 #define NO_ENTRY_YET ((entry*)-1)
1968 
1969 static bool isDigitString(bytes& x, int beg, int end) {
1970   if (beg == end)  return false;  // null string
1971   byte* xptr = x.ptr;
1972   for (int i = beg; i < end; i++) {
1973     char ch = xptr[i];
1974     if (!(ch >= '0' && ch <= '9'))  return false;
1975   }
1976   return true;
1977 }
1978 
1979 enum {  // constants for parsing class names
1980   SLASH_MIN = '.',
1981   SLASH_MAX = '/',
1982   DOLLAR_MIN = 0,
1983   DOLLAR_MAX = '-'
1984 };
1985 
1986 static int lastIndexOf(int chmin, int chmax, bytes& x, int pos) {
1987   byte* ptr = x.ptr;
1988   for (byte* cp = ptr + pos; --cp >= ptr; ) {
1989     assert(x.inBounds(cp));
1990     if (*cp >= chmin && *cp <= chmax)
1991       return (int)(cp - ptr);
1992   }
1993   return -1;
1994 }
1995 
1996 maybe_inline
1997 inner_class* cpool::getIC(entry* inner) {
1998   if (inner == null)  return null;
1999   assert(inner->tag == CONSTANT_Class);
2000   if (inner->inord == NO_INORD)  return null;
2001   inner_class* ic = ic_index[inner->inord];
2002   assert(ic == null || ic->inner == inner);
2003   return ic;
2004 }
2005 
2006 maybe_inline
2007 inner_class* cpool::getFirstChildIC(entry* outer) {
2008   if (outer == null)  return null;
2009   assert(outer->tag == CONSTANT_Class);
2010   if (outer->inord == NO_INORD)  return null;
2011   inner_class* ic = ic_child_index[outer->inord];
2012   assert(ic == null || ic->outer == outer);
2013   return ic;
2014 }
2015 
2016 maybe_inline
2017 inner_class* cpool::getNextChildIC(inner_class* child) {
2018   inner_class* ic = child->next_sibling;
2019   assert(ic == null || ic->outer == child->outer);
2020   return ic;
2021 }
2022 
2023 void unpacker::read_ics() {
2024   int i;
2025   int index_size = cp.tag_count[CONSTANT_Class];
2026   inner_class** ic_index       = U_NEW(inner_class*, index_size);
2027   inner_class** ic_child_index = U_NEW(inner_class*, index_size);
2028   cp.ic_index = ic_index;
2029   cp.ic_child_index = ic_child_index;
2030   ics = U_NEW(inner_class, ic_count);
2031   ic_this_class.readData(ic_count);
2032   ic_flags.readData(ic_count);
2033   CHECK;
2034   // Scan flags to get count of long-form bands.
2035   int long_forms = 0;
2036   for (i = 0; i < ic_count; i++) {
2037     int flags = ic_flags.getInt();  // may be long form!
2038     if ((flags & ACC_IC_LONG_FORM) != 0) {
2039       long_forms += 1;
2040       ics[i].name = NO_ENTRY_YET;
2041     }
2042     flags &= ~ACC_IC_LONG_FORM;
2043     entry* inner = ic_this_class.getRef();
2044     CHECK;
2045     uint inord = inner->inord;
2046     assert(inord < (uint)cp.tag_count[CONSTANT_Class]);
2047     if (ic_index[inord] != null) {
2048       abort("identical inner class");
2049       break;
2050     }
2051     ic_index[inord] = &ics[i];
2052     ics[i].inner = inner;
2053     ics[i].flags = flags;
2054     assert(cp.getIC(inner) == &ics[i]);
2055   }
2056   CHECK;
2057   //ic_this_class.done();
2058   //ic_flags.done();
2059   ic_outer_class.readData(long_forms);
2060   ic_name.readData(long_forms);
2061   for (i = 0; i < ic_count; i++) {
2062     if (ics[i].name == NO_ENTRY_YET) {
2063       // Long form.
2064       ics[i].outer = ic_outer_class.getRefN();
2065       ics[i].name  = ic_name.getRefN();
2066     } else {
2067       // Fill in outer and name based on inner.
2068       bytes& n = ics[i].inner->value.b;
2069       bytes pkgOuter;
2070       bytes number;
2071       bytes name;
2072       // Parse n into pkgOuter and name (and number).
2073       PRINTCR((5, "parse short IC name %s", n.ptr));
2074       int dollar1, dollar2;  // pointers to $ in the pattern
2075       // parse n = (<pkg>/)*<outer>($<number>)?($<name>)?
2076       int nlen = (int)n.len;
2077       int pkglen = lastIndexOf(SLASH_MIN,  SLASH_MAX,  n, nlen) + 1;
2078       dollar2    = lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, n, nlen);
2079       if (dollar2 < 0) {
2080          abort();
2081          return;
2082       }
2083       assert(dollar2 >= pkglen);
2084       if (isDigitString(n, dollar2+1, nlen)) {
2085         // n = (<pkg>/)*<outer>$<number>
2086         number = n.slice(dollar2+1, nlen);
2087         name.set(null,0);
2088         dollar1 = dollar2;
2089       } else if (pkglen < (dollar1
2090                            = lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, n, dollar2-1))
2091                  && isDigitString(n, dollar1+1, dollar2)) {
2092         // n = (<pkg>/)*<outer>$<number>$<name>
2093         number = n.slice(dollar1+1, dollar2);
2094         name = n.slice(dollar2+1, nlen);
2095       } else {
2096         // n = (<pkg>/)*<outer>$<name>
2097         dollar1 = dollar2;
2098         number.set(null,0);
2099         name = n.slice(dollar2+1, nlen);
2100       }
2101       if (number.ptr == null)
2102         pkgOuter = n.slice(0, dollar1);
2103       else
2104         pkgOuter.set(null,0);
2105       PRINTCR((5,"=> %s$ 0%s $%s",
2106               pkgOuter.string(), number.string(), name.string()));
2107 
2108       if (pkgOuter.ptr != null)
2109         ics[i].outer = cp.ensureClass(pkgOuter);
2110 
2111       if (name.ptr != null)
2112         ics[i].name = cp.ensureUtf8(name);
2113     }
2114 
2115     // update child/sibling list
2116     if (ics[i].outer != null) {
2117       uint outord = ics[i].outer->inord;
2118       if (outord != NO_INORD) {
2119         assert(outord < (uint)cp.tag_count[CONSTANT_Class]);
2120         ics[i].next_sibling = ic_child_index[outord];
2121         ic_child_index[outord] = &ics[i];
2122       }
2123     }
2124   }
2125   //ic_outer_class.done();
2126   //ic_name.done();
2127 }
2128 
2129 void unpacker::read_classes() {
2130   PRINTCR((1,"  ...scanning %d classes...", class_count));
2131   class_this.readData(class_count);
2132   class_super.readData(class_count);
2133   class_interface_count.readData(class_count);
2134   class_interface.readData(class_interface_count.getIntTotal());
2135 
2136   CHECK;
2137 
2138   #if 0
2139   int i;
2140   // Make a little mark on super-classes.
2141   for (i = 0; i < class_count; i++) {
2142     entry* e = class_super.getRefN();
2143     if (e != null)  e->bits |= entry::EB_SUPER;
2144   }
2145   class_super.rewind();
2146   #endif
2147 
2148   // Members.
2149   class_field_count.readData(class_count);
2150   class_method_count.readData(class_count);
2151 
2152   CHECK;
2153 
2154   int field_count = class_field_count.getIntTotal();
2155   int method_count = class_method_count.getIntTotal();
2156 
2157   field_descr.readData(field_count);
2158   read_attrs(ATTR_CONTEXT_FIELD, field_count);
2159   CHECK;
2160 
2161   method_descr.readData(method_count);
2162   read_attrs(ATTR_CONTEXT_METHOD, method_count);
2163 
2164   CHECK;
2165 
2166   read_attrs(ATTR_CONTEXT_CLASS, class_count);
2167   CHECK;
2168 
2169   read_code_headers();
2170 
2171   PRINTCR((1,"scanned %d classes, %d fields, %d methods, %d code headers",
2172           class_count, field_count, method_count, code_count));
2173 }
2174 
2175 maybe_inline
2176 int unpacker::attr_definitions::predefCount(uint idx) {
2177   return isPredefined(idx) ? flag_count[idx] : 0;
2178 }
2179 
2180 void unpacker::read_attrs(int attrc, int obj_count) {
2181   attr_definitions& ad = attr_defs[attrc];
2182   assert(ad.attrc == attrc);
2183 
2184   int i, idx, count;
2185 
2186   CHECK;
2187 
2188   bool haveLongFlags = ad.haveLongFlags();
2189 
2190   band& xxx_flags_hi = ad.xxx_flags_hi();
2191   assert(endsWith(xxx_flags_hi.name, "_flags_hi"));
2192   if (haveLongFlags)
2193     xxx_flags_hi.readData(obj_count);
2194   CHECK;
2195 
2196   band& xxx_flags_lo = ad.xxx_flags_lo();
2197   assert(endsWith(xxx_flags_lo.name, "_flags_lo"));
2198   xxx_flags_lo.readData(obj_count);
2199   CHECK;
2200 
2201   // pre-scan flags, counting occurrences of each index bit
2202   julong indexMask = ad.flagIndexMask();  // which flag bits are index bits?
2203   for (i = 0; i < obj_count; i++) {
2204     julong indexBits = xxx_flags_hi.getLong(xxx_flags_lo, haveLongFlags);
2205     if ((indexBits & ~indexMask) > (ushort)-1) {
2206       abort("undefined attribute flag bit");
2207       return;
2208     }
2209     indexBits &= indexMask;  // ignore classfile flag bits
2210     for (idx = 0; indexBits != 0; idx++, indexBits >>= 1) {
2211       ad.flag_count[idx] += (int)(indexBits & 1);
2212     }
2213   }
2214   // we'll scan these again later for output:
2215   xxx_flags_lo.rewind();
2216   xxx_flags_hi.rewind();
2217 
2218   band& xxx_attr_count = ad.xxx_attr_count();
2219   assert(endsWith(xxx_attr_count.name, "_attr_count"));
2220   // There is one count element for each 1<<16 bit set in flags:
2221   xxx_attr_count.readData(ad.predefCount(X_ATTR_OVERFLOW));
2222   CHECK;
2223 
2224   band& xxx_attr_indexes = ad.xxx_attr_indexes();
2225   assert(endsWith(xxx_attr_indexes.name, "_attr_indexes"));
2226   int overflowIndexCount = xxx_attr_count.getIntTotal();
2227   xxx_attr_indexes.readData(overflowIndexCount);
2228   CHECK;
2229   // pre-scan attr indexes, counting occurrences of each value
2230   for (i = 0; i < overflowIndexCount; i++) {
2231     idx = xxx_attr_indexes.getInt();
2232     if (!ad.isIndex(idx)) {
2233       abort("attribute index out of bounds");
2234       return;
2235     }
2236     ad.getCount(idx) += 1;
2237   }
2238   xxx_attr_indexes.rewind();  // we'll scan it again later for output
2239 
2240   // We will need a backward call count for each used backward callable.
2241   int backwardCounts = 0;
2242   for (idx = 0; idx < ad.layouts.length(); idx++) {
2243     layout_definition* lo = ad.getLayout(idx);
2244     if (lo != null && ad.getCount(idx) != 0) {
2245       // Build the bands lazily, only when they are used.
2246       band** bands = ad.buildBands(lo);
2247       CHECK;
2248       if (lo->hasCallables()) {
2249         for (i = 0; bands[i] != null; i++) {
2250           if (bands[i]->le_back) {
2251             assert(bands[i]->le_kind == EK_CBLE);
2252             backwardCounts += 1;
2253           }
2254         }
2255       }
2256     }
2257   }
2258   ad.xxx_attr_calls().readData(backwardCounts);
2259   CHECK;
2260 
2261   // Read built-in bands.
2262   // Mostly, these are hand-coded equivalents to readBandData().
2263   switch (attrc) {
2264   case ATTR_CONTEXT_CLASS:
2265 
2266     count = ad.predefCount(CLASS_ATTR_SourceFile);
2267     class_SourceFile_RUN.readData(count);
2268     CHECK;
2269 
2270     count = ad.predefCount(CLASS_ATTR_EnclosingMethod);
2271     class_EnclosingMethod_RC.readData(count);
2272     class_EnclosingMethod_RDN.readData(count);
2273     CHECK;
2274 
2275     count = ad.predefCount(X_ATTR_Signature);
2276     class_Signature_RS.readData(count);
2277     CHECK;
2278 
2279     ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
2280     ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
2281 
2282     count = ad.predefCount(CLASS_ATTR_InnerClasses);
2283     class_InnerClasses_N.readData(count);
2284     CHECK;
2285 
2286     count = class_InnerClasses_N.getIntTotal();
2287     class_InnerClasses_RC.readData(count);
2288     class_InnerClasses_F.readData(count);
2289     CHECK;
2290     // Drop remaining columns wherever flags are zero:
2291     count -= class_InnerClasses_F.getIntCount(0);
2292     class_InnerClasses_outer_RCN.readData(count);
2293     class_InnerClasses_name_RUN.readData(count);
2294     CHECK;
2295 
2296     count = ad.predefCount(CLASS_ATTR_ClassFile_version);
2297     class_ClassFile_version_minor_H.readData(count);
2298     class_ClassFile_version_major_H.readData(count);
2299     CHECK;
2300     break;
2301 
2302   case ATTR_CONTEXT_FIELD:
2303 
2304     count = ad.predefCount(FIELD_ATTR_ConstantValue);
2305     field_ConstantValue_KQ.readData(count);
2306     CHECK;
2307 
2308     count = ad.predefCount(X_ATTR_Signature);
2309     field_Signature_RS.readData(count);
2310     CHECK;
2311 
2312     ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
2313     ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
2314     CHECK;
2315     break;
2316 
2317   case ATTR_CONTEXT_METHOD:
2318 
2319     code_count = ad.predefCount(METHOD_ATTR_Code);
2320     // Code attrs are handled very specially below...
2321 
2322     count = ad.predefCount(METHOD_ATTR_Exceptions);
2323     method_Exceptions_N.readData(count);
2324     count = method_Exceptions_N.getIntTotal();
2325     method_Exceptions_RC.readData(count);
2326     CHECK;
2327 
2328     count = ad.predefCount(X_ATTR_Signature);
2329     method_Signature_RS.readData(count);
2330     CHECK;
2331 
2332     ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
2333     ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
2334     ad.readBandData(METHOD_ATTR_RuntimeVisibleParameterAnnotations);
2335     ad.readBandData(METHOD_ATTR_RuntimeInvisibleParameterAnnotations);
2336     ad.readBandData(METHOD_ATTR_AnnotationDefault);
2337     CHECK;
2338     break;
2339 
2340   case ATTR_CONTEXT_CODE:
2341     // (keep this code aligned with its brother in unpacker::write_attrs)
2342     count = ad.predefCount(CODE_ATTR_StackMapTable);
2343     // disable this feature in old archives!
2344     if (count != 0 && majver < JAVA6_PACKAGE_MAJOR_VERSION) {
2345       abort("undefined StackMapTable attribute (old archive format)");
2346       return;
2347     }
2348     code_StackMapTable_N.readData(count);
2349     CHECK;
2350     count = code_StackMapTable_N.getIntTotal();
2351     code_StackMapTable_frame_T.readData(count);
2352     CHECK;
2353     // the rest of it depends in a complicated way on frame tags
2354     {
2355       int fat_frame_count = 0;
2356       int offset_count = 0;
2357       int type_count = 0;
2358       for (int k = 0; k < count; k++) {
2359         int tag = code_StackMapTable_frame_T.getByte();
2360         if (tag <= 127) {
2361           // (64-127)  [(2)]
2362           if (tag >= 64)  type_count++;
2363         } else if (tag <= 251) {
2364           // (247)     [(1)(2)]
2365           // (248-251) [(1)]
2366           if (tag >= 247)  offset_count++;
2367           if (tag == 247)  type_count++;
2368         } else if (tag <= 254) {
2369           // (252)     [(1)(2)]
2370           // (253)     [(1)(2)(2)]
2371           // (254)     [(1)(2)(2)(2)]
2372           offset_count++;
2373           type_count += (tag - 251);
2374         } else {
2375           // (255)     [(1)NH[(2)]NH[(2)]]
2376           fat_frame_count++;
2377         }
2378       }
2379 
2380       // done pre-scanning frame tags:
2381       code_StackMapTable_frame_T.rewind();
2382 
2383       // deal completely with fat frames:
2384       offset_count += fat_frame_count;
2385       code_StackMapTable_local_N.readData(fat_frame_count);
2386       CHECK;
2387       type_count += code_StackMapTable_local_N.getIntTotal();
2388       code_StackMapTable_stack_N.readData(fat_frame_count);
2389       type_count += code_StackMapTable_stack_N.getIntTotal();
2390       CHECK;
2391       // read the rest:
2392       code_StackMapTable_offset.readData(offset_count);
2393       code_StackMapTable_T.readData(type_count);
2394       CHECK;
2395       // (7) [RCH]
2396       count = code_StackMapTable_T.getIntCount(7);
2397       code_StackMapTable_RC.readData(count);
2398       CHECK;
2399       // (8) [PH]
2400       count = code_StackMapTable_T.getIntCount(8);
2401       code_StackMapTable_P.readData(count);
2402       CHECK;
2403     }
2404 
2405     count = ad.predefCount(CODE_ATTR_LineNumberTable);
2406     code_LineNumberTable_N.readData(count);
2407     count = code_LineNumberTable_N.getIntTotal();
2408     code_LineNumberTable_bci_P.readData(count);
2409     code_LineNumberTable_line.readData(count);
2410 
2411     count = ad.predefCount(CODE_ATTR_LocalVariableTable);
2412     code_LocalVariableTable_N.readData(count);
2413     count = code_LocalVariableTable_N.getIntTotal();
2414     code_LocalVariableTable_bci_P.readData(count);
2415     code_LocalVariableTable_span_O.readData(count);
2416     code_LocalVariableTable_name_RU.readData(count);
2417     code_LocalVariableTable_type_RS.readData(count);
2418     code_LocalVariableTable_slot.readData(count);
2419 
2420     count = ad.predefCount(CODE_ATTR_LocalVariableTypeTable);
2421     code_LocalVariableTypeTable_N.readData(count);
2422     count = code_LocalVariableTypeTable_N.getIntTotal();
2423     code_LocalVariableTypeTable_bci_P.readData(count);
2424     code_LocalVariableTypeTable_span_O.readData(count);
2425     code_LocalVariableTypeTable_name_RU.readData(count);
2426     code_LocalVariableTypeTable_type_RS.readData(count);
2427     code_LocalVariableTypeTable_slot.readData(count);
2428     break;
2429   }
2430 
2431   // Read compressor-defined bands.
2432   for (idx = 0; idx < ad.layouts.length(); idx++) {
2433     if (ad.getLayout(idx) == null)
2434       continue;  // none at this fixed index <32
2435     if (idx < (int)ad.flag_limit && ad.isPredefined(idx))
2436       continue;  // already handled
2437     if (ad.getCount(idx) == 0)
2438       continue;  // no attributes of this type (then why transmit layouts?)
2439     ad.readBandData(idx);
2440   }
2441 }
2442 
2443 void unpacker::attr_definitions::readBandData(int idx) {
2444   int j;
2445   uint count = getCount(idx);
2446   if (count == 0)  return;
2447   layout_definition* lo = getLayout(idx);
2448   if (lo != null) {
2449     PRINTCR((1, "counted %d [redefined = %d predefined = %d] attributes of type %s.%s",
2450             count, isRedefined(idx), isPredefined(idx),
2451             ATTR_CONTEXT_NAME[attrc], lo->name));
2452   }
2453   bool hasCallables = lo->hasCallables();
2454   band** bands = lo->bands();
2455   if (!hasCallables) {
2456     // Read through the rest of the bands in a regular way.
2457     readBandData(bands, count);
2458   } else {
2459     // Deal with the callables.
2460     // First set up the forward entry count for each callable.
2461     // This is stored on band::length of the callable.
2462     bands[0]->expectMoreLength(count);
2463     for (j = 0; bands[j] != null; j++) {
2464       band& j_cble = *bands[j];
2465       assert(j_cble.le_kind == EK_CBLE);
2466       if (j_cble.le_back) {
2467         // Add in the predicted effects of backward calls, too.
2468         int back_calls = xxx_attr_calls().getInt();
2469         j_cble.expectMoreLength(back_calls);
2470         // In a moment, more forward calls may increment j_cble.length.
2471       }
2472     }
2473     // Now consult whichever callables have non-zero entry counts.
2474     readBandData(bands, (uint)-1);
2475   }
2476 }
2477 
2478 // Recursive helper to the previous function:
2479 void unpacker::attr_definitions::readBandData(band** body, uint count) {
2480   int j, k;
2481   for (j = 0; body[j] != null; j++) {
2482     band& b = *body[j];
2483     if (b.defc != null) {
2484       // It has data, so read it.
2485       b.readData(count);
2486     }
2487     switch (b.le_kind) {
2488     case EK_REPL:
2489       {
2490         int reps = b.getIntTotal();
2491         readBandData(b.le_body, reps);
2492       }
2493       break;
2494     case EK_UN:
2495       {
2496         int remaining = count;
2497         for (k = 0; b.le_body[k] != null; k++) {
2498           band& k_case = *b.le_body[k];
2499           int   k_count = 0;
2500           if (k_case.le_casetags == null) {
2501             k_count = remaining;  // last (empty) case
2502           } else {
2503             int* tags = k_case.le_casetags;
2504             int ntags = *tags++;  // 1st element is length (why not?)
2505             while (ntags-- > 0) {
2506               int tag = *tags++;
2507               k_count += b.getIntCount(tag);
2508             }
2509           }
2510           readBandData(k_case.le_body, k_count);
2511           remaining -= k_count;
2512         }
2513         assert(remaining == 0);
2514       }
2515       break;
2516     case EK_CALL:
2517       // Push the count forward, if it is not a backward call.
2518       if (!b.le_back) {
2519         band& cble = *b.le_body[0];
2520         assert(cble.le_kind == EK_CBLE);
2521         cble.expectMoreLength(count);
2522       }
2523       break;
2524     case EK_CBLE:
2525       assert((int)count == -1);  // incoming count is meaningless
2526       k = b.length;
2527       assert(k >= 0);
2528       // This is intended and required for non production mode.
2529       assert((b.length = -1)); // make it unable to accept more calls now.
2530       readBandData(b.le_body, k);
2531       break;
2532     }
2533   }
2534 }
2535 
2536 static inline
2537 band** findMatchingCase(int matchTag, band** cases) {
2538   for (int k = 0; cases[k] != null; k++) {
2539     band& k_case = *cases[k];
2540     if (k_case.le_casetags != null) {
2541       // If it has tags, it must match a tag.
2542       int* tags = k_case.le_casetags;
2543       int ntags = *tags++;  // 1st element is length
2544       for (; ntags > 0; ntags--) {
2545         int tag = *tags++;
2546         if (tag == matchTag)
2547           break;
2548       }
2549       if (ntags == 0)
2550         continue;   // does not match
2551     }
2552     return k_case.le_body;
2553   }
2554   return null;
2555 }
2556 
2557 // write attribute band data:
2558 void unpacker::putlayout(band** body) {
2559   int i;
2560   int prevBII = -1;
2561   int prevBCI = -1;
2562   if (body == NULL) {
2563     abort("putlayout: unexpected NULL for body");
2564     return;
2565   }
2566   for (i = 0; body[i] != null; i++) {
2567     band& b = *body[i];
2568     byte le_kind = b.le_kind;
2569 
2570     // Handle scalar part, if any.
2571     int    x = 0;
2572     entry* e = null;
2573     if (b.defc != null) {
2574       // It has data, so unparse an element.
2575       if (b.ixTag != CONSTANT_None) {
2576         assert(le_kind == EK_REF);
2577         if (b.ixTag == CONSTANT_Literal)
2578           e = b.getRefUsing(cp.getKQIndex());
2579         else
2580           e = b.getRefN();
2581         switch (b.le_len) {
2582         case 0: break;
2583         case 1: putu1ref(e); break;
2584         case 2: putref(e); break;
2585         case 4: putu2(0); putref(e); break;
2586         default: assert(false);
2587         }
2588       } else {
2589         assert(le_kind == EK_INT || le_kind == EK_REPL || le_kind == EK_UN);
2590         x = b.getInt();
2591 
2592         assert(!b.le_bci || prevBCI == (int)to_bci(prevBII));
2593         switch (b.le_bci) {
2594         case EK_BCI:   // PH:  transmit R(bci), store bci
2595           x = to_bci(prevBII = x);
2596           prevBCI = x;
2597           break;
2598         case EK_BCID:  // POH: transmit D(R(bci)), store bci
2599           x = to_bci(prevBII += x);
2600           prevBCI = x;
2601           break;
2602         case EK_BCO:   // OH:  transmit D(R(bci)), store D(bci)
2603           x = to_bci(prevBII += x) - prevBCI;
2604           prevBCI += x;
2605           break;
2606         }
2607         assert(!b.le_bci || prevBCI == (int)to_bci(prevBII));
2608 
2609         switch (b.le_len) {
2610         case 0: break;
2611         case 1: putu1(x); break;
2612         case 2: putu2(x); break;
2613         case 4: putu4(x); break;
2614         default: assert(false);
2615         }
2616       }
2617     }
2618 
2619     // Handle subparts, if any.
2620     switch (le_kind) {
2621     case EK_REPL:
2622       // x is the repeat count
2623       while (x-- > 0) {
2624         putlayout(b.le_body);
2625       }
2626       break;
2627     case EK_UN:
2628       // x is the tag
2629       putlayout(findMatchingCase(x, b.le_body));
2630       break;
2631     case EK_CALL:
2632       {
2633         band& cble = *b.le_body[0];
2634         assert(cble.le_kind == EK_CBLE);
2635         assert(cble.le_len == b.le_len);
2636         putlayout(cble.le_body);
2637       }
2638       break;
2639 
2640     #ifndef PRODUCT
2641     case EK_CBLE:
2642     case EK_CASE:
2643       assert(false);  // should not reach here
2644     #endif
2645     }
2646   }
2647 }
2648 
2649 void unpacker::read_files() {
2650   file_name.readData(file_count);
2651   if ((archive_options & AO_HAVE_FILE_SIZE_HI) != 0)
2652     file_size_hi.readData(file_count);
2653   file_size_lo.readData(file_count);
2654   if ((archive_options & AO_HAVE_FILE_MODTIME) != 0)
2655     file_modtime.readData(file_count);
2656   int allFiles = file_count + class_count;
2657   if ((archive_options & AO_HAVE_FILE_OPTIONS) != 0) {
2658     file_options.readData(file_count);
2659     // FO_IS_CLASS_STUB might be set, causing overlap between classes and files
2660     for (int i = 0; i < file_count; i++) {
2661       if ((file_options.getInt() & FO_IS_CLASS_STUB) != 0) {
2662         allFiles -= 1;  // this one counts as both class and file
2663       }
2664     }
2665     file_options.rewind();
2666   }
2667   assert((default_file_options & FO_IS_CLASS_STUB) == 0);
2668   files_remaining = allFiles;
2669 }
2670 
2671 maybe_inline
2672 void unpacker::get_code_header(int& max_stack,
2673                                int& max_na_locals,
2674                                int& handler_count,
2675                                int& cflags) {
2676   int sc = code_headers.getByte();
2677   if (sc == 0) {
2678     max_stack = max_na_locals = handler_count = cflags = -1;
2679     return;
2680   }
2681   // Short code header is the usual case:
2682   int nh;
2683   int mod;
2684   if (sc < 1 + 12*12) {
2685     sc -= 1;
2686     nh = 0;
2687     mod = 12;
2688   } else if (sc < 1 + 12*12 + 8*8) {
2689     sc -= 1 + 12*12;
2690     nh = 1;
2691     mod = 8;
2692   } else {
2693     assert(sc < 1 + 12*12 + 8*8 + 7*7);
2694     sc -= 1 + 12*12 + 8*8;
2695     nh = 2;
2696     mod = 7;
2697   }
2698   max_stack     = sc % mod;
2699   max_na_locals = sc / mod;  // caller must add static, siglen
2700   handler_count = nh;
2701   if ((archive_options & AO_HAVE_ALL_CODE_FLAGS) != 0)
2702     cflags      = -1;
2703   else
2704     cflags      = 0;  // this one has no attributes
2705 }
2706 
2707 // Cf. PackageReader.readCodeHeaders
2708 void unpacker::read_code_headers() {
2709   code_headers.readData(code_count);
2710   CHECK;
2711   int totalHandlerCount = 0;
2712   int totalFlagsCount   = 0;
2713   for (int i = 0; i < code_count; i++) {
2714     int max_stack, max_locals, handler_count, cflags;
2715     get_code_header(max_stack, max_locals, handler_count, cflags);
2716     if (max_stack < 0)      code_max_stack.expectMoreLength(1);
2717     if (max_locals < 0)     code_max_na_locals.expectMoreLength(1);
2718     if (handler_count < 0)  code_handler_count.expectMoreLength(1);
2719     else                    totalHandlerCount += handler_count;
2720     if (cflags < 0)         totalFlagsCount += 1;
2721   }
2722   code_headers.rewind();  // replay later during writing
2723 
2724   code_max_stack.readData();
2725   code_max_na_locals.readData();
2726   code_handler_count.readData();
2727   totalHandlerCount += code_handler_count.getIntTotal();
2728   CHECK;
2729 
2730   // Read handler specifications.
2731   // Cf. PackageReader.readCodeHandlers.
2732   code_handler_start_P.readData(totalHandlerCount);
2733   code_handler_end_PO.readData(totalHandlerCount);
2734   code_handler_catch_PO.readData(totalHandlerCount);
2735   code_handler_class_RCN.readData(totalHandlerCount);
2736   CHECK;
2737 
2738   read_attrs(ATTR_CONTEXT_CODE, totalFlagsCount);
2739   CHECK;
2740 }
2741 
2742 static inline bool is_in_range(uint n, uint min, uint max) {
2743   return n - min <= max - min;  // unsigned arithmetic!
2744 }
2745 static inline bool is_field_op(int bc) {
2746   return is_in_range(bc, bc_getstatic, bc_putfield);
2747 }
2748 static inline bool is_invoke_init_op(int bc) {
2749   return is_in_range(bc, _invokeinit_op, _invokeinit_limit-1);
2750 }
2751 static inline bool is_self_linker_op(int bc) {
2752   return is_in_range(bc, _self_linker_op, _self_linker_limit-1);
2753 }
2754 static bool is_branch_op(int bc) {
2755   return is_in_range(bc, bc_ifeq,   bc_jsr)
2756       || is_in_range(bc, bc_ifnull, bc_jsr_w);
2757 }
2758 static bool is_local_slot_op(int bc) {
2759   return is_in_range(bc, bc_iload,  bc_aload)
2760       || is_in_range(bc, bc_istore, bc_astore)
2761       || bc == bc_iinc || bc == bc_ret;
2762 }
2763 band* unpacker::ref_band_for_op(int bc) {
2764   switch (bc) {
2765   case bc_ildc:
2766   case bc_ildc_w:
2767     return &bc_intref;
2768   case bc_fldc:
2769   case bc_fldc_w:
2770     return &bc_floatref;
2771   case bc_lldc2_w:
2772     return &bc_longref;
2773   case bc_dldc2_w:
2774     return &bc_doubleref;
2775   case bc_aldc:
2776   case bc_aldc_w:
2777     return &bc_stringref;
2778   case bc_cldc:
2779   case bc_cldc_w:
2780     return &bc_classref;
2781 
2782   case bc_getstatic:
2783   case bc_putstatic:
2784   case bc_getfield:
2785   case bc_putfield:
2786     return &bc_fieldref;
2787 
2788   case bc_invokevirtual:
2789   case bc_invokespecial:
2790   case bc_invokestatic:
2791     return &bc_methodref;
2792   case bc_invokeinterface:
2793     return &bc_imethodref;
2794 
2795   case bc_new:
2796   case bc_anewarray:
2797   case bc_checkcast:
2798   case bc_instanceof:
2799   case bc_multianewarray:
2800     return &bc_classref;
2801   }
2802   return null;
2803 }
2804 
2805 maybe_inline
2806 band* unpacker::ref_band_for_self_op(int bc, bool& isAloadVar, int& origBCVar) {
2807   if (!is_self_linker_op(bc))  return null;
2808   int idx = (bc - _self_linker_op);
2809   bool isSuper = (idx >= _self_linker_super_flag);
2810   if (isSuper)  idx -= _self_linker_super_flag;
2811   bool isAload = (idx >= _self_linker_aload_flag);
2812   if (isAload)  idx -= _self_linker_aload_flag;
2813   int origBC = _first_linker_op + idx;
2814   bool isField = is_field_op(origBC);
2815   isAloadVar = isAload;
2816   origBCVar  = _first_linker_op + idx;
2817   if (!isSuper)
2818     return isField? &bc_thisfield: &bc_thismethod;
2819   else
2820     return isField? &bc_superfield: &bc_supermethod;
2821 }
2822 
2823 // Cf. PackageReader.readByteCodes
2824 inline  // called exactly once => inline
2825 void unpacker::read_bcs() {
2826   PRINTCR((3, "reading compressed bytecodes and operands for %d codes...",
2827           code_count));
2828 
2829   // read from bc_codes and bc_case_count
2830   fillbytes all_switch_ops;
2831   all_switch_ops.init();
2832   CHECK;
2833 
2834   // Read directly from rp/rplimit.
2835   //Do this later:  bc_codes.readData(...)
2836   byte* rp0 = rp;
2837 
2838   band* bc_which;
2839   byte* opptr = rp;
2840   byte* oplimit = rplimit;
2841 
2842   bool  isAload;  // passed by ref and then ignored
2843   int   junkBC;   // passed by ref and then ignored
2844   for (int k = 0; k < code_count; k++) {
2845     // Scan one method:
2846     for (;;) {
2847       if (opptr+2 > oplimit) {
2848         rp = opptr;
2849         ensure_input(2);
2850         oplimit = rplimit;
2851         rp = rp0;  // back up
2852       }
2853       if (opptr == oplimit) { abort(); break; }
2854       int bc = *opptr++ & 0xFF;
2855       bool isWide = false;
2856       if (bc == bc_wide) {
2857         if (opptr == oplimit) { abort(); break; }
2858         bc = *opptr++ & 0xFF;
2859         isWide = true;
2860       }
2861       // Adjust expectations of various band sizes.
2862       switch (bc) {
2863       case bc_tableswitch:
2864       case bc_lookupswitch:
2865         all_switch_ops.addByte(bc);
2866         break;
2867       case bc_iinc:
2868         bc_local.expectMoreLength(1);
2869         bc_which = isWide ? &bc_short : &bc_byte;
2870         bc_which->expectMoreLength(1);
2871         break;
2872       case bc_sipush:
2873         bc_short.expectMoreLength(1);
2874         break;
2875       case bc_bipush:
2876         bc_byte.expectMoreLength(1);
2877         break;
2878       case bc_newarray:
2879         bc_byte.expectMoreLength(1);
2880         break;
2881       case bc_multianewarray:
2882         assert(ref_band_for_op(bc) == &bc_classref);
2883         bc_classref.expectMoreLength(1);
2884         bc_byte.expectMoreLength(1);
2885         break;
2886       case bc_ref_escape:
2887         bc_escrefsize.expectMoreLength(1);
2888         bc_escref.expectMoreLength(1);
2889         break;
2890       case bc_byte_escape:
2891         bc_escsize.expectMoreLength(1);
2892         // bc_escbyte will have to be counted too
2893         break;
2894       default:
2895         if (is_invoke_init_op(bc)) {
2896           bc_initref.expectMoreLength(1);
2897           break;
2898         }
2899         bc_which = ref_band_for_self_op(bc, isAload, junkBC);
2900         if (bc_which != null) {
2901           bc_which->expectMoreLength(1);
2902           break;
2903         }
2904         if (is_branch_op(bc)) {
2905           bc_label.expectMoreLength(1);
2906           break;
2907         }
2908         bc_which = ref_band_for_op(bc);
2909         if (bc_which != null) {
2910           bc_which->expectMoreLength(1);
2911           assert(bc != bc_multianewarray);  // handled elsewhere
2912           break;
2913         }
2914         if (is_local_slot_op(bc)) {
2915           bc_local.expectMoreLength(1);
2916           break;
2917         }
2918         break;
2919       case bc_end_marker:
2920         // Increment k and test against code_count.
2921         goto doneScanningMethod;
2922       }
2923     }
2924   doneScanningMethod:{}
2925     if (aborting())  break;
2926   }
2927 
2928   // Go through the formality, so we can use it in a regular fashion later:
2929   assert(rp == rp0);
2930   bc_codes.readData((int)(opptr - rp));
2931 
2932   int i = 0;
2933 
2934   // To size instruction bands correctly, we need info on switches:
2935   bc_case_count.readData((int)all_switch_ops.size());
2936   for (i = 0; i < (int)all_switch_ops.size(); i++) {
2937     int caseCount = bc_case_count.getInt();
2938     int bc        = all_switch_ops.getByte(i);
2939     bc_label.expectMoreLength(1+caseCount); // default label + cases
2940     bc_case_value.expectMoreLength(bc == bc_tableswitch ? 1 : caseCount);
2941     PRINTCR((2, "switch bc=%d caseCount=%d", bc, caseCount));
2942   }
2943   bc_case_count.rewind();  // uses again for output
2944 
2945   all_switch_ops.free();
2946 
2947   for (i = e_bc_case_value; i <= e_bc_escsize; i++) {
2948     all_bands[i].readData();
2949   }
2950 
2951   // The bc_escbyte band is counted by the immediately previous band.
2952   bc_escbyte.readData(bc_escsize.getIntTotal());
2953 
2954   PRINTCR((3, "scanned %d opcode and %d operand bytes for %d codes...",
2955           (int)(bc_codes.size()),
2956           (int)(bc_escsize.maxRP() - bc_case_value.minRP()),
2957           code_count));
2958 }
2959 
2960 void unpacker::read_bands() {
2961   byte* rp0 = rp;
2962 
2963   read_file_header();
2964   CHECK;
2965 
2966   if (cp.nentries == 0) {
2967     // read_file_header failed to read a CP, because it copied a JAR.
2968     return;
2969   }
2970 
2971   // Do this after the file header has been read:
2972   check_options();
2973 
2974   read_cp();
2975   CHECK;
2976   read_attr_defs();
2977   CHECK;
2978   read_ics();
2979   CHECK;
2980   read_classes();
2981   CHECK;
2982   read_bcs();
2983   CHECK;
2984   read_files();
2985 }
2986 
2987 /// CP routines
2988 
2989 entry*& cpool::hashTabRef(byte tag, bytes& b) {
2990   PRINTCR((5, "hashTabRef tag=%d %s[%d]", tag, b.string(), b.len));
2991   uint hash = tag + (int)b.len;
2992   for (int i = 0; i < (int)b.len; i++) {
2993     hash = hash * 31 + (0xFF & b.ptr[i]);
2994   }
2995   entry**  ht = hashTab;
2996   int    hlen = hashTabLength;
2997   assert((hlen & (hlen-1)) == 0);  // must be power of 2
2998   uint hash1 = hash & (hlen-1);    // == hash % hlen
2999   uint hash2 = 0;                  // lazily computed (requires mod op.)
3000   int probes = 0;
3001   while (ht[hash1] != null) {
3002     entry& e = *ht[hash1];
3003     if (e.value.b.equals(b) && e.tag == tag)
3004       break;
3005     if (hash2 == 0)
3006       // Note:  hash2 must be relatively prime to hlen, hence the "|1".
3007       hash2 = (((hash % 499) & (hlen-1)) | 1);
3008     hash1 += hash2;
3009     if (hash1 >= (uint)hlen)  hash1 -= hlen;
3010     assert(hash1 < (uint)hlen);
3011     assert(++probes < hlen);
3012   }
3013   #ifndef PRODUCT
3014   hash_probes[0] += 1;
3015   hash_probes[1] += probes;
3016   #endif
3017   PRINTCR((5, " => @%d %p", hash1, ht[hash1]));
3018   return ht[hash1];
3019 }
3020 
3021 maybe_inline
3022 static void insert_extra(entry* e, ptrlist& extras) {
3023   // This ordering helps implement the Pack200 requirement
3024   // of a predictable CP order in the class files produced.
3025   e->inord = NO_INORD;  // mark as an "extra"
3026   extras.add(e);
3027   // Note:  We will sort the list (by string-name) later.
3028 }
3029 
3030 entry* cpool::ensureUtf8(bytes& b) {
3031   entry*& ix = hashTabRef(CONSTANT_Utf8, b);
3032   if (ix != null)  return ix;
3033   // Make one.
3034   if (nentries == maxentries) {
3035     abort("cp utf8 overflow");
3036     return &entries[tag_base[CONSTANT_Utf8]];  // return something
3037   }
3038   entry& e = entries[nentries++];
3039   e.tag = CONSTANT_Utf8;
3040   u->saveTo(e.value.b, b);
3041   assert(&e >= first_extra_entry);
3042   insert_extra(&e, tag_extras[CONSTANT_Utf8]);
3043   PRINTCR((4,"ensureUtf8 miss %s", e.string()));
3044   return ix = &e;
3045 }
3046 
3047 entry* cpool::ensureClass(bytes& b) {
3048   entry*& ix = hashTabRef(CONSTANT_Class, b);
3049   if (ix != null)  return ix;
3050   // Make one.
3051   if (nentries == maxentries) {
3052     abort("cp class overflow");
3053     return &entries[tag_base[CONSTANT_Class]];  // return something
3054   }
3055   entry& e = entries[nentries++];
3056   e.tag = CONSTANT_Class;
3057   e.nrefs = 1;
3058   e.refs = U_NEW(entry*, 1);
3059   ix = &e;  // hold my spot in the index
3060   entry* utf = ensureUtf8(b);
3061   e.refs[0] = utf;
3062   e.value.b = utf->value.b;
3063   assert(&e >= first_extra_entry);
3064   insert_extra(&e, tag_extras[CONSTANT_Class]);
3065   PRINTCR((4,"ensureClass miss %s", e.string()));
3066   return &e;
3067 }
3068 
3069 void cpool::expandSignatures() {
3070   int i;
3071   int nsigs = 0;
3072   int nreused = 0;
3073   int first_sig = tag_base[CONSTANT_Signature];
3074   int sig_limit = tag_count[CONSTANT_Signature] + first_sig;
3075   fillbytes buf;
3076   buf.init(1<<10);
3077   CHECK;
3078   for (i = first_sig; i < sig_limit; i++) {
3079     entry& e = entries[i];
3080     assert(e.tag == CONSTANT_Signature);
3081     int refnum = 0;
3082     bytes form = e.refs[refnum++]->asUtf8();
3083     buf.empty();
3084     for (int j = 0; j < (int)form.len; j++) {
3085       int c = form.ptr[j];
3086       buf.addByte(c);
3087       if (c == 'L') {
3088         entry* cls = e.refs[refnum++];
3089         buf.append(cls->className()->asUtf8());
3090       }
3091     }
3092     assert(refnum == e.nrefs);
3093     bytes& sig = buf.b;
3094     PRINTCR((5,"signature %d %s -> %s", i, form.ptr, sig.ptr));
3095 
3096     // try to find a pre-existing Utf8:
3097     entry* &e2 = hashTabRef(CONSTANT_Utf8, sig);
3098     if (e2 != null) {
3099       assert(e2->isUtf8(sig));
3100       e.value.b = e2->value.b;
3101       e.refs[0] = e2;
3102       e.nrefs = 1;
3103       PRINTCR((5,"signature replaced %d => %s", i, e.string()));
3104       nreused++;
3105     } else {
3106       // there is no other replacement; reuse this CP entry as a Utf8
3107       u->saveTo(e.value.b, sig);
3108       e.tag = CONSTANT_Utf8;
3109       e.nrefs = 0;
3110       e2 = &e;
3111       PRINTCR((5,"signature changed %d => %s", e.inord, e.string()));
3112     }
3113     nsigs++;
3114   }
3115   PRINTCR((1,"expanded %d signatures (reused %d utfs)", nsigs, nreused));
3116   buf.free();
3117 
3118   // go expunge all references to remaining signatures:
3119   for (i = 0; i < (int)nentries; i++) {
3120     entry& e = entries[i];
3121     for (int j = 0; j < e.nrefs; j++) {
3122       entry*& e2 = e.refs[j];
3123       if (e2 != null && e2->tag == CONSTANT_Signature)
3124         e2 = e2->refs[0];
3125     }
3126   }
3127 }
3128 
3129 void cpool::initMemberIndexes() {
3130   // This function does NOT refer to any class schema.
3131   // It is totally internal to the cpool.
3132   int i, j;
3133 
3134   // Get the pre-existing indexes:
3135   int   nclasses = tag_count[CONSTANT_Class];
3136   entry* classes = tag_base[CONSTANT_Class] + entries;
3137   int   nfields  = tag_count[CONSTANT_Fieldref];
3138   entry* fields  = tag_base[CONSTANT_Fieldref] + entries;
3139   int   nmethods = tag_count[CONSTANT_Methodref];
3140   entry* methods = tag_base[CONSTANT_Methodref] + entries;
3141 
3142   int*     field_counts  = T_NEW(int, nclasses);
3143   int*     method_counts = T_NEW(int, nclasses);
3144   cpindex* all_indexes   = U_NEW(cpindex, nclasses*2);
3145   entry**  field_ix      = U_NEW(entry*, add_size(nfields, nclasses));
3146   entry**  method_ix     = U_NEW(entry*, add_size(nmethods, nclasses));
3147 
3148   for (j = 0; j < nfields; j++) {
3149     entry& f = fields[j];
3150     i = f.memberClass()->inord;
3151     assert(i < nclasses);
3152     field_counts[i]++;
3153   }
3154   for (j = 0; j < nmethods; j++) {
3155     entry& m = methods[j];
3156     i = m.memberClass()->inord;
3157     assert(i < nclasses);
3158     method_counts[i]++;
3159   }
3160 
3161   int fbase = 0, mbase = 0;
3162   for (i = 0; i < nclasses; i++) {
3163     int fc = field_counts[i];
3164     int mc = method_counts[i];
3165     all_indexes[i*2+0].init(fc, field_ix+fbase,
3166                             CONSTANT_Fieldref  + SUBINDEX_BIT);
3167     all_indexes[i*2+1].init(mc, method_ix+mbase,
3168                             CONSTANT_Methodref + SUBINDEX_BIT);
3169     // reuse field_counts and member_counts as fill pointers:
3170     field_counts[i] = fbase;
3171     method_counts[i] = mbase;
3172     PRINTCR((3, "class %d fields @%d[%d] methods @%d[%d]",
3173             i, fbase, fc, mbase, mc));
3174     fbase += fc+1;
3175     mbase += mc+1;
3176     // (the +1 leaves a space between every subarray)
3177   }
3178   assert(fbase == nfields+nclasses);
3179   assert(mbase == nmethods+nclasses);
3180 
3181   for (j = 0; j < nfields; j++) {
3182     entry& f = fields[j];
3183     i = f.memberClass()->inord;
3184     field_ix[field_counts[i]++] = &f;
3185   }
3186   for (j = 0; j < nmethods; j++) {
3187     entry& m = methods[j];
3188     i = m.memberClass()->inord;
3189     method_ix[method_counts[i]++] = &m;
3190   }
3191 
3192   member_indexes = all_indexes;
3193 
3194 #ifndef PRODUCT
3195   // Test the result immediately on every class and field.
3196   int fvisited = 0, mvisited = 0;
3197   int prevord, len;
3198   for (i = 0; i < nclasses; i++) {
3199     entry*   cls = &classes[i];
3200     cpindex* fix = getFieldIndex(cls);
3201     cpindex* mix = getMethodIndex(cls);
3202     PRINTCR((2, "field and method index for %s [%d] [%d]",
3203             cls->string(), mix->len, fix->len));
3204     prevord = -1;
3205     for (j = 0, len = fix->len; j < len; j++) {
3206       entry* f = fix->get(j);
3207       assert(f != null);
3208       PRINTCR((3, "- field %s", f->string()));
3209       assert(f->memberClass() == cls);
3210       assert(prevord < (int)f->inord);
3211       prevord = f->inord;
3212       fvisited++;
3213     }
3214     assert(fix->base2[j] == null);
3215     prevord = -1;
3216     for (j = 0, len = mix->len; j < len; j++) {
3217       entry* m = mix->get(j);
3218       assert(m != null);
3219       PRINTCR((3, "- method %s", m->string()));
3220       assert(m->memberClass() == cls);
3221       assert(prevord < (int)m->inord);
3222       prevord = m->inord;
3223       mvisited++;
3224     }
3225     assert(mix->base2[j] == null);
3226   }
3227   assert(fvisited == nfields);
3228   assert(mvisited == nmethods);
3229 #endif
3230 
3231   // Free intermediate buffers.
3232   u->free_temps();
3233 }
3234 
3235 void entry::requestOutputIndex(cpool& cp, int req) {
3236   assert(outputIndex <= NOT_REQUESTED);  // must not have assigned indexes yet
3237   if (tag == CONSTANT_Signature) {
3238     ref(0)->requestOutputIndex(cp, req);
3239     return;
3240   }
3241   assert(req == REQUESTED || req == REQUESTED_LDC);
3242   if (outputIndex != NOT_REQUESTED) {
3243     if (req == REQUESTED_LDC)
3244       outputIndex = req;  // this kind has precedence
3245     return;
3246   }
3247   outputIndex = req;
3248   //assert(!cp.outputEntries.contains(this));
3249   assert(tag != CONSTANT_Signature);
3250   cp.outputEntries.add(this);
3251   for (int j = 0; j < nrefs; j++) {
3252     ref(j)->requestOutputIndex(cp);
3253   }
3254 }
3255 
3256 void cpool::resetOutputIndexes() {
3257   int i;
3258   int    noes =           outputEntries.length();
3259   entry** oes = (entry**) outputEntries.base();
3260   for (i = 0; i < noes; i++) {
3261     entry& e = *oes[i];
3262     e.outputIndex = NOT_REQUESTED;
3263   }
3264   outputIndexLimit = 0;
3265   outputEntries.empty();
3266 #ifndef PRODUCT
3267   // they must all be clear now
3268   for (i = 0; i < (int)nentries; i++)
3269     assert(entries[i].outputIndex == NOT_REQUESTED);
3270 #endif
3271 }
3272 
3273 static const byte TAG_ORDER[CONSTANT_Limit] = {
3274   0, 1, 0, 2, 3, 4, 5, 7, 6, 10, 11, 12, 9, 8
3275 };
3276 
3277 extern "C"
3278 int outputEntry_cmp(const void* e1p, const void* e2p) {
3279   // Sort entries according to the Pack200 rules for deterministic
3280   // constant pool ordering.
3281   //
3282   // The four sort keys as follows, in order of decreasing importance:
3283   //   1. ldc first, then non-ldc guys
3284   //   2. normal cp_All entries by input order (i.e., address order)
3285   //   3. after that, extra entries by lexical order (as in tag_extras[*])
3286   entry& e1 = *(entry*) *(void**) e1p;
3287   entry& e2 = *(entry*) *(void**) e2p;
3288   int   oi1 = e1.outputIndex;
3289   int   oi2 = e2.outputIndex;
3290   assert(oi1 == REQUESTED || oi1 == REQUESTED_LDC);
3291   assert(oi2 == REQUESTED || oi2 == REQUESTED_LDC);
3292   if (oi1 != oi2) {
3293     if (oi1 == REQUESTED_LDC)  return 0-1;
3294     if (oi2 == REQUESTED_LDC)  return 1-0;
3295     // Else fall through; neither is an ldc request.
3296   }
3297   if (e1.inord != NO_INORD || e2.inord != NO_INORD) {
3298     // One or both is normal.  Use input order.
3299     if (&e1 > &e2)  return 1-0;
3300     if (&e1 < &e2)  return 0-1;
3301     return 0;  // equal pointers
3302   }
3303   // Both are extras.  Sort by tag and then by value.
3304   if (e1.tag != e2.tag) {
3305     return TAG_ORDER[e1.tag] - TAG_ORDER[e2.tag];
3306   }
3307   // If the tags are the same, use string comparison.
3308   return compare_Utf8_chars(e1.value.b, e2.value.b);
3309 }
3310 
3311 void cpool::computeOutputIndexes() {
3312   int i;
3313 
3314 #ifndef PRODUCT
3315   // outputEntries must be a complete list of those requested:
3316   static uint checkStart = 0;
3317   int checkStep = 1;
3318   if (nentries > 100)  checkStep = nentries / 100;
3319   for (i = (int)(checkStart++ % checkStep); i < (int)nentries; i += checkStep) {
3320     entry& e = entries[i];
3321     if (e.outputIndex != NOT_REQUESTED) {
3322       assert(outputEntries.contains(&e));
3323     } else {
3324       assert(!outputEntries.contains(&e));
3325     }
3326   }
3327 
3328   // check hand-initialization of TAG_ORDER
3329   for (i = 0; i < (int)N_TAGS_IN_ORDER; i++) {
3330     byte tag = TAGS_IN_ORDER[i];
3331     assert(TAG_ORDER[tag] == i+1);
3332   }
3333 #endif
3334 
3335   int    noes =           outputEntries.length();
3336   entry** oes = (entry**) outputEntries.base();
3337 
3338   // Sort the output constant pool into the order required by Pack200.
3339   PTRLIST_QSORT(outputEntries, outputEntry_cmp);
3340 
3341   // Allocate a new index for each entry that needs one.
3342   // We do this in two passes, one for LDC entries and one for the rest.
3343   int nextIndex = 1;  // always skip index #0 in output cpool
3344   for (i = 0; i < noes; i++) {
3345     entry& e = *oes[i];
3346     assert(e.outputIndex == REQUESTED || e.outputIndex == REQUESTED_LDC);
3347     e.outputIndex = nextIndex++;
3348     if (e.isDoubleWord())  nextIndex++;  // do not use the next index
3349   }
3350   outputIndexLimit = nextIndex;
3351   PRINTCR((3,"renumbering CP to %d entries", outputIndexLimit));
3352 }
3353 
3354 #ifndef PRODUCT
3355 // debugging goo
3356 
3357 unpacker* debug_u;
3358 
3359 static bytes& getbuf(int len) {  // for debugging only!
3360   static int bn = 0;
3361   static bytes bufs[8];
3362   bytes& buf = bufs[bn++ & 7];
3363   while ((int)buf.len < len+10)
3364     buf.realloc(buf.len ? buf.len * 2 : 1000);
3365   buf.ptr[0] = 0;  // for the sake of strcat
3366   return buf;
3367 }
3368 
3369 char* entry::string() {
3370   bytes buf;
3371   switch (tag) {
3372   case CONSTANT_None:
3373     return (char*)"<empty>";
3374   case CONSTANT_Signature:
3375     if (value.b.ptr == null)
3376       return ref(0)->string();
3377     // else fall through:
3378   case CONSTANT_Utf8:
3379     buf = value.b;
3380     break;
3381   case CONSTANT_Integer:
3382   case CONSTANT_Float:
3383     buf = getbuf(12);
3384     sprintf((char*)buf.ptr, "0x%08x", value.i);
3385     break;
3386   case CONSTANT_Long:
3387   case CONSTANT_Double:
3388     buf = getbuf(24);
3389     sprintf((char*)buf.ptr, "0x" LONG_LONG_HEX_FORMAT, value.l);
3390     break;
3391   default:
3392     if (nrefs == 0) {
3393       buf = getbuf(20);
3394       sprintf((char*)buf.ptr, "<tag=%d>", tag);
3395     } else if (nrefs == 1) {
3396       return refs[0]->string();
3397     } else {
3398       char* s1 = refs[0]->string();
3399       char* s2 = refs[1]->string();
3400       buf = getbuf((int)strlen(s1) + 1 + (int)strlen(s2) + 4 + 1);
3401       buf.strcat(s1).strcat(" ").strcat(s2);
3402       if (nrefs > 2)  buf.strcat(" ...");
3403     }
3404   }
3405   return (char*)buf.ptr;
3406 }
3407 
3408 void print_cp_entry(int i) {
3409   entry& e = debug_u->cp.entries[i];
3410   char buf[30];
3411   sprintf(buf, ((uint)e.tag < CONSTANT_Limit)? TAG_NAME[e.tag]: "%d", e.tag);
3412   printf(" %d\t%s %s\n", i, buf, e.string());
3413 }
3414 
3415 void print_cp_entries(int beg, int end) {
3416   for (int i = beg; i < end; i++)
3417     print_cp_entry(i);
3418 }
3419 
3420 void print_cp() {
3421   print_cp_entries(0, debug_u->cp.nentries);
3422 }
3423 
3424 #endif
3425 
3426 // Unpacker Start
3427 
3428 const char str_tf[] = "true\0false";
3429 #undef STR_TRUE
3430 #undef STR_FALSE
3431 #define STR_TRUE   (&str_tf[0])
3432 #define STR_FALSE  (&str_tf[5])
3433 
3434 const char* unpacker::get_option(const char* prop) {
3435   if (prop == null )  return null;
3436   if (strcmp(prop, UNPACK_DEFLATE_HINT) == 0) {
3437     return deflate_hint_or_zero == 0? null : STR_TF(deflate_hint_or_zero > 0);
3438 #ifdef HAVE_STRIP
3439   } else if (strcmp(prop, UNPACK_STRIP_COMPILE) == 0) {
3440     return STR_TF(strip_compile);
3441   } else if (strcmp(prop, UNPACK_STRIP_DEBUG) == 0) {
3442     return STR_TF(strip_debug);
3443   } else if (strcmp(prop, UNPACK_STRIP_JCOV) == 0) {
3444     return STR_TF(strip_jcov);
3445 #endif /*HAVE_STRIP*/
3446   } else if (strcmp(prop, UNPACK_REMOVE_PACKFILE) == 0) {
3447     return STR_TF(remove_packfile);
3448   } else if (strcmp(prop, DEBUG_VERBOSE) == 0) {
3449     return saveIntStr(verbose);
3450   } else if (strcmp(prop, UNPACK_MODIFICATION_TIME) == 0) {
3451     return (modification_time_or_zero == 0)? null:
3452       saveIntStr(modification_time_or_zero);
3453   } else if (strcmp(prop, UNPACK_LOG_FILE) == 0) {
3454     return log_file;
3455   } else {
3456     return NULL; // unknown option ignore
3457   }
3458 }
3459 
3460 bool unpacker::set_option(const char* prop, const char* value) {
3461   if (prop == NULL)  return false;
3462   if (strcmp(prop, UNPACK_DEFLATE_HINT) == 0) {
3463     deflate_hint_or_zero = ( (value == null || strcmp(value, "keep") == 0)
3464                                 ? 0: BOOL_TF(value) ? +1: -1);
3465 #ifdef HAVE_STRIP
3466   } else if (strcmp(prop, UNPACK_STRIP_COMPILE) == 0) {
3467     strip_compile = STR_TF(value);
3468   } else if (strcmp(prop, UNPACK_STRIP_DEBUG) == 0) {
3469     strip_debug = STR_TF(value);
3470   } else if (strcmp(prop, UNPACK_STRIP_JCOV) == 0) {
3471     strip_jcov = STR_TF(value);
3472 #endif /*HAVE_STRIP*/
3473   } else if (strcmp(prop, UNPACK_REMOVE_PACKFILE) == 0) {
3474     remove_packfile = STR_TF(value);
3475   } else if (strcmp(prop, DEBUG_VERBOSE) == 0) {
3476     verbose = (value == null)? 0: atoi(value);
3477   } else if (strcmp(prop, DEBUG_VERBOSE ".bands") == 0) {
3478 #ifndef PRODUCT
3479     verbose_bands = (value == null)? 0: atoi(value);
3480 #endif
3481   } else if (strcmp(prop, UNPACK_MODIFICATION_TIME) == 0) {
3482     if (value == null || (strcmp(value, "keep") == 0)) {
3483       modification_time_or_zero = 0;
3484     } else if (strcmp(value, "now") == 0) {
3485       time_t now;
3486       time(&now);
3487       modification_time_or_zero = (int) now;
3488     } else {
3489       modification_time_or_zero = atoi(value);
3490       if (modification_time_or_zero == 0)
3491         modification_time_or_zero = 1;  // make non-zero
3492     }
3493   } else if (strcmp(prop, UNPACK_LOG_FILE) == 0) {
3494     log_file = (value == null)? value: saveStr(value);
3495   } else {
3496     return false; // unknown option ignore
3497   }
3498   return true;
3499 }
3500 
3501 // Deallocate all internal storage and reset to a clean state.
3502 // Do not disturb any input or output connections, including
3503 // infileptr, infileno, inbytes, read_input_fn, jarout, or errstrm.
3504 // Do not reset any unpack options.
3505 void unpacker::reset() {
3506   bytes_read_before_reset      += bytes_read;
3507   bytes_written_before_reset   += bytes_written;
3508   files_written_before_reset   += files_written;
3509   classes_written_before_reset += classes_written;
3510   segments_read_before_reset   += 1;
3511   if (verbose >= 2) {
3512     fprintf(errstrm,
3513             "After segment %d, "
3514             LONG_LONG_FORMAT " bytes read and "
3515             LONG_LONG_FORMAT " bytes written.\n",
3516             segments_read_before_reset-1,
3517             bytes_read_before_reset, bytes_written_before_reset);
3518     fprintf(errstrm,
3519             "After segment %d, %d files (of which %d are classes) written to output.\n",
3520             segments_read_before_reset-1,
3521             files_written_before_reset, classes_written_before_reset);
3522     if (archive_next_count != 0) {
3523       fprintf(errstrm,
3524               "After segment %d, %d segment%s remaining (estimated).\n",
3525               segments_read_before_reset-1,
3526               archive_next_count, archive_next_count==1?"":"s");
3527     }
3528   }
3529 
3530   unpacker save_u = (*this);  // save bytewise image
3531   infileptr = null;  // make asserts happy
3532   jniobj = null;  // make asserts happy
3533   jarout = null;  // do not close the output jar
3534   gzin = null;  // do not close the input gzip stream
3535   bytes esn;
3536   if (errstrm_name != null) {
3537     esn.saveFrom(errstrm_name);
3538   } else {
3539     esn.set(null, 0);
3540   }
3541   this->free();
3542   mtrace('s', 0, 0);  // note the boundary between segments
3543   this->init(read_input_fn);
3544 
3545   // restore selected interface state:
3546 #define SAVE(x) this->x = save_u.x
3547   SAVE(jniobj);
3548   SAVE(jnienv);
3549   SAVE(infileptr);  // buffered
3550   SAVE(infileno);   // unbuffered
3551   SAVE(inbytes);    // direct
3552   SAVE(jarout);
3553   SAVE(gzin);
3554   //SAVE(read_input_fn);
3555   SAVE(errstrm);
3556   SAVE(verbose);  // verbose level, 0 means no output
3557   SAVE(strip_compile);
3558   SAVE(strip_debug);
3559   SAVE(strip_jcov);
3560   SAVE(remove_packfile);
3561   SAVE(deflate_hint_or_zero);  // ==0 means not set, otherwise -1 or 1
3562   SAVE(modification_time_or_zero);
3563   SAVE(bytes_read_before_reset);
3564   SAVE(bytes_written_before_reset);
3565   SAVE(files_written_before_reset);
3566   SAVE(classes_written_before_reset);
3567   SAVE(segments_read_before_reset);
3568 #undef SAVE
3569   if (esn.len > 0) {
3570     errstrm_name = saveStr(esn.strval());
3571     esn.free();
3572   }
3573   log_file = errstrm_name;
3574   // Note:  If we use strip_names, watch out:  They get nuked here.
3575 }
3576 
3577 void unpacker::init(read_input_fn_t input_fn) {
3578   int i;
3579   NOT_PRODUCT(debug_u = this);
3580   BYTES_OF(*this).clear();
3581 #ifndef PRODUCT
3582   free();  // just to make sure freeing is idempotent
3583 #endif
3584   this->u = this;    // self-reference for U_NEW macro
3585   errstrm = stdout;  // default error-output
3586   log_file = LOGFILE_STDOUT;
3587   read_input_fn = input_fn;
3588   all_bands = band::makeBands(this);
3589   // Make a default jar buffer; caller may safely overwrite it.
3590   jarout = U_NEW(jar, 1);
3591   jarout->init(this);
3592   for (i = 0; i < ATTR_CONTEXT_LIMIT; i++)
3593     attr_defs[i].u = u;  // set up outer ptr
3594 }
3595 
3596 const char* unpacker::get_abort_message() {
3597    return abort_message;
3598 }
3599 
3600 void unpacker::dump_options() {
3601   static const char* opts[] = {
3602     UNPACK_LOG_FILE,
3603     UNPACK_DEFLATE_HINT,
3604 #ifdef HAVE_STRIP
3605     UNPACK_STRIP_COMPILE,
3606     UNPACK_STRIP_DEBUG,
3607     UNPACK_STRIP_JCOV,
3608 #endif /*HAVE_STRIP*/
3609     UNPACK_REMOVE_PACKFILE,
3610     DEBUG_VERBOSE,
3611     UNPACK_MODIFICATION_TIME,
3612     null
3613   };
3614   for (int i = 0; opts[i] != null; i++) {
3615     const char* str = get_option(opts[i]);
3616     if (str == null) {
3617       if (verbose == 0)  continue;
3618       str = "(not set)";
3619     }
3620     fprintf(errstrm, "%s=%s\n", opts[i], str);
3621   }
3622 }
3623 
3624 
3625 // Usage: unpack a byte buffer
3626 // packptr is a reference to byte buffer containing a
3627 // packed file and len is the length of the buffer.
3628 // If null, the callback is used to fill an internal buffer.
3629 void unpacker::start(void* packptr, size_t len) {
3630   NOT_PRODUCT(debug_u = this);
3631   if (packptr != null && len != 0) {
3632     inbytes.set((byte*) packptr, len);
3633   }
3634   read_bands();
3635 }
3636 
3637 void unpacker::check_options() {
3638   const char* strue  = "true";
3639   const char* sfalse = "false";
3640   if (deflate_hint_or_zero != 0) {
3641     bool force_deflate_hint = (deflate_hint_or_zero > 0);
3642     if (force_deflate_hint)
3643       default_file_options |= FO_DEFLATE_HINT;
3644     else
3645       default_file_options &= ~FO_DEFLATE_HINT;
3646     // Turn off per-file deflate hint by force.
3647     suppress_file_options |= FO_DEFLATE_HINT;
3648   }
3649   if (modification_time_or_zero != 0) {
3650     default_file_modtime = modification_time_or_zero;
3651     // Turn off per-file modtime by force.
3652     archive_options &= ~AO_HAVE_FILE_MODTIME;
3653   }
3654   // %%% strip_compile, etc...
3655 }
3656 
3657 // classfile writing
3658 
3659 void unpacker::reset_cur_classfile() {
3660   // set defaults
3661   cur_class_minver = default_class_minver;
3662   cur_class_majver = default_class_majver;
3663 
3664   // reset constant pool state
3665   cp.resetOutputIndexes();
3666 
3667   // reset fixups
3668   class_fixup_type.empty();
3669   class_fixup_offset.empty();
3670   class_fixup_ref.empty();
3671   requested_ics.empty();
3672 }
3673 
3674 cpindex* cpool::getKQIndex() {
3675   char ch = '?';
3676   if (u->cur_descr != null) {
3677     entry* type = u->cur_descr->descrType();
3678     ch = type->value.b.ptr[0];
3679   }
3680   byte tag = CONSTANT_Integer;
3681   switch (ch) {
3682   case 'L': tag = CONSTANT_String;   break;
3683   case 'I': tag = CONSTANT_Integer;  break;
3684   case 'J': tag = CONSTANT_Long;     break;
3685   case 'F': tag = CONSTANT_Float;    break;
3686   case 'D': tag = CONSTANT_Double;   break;
3687   case 'B': case 'S': case 'C':
3688   case 'Z': tag = CONSTANT_Integer;  break;
3689   default:  abort("bad KQ reference"); break;
3690   }
3691   return getIndex(tag);
3692 }
3693 
3694 uint unpacker::to_bci(uint bii) {
3695   uint  len =         bcimap.length();
3696   uint* map = (uint*) bcimap.base();
3697   assert(len > 0);  // must be initialized before using to_bci
3698   if (bii < len)
3699     return map[bii];
3700   // Else it's a fractional or out-of-range BCI.
3701   uint key = bii-len;
3702   for (int i = len; ; i--) {
3703     if (map[i-1]-(i-1) <= key)
3704       break;
3705     else
3706       --bii;
3707   }
3708   return bii;
3709 }
3710 
3711 void unpacker::put_stackmap_type() {
3712   int tag = code_StackMapTable_T.getByte();
3713   putu1(tag);
3714   switch (tag) {
3715   case 7: // (7) [RCH]
3716     putref(code_StackMapTable_RC.getRef());
3717     break;
3718   case 8: // (8) [PH]
3719     putu2(to_bci(code_StackMapTable_P.getInt()));
3720     break;
3721   }
3722 }
3723 
3724 // Functions for writing code.
3725 
3726 maybe_inline
3727 void unpacker::put_label(int curIP, int size) {
3728   code_fixup_type.addByte(size);
3729   code_fixup_offset.add((int)put_empty(size));
3730   code_fixup_source.add(curIP);
3731 }
3732 
3733 inline  // called exactly once => inline
3734 void unpacker::write_bc_ops() {
3735   bcimap.empty();
3736   code_fixup_type.empty();
3737   code_fixup_offset.empty();
3738   code_fixup_source.empty();
3739 
3740   band* bc_which;
3741 
3742   byte*  opptr = bc_codes.curRP();
3743   // No need for oplimit, since the codes are pre-counted.
3744 
3745   size_t codeBase = wpoffset();
3746 
3747   bool   isAload;  // copy-out result
3748   int    origBC;
3749 
3750   entry* thisClass  = cur_class;
3751   entry* superClass = cur_super;
3752   entry* newClass   = null;  // class of last _new opcode
3753 
3754   // overwrite any prior index on these bands; it changes w/ current class:
3755   bc_thisfield.setIndex(    cp.getFieldIndex( thisClass));
3756   bc_thismethod.setIndex(   cp.getMethodIndex(thisClass));
3757   if (superClass != null) {
3758     bc_superfield.setIndex( cp.getFieldIndex( superClass));
3759     bc_supermethod.setIndex(cp.getMethodIndex(superClass));
3760   } else {
3761     NOT_PRODUCT(bc_superfield.setIndex(null));
3762     NOT_PRODUCT(bc_supermethod.setIndex(null));
3763   }
3764 
3765   for (int curIP = 0; ; curIP++) {
3766     int curPC = (int)(wpoffset() - codeBase);
3767     bcimap.add(curPC);
3768     ensure_put_space(10);  // covers most instrs w/o further bounds check
3769     int bc = *opptr++ & 0xFF;
3770 
3771     putu1_fast(bc);
3772     // Note:  See '--wp' below for pseudo-bytecodes like bc_end_marker.
3773 
3774     bool isWide = false;
3775     if (bc == bc_wide) {
3776       bc = *opptr++ & 0xFF;
3777       putu1_fast(bc);
3778       isWide = true;
3779     }
3780     switch (bc) {
3781     case bc_end_marker:
3782       --wp;  // not really part of the code
3783       assert(opptr <= bc_codes.maxRP());
3784       bc_codes.curRP() = opptr;  // advance over this in bc_codes
3785       goto doneScanningMethod;
3786     case bc_tableswitch: // apc:  (df, lo, hi, (hi-lo+1)*(label))
3787     case bc_lookupswitch: // apc:  (df, nc, nc*(case, label))
3788       {
3789         int caseCount = bc_case_count.getInt();
3790         while (((wpoffset() - codeBase) % 4) != 0)  putu1_fast(0);
3791         ensure_put_space(30 + caseCount*8);
3792         put_label(curIP, 4);  //int df = bc_label.getInt();
3793         if (bc == bc_tableswitch) {
3794           int lo = bc_case_value.getInt();
3795           int hi = lo + caseCount-1;
3796           putu4(lo);
3797           putu4(hi);
3798           for (int j = 0; j < caseCount; j++) {
3799             put_label(curIP, 4); //int lVal = bc_label.getInt();
3800             //int cVal = lo + j;
3801           }
3802         } else {
3803           putu4(caseCount);
3804           for (int j = 0; j < caseCount; j++) {
3805             int cVal = bc_case_value.getInt();
3806             putu4(cVal);
3807             put_label(curIP, 4); //int lVal = bc_label.getInt();
3808           }
3809         }
3810         assert((int)to_bci(curIP) == curPC);
3811         continue;
3812       }
3813     case bc_iinc:
3814       {
3815         int local = bc_local.getInt();
3816         int delta = (isWide ? bc_short : bc_byte).getInt();
3817         if (isWide) {
3818           putu2(local);
3819           putu2(delta);
3820         } else {
3821           putu1_fast(local);
3822           putu1_fast(delta);
3823         }
3824         continue;
3825       }
3826     case bc_sipush:
3827       {
3828         int val = bc_short.getInt();
3829         putu2(val);
3830         continue;
3831       }
3832     case bc_bipush:
3833     case bc_newarray:
3834       {
3835         int val = bc_byte.getByte();
3836         putu1_fast(val);
3837         continue;
3838       }
3839     case bc_ref_escape:
3840       {
3841         // Note that insnMap has one entry for this.
3842         --wp;  // not really part of the code
3843         int size = bc_escrefsize.getInt();
3844         entry* ref = bc_escref.getRefN();
3845         CHECK;
3846         switch (size) {
3847         case 1: putu1ref(ref); break;
3848         case 2: putref(ref);   break;
3849         default: assert(false);
3850         }
3851         continue;
3852       }
3853     case bc_byte_escape:
3854       {
3855         // Note that insnMap has one entry for all these bytes.
3856         --wp;  // not really part of the code
3857         int size = bc_escsize.getInt();
3858         ensure_put_space(size);
3859         for (int j = 0; j < size; j++)
3860           putu1_fast(bc_escbyte.getByte());
3861         continue;
3862       }
3863     default:
3864       if (is_invoke_init_op(bc)) {
3865         origBC = bc_invokespecial;
3866         entry* classRef;
3867         switch (bc - _invokeinit_op) {
3868         case _invokeinit_self_option:   classRef = thisClass;  break;
3869         case _invokeinit_super_option:  classRef = superClass; break;
3870         default: assert(bc == _invokeinit_op+_invokeinit_new_option);
3871         case _invokeinit_new_option:    classRef = newClass;   break;
3872         }
3873         wp[-1] = origBC;  // overwrite with origBC
3874         int coding = bc_initref.getInt();
3875         // Find the nth overloading of <init> in classRef.
3876         entry*   ref = null;
3877         cpindex* ix = (classRef == null)? null: cp.getMethodIndex(classRef);
3878         for (int j = 0, which_init = 0; ; j++) {
3879           ref = (ix == null)? null: ix->get(j);
3880           if (ref == null)  break;  // oops, bad input
3881           assert(ref->tag == CONSTANT_Methodref);
3882           if (ref->memberDescr()->descrName() == cp.sym[cpool::s_lt_init_gt]) {
3883             if (which_init++ == coding)  break;
3884           }
3885         }
3886         putref(ref);
3887         continue;
3888       }
3889       bc_which = ref_band_for_self_op(bc, isAload, origBC);
3890       if (bc_which != null) {
3891         if (!isAload) {
3892           wp[-1] = origBC;  // overwrite with origBC
3893         } else {
3894           wp[-1] = bc_aload_0;  // overwrite with _aload_0
3895           // Note: insnMap keeps the _aload_0 separate.
3896           bcimap.add(++curPC);
3897           ++curIP;
3898           putu1_fast(origBC);
3899         }
3900         entry* ref = bc_which->getRef();
3901         CHECK;
3902         putref(ref);
3903         continue;
3904       }
3905       if (is_branch_op(bc)) {
3906         //int lVal = bc_label.getInt();
3907         if (bc < bc_goto_w) {
3908           put_label(curIP, 2);  //putu2(lVal & 0xFFFF);
3909         } else {
3910           assert(bc <= bc_jsr_w);
3911           put_label(curIP, 4);  //putu4(lVal);
3912         }
3913         assert((int)to_bci(curIP) == curPC);
3914         continue;
3915       }
3916       bc_which = ref_band_for_op(bc);
3917       if (bc_which != null) {
3918         entry* ref = bc_which->getRefCommon(bc_which->ix, bc_which->nullOK);
3919         CHECK;
3920         if (ref == null && bc_which == &bc_classref) {
3921           // Shorthand for class self-references.
3922           ref = thisClass;
3923         }
3924         origBC = bc;
3925         switch (bc) {
3926         case bc_ildc:
3927         case bc_cldc:
3928         case bc_fldc:
3929         case bc_aldc:
3930           origBC = bc_ldc;
3931           break;
3932         case bc_ildc_w:
3933         case bc_cldc_w:
3934         case bc_fldc_w:
3935         case bc_aldc_w:
3936           origBC = bc_ldc_w;
3937           break;
3938         case bc_lldc2_w:
3939         case bc_dldc2_w:
3940           origBC = bc_ldc2_w;
3941           break;
3942         case bc_new:
3943           newClass = ref;
3944           break;
3945         }
3946         wp[-1] = origBC;  // overwrite with origBC
3947         if (origBC == bc_ldc) {
3948           putu1ref(ref);
3949         } else {
3950           putref(ref);
3951         }
3952         if (origBC == bc_multianewarray) {
3953           // Copy the trailing byte also.
3954           int val = bc_byte.getByte();
3955           putu1_fast(val);
3956         } else if (origBC == bc_invokeinterface) {
3957           int argSize = ref->memberDescr()->descrType()->typeSize();
3958           putu1_fast(1 + argSize);
3959           putu1_fast(0);
3960         }
3961         continue;
3962       }
3963       if (is_local_slot_op(bc)) {
3964         int local = bc_local.getInt();
3965         if (isWide) {
3966           putu2(local);
3967           if (bc == bc_iinc) {
3968             int iVal = bc_short.getInt();
3969             putu2(iVal);
3970           }
3971         } else {
3972           putu1_fast(local);
3973           if (bc == bc_iinc) {
3974             int iVal = bc_byte.getByte();
3975             putu1_fast(iVal);
3976           }
3977         }
3978         continue;
3979       }
3980       // Random bytecode.  Just copy it.
3981       assert(bc < bc_bytecode_limit);
3982     }
3983   }
3984  doneScanningMethod:{}
3985   //bcimap.add(curPC);  // PC limit is already also in map, from bc_end_marker
3986 
3987   // Armed with a bcimap, we can now fix up all the labels.
3988   for (int i = 0; i < (int)code_fixup_type.size(); i++) {
3989     int   type   = code_fixup_type.getByte(i);
3990     byte* bp     = wp_at(code_fixup_offset.get(i));
3991     int   curIP  = code_fixup_source.get(i);
3992     int   destIP = curIP + bc_label.getInt();
3993     int   span   = to_bci(destIP) - to_bci(curIP);
3994     switch (type) {
3995     case 2: putu2_at(bp, (ushort)span); break;
3996     case 4: putu4_at(bp,         span); break;
3997     default: assert(false);
3998     }
3999   }
4000 }
4001 
4002 inline  // called exactly once => inline
4003 void unpacker::write_code() {
4004   int j;
4005 
4006   int max_stack, max_locals, handler_count, cflags;
4007   get_code_header(max_stack, max_locals, handler_count, cflags);
4008 
4009   if (max_stack < 0)      max_stack = code_max_stack.getInt();
4010   if (max_locals < 0)     max_locals = code_max_na_locals.getInt();
4011   if (handler_count < 0)  handler_count = code_handler_count.getInt();
4012 
4013   int siglen = cur_descr->descrType()->typeSize();
4014   CHECK;
4015   if ((cur_descr_flags & ACC_STATIC) == 0)  siglen++;
4016   max_locals += siglen;
4017 
4018   putu2(max_stack);
4019   putu2(max_locals);
4020   size_t bcbase = put_empty(4);
4021 
4022   // Write the bytecodes themselves.
4023   write_bc_ops();
4024   CHECK;
4025 
4026   byte* bcbasewp = wp_at(bcbase);
4027   putu4_at(bcbasewp, (int)(wp - (bcbasewp+4)));  // size of code attr
4028 
4029   putu2(handler_count);
4030   for (j = 0; j < handler_count; j++) {
4031     int bii = code_handler_start_P.getInt();
4032     putu2(to_bci(bii));
4033     bii    += code_handler_end_PO.getInt();
4034     putu2(to_bci(bii));
4035     bii    += code_handler_catch_PO.getInt();
4036     putu2(to_bci(bii));
4037     putref(code_handler_class_RCN.getRefN());
4038     CHECK;
4039   }
4040 
4041   julong indexBits = cflags;
4042   if (cflags < 0) {
4043     bool haveLongFlags = attr_defs[ATTR_CONTEXT_CODE].haveLongFlags();
4044     indexBits = code_flags_hi.getLong(code_flags_lo, haveLongFlags);
4045   }
4046   write_attrs(ATTR_CONTEXT_CODE, indexBits);
4047 }
4048 
4049 int unpacker::write_attrs(int attrc, julong indexBits) {
4050   CHECK_0;
4051   if (indexBits == 0) {
4052     // Quick short-circuit.
4053     putu2(0);
4054     return 0;
4055   }
4056 
4057   attr_definitions& ad = attr_defs[attrc];
4058 
4059   int i, j, j2, idx, count;
4060 
4061   int oiCount = 0;
4062   if (ad.isPredefined(X_ATTR_OVERFLOW)
4063       && (indexBits & ((julong)1<<X_ATTR_OVERFLOW)) != 0) {
4064     indexBits -= ((julong)1<<X_ATTR_OVERFLOW);
4065     oiCount = ad.xxx_attr_count().getInt();
4066   }
4067 
4068   int bitIndexes[X_ATTR_LIMIT_FLAGS_HI];
4069   int biCount = 0;
4070 
4071   // Fill bitIndexes with index bits, in order.
4072   for (idx = 0; indexBits != 0; idx++, indexBits >>= 1) {
4073     if ((indexBits & 1) != 0)
4074       bitIndexes[biCount++] = idx;
4075   }
4076   assert(biCount <= (int)lengthof(bitIndexes));
4077 
4078   // Write a provisional attribute count, perhaps to be corrected later.
4079   int naOffset = (int)wpoffset();
4080   int na0 = biCount + oiCount;
4081   putu2(na0);
4082 
4083   int na = 0;
4084   for (i = 0; i < na0; i++) {
4085     if (i < biCount)
4086       idx = bitIndexes[i];
4087     else
4088       idx = ad.xxx_attr_indexes().getInt();
4089     assert(ad.isIndex(idx));
4090     entry* aname = null;
4091     entry* ref;  // scratch
4092     size_t abase = put_empty(2+4);
4093     CHECK_0;
4094     if (idx < (int)ad.flag_limit && ad.isPredefined(idx)) {
4095       // Switch on the attrc and idx simultaneously.
4096       switch (ADH_BYTE(attrc, idx)) {
4097 
4098       case ADH_BYTE(ATTR_CONTEXT_CLASS,  X_ATTR_OVERFLOW):
4099       case ADH_BYTE(ATTR_CONTEXT_FIELD,  X_ATTR_OVERFLOW):
4100       case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_OVERFLOW):
4101       case ADH_BYTE(ATTR_CONTEXT_CODE,   X_ATTR_OVERFLOW):
4102         // no attribute at all, so back up on this one
4103         wp = wp_at(abase);
4104         continue;
4105 
4106       case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_ClassFile_version):
4107         cur_class_minver = class_ClassFile_version_minor_H.getInt();
4108         cur_class_majver = class_ClassFile_version_major_H.getInt();
4109         // back up; not a real attribute
4110         wp = wp_at(abase);
4111         continue;
4112 
4113       case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_InnerClasses):
4114         // note the existence of this attr, but save for later
4115         if (cur_class_has_local_ics)
4116           abort("too many InnerClasses attrs");
4117         cur_class_has_local_ics = true;
4118         wp = wp_at(abase);
4119         continue;
4120 
4121       case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_SourceFile):
4122         aname = cp.sym[cpool::s_SourceFile];
4123         ref = class_SourceFile_RUN.getRefN();
4124         CHECK_0;
4125         if (ref == null) {
4126           bytes& n = cur_class->ref(0)->value.b;
4127           // parse n = (<pkg>/)*<outer>?($<id>)*
4128           int pkglen = lastIndexOf(SLASH_MIN,  SLASH_MAX,  n, (int)n.len)+1;
4129           bytes prefix = n.slice(pkglen, n.len);
4130           for (;;) {
4131             // Work backwards, finding all '$', '#', etc.
4132             int dollar = lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, prefix, (int)prefix.len);
4133             if (dollar < 0)  break;
4134             prefix = prefix.slice(0, dollar);
4135           }
4136           const char* suffix = ".java";
4137           int len = (int)(prefix.len + strlen(suffix));
4138           bytes name; name.set(T_NEW(byte, add_size(len, 1)), len);
4139           name.strcat(prefix).strcat(suffix);
4140           ref = cp.ensureUtf8(name);
4141         }
4142         putref(ref);
4143         break;
4144 
4145       case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_EnclosingMethod):
4146         aname = cp.sym[cpool::s_EnclosingMethod];
4147         putref(class_EnclosingMethod_RC.getRefN());
4148         putref(class_EnclosingMethod_RDN.getRefN());
4149         break;
4150 
4151       case ADH_BYTE(ATTR_CONTEXT_FIELD, FIELD_ATTR_ConstantValue):
4152         aname = cp.sym[cpool::s_ConstantValue];
4153         putref(field_ConstantValue_KQ.getRefUsing(cp.getKQIndex()));
4154         break;
4155 
4156       case ADH_BYTE(ATTR_CONTEXT_METHOD, METHOD_ATTR_Code):
4157         aname = cp.sym[cpool::s_Code];
4158         write_code();
4159         break;
4160 
4161       case ADH_BYTE(ATTR_CONTEXT_METHOD, METHOD_ATTR_Exceptions):
4162         aname = cp.sym[cpool::s_Exceptions];
4163         putu2(count = method_Exceptions_N.getInt());
4164         for (j = 0; j < count; j++) {
4165           putref(method_Exceptions_RC.getRefN());
4166         }
4167         break;
4168 
4169       case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_StackMapTable):
4170         aname = cp.sym[cpool::s_StackMapTable];
4171         // (keep this code aligned with its brother in unpacker::read_attrs)
4172         putu2(count = code_StackMapTable_N.getInt());
4173         for (j = 0; j < count; j++) {
4174           int tag = code_StackMapTable_frame_T.getByte();
4175           putu1(tag);
4176           if (tag <= 127) {
4177             // (64-127)  [(2)]
4178             if (tag >= 64)  put_stackmap_type();
4179           } else if (tag <= 251) {
4180             // (247)     [(1)(2)]
4181             // (248-251) [(1)]
4182             if (tag >= 247)  putu2(code_StackMapTable_offset.getInt());
4183             if (tag == 247)  put_stackmap_type();
4184           } else if (tag <= 254) {
4185             // (252)     [(1)(2)]
4186             // (253)     [(1)(2)(2)]
4187             // (254)     [(1)(2)(2)(2)]
4188             putu2(code_StackMapTable_offset.getInt());
4189             for (int k = (tag - 251); k > 0; k--) {
4190               put_stackmap_type();
4191             }
4192           } else {
4193             // (255)     [(1)NH[(2)]NH[(2)]]
4194             putu2(code_StackMapTable_offset.getInt());
4195             putu2(j2 = code_StackMapTable_local_N.getInt());
4196             while (j2-- > 0)  put_stackmap_type();
4197             putu2(j2 = code_StackMapTable_stack_N.getInt());
4198             while (j2-- > 0)  put_stackmap_type();
4199           }
4200         }
4201         break;
4202 
4203       case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LineNumberTable):
4204         aname = cp.sym[cpool::s_LineNumberTable];
4205         putu2(count = code_LineNumberTable_N.getInt());
4206         for (j = 0; j < count; j++) {
4207           putu2(to_bci(code_LineNumberTable_bci_P.getInt()));
4208           putu2(code_LineNumberTable_line.getInt());
4209         }
4210         break;
4211 
4212       case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LocalVariableTable):
4213         aname = cp.sym[cpool::s_LocalVariableTable];
4214         putu2(count = code_LocalVariableTable_N.getInt());
4215         for (j = 0; j < count; j++) {
4216           int bii = code_LocalVariableTable_bci_P.getInt();
4217           int bci = to_bci(bii);
4218           putu2(bci);
4219           bii    += code_LocalVariableTable_span_O.getInt();
4220           putu2(to_bci(bii) - bci);
4221           putref(code_LocalVariableTable_name_RU.getRefN());
4222           putref(code_LocalVariableTable_type_RS.getRefN());
4223           putu2(code_LocalVariableTable_slot.getInt());
4224         }
4225         break;
4226 
4227       case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LocalVariableTypeTable):
4228         aname = cp.sym[cpool::s_LocalVariableTypeTable];
4229         putu2(count = code_LocalVariableTypeTable_N.getInt());
4230         for (j = 0; j < count; j++) {
4231           int bii = code_LocalVariableTypeTable_bci_P.getInt();
4232           int bci = to_bci(bii);
4233           putu2(bci);
4234           bii    += code_LocalVariableTypeTable_span_O.getInt();
4235           putu2(to_bci(bii) - bci);
4236           putref(code_LocalVariableTypeTable_name_RU.getRefN());
4237           putref(code_LocalVariableTypeTable_type_RS.getRefN());
4238           putu2(code_LocalVariableTypeTable_slot.getInt());
4239         }
4240         break;
4241 
4242       case ADH_BYTE(ATTR_CONTEXT_CLASS, X_ATTR_Signature):
4243         aname = cp.sym[cpool::s_Signature];
4244         putref(class_Signature_RS.getRefN());
4245         break;
4246 
4247       case ADH_BYTE(ATTR_CONTEXT_FIELD, X_ATTR_Signature):
4248         aname = cp.sym[cpool::s_Signature];
4249         putref(field_Signature_RS.getRefN());
4250         break;
4251 
4252       case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_Signature):
4253         aname = cp.sym[cpool::s_Signature];
4254         putref(method_Signature_RS.getRefN());
4255         break;
4256 
4257       case ADH_BYTE(ATTR_CONTEXT_CLASS,  X_ATTR_Deprecated):
4258       case ADH_BYTE(ATTR_CONTEXT_FIELD,  X_ATTR_Deprecated):
4259       case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_Deprecated):
4260         aname = cp.sym[cpool::s_Deprecated];
4261         // no data
4262         break;
4263       }
4264     }
4265 
4266     if (aname == null) {
4267       // Unparse a compressor-defined attribute.
4268       layout_definition* lo = ad.getLayout(idx);
4269       if (lo == null) {
4270         abort("bad layout index");
4271         break;
4272       }
4273       assert((int)lo->idx == idx);
4274       aname = lo->nameEntry;
4275       if (aname == null) {
4276         bytes nameb; nameb.set(lo->name);
4277         aname = cp.ensureUtf8(nameb);
4278         // Cache the name entry for next time.
4279         lo->nameEntry = aname;
4280       }
4281       // Execute all the layout elements.
4282       band** bands = lo->bands();
4283       if (lo->hasCallables()) {
4284         band& cble = *bands[0];
4285         assert(cble.le_kind == EK_CBLE);
4286         bands = cble.le_body;
4287       }
4288       putlayout(bands);
4289     }
4290 
4291     if (aname == null)
4292       abort("bad attribute index");
4293     CHECK_0;
4294 
4295     byte* wp1 = wp;
4296     wp = wp_at(abase);
4297 
4298     // DTRT if this attr is on the strip-list.
4299     // (Note that we emptied the data out of the band first.)
4300     if (ad.strip_names.contains(aname)) {
4301       continue;
4302     }
4303 
4304     // patch the name and length
4305     putref(aname);
4306     putu4((int)(wp1 - (wp+4)));  // put the attr size
4307     wp = wp1;
4308     na++;  // count the attrs actually written
4309   }
4310 
4311   if (na != na0)
4312     // Refresh changed count.
4313     putu2_at(wp_at(naOffset), na);
4314   return na;
4315 }
4316 
4317 void unpacker::write_members(int num, int attrc) {
4318   CHECK;
4319   attr_definitions& ad = attr_defs[attrc];
4320   band& member_flags_hi = ad.xxx_flags_hi();
4321   band& member_flags_lo = ad.xxx_flags_lo();
4322   band& member_descr = (&member_flags_hi)[e_field_descr-e_field_flags_hi];
4323   assert(endsWith(member_descr.name, "_descr"));
4324   assert(endsWith(member_flags_lo.name, "_flags_lo"));
4325   assert(endsWith(member_flags_lo.name, "_flags_lo"));
4326   bool haveLongFlags = ad.haveLongFlags();
4327 
4328   putu2(num);
4329   julong indexMask = attr_defs[attrc].flagIndexMask();
4330   for (int i = 0; i < num; i++) {
4331     julong mflags = member_flags_hi.getLong(member_flags_lo, haveLongFlags);
4332     entry* mdescr = member_descr.getRef();
4333     cur_descr = mdescr;
4334     putu2(cur_descr_flags = (ushort)(mflags & ~indexMask));
4335     CHECK;
4336     putref(mdescr->descrName());
4337     putref(mdescr->descrType());
4338     write_attrs(attrc, (mflags & indexMask));
4339     CHECK;
4340   }
4341   cur_descr = null;
4342 }
4343 
4344 extern "C"
4345 int raw_address_cmp(const void* p1p, const void* p2p) {
4346   void* p1 = *(void**) p1p;
4347   void* p2 = *(void**) p2p;
4348   return (p1 > p2)? 1: (p1 < p2)? -1: 0;
4349 }
4350 
4351 void unpacker::write_classfile_tail() {
4352   cur_classfile_tail.empty();
4353   set_output(&cur_classfile_tail);
4354 
4355   int i, num;
4356 
4357   attr_definitions& ad = attr_defs[ATTR_CONTEXT_CLASS];
4358 
4359   bool haveLongFlags = ad.haveLongFlags();
4360   julong kflags = class_flags_hi.getLong(class_flags_lo, haveLongFlags);
4361   julong indexMask = ad.flagIndexMask();
4362 
4363   cur_class = class_this.getRef();
4364   cur_super = class_super.getRef();
4365 
4366   CHECK;
4367 
4368   if (cur_super == cur_class)  cur_super = null;
4369   // special representation for java/lang/Object
4370 
4371   putu2((ushort)(kflags & ~indexMask));
4372   putref(cur_class);
4373   putref(cur_super);
4374 
4375   putu2(num = class_interface_count.getInt());
4376   for (i = 0; i < num; i++) {
4377     putref(class_interface.getRef());
4378   }
4379 
4380   write_members(class_field_count.getInt(),  ATTR_CONTEXT_FIELD);
4381   write_members(class_method_count.getInt(), ATTR_CONTEXT_METHOD);
4382   CHECK;
4383 
4384   cur_class_has_local_ics = false;  // may be set true by write_attrs
4385 
4386 
4387   int naOffset = (int)wpoffset();
4388   int na = write_attrs(ATTR_CONTEXT_CLASS, (kflags & indexMask));
4389 
4390 
4391   // at the very last, choose which inner classes (if any) pertain to k:
4392 #ifdef ASSERT
4393   for (i = 0; i < ic_count; i++) {
4394     assert(!ics[i].requested);
4395   }
4396 #endif
4397   // First, consult the global table and the local constant pool,
4398   // and decide on the globally implied inner classes.
4399   // (Note that we read the cpool's outputIndex fields, but we
4400   // do not yet write them, since the local IC attribute might
4401   // reverse a global decision to declare an IC.)
4402   assert(requested_ics.length() == 0);  // must start out empty
4403   // Always include all members of the current class.
4404   for (inner_class* child = cp.getFirstChildIC(cur_class);
4405        child != null;
4406        child = cp.getNextChildIC(child)) {
4407     child->requested = true;
4408     requested_ics.add(child);
4409   }
4410   // And, for each inner class mentioned in the constant pool,
4411   // include it and all its outers.
4412   int    noes =           cp.outputEntries.length();
4413   entry** oes = (entry**) cp.outputEntries.base();
4414   for (i = 0; i < noes; i++) {
4415     entry& e = *oes[i];
4416     if (e.tag != CONSTANT_Class)  continue;  // wrong sort
4417     for (inner_class* ic = cp.getIC(&e);
4418          ic != null;
4419          ic = cp.getIC(ic->outer)) {
4420       if (ic->requested)  break;  // already processed
4421       ic->requested = true;
4422       requested_ics.add(ic);
4423     }
4424   }
4425   int local_ics = requested_ics.length();
4426   // Second, consult a local attribute (if any) and adjust the global set.
4427   inner_class* extra_ics = null;
4428   int      num_extra_ics = 0;
4429   if (cur_class_has_local_ics) {
4430     // adjust the set of ICs by symmetric set difference w/ the locals
4431     num_extra_ics = class_InnerClasses_N.getInt();
4432     if (num_extra_ics == 0) {
4433       // Explicit zero count has an irregular meaning:  It deletes the attr.
4434       local_ics = 0;  // (short-circuit all tests of requested bits)
4435     } else {
4436       extra_ics = T_NEW(inner_class, num_extra_ics);
4437       // Note:  extra_ics will be freed up by next call to get_next_file().
4438     }
4439   }
4440   for (i = 0; i < num_extra_ics; i++) {
4441     inner_class& extra_ic = extra_ics[i];
4442     extra_ic.inner = class_InnerClasses_RC.getRef();
4443     CHECK;
4444     // Find the corresponding equivalent global IC:
4445     inner_class* global_ic = cp.getIC(extra_ic.inner);
4446     int flags = class_InnerClasses_F.getInt();
4447     if (flags == 0) {
4448       // The extra IC is simply a copy of a global IC.
4449       if (global_ic == null) {
4450         abort("bad reference to inner class");
4451         break;
4452       }
4453       extra_ic = (*global_ic);  // fill in rest of fields
4454     } else {
4455       flags &= ~ACC_IC_LONG_FORM;  // clear high bit if set to get clean zero
4456       extra_ic.flags = flags;
4457       extra_ic.outer = class_InnerClasses_outer_RCN.getRefN();
4458       extra_ic.name  = class_InnerClasses_name_RUN.getRefN();
4459       // Detect if this is an exact copy of the global tuple.
4460       if (global_ic != null) {
4461         if (global_ic->flags != extra_ic.flags ||
4462             global_ic->outer != extra_ic.outer ||
4463             global_ic->name  != extra_ic.name) {
4464           global_ic = null;  // not really the same, so break the link
4465         }
4466       }
4467     }
4468     if (global_ic != null && global_ic->requested) {
4469       // This local repetition reverses the globally implied request.
4470       global_ic->requested = false;
4471       extra_ic.requested = false;
4472       local_ics -= 1;
4473     } else {
4474       // The global either does not exist, or is not yet requested.
4475       extra_ic.requested = true;
4476       local_ics += 1;
4477     }
4478   }
4479   // Finally, if there are any that survived, put them into an attribute.
4480   // (Note that a zero-count attribute is always deleted.)
4481   // The putref calls below will tell the constant pool to add any
4482   // necessary local CP references to support the InnerClasses attribute.
4483   // This step must be the last round of additions to the local CP.
4484   if (local_ics > 0) {
4485     // append the new attribute:
4486     putref(cp.sym[cpool::s_InnerClasses]);
4487     putu4(2 + 2*4*local_ics);
4488     putu2(local_ics);
4489     PTRLIST_QSORT(requested_ics, raw_address_cmp);
4490     int num_global_ics = requested_ics.length();
4491     for (i = -num_global_ics; i < num_extra_ics; i++) {
4492       inner_class* ic;
4493       if (i < 0)
4494         ic = (inner_class*) requested_ics.get(num_global_ics+i);
4495       else
4496         ic = &extra_ics[i];
4497       if (ic->requested) {
4498         putref(ic->inner);
4499         putref(ic->outer);
4500         putref(ic->name);
4501         putu2(ic->flags);
4502         NOT_PRODUCT(local_ics--);
4503       }
4504     }
4505     assert(local_ics == 0);           // must balance
4506     putu2_at(wp_at(naOffset), ++na);  // increment class attr count
4507   }
4508 
4509   // Tidy up global 'requested' bits:
4510   for (i = requested_ics.length(); --i >= 0; ) {
4511     inner_class* ic = (inner_class*) requested_ics.get(i);
4512     ic->requested = false;
4513   }
4514   requested_ics.empty();
4515 
4516   CHECK;
4517   close_output();
4518 
4519   // rewrite CP references in the tail
4520   cp.computeOutputIndexes();
4521   int nextref = 0;
4522   for (i = 0; i < (int)class_fixup_type.size(); i++) {
4523     int    type = class_fixup_type.getByte(i);
4524     byte*  fixp = wp_at(class_fixup_offset.get(i));
4525     entry* e    = (entry*)class_fixup_ref.get(nextref++);
4526     int    idx  = e->getOutputIndex();
4527     switch (type) {
4528     case 1:  putu1_at(fixp, idx);  break;
4529     case 2:  putu2_at(fixp, idx);  break;
4530     default: assert(false);  // should not reach here
4531     }
4532   }
4533   CHECK;
4534 }
4535 
4536 void unpacker::write_classfile_head() {
4537   cur_classfile_head.empty();
4538   set_output(&cur_classfile_head);
4539 
4540   putu4(JAVA_MAGIC);
4541   putu2(cur_class_minver);
4542   putu2(cur_class_majver);
4543   putu2(cp.outputIndexLimit);
4544 
4545   int checkIndex = 1;
4546   int    noes =           cp.outputEntries.length();
4547   entry** oes = (entry**) cp.outputEntries.base();
4548   for (int i = 0; i < noes; i++) {
4549     entry& e = *oes[i];
4550     assert(e.getOutputIndex() == checkIndex++);
4551     byte tag = e.tag;
4552     assert(tag != CONSTANT_Signature);
4553     putu1(tag);
4554     switch (tag) {
4555     case CONSTANT_Utf8:
4556       putu2((int)e.value.b.len);
4557       put_bytes(e.value.b);
4558       break;
4559     case CONSTANT_Integer:
4560     case CONSTANT_Float:
4561       putu4(e.value.i);
4562       break;
4563     case CONSTANT_Long:
4564     case CONSTANT_Double:
4565       putu8(e.value.l);
4566       assert(checkIndex++);
4567       break;
4568     case CONSTANT_Class:
4569     case CONSTANT_String:
4570       // just write the ref
4571       putu2(e.refs[0]->getOutputIndex());
4572       break;
4573     case CONSTANT_Fieldref:
4574     case CONSTANT_Methodref:
4575     case CONSTANT_InterfaceMethodref:
4576     case CONSTANT_NameandType:
4577       putu2(e.refs[0]->getOutputIndex());
4578       putu2(e.refs[1]->getOutputIndex());
4579       break;
4580     default:
4581       abort(ERROR_INTERNAL);
4582     }
4583   }
4584 
4585 #ifndef PRODUCT
4586   total_cp_size[0] += cp.outputIndexLimit;
4587   total_cp_size[1] += (int)cur_classfile_head.size();
4588 #endif
4589   close_output();
4590 }
4591 
4592 unpacker::file* unpacker::get_next_file() {
4593   CHECK_0;
4594   free_temps();
4595   if (files_remaining == 0) {
4596     // Leave a clue that we're exhausted.
4597     cur_file.name = null;
4598     cur_file.size = null;
4599     if (archive_size != 0) {
4600       julong predicted_size = unsized_bytes_read + archive_size;
4601       if (predicted_size != bytes_read)
4602         abort("archive header had incorrect size");
4603     }
4604     return null;
4605   }
4606   files_remaining -= 1;
4607   assert(files_written < file_count || classes_written < class_count);
4608   cur_file.name = "";
4609   cur_file.size = 0;
4610   cur_file.modtime = default_file_modtime;
4611   cur_file.options = default_file_options;
4612   cur_file.data[0].set(null, 0);
4613   cur_file.data[1].set(null, 0);
4614   if (files_written < file_count) {
4615     entry* e = file_name.getRef();
4616     CHECK_0;
4617     cur_file.name = e->utf8String();
4618     bool haveLongSize = ((archive_options & AO_HAVE_FILE_SIZE_HI) != 0);
4619     cur_file.size = file_size_hi.getLong(file_size_lo, haveLongSize);
4620     if ((archive_options & AO_HAVE_FILE_MODTIME) != 0)
4621       cur_file.modtime += file_modtime.getInt();  //relative to archive modtime
4622     if ((archive_options & AO_HAVE_FILE_OPTIONS) != 0)
4623       cur_file.options |= file_options.getInt() & ~suppress_file_options;
4624   } else if (classes_written < class_count) {
4625     // there is a class for a missing file record
4626     cur_file.options |= FO_IS_CLASS_STUB;
4627   }
4628   if ((cur_file.options & FO_IS_CLASS_STUB) != 0) {
4629     assert(classes_written < class_count);
4630     classes_written += 1;
4631     if (cur_file.size != 0) {
4632       abort("class file size transmitted");
4633       return null;
4634     }
4635     reset_cur_classfile();
4636 
4637     // write the meat of the classfile:
4638     write_classfile_tail();
4639     cur_file.data[1] = cur_classfile_tail.b;
4640     CHECK_0;
4641 
4642     // write the CP of the classfile, second:
4643     write_classfile_head();
4644     cur_file.data[0] = cur_classfile_head.b;
4645     CHECK_0;
4646 
4647     cur_file.size += cur_file.data[0].len;
4648     cur_file.size += cur_file.data[1].len;
4649     if (cur_file.name[0] == '\0') {
4650       bytes& prefix = cur_class->ref(0)->value.b;
4651       const char* suffix = ".class";
4652       int len = (int)(prefix.len + strlen(suffix));
4653       bytes name; name.set(T_NEW(byte, add_size(len, 1)), len);
4654       cur_file.name = name.strcat(prefix).strcat(suffix).strval();
4655     }
4656   } else {
4657     // If there is buffered file data, produce a pointer to it.
4658     if (cur_file.size != (size_t) cur_file.size) {
4659       // Silly size specified.
4660       abort("resource file too large");
4661       return null;
4662     }
4663     size_t rpleft = input_remaining();
4664     if (rpleft > 0) {
4665       if (rpleft > cur_file.size)
4666         rpleft = (size_t) cur_file.size;
4667       cur_file.data[0].set(rp, rpleft);
4668       rp += rpleft;
4669     }
4670     if (rpleft < cur_file.size) {
4671       // Caller must read the rest.
4672       size_t fleft = (size_t)cur_file.size - rpleft;
4673       bytes_read += fleft;  // Credit it to the overall archive size.
4674     }
4675   }
4676   CHECK_0;
4677   bytes_written += cur_file.size;
4678   files_written += 1;
4679   return &cur_file;
4680 }
4681 
4682 // Write a file to jarout.
4683 void unpacker::write_file_to_jar(unpacker::file* f) {
4684   size_t htsize = f->data[0].len + f->data[1].len;
4685   julong fsize = f->size;
4686 #ifndef PRODUCT
4687   if (nowrite NOT_PRODUCT(|| skipfiles-- > 0)) {
4688     PRINTCR((2,"would write %d bytes to %s", (int) fsize, f->name));
4689     return;
4690   }
4691 #endif
4692   if (htsize == fsize) {
4693     jarout->addJarEntry(f->name, f->deflate_hint(), f->modtime,
4694                         f->data[0], f->data[1]);
4695   } else {
4696     assert(input_remaining() == 0);
4697     bytes part1, part2;
4698     part1.len = f->data[0].len;
4699     part1.set(T_NEW(byte, part1.len), part1.len);
4700     part1.copyFrom(f->data[0]);
4701     assert(f->data[1].len == 0);
4702     part2.set(null, 0);
4703     size_t fleft = (size_t) fsize - part1.len;
4704     assert(bytes_read > fleft);  // part2 already credited by get_next_file
4705     bytes_read -= fleft;
4706     if (fleft > 0) {
4707       // Must read some more.
4708       if (live_input) {
4709         // Stop using the input buffer.  Make a new one:
4710         if (free_input)  input.free();
4711         input.init(fleft > (1<<12) ? fleft : (1<<12));
4712         free_input = true;
4713         live_input = false;
4714       } else {
4715         // Make it large enough.
4716         assert(free_input);  // must be reallocable
4717         input.ensureSize(fleft);
4718       }
4719       rplimit = rp = input.base();
4720       CHECK;
4721       input.setLimit(rp + fleft);
4722       if (!ensure_input(fleft))
4723         abort("EOF reading resource file");
4724       part2.ptr = input_scan();
4725       part2.len = input_remaining();
4726       rplimit = rp = input.base();
4727     }
4728     jarout->addJarEntry(f->name, f->deflate_hint(), f->modtime,
4729                         part1, part2);
4730   }
4731   if (verbose >= 3) {
4732     fprintf(errstrm, "Wrote "
4733                      LONG_LONG_FORMAT " bytes to: %s\n", fsize, f->name);
4734   }
4735 }
4736 
4737 // Redirect the stdio to the specified file in the unpack.log.file option
4738 void unpacker::redirect_stdio() {
4739   if (log_file == null) {
4740     log_file = LOGFILE_STDOUT;
4741   }
4742   if (log_file == errstrm_name)
4743     // Nothing more to be done.
4744     return;
4745   errstrm_name = log_file;
4746   if (strcmp(log_file, LOGFILE_STDERR) == 0) {
4747     errstrm = stderr;
4748     return;
4749   } else if (strcmp(log_file, LOGFILE_STDOUT) == 0) {
4750     errstrm = stdout;
4751     return;
4752   } else if (log_file[0] != '\0' && (errstrm = fopen(log_file,"a+")) != NULL) {
4753     return;
4754   } else {
4755     char log_file_name[PATH_MAX+100];
4756     char tmpdir[PATH_MAX];
4757 #ifdef WIN32
4758     int n = GetTempPath(PATH_MAX,tmpdir); //API returns with trailing '\'
4759     if (n < 1 || n > PATH_MAX) {
4760       sprintf(tmpdir,"C:\\");
4761     }
4762     sprintf(log_file_name, "%sunpack.log", tmpdir);
4763 #else
4764     sprintf(tmpdir,"/tmp");
4765     sprintf(log_file_name, "/tmp/unpack.log");
4766 #endif
4767     if ((errstrm = fopen(log_file_name, "a+")) != NULL) {
4768       log_file = errstrm_name = saveStr(log_file_name);
4769       return ;
4770     }
4771 
4772     char *tname = tempnam(tmpdir,"#upkg");
4773     if (tname == NULL) return;
4774     sprintf(log_file_name, "%s", tname);
4775     ::free(tname);
4776     if ((errstrm = fopen(log_file_name, "a+")) != NULL) {
4777       log_file = errstrm_name = saveStr(log_file_name);
4778       return ;
4779     }
4780 #ifndef WIN32
4781     sprintf(log_file_name, "/dev/null");
4782     // On windows most likely it will fail.
4783     if ( (errstrm = fopen(log_file_name, "a+")) != NULL) {
4784       log_file = errstrm_name = saveStr(log_file_name);
4785       return ;
4786     }
4787 #endif
4788     // Last resort
4789     // (Do not use stdout, since it might be jarout->jarfp.)
4790     errstrm = stderr;
4791     log_file = errstrm_name = LOGFILE_STDERR;
4792   }
4793 }
4794 
4795 #ifndef PRODUCT
4796 int unpacker::printcr_if_verbose(int level, const char* fmt ...) {
4797   if (verbose < level+10)  return 0;
4798   va_list vl;
4799   va_start(vl, fmt);
4800   char fmtbuf[300];
4801   strcpy(fmtbuf+100, fmt);
4802   strcat(fmtbuf+100, "\n");
4803   char* fmt2 = fmtbuf+100;
4804   while (level-- > 0)  *--fmt2 = ' ';
4805   vfprintf(errstrm, fmt2, vl);
4806   return 1;  // for ?: usage
4807 }
4808 #endif
4809 
4810 void unpacker::abort(const char* message) {
4811   if (message == null)  message = "error unpacking archive";
4812 #ifdef UNPACK_JNI
4813   if (message[0] == '@') {  // secret convention for sprintf
4814      bytes saved;
4815      saved.saveFrom(message+1);
4816      mallocs.add(message = saved.strval());
4817    }
4818   abort_message = message;
4819   return;
4820 #else
4821   if (message[0] == '@')  ++message;
4822   fprintf(errstrm, "%s\n", message);
4823 #ifndef PRODUCT
4824   fflush(errstrm);
4825   ::abort();
4826 #else
4827   exit(-1);
4828 #endif
4829 #endif // JNI
4830 }