1 /* *********************************************************************
   2  *
   3  * Sun elects to have this file available under and governed by the
   4  * Mozilla Public License Version 1.1 ("MPL") (see
   5  * http://www.mozilla.org/MPL/ for full license text). For the avoidance
   6  * of doubt and subject to the following, Sun also elects to allow
   7  * licensees to use this file under the MPL, the GNU General Public
   8  * License version 2 only or the Lesser General Public License version
   9  * 2.1 only. Any references to the "GNU General Public License version 2
  10  * or later" or "GPL" in the following shall be construed to mean the
  11  * GNU General Public License version 2 only. Any references to the "GNU
  12  * Lesser General Public License version 2.1 or later" or "LGPL" in the
  13  * following shall be construed to mean the GNU Lesser General Public
  14  * License version 2.1 only. However, the following notice accompanied
  15  * the original version of this file:
  16  *
  17  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
  18  *
  19  * The contents of this file are subject to the Mozilla Public License Version
  20  * 1.1 (the "License"); you may not use this file except in compliance with
  21  * the License. You may obtain a copy of the License at
  22  * http://www.mozilla.org/MPL/
  23  *
  24  * Software distributed under the License is distributed on an "AS IS" basis,
  25  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
  26  * for the specific language governing rights and limitations under the
  27  * License.
  28  *
  29  * The Original Code is the elliptic curve math library.
  30  *
  31  * The Initial Developer of the Original Code is
  32  * Sun Microsystems, Inc.
  33  * Portions created by the Initial Developer are Copyright (C) 2003
  34  * the Initial Developer. All Rights Reserved.
  35  *
  36  * Contributor(s):
  37  *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
  38  *
  39  * Alternatively, the contents of this file may be used under the terms of
  40  * either the GNU General Public License Version 2 or later (the "GPL"), or
  41  * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
  42  * in which case the provisions of the GPL or the LGPL are applicable instead
  43  * of those above. If you wish to allow use of your version of this file only
  44  * under the terms of either the GPL or the LGPL, and not to allow others to
  45  * use your version of this file under the terms of the MPL, indicate your
  46  * decision by deleting the provisions above and replace them with the notice
  47  * and other provisions required by the GPL or the LGPL. If you do not delete
  48  * the provisions above, a recipient may use your version of this file under
  49  * the terms of any one of the MPL, the GPL or the LGPL.
  50  *
  51  *********************************************************************** */
  52 /*
  53  * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
  54  * Use is subject to license terms.
  55  */
  56 
  57 #include "mpi.h"
  58 #include "mplogic.h"
  59 #include "ecl.h"
  60 #include "ecl-priv.h"
  61 #ifndef _KERNEL
  62 #include <stdlib.h>
  63 #endif
  64 
  65 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x,
  66  * y).  If x, y = NULL, then P is assumed to be the generator (base point)
  67  * of the group of points on the elliptic curve. Input and output values
  68  * are assumed to be NOT field-encoded. */
  69 mp_err
  70 ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
  71                         const mp_int *py, mp_int *rx, mp_int *ry)
  72 {
  73         mp_err res = MP_OKAY;
  74         mp_int kt;
  75 
  76         ARGCHK((k != NULL) && (group != NULL), MP_BADARG);
  77         MP_DIGITS(&kt) = 0;
  78 
  79         /* want scalar to be less than or equal to group order */
  80         if (mp_cmp(k, &group->order) > 0) {
  81                 MP_CHECKOK(mp_init(&kt, FLAG(k)));
  82                 MP_CHECKOK(mp_mod(k, &group->order, &kt));
  83         } else {
  84                 MP_SIGN(&kt) = MP_ZPOS;
  85                 MP_USED(&kt) = MP_USED(k);
  86                 MP_ALLOC(&kt) = MP_ALLOC(k);
  87                 MP_DIGITS(&kt) = MP_DIGITS(k);
  88         }
  89 
  90         if ((px == NULL) || (py == NULL)) {
  91                 if (group->base_point_mul) {
  92                         MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group));
  93                 } else {
  94                         MP_CHECKOK(group->
  95                                            point_mul(&kt, &group->genx, &group->geny, rx, ry,
  96                                                                  group));
  97                 }
  98         } else {
  99                 if (group->meth->field_enc) {
 100                         MP_CHECKOK(group->meth->field_enc(px, rx, group->meth));
 101                         MP_CHECKOK(group->meth->field_enc(py, ry, group->meth));
 102                         MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group));
 103                 } else {
 104                         MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group));
 105                 }
 106         }
 107         if (group->meth->field_dec) {
 108                 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
 109                 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
 110         }
 111 
 112   CLEANUP:
 113         if (MP_DIGITS(&kt) != MP_DIGITS(k)) {
 114                 mp_clear(&kt);
 115         }
 116         return res;
 117 }
 118 
 119 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
 120  * k2 * P(x, y), where G is the generator (base point) of the group of
 121  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
 122  * Input and output values are assumed to be NOT field-encoded. */
 123 mp_err
 124 ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px,
 125                                  const mp_int *py, mp_int *rx, mp_int *ry,
 126                                  const ECGroup *group)
 127 {
 128         mp_err res = MP_OKAY;
 129         mp_int sx, sy;
 130 
 131         ARGCHK(group != NULL, MP_BADARG);
 132         ARGCHK(!((k1 == NULL)
 133                          && ((k2 == NULL) || (px == NULL)
 134                                  || (py == NULL))), MP_BADARG);
 135 
 136         /* if some arguments are not defined used ECPoint_mul */
 137         if (k1 == NULL) {
 138                 return ECPoint_mul(group, k2, px, py, rx, ry);
 139         } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
 140                 return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
 141         }
 142 
 143         MP_DIGITS(&sx) = 0;
 144         MP_DIGITS(&sy) = 0;
 145         MP_CHECKOK(mp_init(&sx, FLAG(k1)));
 146         MP_CHECKOK(mp_init(&sy, FLAG(k1)));
 147 
 148         MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy));
 149         MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry));
 150 
 151         if (group->meth->field_enc) {
 152                 MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth));
 153                 MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth));
 154                 MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth));
 155                 MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth));
 156         }
 157 
 158         MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group));
 159 
 160         if (group->meth->field_dec) {
 161                 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
 162                 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
 163         }
 164 
 165   CLEANUP:
 166         mp_clear(&sx);
 167         mp_clear(&sy);
 168         return res;
 169 }
 170 
 171 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
 172  * k2 * P(x, y), where G is the generator (base point) of the group of
 173  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
 174  * Input and output values are assumed to be NOT field-encoded. Uses
 175  * algorithm 15 (simultaneous multiple point multiplication) from Brown,
 176  * Hankerson, Lopez, Menezes. Software Implementation of the NIST
 177  * Elliptic Curves over Prime Fields. */
 178 mp_err
 179 ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px,
 180                                         const mp_int *py, mp_int *rx, mp_int *ry,
 181                                         const ECGroup *group)
 182 {
 183         mp_err res = MP_OKAY;
 184         mp_int precomp[4][4][2];
 185         const mp_int *a, *b;
 186         int i, j;
 187         int ai, bi, d;
 188 
 189         ARGCHK(group != NULL, MP_BADARG);
 190         ARGCHK(!((k1 == NULL)
 191                          && ((k2 == NULL) || (px == NULL)
 192                                  || (py == NULL))), MP_BADARG);
 193 
 194         /* if some arguments are not defined used ECPoint_mul */
 195         if (k1 == NULL) {
 196                 return ECPoint_mul(group, k2, px, py, rx, ry);
 197         } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
 198                 return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
 199         }
 200 
 201         /* initialize precomputation table */
 202         for (i = 0; i < 4; i++) {
 203                 for (j = 0; j < 4; j++) {
 204                         MP_DIGITS(&precomp[i][j][0]) = 0;
 205                         MP_DIGITS(&precomp[i][j][1]) = 0;
 206                 }
 207         }
 208         for (i = 0; i < 4; i++) {
 209                 for (j = 0; j < 4; j++) {
 210                          MP_CHECKOK( mp_init_size(&precomp[i][j][0],
 211                                          ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
 212                          MP_CHECKOK( mp_init_size(&precomp[i][j][1],
 213                                          ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
 214                 }
 215         }
 216 
 217         /* fill precomputation table */
 218         /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
 219         if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
 220                 a = k2;
 221                 b = k1;
 222                 if (group->meth->field_enc) {
 223                         MP_CHECKOK(group->meth->
 224                                            field_enc(px, &precomp[1][0][0], group->meth));
 225                         MP_CHECKOK(group->meth->
 226                                            field_enc(py, &precomp[1][0][1], group->meth));
 227                 } else {
 228                         MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
 229                         MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
 230                 }
 231                 MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
 232                 MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
 233         } else {
 234                 a = k1;
 235                 b = k2;
 236                 MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
 237                 MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
 238                 if (group->meth->field_enc) {
 239                         MP_CHECKOK(group->meth->
 240                                            field_enc(px, &precomp[0][1][0], group->meth));
 241                         MP_CHECKOK(group->meth->
 242                                            field_enc(py, &precomp[0][1][1], group->meth));
 243                 } else {
 244                         MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
 245                         MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
 246                 }
 247         }
 248         /* precompute [*][0][*] */
 249         mp_zero(&precomp[0][0][0]);
 250         mp_zero(&precomp[0][0][1]);
 251         MP_CHECKOK(group->
 252                            point_dbl(&precomp[1][0][0], &precomp[1][0][1],
 253                                                  &precomp[2][0][0], &precomp[2][0][1], group));
 254         MP_CHECKOK(group->
 255                            point_add(&precomp[1][0][0], &precomp[1][0][1],
 256                                                  &precomp[2][0][0], &precomp[2][0][1],
 257                                                  &precomp[3][0][0], &precomp[3][0][1], group));
 258         /* precompute [*][1][*] */
 259         for (i = 1; i < 4; i++) {
 260                 MP_CHECKOK(group->
 261                                    point_add(&precomp[0][1][0], &precomp[0][1][1],
 262                                                          &precomp[i][0][0], &precomp[i][0][1],
 263                                                          &precomp[i][1][0], &precomp[i][1][1], group));
 264         }
 265         /* precompute [*][2][*] */
 266         MP_CHECKOK(group->
 267                            point_dbl(&precomp[0][1][0], &precomp[0][1][1],
 268                                                  &precomp[0][2][0], &precomp[0][2][1], group));
 269         for (i = 1; i < 4; i++) {
 270                 MP_CHECKOK(group->
 271                                    point_add(&precomp[0][2][0], &precomp[0][2][1],
 272                                                          &precomp[i][0][0], &precomp[i][0][1],
 273                                                          &precomp[i][2][0], &precomp[i][2][1], group));
 274         }
 275         /* precompute [*][3][*] */
 276         MP_CHECKOK(group->
 277                            point_add(&precomp[0][1][0], &precomp[0][1][1],
 278                                                  &precomp[0][2][0], &precomp[0][2][1],
 279                                                  &precomp[0][3][0], &precomp[0][3][1], group));
 280         for (i = 1; i < 4; i++) {
 281                 MP_CHECKOK(group->
 282                                    point_add(&precomp[0][3][0], &precomp[0][3][1],
 283                                                          &precomp[i][0][0], &precomp[i][0][1],
 284                                                          &precomp[i][3][0], &precomp[i][3][1], group));
 285         }
 286 
 287         d = (mpl_significant_bits(a) + 1) / 2;
 288 
 289         /* R = inf */
 290         mp_zero(rx);
 291         mp_zero(ry);
 292 
 293         for (i = d - 1; i >= 0; i--) {
 294                 ai = MP_GET_BIT(a, 2 * i + 1);
 295                 ai <<= 1;
 296                 ai |= MP_GET_BIT(a, 2 * i);
 297                 bi = MP_GET_BIT(b, 2 * i + 1);
 298                 bi <<= 1;
 299                 bi |= MP_GET_BIT(b, 2 * i);
 300                 /* R = 2^2 * R */
 301                 MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
 302                 MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
 303                 /* R = R + (ai * A + bi * B) */
 304                 MP_CHECKOK(group->
 305                                    point_add(rx, ry, &precomp[ai][bi][0],
 306                                                          &precomp[ai][bi][1], rx, ry, group));
 307         }
 308 
 309         if (group->meth->field_dec) {
 310                 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
 311                 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
 312         }
 313 
 314   CLEANUP:
 315         for (i = 0; i < 4; i++) {
 316                 for (j = 0; j < 4; j++) {
 317                         mp_clear(&precomp[i][j][0]);
 318                         mp_clear(&precomp[i][j][1]);
 319                 }
 320         }
 321         return res;
 322 }
 323 
 324 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
 325  * k2 * P(x, y), where G is the generator (base point) of the group of
 326  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
 327  * Input and output values are assumed to be NOT field-encoded. */
 328 mp_err
 329 ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2,
 330                          const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry)
 331 {
 332         mp_err res = MP_OKAY;
 333         mp_int k1t, k2t;
 334         const mp_int *k1p, *k2p;
 335 
 336         MP_DIGITS(&k1t) = 0;
 337         MP_DIGITS(&k2t) = 0;
 338 
 339         ARGCHK(group != NULL, MP_BADARG);
 340 
 341         /* want scalar to be less than or equal to group order */
 342         if (k1 != NULL) {
 343                 if (mp_cmp(k1, &group->order) >= 0) {
 344                         MP_CHECKOK(mp_init(&k1t, FLAG(k1)));
 345                         MP_CHECKOK(mp_mod(k1, &group->order, &k1t));
 346                         k1p = &k1t;
 347                 } else {
 348                         k1p = k1;
 349                 }
 350         } else {
 351                 k1p = k1;
 352         }
 353         if (k2 != NULL) {
 354                 if (mp_cmp(k2, &group->order) >= 0) {
 355                         MP_CHECKOK(mp_init(&k2t, FLAG(k2)));
 356                         MP_CHECKOK(mp_mod(k2, &group->order, &k2t));
 357                         k2p = &k2t;
 358                 } else {
 359                         k2p = k2;
 360                 }
 361         } else {
 362                 k2p = k2;
 363         }
 364 
 365         /* if points_mul is defined, then use it */
 366         if (group->points_mul) {
 367                 res = group->points_mul(k1p, k2p, px, py, rx, ry, group);
 368         } else {
 369                 res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group);
 370         }
 371 
 372   CLEANUP:
 373         mp_clear(&k1t);
 374         mp_clear(&k2t);
 375         return res;
 376 }